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Abstract

Anisotropic fiber-reinforced composites are used in lightweight construction, which is of great industrial relevance. During mold filling of fiber
suspensions, the microstructural evolution of the local fiber arrangement and orientation distribution is determined by the local velocity gradient.
Based on the Folgar–Tucker equation, which describes the evolution of the second-order fiber orientation tensor in terms of the velocity gradient,
the present study addresses selected states of deformation rates that can locally occur in complex flow fields. For such homogeneous flows, exact
solutions for the asymptotic fiber orientation states are derived and discussed based on the quadratic closure. In contrast to the existing literature,
the derived exact solutions take into account the fiber-fiber interaction. The analysis of the asymptotic solutions relying upon the common qua-
dratic closure shows disadvantages with respect to the predicted material symmetry, namely, the anisotropy is overestimated for strong fiber-fiber
interaction. This motivates us to suggest a novel normalized fully symmetric quadratic closure. Two versions of this new closure are derived
regarding the prediction of anisotropic properties and the fiber orientation evolution. The fiber orientation states determined with the new closure
approach show an improved prediction of anisotropy in both effective viscous and elastic composite behaviors. In addition, the symmetrized qua-
dratic closure has a simple structure that reduces the effort in numerical implementation compared to more elaborated closure schemes. © 2021
Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1122/8.0000245

I. INTRODUCTION

A. Motivation

Composite materials are employed in lightweight designs,
thanks to the beneficial properties of their constituents,
namely, low mass density, design freedom, high stiffness, and
strength [1,2].1 From the application point of view, fiber-
reinforced polymer composites enhance the mechanical prop-
erties of conventional materials [1] in order to reduce the mass
of components. Short-fiber reinforced polymers manufactured
by injection molding are well suited for the manufacturing of
mass-produced complex-shaped objects [2]. During mold
filling, the complex alignment process of the suspended fibers
is determined by the local flow conditions. Flow simulations

are carried out for estimating the local fiber orientation state
with the goal of predicting the effective anisotropic mechanical
properties for composite applications [3]. Employing leading
fiber orientation tensors [4,5], closure approximations are
required to obtain a solvable system of equations [4,6].

Many different closure methods with varying complexity
have been developed [4,6–12]. A compromise is to be found
between a structurally simple closure and reliable results to
save effort in implementation and computation. Furthermore,
the description of the orientation process in fiber suspensions
requires suitable modeling of the fiber-fiber interaction mecha-
nism [13]. Even simple fiber-fiber interaction terms in the evo-
lution equation of the fiber orientation state [4,13] complicate
the derivation of exact solutions, which are useful for validat-
ing numerical computations and for the fundamental under-
standing of the fiber orientation process [10,11,14,15]. In this
context, it is necessary to provide a method covering the effect
of the fiber-fiber interaction in terms of exact solutions.

B. Goals and scope of the study

Within this study, new exact asymptotic solutions for the
second-order orientation tensor of the first kind [4,5] based
on the Folgar–Tucker equation (FTE) [4,13] are derived and
discussed. The fiber-fiber interaction is taken into account.
Furthermore, the FTE defining the exact expressions is formu-
lated with the quadratic closure (QC) [4,6,16]. Here, the term
“exact” refers only to the analytical expressions regarding the
asymptotic solutions obtained for a specific and approximate
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closure scheme. The following list summarizes the main
content of the present study:

• Exact solutions are provided, which describe the asymp-
totic fiber orientation state in simple shear flows, elonga-
tional flows, planar compression flows and compression
flows as a function of the fiber geometry and the fiber-
fiber interaction strength. The influence of both parameters
is described in detail. Numerical results of a superposed
shear and compression flow are also discussed.

• Based on the derived asymptotic solution regarding the
simple shear flow, the quality of approximating finite fiber
aspect ratios through infinite fiber aspect ratio is formally
investigated.

• The aforementioned asymptotic states are compared in
terms of the effective anisotropic viscous behavior of the
fiber suspension and the elastic properties of the corre-
sponding solid composite, as predicted by the models of
Dinh and Armstrong [17] and Mori and Tanaka [18].

• After a detailed analysis of the QC, two versions of an
enhanced QC are suggested. The first version improves the
reconstruction of orientation data and the estimation of the
effective viscous and elastic properties. The second version
is formulated in terms of a process-dependent closure func-
tion approach to be used in the FTE describing the orienta-
tion evolution. In addition, the asymptotic behavior of the
FTE based on the common QC is improved by using an
adapted fiber-fiber interaction coefficient.

The outline of the paper is as follows. In Sec. I, the
problem of the present paper is motivated, the goals and the
content of the present study are also described. A brief
description of the state of the art concerning exact solutions
of fiber orientation states is given, which can be used for val-
idation. Section II contains the description of fibrous micro-
structures and the governing equation of the present study.
In Sec. III, the exact expressions describing the asymptotic
orientation states are given with respect to selected deforma-
tion rates including symmetric and nonsymmetric velocity
gradients. Section IV contains the results and their discus-
sion. In particular, the QC is discussed and improved. The
summary and conclusion of the present study are given in
Sec. V. A brief discussion of using asymptotic orientation
states in the context of reverse engineering is given in the
outlook VI. In Appendixes A–I, additional expressions are
listed combined with the material parameters in use.

C. State of the art

In this section, the existing exact solutions of fiber orienta-
tion states are reviewed based on the associated description
of fibrous microstructures in Sec. II. Please note that the liter-
ature review does not consider the fiber-fiber interaction
since no exact solutions exist. Furthermore, the exact solu-
tions are limited to isotropic fiber orientation initial states
and the following basic assumptions [19–21]:

• The fibers are treated rigid and monodispersely suspended
in an incompressible, laminar flow of a Newtonian fluid.

• Inertia, volume forces, and external forces acting on the
fibers are not considered.

• The flow is assumed to be spatially homogeneous in a
domain, which is much larger than the characteristic
length of the fibers.

• The Brownian motion is not considered.

Jeffery and Filon [19] provide ordinary differential equa-
tions describing the temporal evolution of two orientation
angles for a single fiber immersed in a simple shear flow.
In the corresponding exact solution for the angles in three
dimensions (3D), two integration constants have to be deter-
mined based on the initial fiber orientation state. The same
relations are reviewed in Petrie [21]. In Verleye and Dupret
[22], Altan et al. [23], and in Dinh and Armstrong [17], the
exact solution for a single fiber orientation is given as a func-
tion of time, depending on the homogeneous time-dependent
deformation gradient and on the initial fiber direction in the
isotropic orientation state.

The exact solution of the temporal probability density
function (PDF) of two orientation angles in a simple shear
flow [19,21] is given in Okagawa and Mason [24] and
exploited by Moosaie [25] for validation purposes. Altan
et al. [23] provide the exact solutions for different flow cases
restricted to two-dimensional (2D) orientation states.
Regarding fiber orientation vectors Kuzmin [10] extends the
formulas of Montgomery-Smith et al. [11] both for 2D and
3D fiber orientation states. The solution also depends on the
temporal deformation gradient of the arbitrary homogeneous
flow field.

Exact solutions for the second- and fourth-order fiber ori-
entation tensors of the first kind in 2D are given in Altan and
Tang [14]. In the 3D orientation case, Montgomery-Smith
et al. [11] leverage the exact expression for the PDF to for-
mulate exact integrals for the eigenvalues of the second-order
fiber orientation tensor. These integrals are known as the
Carlson elliptic integrals [26,27] and can be solved numeri-
cally to obtain quasiexact eigenvalue solutions. The integral
formulation depends on the eigenvalues of the inverse of the
left Cauchy–Green tensor, which can be calculated analyti-
cally based on the deformation gradient for the special case
of spatially constant velocity gradients [28]. The eigenvectors
of the left Cauchy–Green tensor can be used to transform the
components of the fiber orientation tensor back to the spatial
coordinate system [11].

Ospald [29] provides an exact solution for 2D stationary
orientation states based on the FTE closed with QC. This solu-
tion can be exploited to validate the spatial development of the
fiber orientation in stationary parallel flows. Note that these
expressions are limited to infinitely long fibers in order to sup-
press the periodic reorientation behavior that would be other-
wise present in the case of finite fiber lengths with no
fiber-fiber interaction. This can be reviewed in the formula of
Jeffery’s periodic length [11,19,21].

Latz et al. [30] study both FTE and an extended FTE with
an additional parameter describing the fiber-fiber interaction
besides the common Folgar–Tucker term [4,13]. The results
present the stationary (asymptotic) values for the fiber align-
ment in the flow direction as a function of several values of
the additional parameter and of the Folgar–Tucker term.
Moreover, the results obtained with QC consider only the
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case of a simple shear flow with infinitely long fibers and
2D orientation and do not provide exact expressions for the
asymptotic state.

