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Abstract: Polymer-derived ceramics (PDCs) based on silicon precursor represent an outstanding
material for ceramic coatings thanks to their extraordinary versatile processibility. A promising
example of a silicone precursor, polyorganosilazane (Durazane 1800), was studied concerning its
crosslinking behavior by mixing it with three different photoinitiators, and curing it by two different
UV-LED sources under both nitrogen and ambient atmosphere. The chemical conversion during
polymerization and pyrolysis was monitored by FTIR spectroscopy. Pyrolysis was performed in a
nitrogen atmosphere at 950 ◦C. The results demonstrate that polyorganosilazane can be cured by
the energy-efficient UV-LED source at room temperature in nitrogen and ambient atmosphere. In
nitrogen atmosphere, already common reactions for polysilazanes, including polyaddition of the
vinyl group, dehydrogenation reactions, hydrosilylation, and transamination reaction, are responsible
for crosslinking. Meanwhile, in ambient atmosphere, hydrolysis and polycondensation reactions
occur next to the aforementioned reactions. In addition, the type of photoinitiator has an influence
on the conversion of the reactive bonds and the chemical composition of the resulting ceramic.
Furthermore, thermogravimetric analysis (TGA) was conducted in order to measure the ceramic
yield of the cured samples as well as to study their decomposition. The ceramic yield was observed
in the range of 72 to 78% depending on the composition and the curing atmosphere. The curing
atmosphere significantly impacts the chemical composition of the resulting ceramics. Depending
on the chosen atmosphere, either silicon carbonitride (SiCN) or a partially oxidized SiCN(O) can
be produced.

Keywords: polysilazane; crosslinking; UV-LED photopolymerization; preceramic polymers; FTIR
spectroscopy

1. Introduction

In recent years, polymer-derived ceramics (PDCs) based on silicon precursor such as
polyorganosilazane have been used as precursors for ceramics [1], as they offer many ad-
vantageous properties, in particular excellent adhesion on numerous surfaces [2,3] as well
as high thermal and chemical stability [4]. In addition, polysilazane serves as a component
for the preparation of ceramic matrix composites produced by means of additive manufac-
turing [5,6]. Polyorganosilazane consists of an alternating silicon and nitrogen backbone
and is produced on a large scale via ammonolysis of dichlorosilane (R2SiCl2) [7,8]. Like
polymers, PDCs benefit from the extraordinary versatility of processing when compared
with bulk ceramics. After processing, it is necessary to perform crosslinking followed by
pyrolysis, leading to the desired ceramic. The crosslinking can be conducted thermally
by adding a free radical initiator such as peroxides [9–11], catalysts [12], or photochem-
ically [13–15], to form an infusible network. Another well-established method for the
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crosslinking of polysilazane and other PDCs is the thiol-ene click chemistry, which is also
induced by means of UV light [16–18]. Thereby, the polymerization can occur by the addi-
tion of the thiol group to the vinyl group of polysilazane, which modifies the compound
completely. Owing to the step-growth polymerization, the gelation happens when a high
amount of functional groups has reacted [16].

UV-curing is a well-known fast and low-cost method for the fabrication of poly-
mers [19,20] and can be perfomed at room temperature. Preliminary, UV-curing of polysi-
lazane has been realized before by applying photoinitiators absorbing in the UV-C re-
gion [21,22]. Typically, the UV light source for this range is an environmentally harmful
mercury-vapor lamp, as it delivers light in the 280–450 nm range, matching the absorption
of the photoinitatiors [23]. In other works, polysilazane has been synthetically modified
by mixing it with acrylates, resulting in a photocurable resin, which was cured by digital
light processing [6,14]. The photoinitiator 2,2-dimethoxy-2-phenyl acetophenone, which
has its absorbance maximum between 310 and 390 nm [24], was used by the authors Hu
et al. [25] to cure polysilazane into free standing specimen (138 and 38 µm) followed by
thermal deep curing. Another scientist used the same photoinitiator for the fabrication of
SiCN MEMS [26]. In comparison with this work, the authors focus on the characterization
of the material properties after the pyrolysis process and less on the crosslinking behavior
of polysilazane.

In this work, the UV-curing approach was adopted, replacing the mercury-vapor lamp
by the energy-efficient UV-LED source [20], to start the crosslinking reaction by free-radical
polymerization.

The material presented here is a low-viscous and colorless polyorganosilazane, which
has excellent adhesion properties to most surfaces. Therefore, it is used as coating material
processed by spin- or dip-coating [3,27]. The solubility in most organic solvents and the
resulting tailoring in viscosity make the material attractive for usage as binding material for
filler-loaded preceramic polymer [28,29]. In inert atmosphere, the crosslinked network of
polysilazane can be pyrolyzed into amorphous silicon carbonitride (SiCN) at a temperature
of 800 ◦C, whereas at temperatures higher than 1400 ◦C, it crystallizes and phase separates
into silicon nitride and silicon carbide [1,30,31].

The aim of this work is to investigate the crosslinking behavior of polyorganosi-
lazane cured by ultraviolet light emitting diode (UV-LED) sources inducing the free-radical
polymerization of different photoinitiators. The photoinitiators used are benzophenone
derivate: dibenzosuberone (DBS), 4-(dimethylamino) benzophenone (DMABP), and iso-
propylthioxanthone (ITX). The crosslinking behavior of the mixtures was analyzed in detail
before and after curing by FTIR spectroscopy. Furthermore, after the photo-polymerization
process, the samples were pyrolyzed at 950 ◦C. The structure of the amorphous ceramics
and the resulting ceramic yield and the decomposition behavior were investigated by FTIR
spectroscopy and thermogravimetric analysis, respectively.

