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Abstract We discuss the Z2 symmetric two-Higgs-doublet
model with a real soft-breaking term (real 2HDM). We
explain in detail why it is not tenable to assume CP con-
servation in the scalar sector to keep the dimension two term
real, while CP is violated by the dimension four Yukawa
couplings. We propose the calculation of the infinite tad-
pole of the (would-be) pseudoscalar neutral scalar. We con-
struct a simple toy model with the same flaws, where the
unrenormalizable infinity is easier to calculate. We then con-
sider the same tadpole in the real 2HDM. We spearhead this
effort focusing on diagrams involving solely bare quantities.
This involves hundreds of Feynman three-loop diagrams that
could feed the CP violation from the quark into the scalar
sector, and is only possible with state of the art automatic
computation tools. Remarkably, some intermediate results
agree when using three independent derivations, including
the peculiar cancellation of the leading pole divergence due
to a subtle interplay between masses and the Jarlskog invari-
ant, which we calculate analytically. The calculation is not
complete however, since the full two-loop renormalization
of the real 2HDM is not yet available in the literature. Still,
we argue convincingly that there is an irremovable infinity.

1 Introduction

The exact implementation of the symmetry breaking sector
of the gauge theory describing fundamental particles is one of
the most interesting open problems. In particular, the recent
discovery at LHC of a 125 GeV fundamental scalar (h125)
[1,2] begs the question of how many fundamental scalars
there are in Nature. The Standard Model (SM) contains one
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single scalar doublet, but there is no fundamental requirement
for this choice.

Indeed, there have been countless studies on models with
two or more Higgs doublets; for reviews see [3–5] and ref-
erences therein. The most studied model includes two Higgs
doublets (2HDM) with a Z2 symmetry, softly broken by a
real parameter, with the additional requirement that the vac-
uum expectation values (vev) are taken as real. As such, the
scalar sector by itself is CP conserving. The Z2 symmetry
is carried over to the fermions in such a way that only one
scalar couples to all fermions of a given charge. The crucial
point is that the experimentally observed CP violation [6] is
accounted for by complex Yukawa couplings. This is some-
times referred to as the “real 2HDM”, because the soft Z2

breaking parameter is taken as real. Remarkably, this most
prevalent model can suffer from theoretical inconsistencies
regarding renormalization, a fact that is mostly ignored.1 This
is the problem we address in detail here.

The paper is organized as follows. In Sect. 2, we discuss
the inconsistency of requiring CP conservation in the poten-
tial of the real 2HDM, while allowing for CP violation else-
where. We argue that, at sufficient high order in perturbation
theory, there could be divergences in CP-violating one-point
and two-point functions that one can not remove by the coun-
terterms provided by the theory. We show in Sect. 3 that this
is precisely what happens in a toy model suffering from the
same inconsistency as the real 2HDM. Then, in Sect. 4, we
present the result for the leading pole of the three-loop one-
point function of the alleged CP-odd physical field of the
real 2HDM. We describe in Sect. 5 the details of the differ-
ent steps involved in the three-loop calculation. In Sect. 6,
we summarize our conclusions.

1 We know of only one published exception, appearing in one line on
page 4 of [7].
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2 Shortcomings of the real 2HDM

Let us consider a SU (2)L ⊗ U (1)Y gauge theory with two
Higgs-doublets Φa , with the same hypercharge 1/2, and with
real vacuum expectation values (vevs)

〈Φa〉 =
(

0
va/

√
2

)
, (a = 1, 2), (1)

with v =
√

v2
1 + v2

2 = 246 GeV. Our definition for the
charge is Q = T3 +Y , and we introduce the angle β through

tan β = v2/v1. (2)

The most general 2HDM scalar potential may be written
as

VH = m2
11Φ

†
1Φ1 + m2

22Φ
†
2Φ2 −

[
m2

12Φ
†
1Φ2 + H.c.

]

+ 1
2 λ1(Φ

†
1Φ1)2 + 1

2 λ2(Φ
†
2Φ2)2 + λ3(Φ

†
1Φ1)(Φ

†
2Φ2)

+ λ4(Φ
†
1Φ2)(Φ

†
2Φ1) +

[
1
2 λ5(Φ

†
1Φ2)2 + H.c.

]

+
[
λ6(Φ

†
1Φ1)(Φ

†
1Φ2) + λ7(Φ

†
2Φ2)(Φ

†
1Φ2) + H.c.

]
, (3)

where “H.c.” stands for Hermitian conjugation. The coeffi-
cients m2

11, m2
22, and λ1, . . . , λ4 are real while m2

12, λ5, λ6

and λ7 may be complex.
When extending this model to the fermion sector, one finds

flavour changing neutral scalar interactions, which are very
strongly constrained by experiments on neutral meson sys-
tems. This problem can be solved by imposing a Z2 sym-
metry: Φ1 → Φ1; Φ2 → −Φ2 [8,9]. If the symmetry is
exact, then the quadratic term m2

12 = 0, and the quartic terms
λ6 = λ7 = 0. (The quartic term λ5 can then be made real
by a simple rephasing of Φ2.) This has the consequence that
the model has no decoupling limit. That is, one cannot make
arbitrarily large the masses of the new particles resultant from
the presence of the second scalar doublet, thus approaching
smoothly the SM limit. Such a decoupling is a desirable fea-
ture, especially since the couplings probed by current LHC
data are consistent with the SM predictions, within errors of
order 20% [10]. Decoupling is recovered by reintroducing
m2

12 �= 0 [11], which, because it breaks softly the Z2 sym-
metry, does not affect the renormalizability of the theory.