Asymptotic behavior of microstructured materials also
occurs in other areas of continuum mechanical applications.
In Böhlke and Bertram [31], the asymptotic values of the
stiffness tensor are discussed for copper subjected to large
monotonous deformations. It is shown that such asymptotic
values exist for symmetric velocity gradients and depend on
the eigenvalues of the strain rate tensor.

D. Notation

Throughout the present study, a symbolic tensor notation
is used. Scalars are denoted by lower case Latin and Greek
letters, e.g., a, b, α, β. Lower case bold letters refer to
vectors, e.g., a, b. Upper case bold letters, e.g., A, B repre-
sent second-order tensors, whereas upper case blackboard
bold letters, e.g., A, B denote fourth-order tensors. The
scalar product between tensors of equal order is denoted by,
e.g., a � b, A � B. The dyadic product between vectors and
tensors is indicated by, e.g., a� b, A� B, whereas various
compositions and mappings are denoted by, e.g.,
Ab, AB, A[B]. The material time derivative is represented by
a superimposed dot, e.g., _a, _A. The Rayleigh product
describes the active rotation of a tensor and is denoted by,
e.g., Q w A, Q w A with the orthogonal tensor Q [ Orthþ.
The product A between two second-order tensors is defined
via the mapping (AAC)[B] ¼ ABC. The Frobenius norm of a
tensor is denoted by, e.g., kAk ¼ ffiffiffiffiffiffiffiffiffiffiffi

A � Ap
and kak2 ¼

ffiffiffiffiffiffiffiffiffi
a � ap

refers to the Euclidean vector norm. The trace of a tensor is
denoted by, e.g., tr(A) and the complete symmetry by, e.g.,
sym(A). For the dyadic product to generate a tensor of order n
the abbreviation (�)�n is used. Please note that the number of
operations � depends on the tensor order of the basis (�).
When applied to fiber orientation tensors, subscripts, and
superscripts refer, respectively, to the tensor order and to the
tensor kind. For additional information concerning further
tensor operations and for more details, the reader is referred to,
e.g., Gurtin et al. [28] and Moakher [32]. Note that equations
are numbered in blocks rather than lines.

II. THEORY

A. Description of fibrous microstructures

The orientation state of a single rigid fiber can be
described in spherical coordinates as shown in Fig. 1. The
Cartesian base vectors are denoted by ei (i ¼ 1, 2, 3). Two
orientation angles w [ [0, 2π) and θ [ [0, π] are introduced
describing all possible orientations on the surface of the unit
sphere S ¼ {n [ R3 : knk2 ¼ 1} with the fiber direction
n(x, t) depending on time t and on the actual placement x as
follows [4]:

n ¼ sin(θ)cos(w)e1 þ sin(θ)sin(w)e2 þ cos(θ)e3: (1)

The function f (x, t, n) is called PDF and refers to the proba-
bility that a fiber aligns along the direction n at (x, t) [4,33].

The following mathematical properties hold 8x, t, n [4,33]:

f � 0, f ( � , n) ¼ f ( � , �n),
ð
S

f dS ¼ 1, (2)

where dS ¼ sin(θ)dθdw is the surface element on the unit
sphere S. Three different kinds of orientation tensors (also
called fabric tensors) can be defined according to Kanatani
[5] based on the PDF. Tensors of the first kind with arbitrary
even order n are denoted by N

(1)
hni(x, t) and defined as follows

[4,5]:

N
(1)
hni ¼

ð
S

f n�ndS: (3)

Fiber orientation tensors of the second and third kind are
unique and provide information about the anisotropy of the
microstructure [5,34]. For conciseness, the definitions of
these tensors are provided in Appendix A. Since the orienta-
tion tensors of the second and third kind depend on Eq. (3),
the expressions given in Sec. III can be used to describe the
fibrous microstructure in various ways. The main part of this
study is limited to first-kind orientation tensors of second
and fourth order denoted as follows for simplicity:

N ¼ N
(1)
h2i, N ¼ N

(1)
h4i: (4)

Please note that the tensors N, N are often denoted by
A, A or a2, a4 or hnni, hnnnni in the literature [4,35].
Furthermore, since homogeneous flows are considered in the
following, the dependence upon x in all argument lists above
vanishes.

FIG. 1. Orientation of a single fiber described in spherical coordinates (own
sketch based on Advani and Tucker [4]).
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B. Orientation evolution in fiber suspension flows

In Sec. II A, different methods of describing an existing
fibrous microstructure are reviewed. The present section
covers the description of the temporal and spatial evolution
concerning a microstructured continuum with the assump-
tions listed in Sec. I C. The modeling is limited to the
second- and fourth-order orientation tensors of the first kind
N and N. Furthermore, the fiber-fiber interaction should be
considered. In the framework of the present paper and as
stated before, the FTE is used as [4,13]

_N ¼ WN� NWþ ξ
�
DNþ ND� 2N[D]

�
þ 2C I _γ(I� 3N):

(5)

Please note that Eq. (5) differs from the homogenized Jeffery
equation [19,36] by the interaction term. In Eq. (5), D(x, t)
refers to the symmetric part of the velocity gradient L(x, t),
whereas W(x, t) corresponds to the skew-symmetric part.
For the special case of incompressible flows tr(D) ¼ 0 holds.
In Eq. (5), I denotes the second-order identity tensor. The
well-known closure problem results from the limitation to
leading orientation tensors. In the present paper, D and W
are assumed to be given. For further information about the
coupled problem of fiber suspension flows and the constitu-
tive modeling, the reader is referred to Karl et al. [3]. The
fiber-fiber interaction strength is described by the isotropic
parameter CI that generally depends on the fiber aspect ratio
α and on the fiber volume fraction f [37,38]. The shape
parameter ξ depends on α and _γ represents the scalar shear
rate [4,16]

ξ ¼ α2 � 1
α2 þ 1

, _γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
D � D

r
¼

ffiffiffi
2

p

2
kDk: (6)

Different expressions of _γ can be obtained if CI appearing in
the exact expressions contained in this work is also corrected
accordingly.

It should be noted that the material derivative on the left-
hand side of Eq. (5) together with the first two terms on the
right-hand side constitute an objective rate of the orientation
tensor N, namely, the Jaumann rate. Furthermore, Eq. (5)
gives the Jaumann rate of the orientation tensor N as an iso-
tropic function of L ¼ {D, N, N}. The FTE (5) can be
rewritten in the following general form with the function of
the right-hand side R and the Jaumann rate on the left-hand
side:

_N�WNþ NW ¼ R(L): (7)

The aforementioned isotropic specification follows directly
8Q [ Orthþ,

Q w ( _N�WNþ NW) ¼ R(Q w L), (8)

which means that actively rotated input arguments L result
in an active rotation of the Jaumann rate of N.

III. ASYMPTOTIC FIBER ORIENTATION STATES

A. General implicit formulation

In the following, a general approach for determining the
asymptotic states of the FTE is presented. Please note that
the formulas in this section are not limited to a specific
closure. Therefore, the fourth-order orientation tensor N is
treated to be given by a general closure function F(N)
leading to the asymptotic FTE

0 ¼ WN � NW þ ξ
�
DN þ ND � 2F(N)[D]

�

þ 2C I _γ(I � 3N): (9)

The asymptotic solutions of the commonly used reduced-
strain closure model [39] coincide with those of the FTE
[40]. An asymptotic solution is an orientation state that for a
fixed observer and given velocity gradient is independent of
time for a specific material point. Furthermore, the actual rate
of deformation does not affect the asymptotic solution, which
makes it possible to simplify the governing equations for
given flow kinematics (see Appendixes C–G). Equation (9)
can be reformulated compactly as follows representing an
implicit equation for the asymptotic state N:

0 ¼ K[N] � 2ξF(N)[D] þ 2C I _γI, (10)

where the fourth-order tensor K describing the main part of
the given kinematic state is defined by

K ¼ (WAI) S � (IAW) S þ ξ(DAI) S þ ξ(IAD) S

� 6C I _γI
S: (11)

The operator (�)S and the identity on symmetric second-order
tensors IS are defined by

(AAB) S ¼ 1
2

�
AAB þ (AAB)TR

�
, I S ¼ (IAI) S: (12)

It is pointed out that K is anisotropic since K = Q w K

holds 8Q [ Orthþ. In contrast, K is an isotropic function
of its arguments D and W. Based on general flows the
kinematic tensor K has both minor symmetries but no
main symmetry

K = KTH , Kijkl = Kklij,

K ¼ KTR , Kijkl ¼ Kijlk,

K ¼ KTL , Kijkl ¼ K jikl:

(13)

Note that for spin-free flows K ¼ KTH ¼ KTR ¼ KTL is
valid. In the case of pure spin K ¼ �KTH ¼ KTR ¼ KTL

holds with the vanishing trace tr(K) ¼ K � I ¼ 0. Note that
the identity tensor I is defined by I ¼ IAI. In the following,
the QC F(N) ¼ NQC ¼ N � N is used combined with
simple flow kinematics leading to exact solutions for N based
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on Eq. (10). One example of a superposed flow illustrates that
even simple flows require numerical solution procedures.