2. Materials and Methods
2.1. Materials

The compound utilized in this research is a commercially available liquid preceramic
polymer, organopolysilazane (OPSZ, Durazane 1800, Merck KGaA, Darmstadt, Germany).
The polymer consists of a silicon and nitrogen backbone, which is functionalized with
different side groups, e.g., hydrogen, methyl, and vinyl groups. The simplified chemical
structures are presented in Figure 1.
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Figure 1. (a) Chemical structure of Durazane 1800 with R1, R2, and R3, which are usually H, CH3, or 
CH=CH2 bonds, respectively, demonstrated in the chemical structures (b,c). 

Three different photoinitiators, dibenzosuberone (DBS, purity 98%, Merck KGaA, 
Darmstadt, Germany), 4-(dimethylamino)benzophenone (DMABP, purity 99 %, Merck 
KGaA, Darmstadt, Germany), and isopropylthioxanthone (Genocure ITX, purity > 98.0 %, 
Rahn AG, Zürich, Switzerland) (Figure 2), were added to Durazane 1800 in order to inves-
tigate its curing behavior. All photoinitiators are derivates of benzophenone. 2-propanol 
(Carl Roth, 99.9%, Karlsruhe, Germany) was used as a solvent. 

 
Figure 2. Photoinitiators used: (a) dibenzosuberonene (DBS), (b) 4-(dimethylamino)benzophenone 
(DMABP), and (c) isopropylthioxanthone (ITX). 

2.2. Preparation and Characterization 
In a first series of experiments, the preceramic polymer Durazane 1800 was mixed 

with three different photoinitiators to obtain photosensitive mixtures (see Table 1) and to 
investigate the polymerization behavior. 
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Figure 1. (a) Chemical structure of Durazane 1800 with R1, R2, and R3, which are usually H, CH3, or
CH=CH2 bonds, respectively, demonstrated in the chemical structures (b,c).

Three different photoinitiators, dibenzosuberone (DBS, purity 98%, Merck KGaA,
Darmstadt, Germany), 4-(dimethylamino)benzophenone (DMABP, purity 99%, Merck
KGaA, Darmstadt, Germany), and isopropylthioxanthone (Genocure ITX, purity > 98.0%,
Rahn AG, Zürich, Switzerland) (Figure 2), were added to Durazane 1800 in order to investi-
gate its curing behavior. All photoinitiators are derivates of benzophenone. 2-propanol
(Carl Roth, 99.9%, Karlsruhe, Germany) was used as a solvent.
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Figure 2. Photoinitiators used: (a) dibenzosuberonene (DBS), (b) 4-(dimethylamino)benzophenone
(DMABP), and (c) isopropylthioxanthone (ITX).

2.2. Preparation and Characterization

In a first series of experiments, the preceramic polymer Durazane 1800 was mixed
with three different photoinitiators to obtain photosensitive mixtures (see Table 1) and to
investigate the polymerization behavior.

Each photoinitiator (1 wt% or 3 wt%) was dissolved in Durazane 1800 (100 wt%) using
a high shear disperser (T-10 basic Ultra-Turrax®, IKA, Germany) for 120 s at 9400 rpm.
After the dissolution of the photoinitiator in Durazane 1800, the samples were irradiated for
300 s with LED light sources (LED-Spot-100 lamp, Dr. Hönle UV Technology, München,
Germany) with different wavelengths (385 and 405 nm) in ambient (47% RH) or nitrogen
atmosphere (1.1% RH). The relative humidity (RH) inside the UV chamber was measured
by testo 608-H2 thermo hygrometer (Testo SE & Co. KGaA, Titisee-Neustadt, Germany).
The intensity I0 of the UV lamps (λ = 385 or 405 nm) was 569 mW/cm2 and 553 mW/cm2,
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respectively. The intensity values were measured by the UV-Meter (HighEnd, Dr. Hönle
UV Technology, Gräfelfing, Germany).

Table 1. Overview of the sample description with respect to the used UV lamp and atmosphere as
parameters for the polymerization process. All mixtures contain 100 wt% Durazane 1800 and were
cured for 300 s.

Polymerization

Sample Initiator c
(Initiator)

ci
(Initiator) UV Lamp Atmosphere

[wt %] (mol/L) [nm]

DBS01 DBS 1 1.6 × 10−2 385 Ambient
DBS02 DBS 3 4.8 × 10−2 385 Ambient
DBS03 DBS 1 1.6 × 10−2 385 N2
DBS04 DBS 3 4.8 × 10−2 385 N2

DMABP01 DMABP 1 1.5 × 10−2 385 Ambient
DMABP02 DMABP 3 4.4 × 10−2 385 Ambient
DMABP03 DMABP 1 1.5 × 10−2 385 N2
DMABP04 DMABP 3 4.4 × 10−2 385 N2
DMABP05 DMABP 1 1.5 × 10−2 405 Ambient
DMABP06 DMABP 3 4.4 × 10−2 405 Ambient
DMABP07 DMABP 1 1.5 × 10−2 405 N2
DMABP08 DMABP 3 4.4 × 10−2 405 N2

ITX01 ITX 1 1.3 × 10−2 385 Ambient
ITX02 ITX 3 3.9 × 10−2 385 Ambient
ITX03 ITX 1 1.3 × 10−2 385 N2
ITX04 ITX 3 3.9 × 10−2 385 N2
ITX05 ITX 1 1.3 × 10−2 405 Ambient
ITX06 ITX 3 3.9 × 10−2 405 Ambient
ITX07 ITX 1 1.3 × 10−2 405 N2
ITX08 ITX 3 3.9 × 10−2 405 N2

The Fourier-transform infrared (FT-IR) spectrometer was conducted to investigate the
crosslinking behavior of the material. The spectra of all samples were recorded within a
wavenumber range of 4000 and 500 cm−1 by averaging 32 scans at a resolution of 4 cm−1

using a Bio-Rad FTS 3000 Excalibur spectrometer (Varian, Palo Alto, CA, USA). The samples
were coated with a doctor blade onto a shiny etched silicon wafer (~600 µm) and measured
both uncured and UV-cured. The thickness of the samples on the silicon wafer was about
2 µm. A background measurement of a blank silicon wafer was taken first and substracted
from each measured spectra.