Most articles addressing this model then make the choice
that m2

12 and λ5 are both real and the vevs are real, arguing
that CP conservation in the scalar sector has been imposed
(choice 1). Then one would proceed to discuss the various
implementations of the Z2 symmetry in the fermion sector,
and perform a variety of fits to experiment. Among these,
one must fit the well measured CP violation with origin in
the Cabibbo–Kobayashi–Maskawa (CKM) matrix [12,13],
accommodated by the complex Yukawa couplings (choice 2).
The problem is that choice 1 and choice 2 are incompatible.

Indeed, either one applies the CP symmetry to the whole
Lagrangian, in which case the Yukawa couplings are real

and one cannot account for the observed CP violation; or,
else, one does not apply CP symmetry anywhere, allow-
ing the Yukawa couplings to be complex, but then allowing
also for a complex m2

12.2 Said otherwise, requiring complex
CKM and excluding the parameter Im

(
m2

12

)
leads to a non-

renormalizable theory. At sufficiently high loop level, the CP
violation in the quark sector will leak into the scalar sector,
through a divergent contribution that cannot be absorbed by
a Im

(
m2

12

)
counterterm, which was absent from the theory

from the start.
So why do all articles fitting the real 2HDM “model” to

experiment ignore this problem? Because the divergent con-
tribution can only be shown to happen in at least three loops.
However, precisely because they are divergent, the problem
cannot be ignored if one wishes to use a theoretically sound
model.

Given the fact that the problem seems to occur due to (the
lack of) Im

(
m2

12

)
, one could be tempted to assume that such

a dimension two operator could not affect renormalizabil-
ity. And indeed, it cannot affect renormalizability due to its
soft-breaking of the Z2 symmetry. But the problem with CP
symmetry being invoked is not that it is broken by m2

12 (real
or complex); rather, it is (hard) broken by the dimension four
Yukawa couplings.

It is true that one can look at the real 2HDM as a limit-
ing case of the Z2 2HDM, softly broken by a complex m2

12.
This model is known as the complex 2HDM (C2HDM) and
has been studied in detail; see, for example [14–23]. In that
case, one can choose any tree-level values for the parame-
ters, and, in particular, set Im

(
m2

12

) = 0 at tree level. In that
context, setting Im

(
m2

12

) = 0 at tree level, does not consti-
tute a problem, since the theory does have its counterterm
and is renormalizable. Is this the same as the real 2HDM?
No: setting Im

(
m2

12

) = 0 in the C2HDM means that we are
studying a very specific corner of tree-level parameter space
of a more general model. The real 2HDM, where there is no
Im

(
m2

12

)
nor its counterterm, is not a consistent model.

There is a more physical way to state the non renormal-
ization problem. In any 2HDM there are three neutral scalars
(h1, h2, and h3), and a pair of charged scalars H±. Typically,
it is assumed that the lightest neutral scalar (h1) coincides
with the 125GeV particle found at LHC.3 In the real 2HDM,
the (proclaimed) lack of CP violation in the scalar sector,
leads to the separation of the three neutral scalars into one

2 Recall that λ5 can always be made real through a convenient rephasing
of Φ2. In fact, one could instead use the rephasing to make m2

12 real, at
the price of getting a complex λ5. What really matters is the rephasing

invariant quantity Im
[
λ∗

5

(
m2

12

)2
]
. For simplicity, we will make the

discussion in the basis where λ5 is real.
3 This is not mandatory. One can accommodate the possibility that the
125 GeV particle is not the lightest neutral scalar, but we shall not
concern ourselves here with that case. See for example [24,25].
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single CP odd scalar (A) and two CP even (usually denoted
by h for the lightest and H for the heaviest). If the CKM
CP violation indeed seeps into the scalar sector, then there
should be divergent contributions to the h-A and H -A two-
point functions. There will also be divergent contributions
to the A tadpole. Since such terms are absent from the real
scalar sector at tree level, there are no counterterms to absorb
those infinities, and the theory is formally inconsistent.

2.1 The scalar sector

We start from the scalar sector of the real 2HDM

Vr = m2
11Φ

†
1Φ1 + m2

22Φ
†
2Φ2 − m2

12

[
Φ

†
1Φ2 + Φ

†
2Φ1

]

+ 1
2λ1(Φ

†
1Φ1)

2 + 1
2λ2(Φ

†
2Φ2)

2 + λ3(Φ
†
1Φ1)(Φ

†
2Φ2)

+ λ4(Φ
†
1Φ2)(Φ

†
2Φ1) + 1

2λ5

[
(Φ

†
1Φ2)

2 + (Φ
†
2Φ1)

2
]
,

(4)

with all parameters real, and we parametrize the fields in the
original basis as

Φ1 =
(

cβG+ − sβH+
1√
2

[
vcβ + (cαH − sαh) + i(cβG0 − sβ A)

]
)

,

Φ2 =
(

sβG+ + cβH+
1√
2

[
vsβ + (sαH + cαh) + i(sβG0 + cβ A)

]
)

. (5)

Throughout cθ = cos θ and sθ = sin θ , for whatever angle
θ appears as a sub-index. Comparing Eq. (1) and Eq. (5),
we recognize the choice v1 = vcβ and v2 = vsβ . With that
choice, G+ and G0 will be massless and H+ is the physical
charged scalar of mass m2

H± .4 These facts are confirmed by
substituting Eq. (5) in Eq. (4). Performing the expansion, one
sees that there is no linear term in A (and, thus, no possibility
to absorb any infinities that might appear in A tadpoles at
loop level), nor are there any quadratic hA or H A terms
(and, similarly, no possibility to absorb any infinities that
might appear in the corresponding two-point functions at
loop level).