B. Spin-free flows

Before the spin-free (irrotational) flows under consider-
ation are specified more precisely, a formal definition should
be made. In case of incompressibility, the definition of spin-
free flows turns out to be a one-dimensional problem by
setting the parameter Λ [ [� 0:5, 0:5] appropriately as [41]

D ¼ kDkQDD0QT
D, D0 ¼

X3
i¼1

DieHi � eHi ,

D1,3 ¼ �
ffiffiffi
6

p

6
Λ+

ffiffiffi
2

p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Λ2

p
, D2 ¼

ffiffiffi
6

p

3
Λ:

(14)

In Eq. (14), the tensor QD [ Orthþ defines a mapping
between {ei} and the eigensystem {eHi } of D (i ¼ 1, 2, 3)
[41]. The eigenvalues of the direction D0 ¼ D=kDk are repre-
sented by Di (i ¼ 1, 2, 3) [41]. In the following, the spin-free
flows under consideration are described with an arbitrary
scalar quantity a . 0 s�1 representing the rate of deformation.

1. Elongational flow (Λ = −0.5)

The kinematics of an elongational flow in direction e1
(see Fig. 2, also known as uniaxial elongation) is described
as follows with W ¼ 0 s�1 and

D ¼ ae1 � e1 � a

2
(e2 � e2 þ e3 � e3): (15)

The asymptotic state of N based on the governing system of
equations described in Appendix C is as follows with the
parameter ψ depending on ξ and CI according to Eq. (C3),

N11 ¼ ψ , N22 ¼ N33 ¼
ffiffiffi
3

p
C Iψ

3ξψ þ ffiffiffi
3

p
C I

,

N12 ¼ N13 ¼ N23 ¼ 0: (16)

2. Planar compression flow (Λ = 0.0)

The kinematics of a planar compression flow in the
e1–e3-plane (see Fig. 2, also known as planar elongation) is

described as follows with W ¼ 0 s�1 and

D ¼ a(e1 � e1 � e3 � e3): (17)

The asymptotic state of N based on the governing system of
equations described in Appendix D is as follows with the
parameter ψ depending on ξ and CI according to Eq. (D3),

N11 ¼ ψ , N33 ¼ 1
ξψ

�
ξψ2 þ (3C I � ξ)ψ � C I

�
,

N22 ¼ 1� N11 � N33, N12 ¼ N13 ¼ N23 ¼ 0:

(18)

3. Compression flow (Λ = 0.5)

The kinematics of a compression flow in direction �e3
(see Fig. 2, also known as biaxial elongation) is described as
follows with W ¼ 0 s�1 and

D ¼ a

2
(e1 � e1 þ e2 � e2)� ae3 � e3: (19)

The asymptotic state of N based on the governing system of
equations described in Appendix E is as follows with the
parameter ψ depending on ξ and CI according to Eq. (E3),

N11 ¼ N22 ¼
ffiffiffi
3

p
C Iψffiffiffi

3
p

C I � 3ξψ
, N33 ¼ ψ ,

N12 ¼ N13 ¼ N23 ¼ 0: (20)

Note that both the material derivative and the Jaumann rate
of N vanish in case of the asymptotic state in spin-free defor-
mation processes. The resulting system of equations does not
depend on the magnitude kDk but on the directional informa-
tion D=kDk. This is discussed in the context of Fig. 10.
Since the orientation state is assumed to be isotropic at the
beginning, QD ¼ I holds [41].

C. Simple shear flow

The kinematics of a simple shear flow in e1 (see Fig. 2) is
described by the following tensors D and W with an arbitrary
scalar quantity a . 0 s�1:

D ¼ a(e1 � e2 þ e2 � e1), W ¼ a(e1 � e2 � e2 � e1): (21)

The asymptotic state N based on the governing system of
equations described in Appendix F is as follows with the

FIG. 2. Visualization of the investigated flow cases via incompressible fluid particle deformations with respect to the given spatial coordinate system
(solid: reference placement t = t0, dashed: actual placement t > t0).
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parameter ψ depending on ξ and CI according to Eq. (F3),

N11 ¼ (ξþ 1)ψ þ C I

2ξψ þ 3C I
, N22 ¼ (ξ� 1)ψ þ C I

2ξψ þ 3C I
,

N33 ¼ C I

2ξψ þ 3C I
, N12 ¼ ψ ,

N13 ¼ 0, N23 ¼ 0:

(22)

As stated before that the shape parameter ξ is a function of the
fiber aspect ratio α. Please note that in the framework of the
present paper CI ¼ 0 in combination with 1 , α , 1 is not
allowed since there is periodic reorientation arising for this
parameter set. Furthermore, using the FTE for considering the
fiber-fiber interaction only makes sense for CI . 0.

D. Compression flow superposed with simple shear

The kinematics of a compression flow in the direction
�e3 superposed with a simple shear flow in the direction e1
(see Fig. 2, also known as biaxial elongation superposed
with shear) is described by the following tensors D and W
with the arbitrary scalar quantities a, b . 0 s�1:

D ¼ a

2
(e1 � e1 þ e2 � e2)� ae3 � e3 þ b(e1 � e2 þ e2 � e1),

W ¼ b(e1 � e2 � e2 � e1): (23)

This flow can be seen as an example of a superposition
consisting of already discussed flows. The quantity a
represents the compression rate, whereas b refers to the
shear rate. Besides the directional information within the
sign of a, b, the ratio a=b turns out to influence the
asymptotic state

a

b
¼ Compression rate

Shear rate
: (24)

Although the kinematic state is simple, it is not possible to
provide exact expressions for the asymptotic orientation state.
The governing system of equations given in Appendix G for
arbitrary a, b is, therefore, solved numerically for different
parameters ξ and CI. In the framework of the present paper,
three different ratios a=b . 0 are considered.

IV. RESULTS AND DISCUSSION

A. Fiber orientation tensor components

In Fig. 3, the asymptotic fiber orientation states are shown
for the spin-free flows as a function of the fiber aspect ratio α
and the interaction parameter CI. In Fig. 4, the shear flow
and the numerical results of the compression flow super-
posed with a simple shear flow are shown. The nonzero com-
ponents Nij are sorted by column and the flow cases by line,
respectively. Since N12 ¼ 0 for spin-free flows, the eigensys-
tem of N is equal to the spatial coordinate system. It is
recalled that the fiber aspect ratio α and the form parameter ξ
both describe the geometry of the fibers as given in Eq. (6).
The considered ranges α [ [2, 100] and CI [ [10�4, 1] are

chosen arbitrarily keeping in mind that CI . 0:1 is only used
to showcase the effect of CI but is typically not encountered
in applications. As already addressed in Sec. II B, CI is not
an independent parameter. Regarding Fig. 3 and the shear
flow in Fig. 4 which are based on exact expressions, the
results of the special cases follow directly from the given
equations for ψ and Nij. The phenomenological behavior of
the numerical solutions in Fig. 4 can be interpreted in light
of the exact expressions. In the following, the asymptotic
orientation states are discussed based on special cases of the
parameters α and CI:

• CI ! 0 and 1 , α , 1 (0 , ξ � 1): This special case is
characterized by a vanishing fiber-fiber interaction. By
looking at Eq. (5), the FTE represents the counterplay
between the spin terms and the strain rate terms weighted
by ξ. For finitely long fibers ξ , 1 leads to a dominating
spin, which results in a periodic orientation behavior
already known from the literature [11,14] and commonly
referred to as a Jeffery orbit. Since only asymptotic orien-
tation states should be considered throughout this work,
α ! 1 (ξ ¼ 1) only is allowed which leads to a perfect
alignment related to the given kinematics. For the com-
pression flow the planar isotropic (PI) state is the preferred
one and the unidirectional state (UD) for all other investi-
gated flows, respectively.

• CI ! 1 and 1 , α , 1 (0 , ξ � 1): This special case is
characterized by a dominating fiber-fiber interaction term

2C I _γ(I� 3N) ¼ 6C I _γ(N ISO � N), (25)

which represents a driving force toward the isotropic ori-
entation state (ISO) [40]. This effect can be seen for all
investigated flow cases albeit to a different extent in rela-
tion to the selected parameters.