The pyrolysis was performed in an alumina tube furnace (Carbolite, Neuhausen,
Germany) at 950 ◦C, because the wafer is not resistant to higher temperatures. The heating
rate was set at 1 ◦C/min and the temperature was held for 1 h at 950 ◦C using a nitrogen
flow rate of 120 mL/min. Because of the different coefficient of thermal expansion of silicon
compared with the resulting amorphous SiCN(O), the pyrolysis temperature was set to
950 ◦C to avoid cracks in the layer on the wafer.

The absorption spectra of the photoinitiators were measured by a UV-VIS spectrometer
(Cary 500 Bio, Varian, Palo Alto, CA, USA) within a wavelength range of 450 and 220 nm.
The photoinitiators were diluted in 2-propanol, filled into a quarz cuvette, and measured
by dual-beam mode.

Thermogravimetric analysis (TGA) was performed using STA-409C (Netzsch Group
GmbH &Co, Selb, Germany) to evaluate the polymer-to-ceramic conversion behavior and
to examine the residual ceramic yield of all samples. Around 300 µL of each mixture was
placed on a specimen and then the cured sample was scraped from the specimen. Around
20 mg of each cured sample was heated up to 1200 ◦C using a heating rate of 10 ◦C/min
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and a nitrogen flow rate of 100 mL/min. The experimental uncertainty for the residual
mass measured by TGA is around ±1%.

2.3. Degree of Conversion of the Reactive Bonds in Durazane 1800

FTIR spectroscopy was used to determine the relative degree of conversion DC (%) of
Durazane 1800 and the photoinitiator after curing.

The degree of conversion was calculated using Equation (1) [32] for the chemical
groups, which undergo chemical reactions during the crosslinking process: ≡Si–H, N–H,
and the vinyl group.

DC (%) =

(
1 − At

A0

)
× 100 (1)

Thereby, the content of the integrated peak areas of the reactive bonds of the cured
samples was defined as At. The content of the reactive bond of the uncured sample,
which was defined as A0, was taken as 100%. To minimize the influence of deviations in
sample thickness and instrument recording, all integrals were normalized by the integral
of the Si–CH3 bond at 1253 cm−1, as this bond does not change throughout the whole
crosslinking process.

2.4. Crosslinking Mechanism of Polysilazane

Curing of preceramic polymers, such as Durazane 1800, usually takes place thermally
by the addition of a free radical initiator like peroxides or catalysts. In this work, this
approach was adopted, replacing the high temperature with the energy-efficient LED source
to start the crosslinking reaction. Hence, as indicated before, three different photoinitiators
were used for the polymerization of Durazane 1800.

All used photoinitiators are derivates of benzophenone, which are Norrish type II pho-
toinitiators [33], meaning that, when irradiated with UV light, they are excited to the singlet
state, which subsequently changes to the triplet state via intersystem crossing (ISC) [34].
The mechanism is schematically illustrated in Figure 3 for the photoinitiator DMABP.

Polymers 2021, 13, x FOR PEER REVIEW 6 of 21 
 

 

 
Figure 3. Schematic illustration of the initiation of DMABP upon UV light. 

In inert atmosphere, Durazane 1800 can be primarily crosslinked through three dif-
ferent chemical bonds: ≡Si–H, ≡Si–NH–Si≡, and RCH=CH2 (vinyl group). The crosslinking 
reactions are shown in Figure 4. 

 
Figure 4. Several crosslinking reactions of Durazane 1800 involve ≡Si-H, ≡Si–NH–Si≡, and RCH=CH2 
groups that can occur in inert atmosphere [9]. 

The main group that undergoes a crosslinking reaction is the vinyl group. It is in-
volved in the radical vinyl polymerization and hydrosilylation of Si-vinyl and ≡Si–H 
groups. The possible radical reaction of methyl and vinyl groups, which occurs at temper-
atures above 200 °C [35], can be neglected in this work. Moreover, the ≡Si–H bond under-
goes dehydrogenation reactions between two ≡Si–H bonds and/or between ≡Si–H and 
≡Si–NH–Si≡ groups. Finally, the ≡Si–NH–Si≡ group can crosslink via transamination reac-
tion [7,9,36]. 

O

N

CH3

CH3

OH

N

CH3

CH3

1. h
ISC

1

DMABP
*

H-donor

+

O

N

CH3

CH2

Polymerisation

3

Durazane 1800

Figure 3. Schematic illustration of the initiation of DMABP upon UV light.

In inert atmosphere, Durazane 1800 can be primarily crosslinked through three differ-
ent chemical bonds: ≡Si–H, ≡Si–NH–Si≡, and RCH=CH2 (vinyl group). The crosslinking
reactions are shown in Figure 4.
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The main group that undergoes a crosslinking reaction is the vinyl group. It is in-
volved in the radical vinyl polymerization and hydrosilylation of Si-vinyl and ≡Si–H
groups. The possible radical reaction of methyl and vinyl groups, which occurs at tem-
peratures above 200 ◦C [35], can be neglected in this work. Moreover, the ≡Si–H bond
undergoes dehydrogenation reactions between two ≡Si–H bonds and/or between ≡Si–H
and ≡Si–NH–Si≡ groups. Finally, the ≡Si–NH–Si≡ group can crosslink via transamination
reaction [7,9,36].

In ambient atmosphere, the crosslinking reactions are mostly hydrolysis and polycon-
densation reactions [37]; these are shown in Figure 5. Thereby, the ≡Si–NH–Si≡ group
reacts with a water or an oxygen molecule under formation of silanol groups, which
subsequently polymerize to polysiloxane via polycondensation.
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3. Results and Discussion
3.1. UV-VIS Spectroscopy

The UV-VIS spectra of the photoinitiators were recorded in order to distinguish
at which absorption maximum the PIs absorb UV-light for starting the polymerization
reaction of polysilazane. Figure 6 illustrates the absorbance spectra of the photoinitiators
and Table 2 summarizes the absorption maxima.
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Table 2. Summary of the absorption maxima of the photoinitators classified according to the different
UV ranges.