The expansion does contain linear (tadpole) terms for H
(tH ) and h (th). Equating these tadpoles to zero, one obtains
the same conditions that one would obtain by finding the sta-
tionarity conditions ∂Vr/∂v1 = 0 and ∂Vr/∂v2 = 0 directly
from Eq. (4). Those two equations can be solved for m2

11
and m2

22, which are then substituted back into the expression
for the potential. After this substitution using the vacuum
conditions, there are no quadratic G0G0 and G+G− terms.
There are also no mixed G0A or G±H∓ terms, meaning that
as expected G0 and G+ are Goldstone bosons, while A and

4 This is in fact a feature of the general 2HDM (which can be extended
to multiple doublets) related to the existence of a “Higgs basis” [26] –
H1 = v∗

1Φ1 + v∗
2Φ2, H2 = −v2Φ1 + v1Φ2 – where all the vev is in the

first doublet [27,28].

H+ are already mass eigenstates. One finds quadratic terms
of the type HH , hh, and hH . The angle α is chosen to kill
the latter, meaning that h and H are the physical fields. Using
v = 246 GeV and mh = 125 GeV, the scalar sector of the
real 2HDM is parametrized by six further parameters: the
mixing angles α and β; the masses mH , mA, mH± ; and the
soft-breaking parameter m2

12 = Re
(
m2

12

)
.

2.2 CP violation from the CKM matrix

In the SM and in the real 2HDM, CP violation arises from
the complex Yukawa couplings. When the quark fields are
rotated into their mass basis, all CP violation phases are con-
tained in the CKM matrix [12,13]. But, each quark field
can still be rephased at will, thus moving the CP violating
phase around the various entries of the CKM matrix. The
only rephasing invariant quantity is [29–31]

I αi
β j = Im

(
Vαi Vβ j V

∗
α j V

∗
βi

)
, (6)

where α �= β and i �= j . We use the notation of [32], where
Greek lettersα, β, γ, . . . refer to up-type quarksuα = u, c, t ,
while Roman letters i, j, k, . . . refer to down-type quarks
di = d, s, b. There are nine distinct four quark combinations
with different flavours: (ds), (db), and (sb) for the down-
type quarks times the three for up-type quarks: (uc), (ut), and
(ct). Using the unitarity of the CKM matrix, the following
symmetries hold

I αi
β j = I β j

αi = −I α j
βi = −I βi

α j , (7)

showing that indeed there is only one independent CP violat-
ing quantity. The antisymmetry with respect to interchange
of same quark-type indices is easiest to see in the form

I αi
β j = J

∑
γ,k

εαβγ εi jk, (8)

where J is the Jarlskog invariant [29–31], defined for exam-
ple as J = I udcs . Notice that I udcs �= 0 even though only quarks
from the first two families are involved. This does not con-
tradict the fact that there would be no CP violating phase in
the SM if there existed only two families of quarks. The fact
that the CKM matrix is 3×3 unitary (and, thus, has one irre-
movable complex phase) is built into Eq. (8). Nevertheless,
in CP violating processes with no external quarks (and, thus,
a quark loop), the appearance of four CKM (V ) factors can
only occur in diagrams at the three loop level and above.

As emphasized by Pospelov and Khriplovich [33] and by
Booth [34] in the context of the electric dipole moments
(edm) of the W and the electron, the antisymmetry of Iαi

β j is
very powerful. Any CP violating amplitude from a fermion
box diagram will appear as the product I αi

β j with some ampli-
tude

A(muα ,muβ ,mdi ,mdj ). (9)
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When all contributions are summed over (α, β, i , and j), all
terms in A(muα ,muβ ,mdi ,mdj ) symmetric under α ↔ β,
or i ↔ j will not contribute. A much more involved analysis
along these lines was used in [33,34] to show that the SM
electroweak contributions to the electric dipole moments of
the W and the electron vanish to two-loop and three-loop
approximation, respectively.

3 A theoretically unsound toy model

To better illustrate our claim, we consider here a toy model
that suffers from the same inconsistency as the real 2HDM. In
both models, CP conservation is enforced in a particular sec-
tor of an otherwise CP violating theory. As a consequence, CP
violating radiative effects end up contaminating the alleged
CP conserving sector, thus leading to divergences that cannot
be absorbed by the counterterms. The major feature of our
toy model is that such divergences show up immediately at
one-loop order. Therefore, it constitutes a simple material-
ization of the same theoretical pathology that we claim to be
present at three-loop or above in the real 2HDM.