• CI � 0 and α ! 1 (ξ ! 0): This special case is character-
ized by suspended particles with spherical geometry. By
definition, the corresponding tensor N is isotropic
meaning that only a uniform fiber orientation distribution
can be identified. Based on the FTE (9) or (10) for ξ ! 0,
no directional influence of D is present. Since N is
assumed to be isotropic at the beginning, also nonvanish-
ing tensors W do not influence the evolution of N. The
interaction term depending on the scalar representation _γ
of D equals zero, since N stays isotropic. Therefore, aniso-
tropic material symmetries cannot be generated by sus-
pended spherical particles. In other words, statistical
isotropy follows directly if the microstructure is assumed
to be statistically homogeneous [42].

• CI � 0 and α ! 1 (ξ ! 1): For the case CI ¼ 0 the
reader is referred to the first special case discussed in
this section. Furthermore and as described before,
increasing values of CI force the fiber orientation toward
the isotropic state.

In the context of the latter special case discussed above,
the following question arises: In which range is α ! 1 a
feasible simplification, even if α is finite? For fixed CI the
value of α influences the FTE via the shape parameter ξ
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given in Eq. (6). By investigating jξ(α ! 1)� ξ(α)j shown
in Fig. 5, one can see that the latter difference between ξ ¼ 1
(α ! 1) and ξ for finite α decreases rapidly. In addition,
the simplification α ! 1 for finite α is investigated
based on the difference of the asymptotic solutions
jNij(α ! 1)� Nij(α)j shown in the top plots of Fig. 6. The
bottom plots show the behavior of the asymptotic solution
Nij(α) itself. The plots are limited to the simple shear flow
commonly present in injection molding and to four different
values of CI. The results of the top plots show the decrease
of the difference between the asymptotic solution based on
α ! 1 and on finite α. According to Brylka [43] any
α . 100 delivers practically identical results compared to
α ! 1 in the context of the Mori–Tanaka (MT) homogeni-
zation method given in Eq. (27) for UD and PI orientation
states. Therefore, instead of using finite α . 100, the simpli-
fication α ! 1 is sufficient and hardly affects the results.
Please note that the different behavior shown in the top plots
of Fig. 6 is directly linked to the plots below. Furthermore,
the larger CI the faster the plotted difference decreases with
increasing α. This is based on the fact that growing CI

dominates the FTE by forcing the solution to be isotropic,
independent of α. In addition, the investigation of ξ and the
asymptotic solutions Nij(α) justifying the simplification
α ! 1 does not limit the generality, since the sensitivity of
the FTE on α for a fixed CI is completely covered.

B. Effective viscous and elastic anisotropy

The anisotropic viscous and elastic behavior is studied for
the asymptotic orientation states and the flow conditions dis-
cussed in Sec. III. The effective viscosity is linked to fiber sus-
pensions with flow-dependent anisotropic orientation states,
whereas the effective elasticity refers to the suspension after its
fluid-solid transition. On the one hand, the viscosity is an
important quantity affecting the flow of the fiber suspension in
a coupled sense [3]. On the other hand, the effective stiffness
allows conclusions to be drawn in the sense of dimensioning
after the fluid-solid transition during processing [3].

To evaluate the effect of the fiber induced viscous behav-
ior the model of Dinh and Armstrong [17] is used in terms of
the dimensionless viscosity tensor V* ¼ V=ηM normalized

FIG. 3. Asymptotic fiber orientation tensor components Nij (columns) for the spin-free flows (rows) with respect to the parameters α and CI (orientation states
given analytically, QC).
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with the homogeneous matrix shear viscosity ηM [3,35,44]

V* ¼ 2P2 þ η*1N, η*1 ¼
2fα2

3ln(
ffiffiffiffiffiffiffiffiffi
π=f

p
)
: (26)

In Eq. (26), P2 represents the projector on the symmetric
traceless tensors with P2 ¼ IS � P1, I

S defined in Eq. (12)
and the projector on spherical tensors P1 ¼ I� I=3. The
fiber volume fraction is described by f and the dimension-
less additional shear viscosity is denoted by η*1 ¼ η1=ηM.
Please note that only incompressible flows are considered.

The anisotropic stiffness tensor �C
MT

of the solid compos-
ite based on a known fiber orientation state is determined
using the MT method [3,18,43]

�C
MT ¼ CM þ f (1� f)hTi�1

OA þ f(CF � CM)
�1

h i�1
,

T ¼
�
P0 þ (CF � CM)

�1
��1

:

(27)

In Eq. (27), C stands for the stiffness tensor and the indices
M and F denote the matrix and the fiber material, respec-
tively. The polarization tensor P0 depends on the matrix
stiffness and on the shape of the inclusions, which are
assumed to be ellipsoidal with a circular cross section. The
operation h�iOA refers to the orientation average (OA)
scheme applied to T taking into account the fiber orienta-
tion N and N [4]

FIG. 4. Asymptotic fiber orientation tensor components Nij (columns) for the simple shear and for the superposed flow for different magnitude ratios
a=b (rows) with respect to the parameters α and CI (a: compression rate, b: shear rate, simple shear given analytically, superposed flow solved numeri-
cally, QC).

FIG. 5. Absolute value of the difference in the shape parameter ξ(α) regard-
ing infinite and finite aspect ratios α.
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hTiOA ¼ b1Nþ b2(N� Iþ I� N)

þ b3(NAIþ (NAI)TR þ IANþ (IAN)TR )

þ b4I� Iþ b5I
S: (28)

The coefficients bi (i ¼ 1, . . . , 5) depend on the given tensor
T as follows [4,45]:

b1 ¼ T1111 þ T2222 � 2T1122 � 4T1212,

b2 ¼ T1122 � T2233,

b3 ¼ T1212 þ (T2233 � T2222)=2,

b4 ¼ T2233,

b5 ¼ T2222 � T2233:

(29)

Further information about the assumptions and the properties
of the tensors involved can be found in Karl et al. [3] and the
literature therein and are not reported here for conciseness. The

main assumption is that both the fiber and the matrix material
are isotropic and linear elastic. Also, the effective behavior of
the composite is assumed to be linear elastic.

The anisotropy of the viscous and the elastic behavior is
represented by the scalar viscosity η*(w) and by Young’s
modulus �E(w) in the e1–e2-plane (θ ¼ π=2) as shown in
Fig. 7. In the case of stiffness investigations, d refers to the
tensile direction [Fig. 7(a)], whereas d stands for the shear
direction is case of viscosity investigations [Fig. 7(b)]. In the
related equations, the normalized Voigt notation [46,47] is
used with respect to the fourth-order tensors. The following
expressions are used to determine η* and �E [46]:

η* ¼ 2
ffiffiffi
2

p
sym(p� d) � V*�1[

ffiffiffi
2

p
sym(p� d)]

� ��1
,

�E ¼ d� d � (�CMT
)�1[d� d]

� ��1
:

(30)

In contrast to �E, the quantity η* is not overlined because it is
not defined by a homogenization approach. Please note that

FIG. 7. Interpretation of d, p, and w for two different cases: anisotropic stiffness (a) and anisotropic viscosity (b).

FIG. 6. Absolute value of the difference in the asymptotic shear flow solution Nij regarding infinite and finite aspect ratios α (top plots) and the asymptotic
shear flow solution Nij plotted against α (bottom plots) for the QC.
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all quantities in this section are assumed to be independent
of (x, t) meaning that only stationary and homogeneous
microstructures are considered. Moreover, the results are
limited to the fiber volume fraction f ¼ 0:1 and to the aspect
ratio α ¼ 10. It is pointed out that the latter parameters do
not affect the material symmetry, as long as f . 0 and
α . 1 hold. Hence, only the impact of CI is studied in view
the given kinematic states. It should be noted that effective
Young’s modulus is defined on the unit sphere in the 3D
space. For a complete graphical visualization of the effective
stiffness, the directional-dependent bulk modulus should also
be taken into account [46]. In contrast to Young’s modulus,
the viscosity is defined on the set of rank-one tensors.
Therefore, a graphical representation is not given in the 3D
space. To circumvent this problem, the shear plane normal
p is fixed and the shear direction d is varied. Then, one
obtains a first insight into the directional-dependent viscosity
which is induced by the fiber orientation distribution. It
should be noted that the fiber orientation distribution defining
the viscous anisotropy is fixed. In consequence, the shown
results are not to be interpreted from an experimental point

of view, since any shear will cause a reorientation leading to
a new anisotropic state. The reason of choosing η* is to show
how the used closure predicts the viscous anisotropy for dif-
ferent orientation states (aligned versus more isotropic). As
mentioned before, this is the basis of the coupled simulation
approach where the suspension flow is affected by the fiber
orientation and vice versa.

In Fig. 8, the anisotropic viscous behavior is shown for
fiber suspensions with flow-dependent asymptotic orientation
states. The parameter CI is increased within the interval
[10�4, 1] (see Sec. IV A). For the compression flow, small
values of CI refer to PI fiber orientation, whereas for all other
flows small values of CI refer to aligned orientation states.
The opposite case with large values of CI is characterized by
more isotropic orientation states for all considered flows. As
known from previous studies [3,35], aligned fiber orientation
states are characterized by a lower shear viscosity compared
to the effective shear viscosity of isotropic suspensions. As
explained before, CI can be interpreted as a driving force
toward the isotropic orientation, which leads to increased and
isotropized shear viscosity.