UV-C UV-B UV-A

Photoinitiator Absorption
Maximum λmax

Absorption
Maximum λmax

Absorption
Maximum λmax

[nm] [nm] [nm]

DBS 255 307 352
ITX 258 290; 301 382

DMABP 248 - 351

The photoinitiator shows different absorption maxima, starting with ITX (Figure 6,
green curve), which has two major absorption maxima at 258 nm and 382 nm in the UV-C
and UV-A region, respectively, combined with two small shoulders between 290 and 301
nm in the UV-B region. The photoinitiator ITX is a derivate of benzophenone with a
modification of a sulfur atom bridge between the two phenyl groups. Owing to the sulfur
atom, the UV absorption spectra are redshifted compared with benzophenone [34].

As ITX, DBS (Figure 6) absorbs in the UV-region, showing the major maximum at
255 nm, followed by an absorption maximum at 307 nm and a small broad shoulder
between 340 and 380 nm. Lastly, DMABP (Figure 6) is the only PI, which does not absorb in
the UV-B region, showing its major absorption maximum in the UV-A region at 351 nm and
the smaller absorption maximum at 248 nm. In this work, the UV-A region is of interest,
as the employed light source has a light emitting diode for the emission of homogenous
irradiation at a wavelength of 385 or 405 nm.

3.2. FTIR Analysis

FTIR analysis was carried out before and after the UV curing to analyze the crosslink-
ing behavior and to characterize the chemical structure of the samples. The relative degree
of conversion was calculated for the reactive bonds (≡Si–H, ≡Si–NH–Si≡, and the vinyl
group), which are detected by FTIR spectroscopy. The non-reactive group ≡Si–CH3, with a
sharp band at about 1256 cm−1, is a common characteristic of all FTIR spectra of Durazane
1800, as it was synthesized through an ammonolysis reaction of dichloromethylsilanes
(RCH3SiCl2, R=H, CH3, or CH=CH2) [7]. The ≡Si–CH3 group is used as a reference for all
calculations of the crosslinking process.
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The FTIR spectra of DMABP01–DMABP08 are presented in Figure 7a–d. The uncured
samples (black curves) show the characteristic bands of pure Durazane 1800, which are
mainly summarized in Table A1. The absorption bands below 1000 cm−1 relate to the
stretching and deformation vibrations of Si–C, Si–N, C–C, and C–H bonds, which, however
are overlapping and consequently cannot be accurately assigned.
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Figure 7. FITR spectra of the uncured and cured Durazane 1800 sample mixed with DMABP as
photoinitiator. The red curves are samples cured in ambient atmosphere and the blue curves in
nitrogen atmosphere. Black curves belong to the uncured samples. (a) DMABP01 and DMABP03,
(b) DMABP02 and DMABP04 cured by a UV lamp (λ = 385 nm). (c) DMABP05 and DMABP07,
(d) DMABP06 and DMABP08 cured by a UV lamp (λ = 405 nm).

In this work, the focus of attention lies on the reactive chemical bonds in the case of
the uncured samples, including the vinyl group as well as the ≡Si–H and ≡Si–NH–Si≡
bond (Table 3). The absorption band at 1050 cm−1, corresponding to the ≡Si–O–Si≡, is only
visible in Figure 7b,d. A possible reason for the ≡Si–O–Si≡ band in the uncured samples is
the higher amount of photoinitiator, which might induce a slight silanol reaction during
preparation in ambient atmosphere. After using Durazane 1800, the bottle is flooded with
nitrogen to prevent oxygen contamination. Nevertheless, the oxygen cannot be completely
avoided, as in the case of inert atmosphere.

The FTIR spectra of sample DMABP03/04 and DMABP07/08 were recorded after UV
curing by a LED source (λ = 385 and 405 nm) in nitrogen atmosphere. In these conditions,
the spectra of the cured samples reveal similar features as the uncured reference samples,
except for the decrease of the deformation vibrations of the vinyl group (Figure 7, blue
curves) at the wavenumber of 1596 cm−1. This indicates that the conversion of the vinyl
group via radical polymerization is mainly responsible for the curing of Durazane 1800.
The observation is supported by the calculation of the degree of conversion (DC, vinyl
group) shown in Figure 8 and Table A1, which is three times as high as the DC of the Si–H
and N–H bonds. The vinyl groups of samples DMABP03/04 convert almost completely
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(DC = 89%) using the LED source (λ = 385 nm) compared with the samples DMABP07/08.
A reason for this occurence might be the absorption maximum of DMABP, which is at 351
nm (Table 2), being closer to 385 nm than to 405 nm. The DC (Si–H and N–H, Figure 8)
of DMABP03/04 is half as high as that of DMABP01/02, owing to the absence of oxygen
during the crosslinking process and, accordingly, little to no poly-condensation reactions of
the Si–H and N–H groups occurred in inert atmosphere. The conversion of these bonds
in inert atmosphere is based on transamination (N–H bond) and dehydrogenation (Si–H)
reactions (see Figure 4). By comparing the spectra of DMABP03/04 (blue curves) with
DMABP01/02 (red curves), the samples cured in an inert atmosphere exhibit a minor
absorption band of ≡Si–O–Si≡ between 1080 and 1040 cm−1, which could be completely
avoided when operating in a glovebox. Moreover, the photoinitiatior DMABP is resistant
against oxygen inhibition, as the aminoalkyl radical can form a peroxide radical by reacting
with oxygen. In turn the peroxide radical generates another aminoalkyl radical by hydrogen
abstraction [34]. This property of DMABP can be very useful when operating with material
suffering from oxygen inhibition. Hence, it can be concluded that successful curing of
Durazane 1800 took place using a low energetic LED source within minutes.

Table 3. Overview of important FTIR stretching and deformation vibrations in Durazane 1800 [38].