The present model is inspired in a model by Pilaftsis [35],
which, however, does not suffer from the flaw we wish to
point out. Consider two Abelian gauge symmetries U (1)Q
andU (1)B , with gauge bosons Aμ and Bμ, respectively. Sup-
pose also four complex scalars, Φ1, Φ2, χL and χR , with
charges

Q(Φ1) = 0, Q(Φ2) = 0, Q(χL) = 1, Q(χR) = 1, (10)

B(Φ1) = 1, B(Φ2) = 1, B(χL) = −1

5
, B(χR) = 4

5
,

(11)

where Q and B represent the conserved charges of U (1)Q
and U (1)B , respectively. A discrete symmetry D is imposed
on the fields, under which:

Φ1
D→ −Φ1, Φ2

D→ Φ2, χL
D→ −χL , χR

D→ χR . (12)

However, D is allowed to be softly broken. The complete
renormalizable Lagrangian can then be written in four terms,

L = Lkin + LΦ + Lχ + LΦχ , (13)

where Lkin represents the kinetic terms5 and

− LΦ = μ2
1Φ

∗
1 Φ1 + μ2

2Φ
∗
2 Φ2 + μ2Φ∗

1 Φ2 + (μ2)∗ Φ∗
2 Φ1

+λ1
(
Φ∗

1 Φ1
)2 + λ2

(
Φ∗

2 Φ2
)2 + λ34 Φ∗

1 Φ1Φ
∗
2 Φ2

+λ5
(
Φ∗

1 Φ2
)2 + λ∗

5

(
Φ∗

2 Φ1
)2

, (14a)

5 We assume no Aμ-Bμ kinetic mixing.

−Lχ = m2
L χLχ∗

L + m2
R χRχ∗

R + ρ1(χ
∗
LχL)2

+ρ2(χ
∗
RχR)2 + ρ34 χ∗

LχLχ∗
RχR, (14b)

−LΦχ = f1 Φ1χLχ∗
R + f ∗

1 Φ∗
1 χ∗

LχR + f2 Φ2χLχ∗
R

+ f ∗
2 Φ∗

2 χ∗
LχR + g1 Φ∗

1 Φ1χ
∗
LχL + g2 Φ∗

2 Φ2χ
∗
LχL

+ g3 Φ∗
1 Φ1χ

∗
RχR + g4 Φ∗

2 Φ2χ
∗
RχR . (14c)

The parameters μ2, λ5, f1 and f2 are in general complex,
while the remaining ones are real by construction. The terms
involving μ2 and f2 break the symmetry D softly. It is easy
to show that the conditions for CP conservation are:

Im
[
μ2 f1 f ∗

2

]
= 0, (15a)

Im
[
λ5 f 2

1 ( f ∗
2 )2

]
= 0, (15b)

Im
[
λ∗

5 (μ2)2
]

= 0. (15c)

Mimicking the usual real 2HDM treatment, we take 〈Φ1〉 and
〈Φ2〉 real and parametrize

Φ1 = 1√
2

(v1 + H1 + i A1) , (16a)

Φ2 = 1√
2

(v2 + H2 + i A2) , (16b)

where v1, v2 are real and non-negative, and H1, H2, A1, and
A2 are real fields. The vevs v1 and v2 break spontaneously
the gauge symmetry U (1)B . Recall that μ2, λ5, f1, f2 are in
general complex.

But suppose we force CP to be conserved in LΦ by the
ad-hoc imposition that μ2 and λ5 are real. This we will do
in the following. It will lead to irremovable divergences at
one-loop, as we now show.

We start by determining the minimization (or tadpole)
equations. These are:6

0 = tH1 := ∂LΦ

∂H1

∣∣∣∣
<>=0

= −v1

(
μ2

1 + v2

v1
μ2 + v2

1λ1 + 1

2
v2

2λ34 + v2
2 λ5

)
, (17a)

0 = tH2 := ∂LΦ

∂H2

∣∣∣∣
<>=0

= −v2

(
μ2

2 + v1

v2
μ2 + v2

2λ2 + 1

2
v2

1λ34 + v2
1 λ5

)
, (17b)

where tH1 , tH2 represent the tree-level tadpoles for H1, H2,
respectively, and <>= 0 means that the expectation values
of all fields on the right hand side of Eqs. (16) are set to
zero. Recall that we are taking μ2 and λ5 as real parameters.
For that reason, the mass matrices for H1 and H2, on the
one hand, and A1 and A2, on the other, can be separately

6 The tadpole equations for A1 and A2 are trivially zero.
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diagonalized. We thus define the angles θ and β such that:

(
H1

H2

)
=

(
cθ −sθ
sθ cθ

) (
h
H

)
, (18a)

(
A1

A2

)
=

(
cβ −sβ
sβ cβ

)(
G0

A

)
, (18b)

where h and H are the CP even states, and A and G0 are the
CP odd states, where G0 is the massless would-be Goldstone
boson.7 We continue using the short notation sx ≡ sin(x),
cx ≡ cos(x), for a generic angle x . As for the Lχ sector, the
mass matrix is given by

− Lχ
mass = (

χ∗
L χ∗

R

) (
a b∗
b c

)(
χL

χR

)
, (19)

with

a = 1

2
g1v

2
1 + 1

2
g2v

2
2 + m2

L , (20a)

b = f1v1 + f2v2√
2

, (20b)

c = 1

2
g3v

2
1 + 1

2
g4v

2
2 + m2

R, (20c)

where a and c are real, while b is in principle complex. How-
ever, we can rephase χR through χR → ei arg(b)χR so that
it absorbs the phase of b. In the new basis, then, b is real,
which implies that the mass matrix in Eq. (19) is symmet-
ric.8 We thus need an orthogonal matrix with a new angle φ

to diagonalize the states:

(
χL

χR

)
=

(
cφ −sφ
sφ cφ

) (
χ1

χ2

)
, (21)

where χ1 and χ2 are the (complex) diagonalized states with
(real) masses M1 and M2.