FIG. 8. Dimensionless effective shear viscosity of a fiber suspension for different asymptotic orientation states set by the flow kinematics depending on CI

(e1–e2-plane, f ¼ 0:1, α ¼ 10, Dinh–Armstrong model, QC).
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In Fig. 9, the anisotropic elastic behavior is shown for
fiber-reinforced composites with asymptotic orientation
states. Similar to the viscosity results, the transition from
aligned orientation states to more isotropic fiber orientation is
illustrated. For larger values of CI representing orientation
states closer to isotropy, the weakness of the QC overestimat-
ing the anisotropy is clearly visible. As a consequence, the
QC leads to poor estimations of the effective elastic behavior
regarding orientation states deviating from the aligned fiber
orientation. Compared to the shear viscosity this weakness is
more distinct in case of elasticity. Toward aligned fibers the
stiffness prediction based on the QC shows the correct trans-
versely isotropic material symmetry. It is stated out that the
weakness of the QC is corrected in Sec. IV D, while main-
taining the simple structure of the closure.

C. Discussion of the QC

In the present section, the benefits and the limits of the
QC are discussed. Throughout this study, fourth-order
tensors are used in the normalized Voigt notation with the
base system Bιγ ¼ Bι � Bγ and the six orthonormal second-
order base tensors Bι (ι ¼ 1, . . . , 6) defined as follows [46]:

B1 ¼ e1 � e1, B4 ¼
ffiffiffi
2

p
sym(e2 � e3),

B2 ¼ e2 � e2, B5 ¼
ffiffiffi
2

p
sym(e1 � e3),

B3 ¼ e3 � e3, B6 ¼
ffiffiffi
2

p
sym(e1 � e2):

(31)

By using Eq. (31), the normalized fourth-order tensor N

reads [46,47]

N¼

N1111 N1122 N1133

ffiffiffi
2

p
N1123

ffiffiffi
2

p
N1113

ffiffiffi
2

p
N1112

N2222 N2233

ffiffiffi
2

p
N2223

ffiffiffi
2

p
N2213

ffiffiffi
2

p
N2212

N3333

ffiffiffi
2

p
N3323

ffiffiffi
2

p
N3313

ffiffiffi
2

p
N3312

2N2323 2N2313 2N2312

2N1313 2N1312

sym 2N1212

2
6666664

3
7777775
Bιγ ¼

N1111 N1122 N1133

ffiffiffi
2

p
N1123

ffiffiffi
2

p
N1113

ffiffiffi
2

p
N1112

N2222 N2233

ffiffiffi
2

p
N2223

ffiffiffi
2

p
N2213

ffiffiffi
2

p
N2212

N3333

ffiffiffi
2

p
N3323

ffiffiffi
2

p
N3313

ffiffiffi
2

p
N3312

2N2233 2N3312 2N2213

2N1133 2N1123

sym 2N1122

2
6666664

3
7777775
Bιγ :

(32)

The first right-hand side of Eq. (32) refers to the standard
normalized Voigt notation of fourth-order tensors having
both minor and the main symmetry leading to 21 indepen-
dent components in case of maximum anisotropy [46]. Using
the full index symmetry of N the second right-hand side of
Eq. (32) can be formulated with respect to 14 independent
components in case of maximum anisotropy. Both right-hand
sides differ in how to apply the QC

N1212 � N12N12 = N11N22 � N1122: (33)

Therefore, both right-hand sides induce a different error, which
also depends on the orientation state, regarding the index sym-
metry which cannot be avoided when the QC is used.
Throughout this work the second right-hand side of Eq. (32) is
used. In the following, the exact orientation states are explored
to assess the error induced by the QC

NUD ¼ e1 � e1 � e1 � e1, N ISO ¼ 1
3
P1 þ 2

15
P2,

NPI ¼ 3
8
(e�4

1 þ e�4
2 )þ 1

8
(e�2

1 � e�2
2 þ e�2

2 � e�2
1 )

þ 1
8
e1 � e2 � e1 � e2:

(34)

Please note that the tensors given in Eq. (34) have to be
transformed to the normalized Voigt notation. The closure

input N related to N given in Eq. (34) is as follows:

NUD ¼ e�2
1 , N ISO ¼ 1

3
I, NPI ¼ 1

2
(e�2

1 þ e�2
2 ): (35)

Furthermore, three different experimentally measured fourth-
order orientation tensors are used to investigate the error of
the QC. In this work, the tensors N(0�), N(45�), and N(90�)
are used with the appropriate closure input N(0�), N(45�),
and N(90�) of Kehrer et al. [45]. Note that the corresponding
components in Table 5 of Kehrer et al. [45] also have to be
transformed to the normalized Voigt notation. Only then
algebraic operations acting on N are valid. The following
error measure e(Nclosure, N) is used for the closure investiga-
tion with N based on Eq. (34) and on N(0�), N(45�), and
N(90�) from Kehrer et al. [45],

e ¼ kN closure(N)�Nk
kNk : (36)

For comparison, the invariant-based optimal fitting closure
[8] (IBOF) is used and should not be reviewed in the present
framework. The IBOF closure is chosen to represent modern
closure approaches based on parameter fitting to match the
results of PDF level computations. Regarding PDF level
computations, the reader is referred to the studies of Mezi
et al. [35] and Férec et al. [48]. In Table I, the results corre-
sponding to Eq. (36) are shown for the chosen fiber
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orientation states. Please note that Eq. (35) and N(0�),
N(45�), and N(90�) are used as closure inputs.

As already known from the literature [49] and as shown in
Table I, the QC leads to exact results when the fibers are
strictly aligned. When the fiber orientation state turns out to
be isotropic or PI, the QC leads to errors which are much
larger than for the IBOF closure. In the case of measured
fiber orientation states which are close to PI [45] the QC
gives errors which are approximately two times larger than

the IBOF-related errors. Compared to the exact orientation
states, the difference between these two closures decreased
for the measured orientation data.

In contrast to the drawbacks mentioned before, the QC is
suitable in the first steps of implementing solvers for fiber sus-
pension flows because it is the simplest approach possible.
Furthermore, injection molding parts are often characterized by
flat geometries [44], where the fibers tend to align in the flow
direction. In such parts, the fiber orientation states are close to
the UD case where accuracy of the QC can be evaluated posi-
tively. In the context of topology, optimization aligned fiber
orientation states are preferred because unloaded material
should be removed [50] and the loaded material should be spe-
cifically optimized for the known load direction [51].

In the following, the results of two mold filling simula-
tions based on the QC are considered. The domains refer to a
simple channel flow (CF) shown in Fig. 10(a) and to a back-
ward-facing step flow (BFS) shown in Fig. 10(b). For more
details the reader is referred to Karl et al. [3]. The orientation
states have been validated based on Eq. (22). In a first step,
the Voigt-averaged anisotropic stiffness for both domains is

FIG. 9. Effective Young’s modulus of a fiber-reinforced composite with different asymptotic orientation states set by the flow kinematics depending on CI

(e1–e2-plane, f ¼ 0:1, α ¼ 10, MT model, parameters from Appendix H, QC).

TABLE I. Error e concerning QC and IBOF for different fiber orientation
states N.

N e(NQC, N) e(NIBOF, N)

UD 0.00 6.5 × 10−4

ISO 0.54 2.2 × 10−15

PI 0.58 5.9 × 10−5

0° sample [45] 0.36 0.14
45° sample [45] 0.34 0.16
90° sample [45] 0.38 0.16
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calculated as follows:

�C domain ¼ 1
V

XN cells

i¼1

Vi
�C

MT

i : (37)

Ncells represents the number of mesh cells used for the mold
filling simulations, V stands for the domain volume and Vi

characterizes the volume of the ith-cell. For every ith-cell of
the mesh the anisotropic stiffness tensor �C

MT

i is determined
based on Eq. (27)–(29). Therefore, �Cdomain refers to a
domain-averaged stiffness which can be seen as the true
anisotropic elastic behavior of the CF and the BFS part
geometry. It should be pointed out that the domains are seen
as representative reflecting the expected value of an infinitely
large area of this orientation characteristic sufficiently well.
Moreover, the domain average Eq. (37) is not unique since,
e.g., the harmonic Reuss average also can be used. To show
the usefulness of both the QC and the asymptotic states, the
idea is to use the asymptotic state of a simple shear flow in
areas ① and ② of Figs. 10(a) and 10(b) to estimate �Cdomain

for the CF and the BFS instead of running mold filling simu-
lations. Furthermore, the expensive calculation based on
Eq. (37) is avoided.