Chemical Bonds Stretching Vibrations Deformation Vibrations
[cm−1] [cm−1]

≡Si–NH–Si≡ 3382 1176
C=C double bond in vinyl group 1596; 1400

≡Si–CH3 1257
≡Si–CH2–CH2–Si≡ 1180–1120

≡Si–O–Si≡ 1080–1040
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Figure 8. Degree of conversion (DC) of the reactive vinyl group as well as Si–H and N–H bonds
calculated from the FTIR spectra of the samples DMABP01–08. The ceramic yield was obtained by
thermogravimetric analysis (TGA) measurement at 1200 ◦C.

The FTIR spectra of DMABP01/02 and DMABP05/06 were measured after UV curing
by an LED source (λ = 385 and 405 nm), respectively, in ambient atmosphere. For all
samples cured in ambient atmosphere, the DC of the ≡Si–NH–Si≡ group was neglected,
because the peak could not be distinguished properly owing to the peak broadening caused
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by water. The intensities of the bands assigned to the stretching of the C–H bonds of the
vinyl group (at 3050 cm−1) as well as of the C=C double bonds at 1596 cm−1 disappeared
for the samples DMABP01/02 and decreased for the samples DMABP05/06. Besides, the
absorption band of the ≡Si–H bond decreased for all these samples. This observation
indicates a hydrosilylation reaction (Figure 4, (4)) of the ≡Si–H group with the vinyl group
and radical polymerization of the vinyl group (Figure 4, (5)). The disappearance of the
vinyl group of the samples DMABP01/02 may be due to the absorption maximum of the
photoinitiator around 355 nm (Figure 6 and Table 2), thus corresponding more closely to
the wavelength at 385 nm than to the 405 nm UV-lamp. This result is confirmed by the DC
of the vinyl group, which is higher for DMABP01/02 than for DMABP05. However, it is in
the same order of magnitude when comparing the samples DMABP01/02 and DMABP06,
considering the measurement inaccuracy.

Moreover, the spectra of DMABP01, DMABP02, and DMAPB06 (Figure 7a, Figure 7b,
and Figure 7d, respectively, red curves) show the absorption band of ≡Si–O–Si≡. The
reason is the hydrolysis of the ≡Si–NH–Si≡ group resulting in a silanol group (≡Si–OH)
and ammonia, followed by a polycondensation reaction (Figure 5). This crosslinking
reaction is confirmed by nearly complete disappearance of both the stretching and de-
formation vibrations of the Si–NH band. The absorption band of the Si–O–Si of sample
DMABP05 (Figure 7c) is not as strong in the case of DMABP01/02 and DMABP06, despite
being polymerized similarly. In addition, neither the stretching nor the deformation vi-
brations of the ≡Si–NH–Si≡ group fully disappeared in this sample, despite curing in
ambient atmosphere. One reason for this observation could be the low concentration of
the photoinitiator compared with sample DMABP06, and another reason could be the
lower energetic irradiation of the LED source (λ = 405 nm). Moreover, the DC of the Si–H
bond of samples DMABP01/02 is higher than that of samples DMABP05/06, implying
more silanol and polycondensation reactions of the bonds ≡Si–H and N–H occurred at the
wavelength 385 nm than at 405 nm. The hydrolysis of Si–H bond can be catalyzed by the
ammonia formed from hydrolysis reactions of the ≡Si–NH–Si≡ group [39]. Especially in
sample DMABP05, the DC (≡Si–H) is much lower than in sample DMABP06, indicating
less hydrolysis and polycondensation reactions, as proven in the spectra (Figure 7c) by the
unreacted absorption peaks of the ≡Si–NH–Si≡ bond. This result shows that Durazane
1800 does not completely hydrolyse during curing, even in these conditions. Thermally,
this could not be observed, as more energy is given into the system. However, this absorp-
tion band occurs for all samples cured in ambient atmosphere owing to the sensitivity of
Durazane 1800 to moisture [37,40,41].

Compared with DMABP and ITX, the samples mixed with DBS could not be cured
by near visible light LED (λ = 405 nm), owing to its absorbance maxima (Figure 6) and
the structure of DBS (Figure 2). As it only consists of phenyl-groups without heteroatom
like sulfur or the amino alkyl group, the absorbance spectrum is not red-shifted. The
photoinitiator concentration does not affect the DC (vinyl group, ≡Si–H, and N–H) for
all samples. For the coating application, it is advantageous to use a higher amount of
photoinitiator if thinner layers are desired [34].

The samples DBS01-04 were cured by the LED source (λ = 385 nm) in ambient and ni-
trogen atmosphere followed by the measurement of the FTIR spectra, which are illustrated
in Figure 9a,b.

Samples DBS03/04 were cured in nitrogen atmosphere and, as shown in Figure 9,
an Si–O–Si absorption band (~1060 cm−1) was formed, implying that the samples were
partially hydrolyzed. As shown in Figure 9b, the spectra of the uncured mixture already
show an Si–O–Si band, indicating the sensitivity of the Durazane 1800/DBS system to
oxygen. Nevertheless, the crosslinking behavior is supported by radical polymerization of
the vinyl group (DC up to 85%), as the absorbance band of the vinyl group has decreased.
Compared with DMABP03/04, the DC (N–H) is higher for DBS03/04 because the N–H
group works as a co-initiator in the initiation reaction of DBS. Additionally, transamination
and dehydrogenation reactions with the Si–H bond (DC ~ 40%) may have occurred.
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Figure 9. FTIR spectra of the uncured and cured Durazane 1800 sample mixed with DBS as photoini-
tiator. The red curves were cured in ambient and the blue curves in nitrogen atmosphere. Black
curves belong to the uncured sample. (a) DBS01 and DBS03, (b) DBS02 and DBS04 cured by the
LED source (λ = 385 nm).