When considering the theory up to one-loop level, one
should renormalize it in order to obtain finite S-matrix ele-
ments. This is done through the usual procedure: taking an
independent set of parameters, identifying them with bare
quantities (represented in the following with the index 0)
and relating them to their renormalized equivalents through
a counterterm. Tadpoles can be taken care of through the tad-
pole scheme identified by PRTS in [36]. It then follows from
the set of Eqs. (17) that:

7 G0 is eaten by the longitudinal component of Bμ in the unitary gauge
through the Higgs mechanism. The fact that G0 is massless forces β to
obey the relation tan β = v2

v1
.

8 If it were hermitian, one would need a unitary matrix to diagonalize
it, instead of an orthogonal one. Moreover, note that b real forces the
relation f ∗

1 = f1 + (
f2 − f ∗

2

)
tan β.

Fig. 1 Feynman diagrams contributing to the one-loop tadpole of the
CP odd state

δtH1 := −v1

(
μ2

1,0+ v2

v1
μ2

0+v2
1λ1,0 + 1

2
v2

2λ34,0+v2
2 λ5,0

)
,

(22a)

δtH2 := −v2

(
μ2

2,0+ v1

v2
μ2

0+v2
2λ2,0 + 1

2
v2

1λ34,0+v2
1 λ5,0

)
,

(22b)

where the tadpole counterterms δtH1 and δtH2 are such that
δtH1 = −TH1 and δtH2 = −TH2 , with TH1 and TH2 being
the one-loop tadpole for H1 and H2, respectively. The set of
(22) fixes the values for v1 and v2 at one-loop level. Note
that, since we imposed CP conservation in LΦ , there are no
tadpole counterterms for the CP odd fields. Specifically, in
the mass basis,

δtA = 0. (23)

But it is easy to see that this is inconsistent. Indeed, there is
a one-loop tadpole for A, whose diagrams are represented in
Fig. 1. The sum of diagrams is divergent. In fact,

(TA)

∣∣∣
div

= −1

ε

cφ sφ
(
M2

1 − M2
2

)
Im[ f2]

8
√

2 π2 cβ

, (24)

in d = 4−2ε dimensions, where TA represents the one-loop
tadpole for A and

∣∣
div means that we consider only divergent

parts.
The origin of the problem lies in the fact that we imposed

μ2 and λ5 to be real. To clarify this point, let us provision-
ally take these parameters to be complex, as they originally
were. By rewriting Eq. (14a) in terms of bare quantities, and
separating the real and imaginary parts of μ2

0 and λ5,0, the
terms proportional to these parameters are:

− LΦ0 � μ2
0 Φ∗

1,0Φ2,0 + (μ2
0)

∗ Φ∗
2,0Φ1,0

+ λ5,0
(
Φ∗

1,0Φ2,0
)2 + λ∗

5,0

(
Φ∗

2,0Φ1,0
)2

= Re[μ2
0](Φ∗

1,0Φ2,0 + Φ∗
2,0Φ1,0)

+ Re[λ5,0]
{ (

Φ∗
1,0Φ2,0

)2 + (
Φ∗

2,0Φ1,0
)2

}

+ i Im[μ2
0]

(
Φ∗

1,0Φ2,0 − Φ∗
2,0Φ1,0

)
+ i Im[λ5,0]

{ (
Φ∗

1,0Φ2,0
)2 − (

Φ∗
2,0Φ1,0

)2
}
.

(25)

As a consequence, when we set Im[μ2
0] = Im[λ5,0] = 0,

we are not including in the model the terms of the two last
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Fig. 2 Feynman diagrams contributing to the one-loop CP violating
2-point functions

lines of Eq. (25). Naturally, since such terms are not in the
model, there is no counterterm for the parameters involved
therein. That is, there is neither Im[δμ2] nor Im[δλ5].9 Now,
it is a matter of course that this would not be a problem if the
fact that we did not include the terms in the last two lines of
Eq. (25) would follow from a symmetry that forbade them.
In other words, should there be a symmetry in the theory that
proscribed those terms, they could logically not be included;
and since the symmetry would prevent any Green’s functions
generated by such terms from showing up, there would never
be divergences involved therein, so that the absence of coun-
terterms for them would never be a problem. So, for example,
if CP was a symmetry of the theory, it would preclude those
terms, in which case the absence of Im[δμ2] and Im[δλ5]
would not be inconsistent.

However, CP is not a symmetry of theory: even if we try
to impose it in the LΦ sector, it still is violated in the LΦχ

sector through the phases of f1 and f2, as Eqs. (15a) and (15b)
show. So, there is no CP symmetry forbidding the terms in
the last two lines of Eq. (25). As a consequence, even if we
exclude them, CP violating radiative effects can nonetheless
contribute to the Green’s functions involved therein. Such
Green’s functions will in general be divergent; but since the
last two lines of Eq. (25) were not included in the theory,
there will in general not be enough counterterms to absorb
them.