The red curves in the Figs. 10(c) and 10(d) show the
direction dependent Young’s modulus averaged over the
whole domain for the QC based on Eq. (37). The blue curves
refer to the IBOF closure results which are considered as a
basis of comparison. The green curves in the Figs. 10(c) and

10(d) represent the effective stiffness of the asymptotic fiber
orientation state in the areas ① and ②. The difference
between these two areas is the sign of the shear rate leading
to an opposite deviation of the eigensystem from the spatial
coordinate system. In addition, to take the lower and upper
channel kinematics into account the average stiffness of the
asymptotic fiber orientation states ① and ② is also considered.
It should be stated out that all results shown here refer to a
decoupled calculation of fiber orientation and the flow. The
following conclusions can be drawn:

• Based on the domain-averaged stiffness the difference
between the QC and the IBOF closure is small, which
allows us to use the QC combined with a slight correction
of the maximum stiffness. The material symmetry does
not differ between the two closures.

• The average of the asymptotic state ① and ② leads to the
correct material symmetry, while the simplified approach
using only ① or ② leads to a slightly rotated anisotropic
behavior. A correction is possible subsequently.

• Compared to the domain-averaged case the asymptotic
states overestimate the stiffness in e1-direction. This is
caused by neglecting the fiber orientation in area ③ by
using the asymptotic fiber orientation in the wall region.
In ③, the fiber orientation is either mainly isotropic
[Fig. 10(a)] or perpendicular to e1 [Fig. 10(b)]. By knowing
this, the results of the suggested simplified approach can be
corrected for a conservative dimensioning.

• The results show that when the dominant fiber orientation
state is known based on the geometry and on simplified

FIG. 10. Fiber orientation N11 in e1-direction and effective Young’s modulus for the QC Voigt-averaged over the domains (channel and backward-facing step
geometry [3]) and the approximation with the asymptotic state for the simple shear flow. The IBOF results are shown as a basis of comparison (e1–e2-plane,
f ¼ 0:1, α ¼ 10, CI ¼ 0:01, MT model, parameters from Appendix H).
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flow conditions, the mechanical behavior can be approxi-
mated by using the corresponding asymptotic state.

• The QC can be seen as a compromise between errors asso-
ciated with the simplicity and the existence of exact
expressions for simplified quick estimates. Judged by the
simplicity, the QC can be evaluated as a suitable method.

D. Improvement of the QC by symmetrization

The limitations of the QC are discussed in Secs. IV B and
IV C and shown in Figs. 8 and 9 are overcome in the current
section by developing and evaluating an improved QC,
which is named symQC. This closure is developed in two
versions, the former delivering better predictions of the
mechanical properties, the latter of flow-induced orientation
evolution. Based on one term within the generalized hybrid
closure introduced by Petty et al. [52], the first correction
step contains the symmetrization of N� N ensuring the com-
plete index symmetry (symmetric in all index pairs)

sym(N� N) ¼ 1
3

�
N� Nþ NANþ (NAN)TR

�
: (38)

Based on Eq. (38) the second correction step is defined by
normalizing Eq. (38) in such a way that the trace condition
tr(NsymQC) ¼ NsymQC � I ¼ 1 is fulfilled leading to the first
version of symQC,

N symQC ¼ sym(N� N)
1
3 (1þ 2kNk2) : (39)

To the best of the authors’ knowledge, this closure approach
has not been published yet. It is pointed out that compared to
the original QC the following basic properties listed in Petty
et al. [52] have been lost at the cost of the two correction
steps already described:

N symQC[I] = N, tr(N symQC[D]) = D � N: (40)

In the framework of estimating the effective anisotropic
behavior based on given orientation states N, the complete
index symmetry and the trace condition are more important
than fulfilling Eq. (40). It is clarified that for exact tensors N
and N, the trace conditions tr(N) ¼ 1 and tr(N) ¼ 1 are con-
nected as follows by using the complete index symmetry of
N and the property N[I] ¼ N:

tr(N) ¼ N � I ¼ Nijklδikδlj ¼ Nijij ¼ Niijj ¼ I �N[I]

¼ I � N ¼ tr(N) ¼ 1: (41)

This is not the case for symQC since NsymQC[I] = N. Please
note that the closure NsymQC given in Eq. (39) cannot be
used within the FTE, since tr( _N) ¼ 0 is violated. For that
reason, NsymQC is a method to calculate N based on a given
N subsequently and refers to the well-known closure proce-
dure compactly written down as a fourth-order tensor func-
tion N � F(N).

In the following, the quality of NsymQC is investigated by
considering the orientation states given in Sec. IV C. The
closure-induced error e(Nclosure, N) defined in Eq. (36) is
given in Table II. Based on the results a significant improve-
ment of the original QC can be identified for all considered
example orientation states. For all analytically given orienta-
tion states, symQC leads to smaller errors compared to the
IBOF closure.

To illustrate the quality of symQC compared to QC and
IBOF, the direction dependent Young’s modulus is shown in
Fig. 11 based on the measured data of Kehrer et al. [45].
Analogously, the MT method is used with the material
parameters listed in Appendix H. The black curves refer to
the measured fiber orientation data N and N [45] as direct
input of the stiffness prediction. The other curves represent
the stiffness predictions based on the measured N [45] and

TABLE II. Error e concerning QC, symQC, and IBOF for different fiber
orientation states N.

N e(NQC, N) e(NsymQC, N) e(NIBOF, N)

UD 0.00 0.00 6.5 × 10−4

ISO 0.54 2.3 × 10−16 2.2 × 10−15

PI 0.58 9.1 × 10−17 5.9 × 10−5

0° sample [45] 0.36 0.22 0.14

45° sample [45] 0.34 0.20 0.16
90° sample [45] 0.38 0.20 0.16

FIG. 11. Comparison of QC, symQC, and IBOF in view of the effective Young’s modulus defined by the fiber orientation states given in Kehrer et al. [45]
(e1–e2-plane, f ¼ 0:1, α ¼ 10, MT model, parameters from Appendix H).
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three different closure methods for approximating N. The
results show that there are only small differences between
symQC and IBOF, whereas symQC is superior to the IBOF
in terms of implementation and computational effort.

Analogous to Sec. IV B, the effective viscous and elastic
anisotropy based on symQC is shown in Figs. 12 and 13.
Please note that the asymptotic orientation states N based on
QC are used as an input for the improved closure symQC to
obtain subsequently enhanced results. Whereas the material
symmetry of the viscous behavior in Fig. 12 does not
change, the shear viscosity is smaller compared to QC in
Fig. 8. This is caused by the symmetrization which can be
seen as an average over all involved indices. For the given
asymptotic states, this lowers the corresponding entries in
NsymQC compared to NQC since there are vanishing compo-
nents Nij. The material symmetry concerning the effective
elastic anisotropy in Fig. 13 changes in the sense that the
transition from aligned to more isotropic orientation states is
correctly processed by symQC. To conclude this section, it is
pointed out that using symQC does not lead to significantly
improved results in the framework of the estimation method

shown in Fig. 10. The reason being that in CF and BFS,
aligned fiber orientation states dominate which are already
correctly handled by QC. When the closure implementation
should be kept simple the use of symQC is suggested instead
of QC justified by the results in this paper. It should be
repeated that NsymQC given in Eq. (39) cannot be used
within the FTE, since tr( _N) ¼ 0 is violated.

The second version of symQC is developed in order to be
used in the FTE describing the fiber orientation evolution. In
contrast to the first version of symQC, the second version
approximates the linear mapping N[D] appearing in the FTE.
By using a general function G this closure scheme reads
N[D] � G(N, D). One important property is that N can only
be computed independently of D, if G is linear in D. In all
other cases, N depends on the deformation process. The current
approach of approximating N[D] has been pursued already by
Hinch and Leal [53], who distinguish between strong (isotropic
states, CI large) and small (aligned states, CI small) fiber-fiber
interactions. They obtain the so-called composite closure by
approximating these two extreme alignment states via an inter-
polation. Advani and Tucker [6] provide a comprehensive

FIG. 12. Dimensionless effective shear viscosity of a fiber suspension for different asymptotic orientation states set by the flow kinematics depending on CI

(e1–e2-plane, f ¼ 0:1, α ¼ 10, Dinh–Armstrong model, symQC).
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description of such closures, which approximate N[D] instead
of N. It is noted that N[D] does not only occur in the FTE but
also occur in the Dinh–Armstrong model [17], Eq. (26) predict-
ing the anisotropic viscous behavior of fiber suspensions. As a
consequence, using the scheme N[D] � G(N, D) the influence
of the deformation process on the viscous anisotropy is
improved representing the flow-fiber coupling.