Similar to DMABP01/02, samples DBS01/02 cured in ambient atmosphere (red
curves) also undergo hydrolysis and polycondensation reactions illustrated in Figure 9 by
the formation of an Si-O-Si absorption band. Moreover, the vinyl group is converted as
the absorption band decreases and the resulting DC (vinyl group) accounts for approxi-
mately 75% (Figure 10). The vinyl group possibly reacts with the Si-H bond (DC ~ 60%) by
hydrosilylation reaction, forming an Si–C linkage, or via radical polymerization.
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Figure 10. Degree of conversion of the reactive vinyl group as well as ≡Si–H and N–H bonds
calculated from the FTIR spectra of samples DBS01–04. The ceramic yield was obtained by TGA
measurement at 1200 ◦C.

By mixing Durazane 1800 with the photoinitiator ITX, both LED sources could be used
for curing the mixtures owing to the red shifting of ITX generated by the sulfur atom. The
FTIR spectra and the resulting degree of conversion of the reactive bonds are shown in
Figures 11 and 12, respectively.
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Figure 11. FTIR spectra of the uncured and cured Durazane 1800 sample mixed with DMABP as
photoinitiator. The red curves were cured in ambient atmosphere and the blue curves in nitrogen
atmosphere. Black curves belong to the uncured sample. (a) ITX01 and ITX03, (b) ITX02 and ITX04
cured by the LED source (λ = 385 nm). (c) ITX05 and ITX07, (d) ITX06 and ITX 08 cured by the LED
source (λ = 405 nm).
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Figure 12. Degree of conversion of the reactive vinyl group as well as ≡Si–H and N–H bonds
calculated from the FTIR spectra of the samples ITX01–08. The DC (N-H) of the samples cured in
nitrogen atmosphere. The ceramic yield was obtained by TGA measurement at 1200 ◦C.
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The initial aspect that is noticeable when analyzing the spectra of the samples (ITX03/04
and ITX07/08) polymerized in nitrogen atmosphere is the formation of the ≡Si–O–Si≡
bond in spite of the inert atmosphere. The ≡Si–O–Si≡ bond is more evident for samples
ITX03/07 than for ITX04/08. This result is represented by the corresponding DC (N-H),
which is larger for ITX03/07 than for ITX04/08. One reason for this occurence might be
the lower photoinitiator concentration, leading to a slower, nevertheless more homogenous,
initiation of the photoinitiator, and thus to a slower gelation. However, as the N-H group
co-initiates the photoinitiator, the conversion is higher with the lower concentrations of
the initiator than at higher concentrations, because more radical centers could be acti-
vated owing to the slower reaction. The DC (vinyl group) of ITX04 is higher than ITX03,
which is desirable, as the Si–C linkage observed by hydrosilylation reaction is stable at
elevated temperatures.

As can be seen in the spectra (Figure 11), the samples (ITX01/02, ITX05/06) cured
in ambient atmosphere were hydrolyzed similarly to the aforementioned mixtures of
Durazane 1800 with DBS and DMABP. The calculated DC of the vinyl and the Si-H bonds
are in the same order of magnitude for ITX01/02 and ITX05/06 and are to be attributed to
hydrosilylation reactions and radical polymerization of the vinyl group.

The FTIR spectra of the samples pyrolyzed at 950 ◦C are shown in Figure 13 of
the samples cured in nitrogen and ambient atmosphere. The ceramization process was
completed as no absorption of Si–H or C–H bonds is present. A broad absorption band
is visible between 1100 and 680 cm−1 attributed to Si–C, Si–N–Si, and Si–O–Si bonds.
As previously mentioned, the presence of oxygen refers to the sensitivity of Durazane
1800 to moisture. Even if the crosslinking and pyrolysis processes took place in nitrogen
atmosphere, the mixtures were prepared in ambient atmosphere. As expected, the Si–O–Si
bond is more evident for DBS04 and ITX04 compared with DMABP04, as the spectra of
the cured samples already showed the Si–O–Si absorption band.
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3.3. Thermogravimetric Analysis and Ceramic Yields

Thermogravimetric analysis was conducted under nitrogen flow with 10 ◦C/min to
study the decomposition of the preceramic polymer and to measure the ceramic yield of
the sample. The ceramic yield of all samples was taken of the residual mass at 1200 ◦C
and is plotted for each mixture in Figures 8, 10 and 12. The thermograms measured in
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nitrogen atmosphere are shown in Figures A1 and A2 for the samples cured by the LED
source (λ = 385 and 405 nm), respectively. Thermal behavior in nitrogen atmosphere will
be explained using the sample DMABP04 as an exemplary sample in comparison with
uncured Durazana 1800, as the cured samples exhibit very similar thermal behavior. Sample
DMABP04 was cured by LED source (λ = 385 nm). The thermograms of uncured Durazane
1800 measured in ambient and nitrogen atmosphere and of DMABP04 are presented in
Figure 14.
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Pure and uncured Durazane 1800, which was measured both in nitrogen and ambient
atmosphere, decomposes in a three-step process. The degradation starts below 100 ◦C with
a mass loss of 16 and 10%, respectively, because of the non-crosslinked volatile oligomers.
It is worth mentioning that the first step is interrupted by a small plateau between 200
and 300 ◦C, which is attributable to the free-radical polymerization of the vinyl groups.
This plateau is missing in the UV-cured samples because the vinyl group was already
radically converted. The second step begins between 300 and 530 ◦C and results in a
mass loss of about 10 and 7%, respectively, owing to dehydrogenation and transamination
reactions. During the third step, which starts between 530 and 850 ◦C, the polymer-to-
ceramic transformation takes place as described before and results in a mass loss of 10
and 4%, respectively. The ceramic yield of pure Durazane 1800, measured in nitrogen and
ambient atmosphere, is 63 and 80%, respectively. The main reason for the increase of
ceramic yield is the incorporation of oxygen through hydrolysis and polycondensation
reactions of Durazane 1800 [40,42].