We have already seen one example of Green’s function
that indeed cannot be renormalized: the one-loop 1-point
function TA. Other examples are the one-loop CP violating
2-point functions �G0h , �G0H , �Ah and �AH for the scalar-
pseudoscalar mixing of G0 h, G0 H , A h and A H , respec-
tively. Their Feynman diagrams are represented in Fig. 2.

Just like in the case of TA, there simply is no counterterm
for these functions, which nonetheless are divergent. Their

9 The situation would not be different if we decided to exclude any
other term from the theory. For example, had we decided not to include
the term proportional to λ1 in the model, there would be no counterterm
δλ1.

divergent parts are:

�G0h(k2)

∣∣∣
div

= �AH (k2)

∣∣∣
div

= −1

ε
sin(β − θ)

Im [ f2] ( f1 + f2 tan β)

16π2 , (26a)

�Ah(k2)

∣∣∣
div

= −�G0H (k2)

∣∣∣
div

= −1

ε
cos(β − θ)

Im [ f2] ( f1 + f2 tan β)

16π2 . (26b)

In conclusion, the fact that we imposed μ2 and λ5 to be
real leads to several divergences that cannot be removed by
counterterms.

There are two ways to heal this model: either CP is
imposed as a whole, or it is not imposed at all. In the first
case, all the three relations in Eqs. (15) should be verified,
which implies that there is a basis where μ2, λ5, f1 and f2
are all real. In this scenario, therefore, CP violating Green’s
functions are precluded, which implies, in particular, that no
divergent CP violating Green’s functions will appear in any
order. This is consistent with what we obtained in Eqs. (24)
and (26), which vanish in the limit of real f1 and f2. In the
second case, μ2, λ5, f1 and f2 are in general complex param-
eters, which implies that their counterterms are also in general
complex. Since CP is violated, there are no scalar states with
well-defined CP, and Green’s functions will in general be CP
violating. The model is renormalizable as long as all the terms
compatible with the symmetries are included. Finally, note
that, in such a CP violating scenario, there may be regions
of the parameter space in which λ5 and μ2 are real, and f1
and f2 complex. But this is a completely different situation
from that where one builds a theory taking ab initio λ5 and
μ2 real, while f1 and f2 in general complex. In fact, while
the former situation corresponds to a particular solution of a
consistent, renormalizable theory, the latter suffers from the
inconsistencies we have shown.

4 Three-loop tadpole for A in the real 2HDM

Our goal is to check whether the complex phases of the
fermion mixing matrices introduce CP violating effects into
the otherwise CP conserving scalar sector of the real 2HDM
via radiative corrections. For this purpose, we focus on the
effects of quark-mixing. The quantity that signifies quark-
induced CP violation in a convention independent way is the
Jarlskog invariant J in Eq. (8). So, we are looking for radia-
tive corrections to the 2HDM which contain this quantity.
As the simplest check, we have looked for diagrams propor-
tional to J , contributing to the A tadpole. As argued above,
this can only happen in amplitudes with at least four vertices,
each containing a factor of Vuαd j and additionally, a vertex
to couple to A (none of the A-couplings have CKM-factors).
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(a) (b)

Fig. 3 Example of pair of Feynman diagrams where J factorizes (for
fixed α, β, i, j). They differ only by the direction of fermion flow (or
equivalently by the exchange of the two down-type quarks, di ↔ d j )

Therefore, the first possible appearance of J in A-tadpoles is
at three loops. This is indeed what we find at the amplitude-
level.

An example of a pair of diagrams yielding the Jarlskog
invariant is shown in Fig. 3. If contributions of this kind were
divergent, then one would lack the respective counterterm
needed to absorb these divergences within the real 2HDM.
Therefore, we checked for the existence of a leading 1/ε3-
pole in said contributions, which would be a strong indication
for the necessity of a genuine three-loop A-tadpole countert-
erm. For this purpose, we generated all three-loop A-tadpole
amplitudes TA with the only condition being that a fixed set
of quarks {uα, uβ, di , d j } must be contained. Other contri-
butions are CP conserving operators and, thus, irrelevant to
our discussion.

Our calculation was carried out in three independent ways
(two numeric; one analytical), fully explained in Sect. 5. The
result is10

(TA)
αi
βj = −i

(
A

)uαdi

uβdj

=
g5

8ε3m3
W sβcβ

Mαi
βj Iαi

βj +O(ε−2),
(27)

where there is no sum over repeated indices, and

Mαi
β j =(m2

uα
− m2

uβ
)(m2

di − m2
d j

)

× (m2
uα

− m2
di + m2

uβ
− m2

d j
). (28)

The fact that such different calculational techniques yielded
the same result is truly significant.