The procedure of finding the closure function G(N, D)
preserving tr(N) ¼ 1 in the context of symQC is given in
Appendix I. The idea is to introduce a scalar factor κ(N, D)
in front of the closure term in the FTE. The quantity κ is
determined by forcing tr( _N) ¼ 0. Based on the analysis
shown in Appendix I, the following expression holds for κ
depending on the local flow and orientation state:

κ ¼
0, N ¼ N ISO and=or D ¼ 0,

6N � D
N � Dþ 2D � N2 , N = N ISO, D = 0:

8<
: (42)

It should be noted that κ is a homogeneous function of
degree 0 in D. Furthermore, κ only depends on the direction

of D and not on the magnitude kDk. Since the normalization
factor used in Eq. (39) cancel out as shown in Appendix I,
the FTE with symQC and κ defined in Eq. (42) reads

_N ¼ WN� NWþ ξ
�
DNþ ND� κ sym(N� N)[D]

�

þ 2C I _γ(I� 3N)

¼ WN� NWþ ξ
�
DNþ ND� κ

3
(N � D)N� 2κ

3
NDN

�

þ 2C I _γ(I� 3N): (43)

Detailed information concerning the case distinction of κ can
be found in Appendix I. To the best of the authors knowl-
edge, this closure approach has not been published yet.
Please note that only incompressible flows are considered.
It should be pointed out that asymptotic states based on
Eq. (43) are not investigated. On the one hand, the asymp-
totic representation of Eq. (43) does not lead to manageable
exact expressions. On the other hand, numerically generated

FIG. 13. Effective Young’s modulus of a fiber-reinforced composite with different asymptotic orientation states set by the flow kinematics depending on CI

(e1–e2-plane, f ¼ 0:1, α ¼ 10, MT model, parameters from Appendix H, symQC).
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asymptotic solutions do not provide novel information com-
pared to Figs. 3 and 4.

The performance of symQC within the FTE is shown in
Fig. 14 for the spin-free flows and the simple shear flow
given in Secs. III B and III C. For comparison, the results
referring to the QC and to the IBOF closure are given addi-
tionally. Since the flows are homogeneous, the FTE is an
ordinary differential equation for N which is integrated with
a 4th-order Runge–Kutta method [54] within this study. The
components Nij are plotted against the dimensionless defor-
mation at with the deformation rate a defined for each flow
in Secs. III B and III C. The results refer to α ¼ 10 and
CI ¼ 0:01 and show that symQC improves the results of QC
significantly if the IBOF-related results are seen as an evalua-
tion basis. To conclude this section, the results of a simple
shear flow regarding α ! 1 and CI ¼ 0:01 are shown in
Fig. 15. The spin-free flows are not shown, as there is no
optically recognizable difference in the results referring to
α ¼ 10 and α ! 1. One can see that the quality of the
symQC-predicted orientation state has improved for α ! 1
compared to Fig. 14.

E. Improvement of the QC by adopting CI

By looking at the simple shear flow results in Fig. 14,
the following question arises: How to correct CI for the QC
to achieve the asymptotic state of the IBOF closure? In the
following, the parameter CI,QC refers to the interaction
parameter regarding the analytical expressions of this paper.
On the other hand, CI,IBOF refers to the interaction parameter
in the context of the IBOF-closed FTE solved for the
simple shear flow. The idea is to connect CI,QC with CI,IBOF

for the shear flow in order to improve the analytical and
numerical prediction of N based on the QC. This is done by
solving the following equation numerically for CI,QC with
given α and CI,IBOF:

N11(C I,IBOF) ¼ (ξþ 1)ψ þ C I,QC

2ξψ þ 3C I,QC
: (44)

Please note that ψ is given in Eq. (F3) depending on α via ξ
and on CI,QC. In Eq. (44), N11(CI,IBOF) refers to the asymp-
totic solution based on the IBOF closure and on CI,IBOF.
The results are plotted in Fig. 16 and show how to choose
CI,QC with respect to CI,IBOF to get the IBOF-predicted
asymptotic shear flow solution by using the QC. In general,
CI,QC . CI,IBOF holds since the QC requires a larger interac-
tion forcing to match the IBOF results lying closer to the
isotropic orientation state.

FIG. 14. Comparison of Nij over the total deformation at for four different homogeneous flows using QC, symQC and IBOF integrated explicitly with a
4th-order Runge–Kutta method (α ¼ 10, CI ¼ 0:01, 4t ¼ 10�2 s).

FIG. 15. Nij over the total deformation at for the simple shear flow using
QC, symQC, and IBOF integrated explicitly with a 4th-order Runge–Kutta
method (α ! 1, CI ¼ 0:01, 4t ¼ 10�2 s).

FIG. 16. CI,QC plotted over CI,IBOF to generate the IBOF asymptotic orienta-
tion state by using the QC (limited to simple shear flow).

ASYMPTOTIC FIBER ORIENTATION STATES OF THE QUADRATICALLY CLOSED FOLGAR–TUCKER EQUATION 1015



In summary, the second improvement of the QC does not
operate on the closure itself as done in Sec. IV D. This
improvement is not meant to be used to reconstruct N by
using N. Rather, the fiber interaction within the quadratically
closed FTE is corrected by using the asymptotic IBOF solu-
tion in a simple shear flow for different fiber aspect ratios.
The advantage of this method is that the QC within the FTE
and the analytical expressions in Sec. III still can be used.

V. SUMMARY AND CONCLUSION

In the present study, exact solutions of the quadratically
closed FTE [4,13] regarding simple flows are presented and
investigated in the general framework of asymptotic behavior.
In contrast to existing exact solutions, which only take into
account flow state and fiber geometry [14,29], the present alge-
braic expressions also consider the fiber-fiber interaction. The
study is limited to laminar and incompressible fiber suspension
flows with rigid fibers suspended in a Newtonian fluid. Any
external and internal forces are not considered. Furthermore, the
exact expressions refer to homogeneous simple shear, elonga-
tional and two compression flows which can be interpreted as
local kinematic states within complex flows. The asymptotic ori-
entation states illustrate the nonlinear influence of α and CI. The
asymptotic fiber orientation states with QC in use are discussed
in terms of viscous and elastic anisotropy. The results show that
the error in material symmetry concerning the anisotropic stiff-
ness is more distinct compared to viscous anisotropy consider-
ations. The models of Dinh and Armstrong [17] and of Mori
and Tanaka [18,43] are used combined with an OA scheme [4].
A simple procedure estimating the stiffness of flat injection
molding parts is provided using the QC and the asymptotic state
of a simple shear flow. The recognized disadvantages of QC are
improved by postulating a normalized fully symmetric QC (first
version of symQC) enhancing the predicted material symmetry.
This approach is validated by comparing the results with
IBOF-related predictions. Furthermore, the introduced closure
keeps the simple structure and turns out to be a fast and accurate
method estimating the anisotropic behavior of fiber suspensions
and fiber-reinforced composites. An adaption of the new closure
is developed for using it within the FTE (second version of
symQC). In this context, an additional scalar parameter depend-
ing on the local orientation and kinematic state is introduced.
The result is a simple closure function approach depending on
the deformation process which relies on the idea, originally
introduced by Hinch and Leal [6,53], of approximating N[D]
instead of N. By using an explicit integration scheme, the
improvement of the QC within the FTE is demonstrated in
simple flows. In addition, a method improving the asymptotic
fiber orientation prediction is introduced by using the common
QC and optimized fiber-fiber interaction parameter values.

VI. OUTLOOK

In this section, a brief outlook is given on how the asymp-
totic FTE (10) can be used in the framework of reverse engi-
neering. The common engineering approach is to determine
the resulting fiber orientation of a given process. However,
from an inverse engineering point of view, the process condi-
tions should be varied to generate desired anisotropic

composite properties. Based on the fact that many kinematic
input quantities influence the anisotropic microstructural
state, this is a nontrivial task.

Since the fiber orientation state based on the FTE (5)
depends on α, CI, and the closure F(N) in use, the reverse
engineering procedure faces various difficulties. For clarity,
the reverse engineering procedure means setting N, α, CI, and
the closure F(N) for calculating the kinematic quantities D
and W. Unfortunately, this problem formulation first is under-
determined due to six equations for Nij at hand (FTE) to cal-
culate nine unknown Dij and Wij. To ensure a clear solvabil-
ity, three additional equations have to be formulated regarding
kinematical restrictions. For the special case of incompressible
flows, tr(D) ¼ 0 can be used. Additionally, kDk and kWk
can be forced taking on desired values. As mentioned before,
the space of possible solutions Nij is also defined by α, CI,
and the closure F(N) besides the deformation process. Strictly
speaking, this means that further equations for α, CI, and
F(N) are necessary, which leads to an over-determined system
for Nij. The dependence of the solution space on α, CI, and
F(N) cannot be identified by separate equations since this
information is intrinsically given in the FTE. Therefore, it is
not certain that a mathematically correct desired Nij is an
element of the multidimensional solution space, describing an
asymptotic state in the context of the chosen parameters.