The degradation of the cured samples proceeds in a two-step process. The first step
starts at temperatures between 120 and 400 ◦C. During this step, further dehydrogenation
and transamination reactions occur, leading to mass loss due to volatile groups like ammo-
nia and hydrogen. Furthermore, at temperatures higher than 100 ◦C, the non-crosslinked
volatile oligomers degrade, resulting in mass loss. On the other hand, at temperatures
higher than 200 ◦C, the residual vinyl groups undergo further radical polymerization
and form a thermoset. Therefore, the curve between 200 and 400 ◦C is more flat than
sharp. The second step starts between 500 and 750 ◦C, resulting in a mass loss due to
the organic–inorganic transformation of the thermoset into amorphous SiCN and SiCO,
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depending on the curing atmosphere. The organic substituents degrade into methane
and other volatile hydrocarbons, hydrogen, ammonia, and volatile silicon derivatives [12],
mainly owing to rearrangements and radical reactions leading to bond breaking and new
bond formation [43]. No further mass loss is observed at temperatures higher than 800 ◦C.

In comparison with the uncured Durazane 1800 (63% in N2 atmosphere), the ceramic
yield of the samples crosslinked via LED source (λ = 385 and 405 nm) increased significantly
up to the range of between 72 and 78% depending on the mixture and crosslinking atmo-
sphere (see Appendix A, Table A1). Crosslinking of the preceramic polymers is necessary
for the polymer-to-ceramic transformation, as it increases the ceramic yield by reducing
the volatilization of the oligomers [44]. The high ceramic yield confirmed the high degree
of conversion. In addition, it demonstrates the response of Durazane 1800 to the chosen
crosslinking approach. For increasing the ceramic yield and reducing the shrinkage of the
final ceramic, crosslinking is an indispensable process, as the uncured sample is at least
10% lower than the crosslinked samples in inert atmosphere.

In this work, different parameters were changed to examine the behavior of Durazane
1800. First, the influence of the polymerization atmosphere on the ceramic yield was
studied. As summarized in Table A1, the ceramic yield of DBS01/02 is slightly higher than
that of DBS03/04, owing to the already mentioned oxygen incorporation, which is visible
in the FTIR spectra (Figure 9). A higher ceramic yield was also observed for DMABP02 in
comparison with DMABP03/04. For all the other samples, the polymerization atmosphere
did not affect the ceramic yield. Furthermore, the photoinitiator concentration was varied
for the purpose of examining the influence on the ceramic yield. The higher photoinitiator
concentration does not affect the ceramic yield for most samples, except for sample ITX08,
which has a higher ceramic yield than ITX07. Finally, two UV-lamps with different wave-
lengths were used for the photoinitiators ITX and DMABP. The change of the LED source
did not influence the ceramic yield, because the ceramic yield depends on the conversion
of the reactive bonds. As previously described, the mixtures presented in Table 1 were
cured properly by the chosen conditions and parameter.

4. Conclusions

In conclusion, the present work focuses on the crosslinking behavior of polyorganosi-
lazane (Durazane 1800), which was mixed with three different photoinitiators—
dibenzosuberone (DBS), 4-(dimethylamino)benzophenone (DMABP), and isopropylth-
ioxanthone (ITX)—and UV irradiated by two LED sources (λ = 385 and 405 nm) in ambient
and nitrogen atmosphere. It can be concluded that successful curing of Durazane 1800 was
established within minutes using energy-efficient LED sources. The crosslinking behavior
of the mixtures was investigated in detail by FTIR spectroscopy and the degree of con-
version was calculated for the reactive bonds. The curing atmosphere has a significant
impact on the crosslinking behavior of the reactive bonds and the chemical composition
of the resulting ceramic. In nitrogen atmosphere, it turned out that the DMABP mixtures
observed the least oxygen incorporation in comparison with the other two photoinitiators.
The main reason for this occurence is the aminoalkyl radical, which can form a peroxide
radical by reacting with oxygen. The peroxide radical in turn generates another aminoalkyl
radical by hydrogen abstraction [34]. The resulting ceramic of the samples cured in nitro-
gen atmosphere is SiCN(O). The amount of oxygen depends on the curing kinetics of the
photoinitiator. If the reactivity of the photoinitiator is slow, the N–H bond will hydrolyse
beforehand. Therefore, DMABP is recommended for usage as it shows the best results in
terms of insensitivity to hydrolysis reactions.

The approach presented in this work can be applied to various applications, including
coatings’ or microelectromechanical systems’ (MEMS) fabrication. Especially in the field of
MEMS, the preparation of precise structures is required, so it is of great interest if a targeted
curing can be carried out by means of a mask, which would not be possible with thermal
curing. With the help of this approach, UV-curable inks for inkjet printing can be prepared
or even 3D structures can be fabricated by stereolithography.
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In ambient atmosphere, curing of all samples is given by partial hydrolysis and
polycondensation reactions owing to the sensistivity of poly(organo)silazane to water.
Therefore, the resulting ceramic will be SiCO(N).

As only one spectroscopic method (FTIR) was applied in this work, it is of great
importance that other methods are used to better understand and compare the presented
system. FTIR spectroscopy is a fast and easy to use method. However, one disadvantage
of the technique is the overlapping of the bands, which makes the method imprecise.
Therefore, the use of another method such as NMR spectroscopy is indispensable, as it
would identify individual bonds quite accurately.

By comparing the two used LED sources (λ = 385 and 405 nm) of the DMABP samples,
it was found that the samples cured by the LED source (λ = 385 nm) reached the higher
degree of conversion of the reactive bonds, because this wavelength corresponds more
closely to the absorption maximum of the photoinitiator. When increasing the photoini-
tiator concentration, a high radical concentration is available near the surface, resulting
in sufficient surface cure. Accordingly, the thickness of the sample needs to be reduced to
achieve complete curing as most of the light is absorbed on the surface, leading to a top to
bottom amount of initiated species [45]. A lower photoinitiator concentration causes a ho-
mogeneous radical distribution, leading to good through-curing, but poor surface cure [34].
The photoinitiator concentration should be adjusted for each application depending on the
film thickness desired. Moreover, the higher amount of photoinitiator results in a faster
gelation owing to the higher radical concentration.