Remarkably, when summing over all different sets of up-
and down-type quark contributions, the leading pole van-
ishes exactly. Indeed, it is easy to show that summing the
combination Mαi

β j I
αi
β j over all the nine distinct sets of four

10 Notice that the angle β in sβcβ is the angle in Eq. (2), while in all other
instances of Eq. (27), β refers to the up-type quark being considered.
Here and henceforth, which β is meant should be clear from the context.

different quarks (two up-type and two down-type), the result
vanishes. Notice that both Mαi

β j and I αi
β j are antisymmetric

under α ↔ β (or i ↔ j). Thus, the vanishing of Eq. (27) is
not due to the simple symmetry reasons mentioned in con-
nection with Eq. (9). It is the specific form of the mass term
Mαi

β j in Eq. (28) which makes this possible. We cannot see
how one would have guessed from the start this rather pecu-
liar mass combination. We resonate with Khriplovich and
Pospelov’s remark in the context of edm that: “We cannot
get rid of the feeling that this simple result (…) should have
a simple transparent explanation. Unfortunately, we have not
been able to find it.”

But the physical consequence is quite clear:∑
α<β

∑
i< j

(TA)αiβ j = O(ε−2). (29)

It remains uncertain whether this cancellation has a physi-
cal origin or it is to be interpreted as accidental. There is
the possibility that the next order 1/ε2-poles would be non-
vanishing. Otherwise, a genuine CP violating tadpole coun-
terterm for A would only become relevant at the four-loop
level.

5 Details of the calculation

In this section, we discuss our derivation of (27). First note
that a complete calculation of the renormalized three-loop
tadpole for A would require the full renormalization of
the model at both one-loop and two-loop order. Although
unlikely, one cannot exclude the possibility that combi-
nations of the one- and two-loop counterterms of a CP-
conserving scalar sector conspire to cancel the divergences
of a CP-violating three-loop tadpole. Secondly, one caveat in
our calculation is the treatment of amplitudes with an uneven
number of γ -matrices together with γ5. We chose to work in
naive dimensional regularisation with the expectation that
the leading ε-poles do not depend on the choice of a γ5-
scheme. This claim is supported by the findings in [37] at the
one-loop level.

As mentioned before, at least three generations of quarks
are necessary to generate a CP-violating tadpole. Therefore,
we focus on a particular set of diagrams. Let us then define
S{dcbt} as the set of all the three-loop tadpole diagrams for
A containing the quarks d, c, b, t . We started by gener-
ating the amplitudes for S{dcbt} in an Rξ -gauge. We did
this through two independent softwares: FeynMaster [38]
(which makes use of FeynRules [39] andQGRAF [40]) and
FeynArts [41].11 At three loops, there are 360 amplitudes
containing the quarks d, c, b and t . However, 120 among

11 It is worth emphasizing that the three-loop tadpole amplitudes gen-
erated with FeynArts and FeynMaster coincide.
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(a) (b)

Fig. 4 Attaching A to the fermion lines of these diagrams and the
ones with reversed fermion flow generates the first category of relevant
diagrams

them involve two closed loops of fermions, which means
that they can never factorize the Jarlskog invariant J ; and
since a) the tadpole for A violates CP and b) all the CP-
violation in the real 2HDM must be proportional to J (with
J being the only rephasing-invariant quantity signifying CP-
violation), those diagrams must sum up to zero. We checked
this explicitly using FeynCalc [42–44].

We then focused on the remaining 240 diagrams. After
simplifying the Lorentz and Dirac algebra of the 240 dia-
grams with FeynCalc, another 32 diagrams, such as the
ones with two internal W-boson loops, vanish immediately
(in naive dimensional regularisation) due to the chirality of
the interactions involved. This eventually left us with 208
diagrams which can be categorized as follows:

1. The first group of diagrams can be generated from con-
necting A to any fermion line in Fig. 4 and the correspond-
ing ones with reversed fermion flow giving 16 diagrams.
The same goes for all possible vector boson and scalar
insertions, namely

{HW,WH, HG,GH, HH,GW,WG,GG}.

Diagrams where we connect A to a line with an attached
W -loop vanish though, leaving us with 8 × 16 − 4 × 4 =
112 diagrams.

2. An example of the second group is shown in Fig. 5. From
this diagram and the one with reversed fermion flow, we
get 8 diagrams by cyclic permutations of the fermions.
The A can be connected to either {WH, HW,GH, HG}
and we can have either a W -, H -, or G-loop in the dia-
gram. This gives 3 × 4 × 8 = 96 diagrams.

We proceeded to numerically evaluate the most divergent
part of the 208 diagrams using FIESTA [45] in Feynman
gauge, i.e. at ξW = 1. In order to generate input integrals,
the FeynCalc function ApartFF was essential for decom-
posing the diagrams via partial fractioning. This decomposi-
tion yielded scalar integrals for which we could easily get an
accurate result fromFIESTA. One integral type needed addi-

Fig. 5 The second set of relevant diagrams is generated from permuta-
tions of the fermions in this diagram and by replacing the W -insertions
with a Goldstone boson

tional attention though, namely the one with a scalar product
in the numerator and five different propagator factors (see
Appendix A for a discussion). This type of integral yielded
large error estimates in FIESTA, such that the results could
no be trusted. In order to obtain an exact result for those,
we used integration-by-parts identities with FIRE [46] to
decompose this integral type into a set of scalar integrals.
The intermediate steps required to link FeynCalc, FIRE
and FIESTA were performed by two independent sets of
private codes.

