KIT | KIT-Bibliothek | Impressum | Datenschutz

Challenges and Perspectives for Lowering the Vertical-Component Long-Period Detection Level

Forbriger, Thomas ORCID iD icon; Zürn, Walter; Widmer-Schnidrig, Rudolf

Abstract (englisch):

For observations of vertical component acceleration in the normal-mode band (0.3 mHz – 10 mHz) the detection sensitivity for signals from Earth’s body can be improved to levels below the Peterson Low Noise Model (PLNM). This is achieved by deterministic procedures which (at least partly) remove the accelerations originating from atmospheric mass fluctuations. The physical models used in such corrections are still too simple and fail at frequencies above 3 mHz. Anticipating improved atmospheric correction procedures, we explore the prospects of lowering the detection level. From recordings of excellent vertical component sensors operated under exceptional site conditions at the Black Forest Observatory (BFO) we select time windows of very low background signal, where all of the contributing broadband seismometers showed their best performance. Streckeisen seismometers of type STS-1, STS-2, and STS-6A, a Nanometrics Trillium T360, and the superconducting gravimeter (SG) SG056 manufactured by GWR Instruments take part in this comparison. Due to their low level of self-noise the STS-1 and the SG056-G1 benefit the most from a correction with the best currently available IBPM-model (improved Bouguer plate model) for atmospherically induced signals at frequencies below 1 mHz. ... mehr

DOI: 10.1785/0220200399
Zitationen: 5
Zitationen: 6
Zugehörige Institution(en) am KIT Geophysikalisches Institut (GPI)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 07.2021
Sprache Englisch
Identifikator ISSN: 0895-0695, 1938-2057
KITopen-ID: 1000136017
Erschienen in Seismological research letters
Verlag Seismological Society of America
Band 92
Heft 4
Seiten 2498–2512
Vorab online veröffentlicht am 24.03.2021
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page