The ceramic yield was obtained by using the residual mass of the TGA and was
observed in the range of 72 to 78% depending on the composition and crosslinking behavior.
Hence, the curing atmosphere only influenced the ceramic yield of the DBS mixtures. In
addition, the two different LED sources and the photoinitiator concentration do not affect
the ceramic yield. Thus, the ceramic yield observed by the approach presented is high
enough to form dense amorphous ceramics.
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Appendix A

Table A1. Ceramic yield of the UV-cured samples measured from the residual mass of TGA at
1200 ◦C. The degree of conversion (DC) of the reactive samples calculated by the absorption bands of
the FTIR spectra.

Sample
DC

(Vinyl Group)
DC

(≡Si–H)
DC

(N–H)
Ceramic Yield

at 1200 ◦C
[%] [%] [%] [%]

Durazane 1800 uncured, N2 atmospere - - - 63
Durazane 1800 uncured, ambient atmospere - - - 80

DBS01 74 ± 7 62 ± 1 - 75
DBS02 69 ± 2 55 ± 5 - 74
DBS03 79 ± 7 41.8 ± 0.1 49 ± 3 72
DBS04 87 ± 6 36 ± 14 43 ± 10 73

DMABP01 77 ± 9 57 ± 4 - 77
DMABP02 74 ± 8 62 ± 8 - 78
DMABP03 88 ± 8 34 ± 9 37 ± 9 75
DMABP04 89 ± 4 23.4 ± 0.3 24 ± 6 76
DMABP05 47 ± 6 26 ± 7 - 75
DMABP06 56 ± 19 36 ± 7 - 78
DMABP07 69 ± 9 14 ± 10 22 ± 6 76
DMABP08 67 ± 13 18 ± 5 22 ± 13 77

ITX01 64 ± 7 52 ± 6 - 76
ITX02 47 ± 8 61 ± 6 - 78
ITX03 69 ± 3 41 ± 1 59 ± 7 77
ITX04 94 ± 2 39 ± 5 42 ± 9 77
ITX05 57 ± 4 51 ± 7 - 76
ITX06 44 ± 10 37 ± 7 - 78
ITX07 69 ± 4 42 ± 6 65 ± 8 74
ITX08 75 ± 12 39 ± 3 44 ± 6 76

Table A2. Overview of FTIR stretching and deformation vibrations in Durazane 1800 [38].

Chemical Bonds
Stretching Vibrations Deformation Vibrations

[cm−1] [cm−1]

N–H 3382 1176
C–H (vinyl) 3046

C–H in CHx (CH3 asymmetric) 2957
C–H in CHx (CH2 asymmetric) 2902
C–H in CHx (CH asymmetric) 2804

≡Si–H 2135
C=C double bond in vinyl group 1596

CH3 1400
≡Si–CH3 1257

≡Si–CH2–CH2–Si≡ 1180–1120
≡Si–O–S≡ 1080–1040
≡Si–N–S≡

≡Si–CH=CH2 950
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Figure A1. Thermograms of samples cured by an LED source (λ = 405 nm) measured in nitrogen atmosphere: (a) DMABP05–
08 and (b) ITX05–08. The black curves are mixtures of Durazane 1800 with 1 wt% photoinitiator concentration and
the red curves are mixtures of Durazane 1800 with 3 wt% PI concentrations. The dotted curves were cured in inert
atmosphere and the non-dotted in ambient atmosphere. The blue curve belongs to pure uncured Durazane 1800 measured
in nitrogen atmosphere.
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Figure A2. Thermograms of the samples cured by an LED source (λ = 385 nm) measured in nitrogen atmosphere:
(a) DBS01–04, (b) DMABP01–04, and (c) ITX01–04. The black curves are mixtures of Durazane 1800 with 1 wt% pho-
toinitiator concentration and the red curves are mixtures of Durazane 1800 with 3 wt% PI concentration. The dotted curves
were cured in inert atmosphere and the non-dotted in ambient atmosphere. The blue curve belongs to pure uncured
Durazane 1800 measured in nitrogen atmosphere.



Polymers 2021, 13, 2424 19 of 20

Polymers 2021, 13, x FOR PEER REVIEW 19 of 21 
 

 

 
Figure A2. Thermograms of the samples cured by an LED source (λ = 385 nm) measured in nitrogen atmosphere: (a) 
DBS01–04, (b) DMABP01–04, and (c) ITX01–04. The black curves are mixtures of Durazane 1800 with 1 wt% photoinitiator 
concentration and the red curves are mixtures of Durazane 1800 with 3 wt% PI concentration. The dotted curves were 
cured in inert atmosphere and the non-dotted in ambient atmosphere. The blue curve belongs to pure uncured Durazane 
1800 measured in nitrogen atmosphere. 

 
Figure A3. UV-VIS spectra of pure Durazane 1800. 

200 220 240 260 280 300 320 340 360 380 400 420 440
0.0

0.1

0.2

0.3

0.4

0.5
 Durazane 1800

Ab
so

rb
an

ce
 [a

.u
.]

Wavelength [nm] 

Figure A3. UV-VIS spectra of pure Durazane 1800.

References
1. Colombo, P.; Mera, G.; Riedel, R.; Sorarù, G.D. Polymer-Derived Ceramics: 40 Years of Research and Innovation in Advanced

Ceramics: Polymer-Derived Ceramics. J. Am. Ceram. Soc. 2010, 93, 1805–1837. [CrossRef]
2. Barroso, G.; Döring, M.; Horcher, A.; Kienzle, A.; Motz, G. Polysilazane-Based Coatings with Anti-Adherent Properties for Easy

Release of Plastics and Composites from Metal Molds. Adv. Mater. Interfaces 2020, 7, 1901952. [CrossRef]
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