For the numerical input values of the scalar sector, one
should choose a point in parameter space which does not
violate any theoretical or experimental constraints. The theo-
retical bounds include boundedness from below, perturbative
unitarity [47–49] as well as electroweak precision measure-
ments using the oblique parameters S, T and U [4]. The exper-
imental constraints include the exclusion bounds from Higgs
searches at LHC that were verified using HiggsBounds
[50,51] and the signal strengths for the SM-like Higgs boson
were forced to be within 2σ of the fits given in [10,52].
Among the points that pass all constraints, we pick the fol-
lowing one:

α = −0.83797

β = 0.73908

mH± = 581.18 GeV,

mH = 592.81 GeV,

mA = 597.44 GeV,

m2
12 = 19.458 TeV.

(30)

Using these together with Eq. (B.1), the result for the most
divergent part of S{dcbt} is:

(iTA)cdtb = 2392.6 (GeV)3 × 1

ε3 J + O(ε−2). (31)

We tried to ascertain whether sets of diagrams with different
combinations of quarks could possibly cancel with each other
by checking the result for another set of quarks. For example,
consider the set of diagrams S{dcst}, defined as identical to
S{dcbt} except that the b quark is replaced by an s quark.
Using the same point in parameter space (Eq. 30), the result
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for the most divergent part of S{dcst} is

(iTA)cdts = −0.91341 (GeV)3 × 1

ε3 J + O(ε−2). (32)

Clearly, the numbers differ, which might lead one to believe
that summing over the results for all quarks combinations
would likely yield a non-zero result.

Only later, our attention was drawn to TVID [53,54], a
software package for the numerical evaluation of arbitrary
three-loop vacuum integrals – see also [55]. The authors dis-
cuss a set of three master integrals into which any three-loop
tadpole diagram can be decomposed. Using the same ampli-
tude decomposition as for our numerical evaluation, we were
then able to map to this set of master-integrals and use the
analytic pole expressions of TVID (or equivalently of Ref.
[56]) to acquire the result for the 1/ε3-pole shown in (27).12

After confirming that the analytic results coincided with our
previous numerical findings, we were able to sum over all
possible quark combinations using (27) to find the surprising
result of the poles cancelling, as shown in Eq. (29).

6 Conclusions

We argued that the real 2HDM can suffer from theoreti-
cal inconsistencies, as the simultaneous enforcement of CP
conservation in the potential and allowance of CP viola-
tion in another sector may lead to divergences that cannot
be removed by the counterterms. Because such divergences
cannot show up at two-loop level and below, the unsoundness
of the model has been by and large ignored in the literature.
But the problem cannot be dismissed. In order to highlight its
potential theoretical unsoundness we introduced a simple toy
model, characterized by the same inconsistency as the real
2HDM. There, and as we showed, the irremovable diver-
gences (that are expected at least at three-loops in the real
2HDM) show up immediately at one-loop level. This simple
example ought to make the point: the real 2HDM could suffer
from the same kind of pathology. We addressed this claim
by calculating the leading pole of the three-loop one-point
function of the A field in the real 2HDM. We showed that,
surprisingly, the pole vanishes exactly after summing all con-
tributions. This does not mean that the model is sound after
all, but only that its unsoundness is likely to be found either
at lower order in 1/ε or upon two-loop renormalization, or
possibly at four-loop order. A complete discussion would
require the full one- and two-loop renormalization as well
as a discussion of the γ5-scheme beyond naive dimensional
regularisation though.

12 This calculation also showed that the evaluation of scalar three-
loop integrals with up to five propagators and different mass scales
via FIESTA yields accurate results for the leading poles. This might
be the first such stress test on this package.

We hope that our work spurs further interest in this subject
and that a full calculation will become possible in the future.
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Appendix A: Integral decomposition

As mentioned in Sect. 5, one integral type in our amplitude
decomposition needed special attention. The one in question
is

U (1,2)
5 (m1,m2,m3,m4,m5)

= i
e3γE ε

π3d/2

∫
ddq1 ddq2 ddq3

q1 · q2

(q2
1 − m2

1)(q
2
2 − m2

2)(q
2
3 − m2

3)

× 1(
(q1 − q3)2 − m2

4

)(
(q2 − q3)2 − m2

5

) . (A.1)

Evaluating integrals of this kind with FIESTA yields small
yet non-zero error estimates already for the leading pole
which is why the numerical results could not be trusted.
Therefore, we made use of the integration by parts routines
of FIRE to decompose U (1,2)

5 into a set of scalar integrals,
which in turn yield vanishing error estimates for the leading
poles when evaluated with FIESTA. Using analytic expres-
sions for the leading poles of the resulting integral decom-
position also made it possible to recombine everything into
a joint expression for the leading pole of U (1,2)

5 , viz.
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U (1,2)
5 (m1,m2,m3,m4,m5)

= 1

24ε3

[
(m2

1 + m2
2)

2 + (m2
2 + m2

5)
2 + (m2

3 + m2
4)

2

+ (m2
3 + m2

5)
2 − 4(m2

2 − m2
3)

2 + m4
2 + m4

3

]

+ O(ε−2). (A.2)

Appendix B: Numerical input values

mW = 80.358 GeV,

mu = 2.2 × 10−3 GeV,

md = 4.8 × 10−3 GeV,

mc = 1.4464 GeV,

ms = 0.093 GeV,

mt = 172.5 GeV,

mb = 4.8564 GeV,

e = 0.30812,

sin θw = 0.47206.

(B.1)
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