The asymptotic FTE (10) can be used in order to mini-
mize the computational cost, since the material time deriva-
tive of N is neglected. This simplification means that only
the influence of D and W on the equilibrium orientation state
is considered. Nevertheless, the aforementioned difficulties
are still unsolved. A pragmatic approach would be to choose
many values Dij and Wij of interest and solve for the corre-
sponding N for fixed α, CI, and a given closure F(N). Since
multiple solutions exist generally, the physically sensible sol-
ution N is to be found by checking for the correct algebraic
properties. Please note that, strictly speaking, this procedure
is no longer reverse engineering but has the advantage of
determining a lot of combinations {D, W, N}. As a conse-
quence, the conclusion N ! {D, W} can be drawn.

The inverse problem of designing microstructures for a
defined performance also occurs in the application of metals
[55]. The method shown is extended by Shaffer et al. [56] to
be applied to process design identifying deformation paths
leading to load-optimized microstructures.
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APPENDIX A: SECOND- AND THIRD-KIND
ORIENTATION TENSORS

Orientation tensors of the second kind with arbitrary even
order n are denoted by N

(2)
hni(x, t) and are defined by [5,34]
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ð
S

N
(2)
hni � n�n � f

� �2
dS ! min: (A1)

This means that orientation tensors of the second kind
minimize the approximation error against the true PDF in an
integral sense [5]. The general definition is as follows [5]:

N
(2)
hni ¼

2nþ 1
2n

2n

n

� �
N

(1)
hni þ ann�2sym(I�N

(1)
hn�2i)

h

þ ann�4sym(I�4 �N
(1)
hn�4i)þ � � � þ an0sym(I�n)

i
:

(A2)

The operation sym(�) refers to a complete symmetrization
concerning all indices [57]. The orientation tensors of the
third kind N

(3)
hni(x, t) are defined as follows and represent

symmetric traceless (deviatoric) tensors [5,34],

N
(3)
hni ¼

2nþ 1
2n

2n
n

� �
N

(1)0
hni : (A3)

The deviatoric part N(1)0
hni of the first-kind orientation tensor of

arbitrary even order n can be determined as follows [5]:

N
(1)0
hni ¼ cn0N

(1)
hni þ cn2sym(I�N

(1)
hn�2i)þ cn4sym(I�4 �N

(1)
hn�4i)

þ � � � þ cnnsym(I�n): (A4)

The coefficients cnm and anm (n, m: even) within Eqs. (A2) and
(A4) are defined by [5]

cn0 ¼ 1,

cnm ¼ (�1)m=2
n

m

� �
n� 1

m=2

� �	
2n� 1

m

� �
,

anm ¼
Xn
k¼m
k:even

2k þ 1
2k

2k

k

� �
ckk�m

	
2nþ 1
2n

2n

n

� �
:

(A5)

APPENDIX B: SOLUTIONS OF QUADRATIC AND
CUBIC EQUATIONS

In this section, the procedure to investigate the solutions of
quadratic and cubic equations is summarized in order to make
the paper self-contained (see, e.g., Arens et al. [58] and
Merziger et al. [59]). First of all, quadratic equations with the
solution variable ψ are considered generally as follows:

0 ¼ k2ψ
2 þ k1ψ þ k0: (B1)

The solution of Eq. (B1) depends on the discriminant D,
which is defined as follows:

D ¼ k21 � 4k2k0,

D , 0 : two complex solutions,

D ¼ 0 : one real double solution,

D . 0 : two real solutions:

(B2)

Second, cubic equations with the solution variable ψ are con-
sidered generally by

0 ¼ k3ψ
3 þ k2ψ

2 þ k1ψ þ k0,

, 0 ¼ ψ3 þ ~k2ψ
2 þ ~k1ψ þ ~k0,

(B3)

where the coefficients are defined by ~k2 ¼ k2=k3, ~k1 ¼ k1=k3,
and ~k0 ¼ k0=k3. The latter equation can be rewritten as
follows using a change of variable ~ψ ¼ ψ þ ~k2=3:

0 ¼ ~ψ3 þ p~ψ þ q, (B4)

where the new coefficients p and q are defined as follows:

p ¼ 3~k1 � ~k
2
2

3
, q ¼ 2~k

3
2

27
�
~k1~k2
3

þ ~k0: (B5)

The solution of Eq. (B3) depends on the discriminant D,
which is defined by

D ¼ p

3

� �3
þ q

2

� �2
,

D , 0 : three pairwise different real solutions,

D ¼ 0 : three real solutions (at least two equal),

D . 0 : one real and two complex solutions: (B6)

The coefficients ki can be determined by comparing the
equations for ψ in Appendixes C–F with Eq. (B1) or (B3),
respectively.

APPENDIX C: ELONGATIONAL FLOW

The following system of Eq. (C1) (given multiplied by 2)
is solved exactly for the components Nij. Note that equations
are given independently of the rate of deformation a . 0 s�1

0¼ 2ξ(2N11 � (2N11 �N22 �N33)N11)þ 2
ffiffiffi
3

p
C I(1� 3N11),

0¼ 2ξ(N12=2� (2N11 �N22 �N33)N12)� 6
ffiffiffi
3

p
C IN12,

0¼ 2ξ(N13=2� (2N11 �N22 �N33)N13)� 6
ffiffiffi
3

p
C IN13,

0¼ 2ξ(�N22 � (2N11 �N22 �N33)N22)þ 2
ffiffiffi
3

p
C I(1� 3N22),

0¼ 2ξ(�N23 � (2N11 �N22 �N33)N23)� 6
ffiffiffi
3

p
C IN23,

0¼ 2ξ(�N33 � (2N11 �N22 �N33)N33)þ 2
ffiffiffi
3

p
C I(1� 3N33):

(C1)

The parameter ψ describing the orientation state in Eq. (16)
can be obtained by solving the following equation:

0 ¼ ξψ2 þ (
ffiffiffi
3

p
C I � ξ)ψ �

ffiffiffi
3

p

3
C I: (C2)

In Fig. 17, the discriminant D is shown depending on the
parameters α and CI (see Appendix B). It can be seen that
D . 0 holds resulting in two real solutions for ψ . The only
physically meaningful solution ψ of Eq. (C2) is as follows
with β used as a shortcut:

ψ ¼ � 1
6ξ

�
3(

ffiffiffi
3

p
C I � ξ)�

ffiffiffi
β

p �
,

β ¼ 27C2
I � 6

ffiffiffi
3

p
C Iξþ 9ξ2:

(C3)
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For the surface plot of ψ the reader is referred to the plot of
N11 for the elongational flow in Fig. 3.

APPENDIX D: PLANAR COMPRESSION FLOW

Analogously, the exact solution Nij of the following
system of Eq. (D1) determines the asymptotic fiber orienta-
tion for the planar compression flow:

0 ¼ ξ(2N11 � 2(N11 � N33)N11)þ 2C I(1� 3N11),

0 ¼ ξ(N12 � 2(N11 � N33)N12)� 6C IN12,

0 ¼ �2ξ(N11 � N33)N13 � 6C IN13,

0 ¼ �2ξ(N11 � N33)N22 þ 2C I(1� 3N22),

0 ¼ ξ(� N23 � 2(N11 � N33)N23)� 6C IN23,

0 ¼ ξ(� 2N33 � 2(N11 � N33)N33)þ 2C I(1� 3N33):

(D1)

The following equation defines ψ describing the orientation
state in Eq. (18):

0 ¼ 2ξ2ψ3 þ 2ξ(3C I � ξ)ψ2 þ 3C I(C I � ξ)ψ � C2
I : (D2)

Based on the discriminant D(α, CI) , 0 shown in Fig. 17
the latter equation has three real solutions for ψ (see
Appendix B). The physically meaningful solution ψ of
Eq. (D2) is as follows with β and ζ used as a shortcut:

ψ ¼ 1
6ξ

βþ 6C I

ffiffiffi
ζ

p� �1=3
þ 9C2

I � 3C Iξþ 2ξ2

3ξ βþ 6C I

ffiffiffi
ζ

p� �1=3� 3C I� ξ

3ξ
,

β ¼ 54C2
I (ξ�C I)þ ξ2(8ξ� 18C I),

ζ ¼�27C2
I (3C

2
I þ ξ2)� 3ξ4:

(D3)

Note that the imaginary parts of
ffiffiffi
ζ

p
cancel out. For the

surface plot of ψ the reader is referred to the plot of N11 for
the planar compression flow in Fig. 3.

APPENDIX E: COMPRESSION FLOW

Based on the following system of Eq. (E1) written down
multiplied by 2, the exact solution Nij for the compression
flow is determined:

0¼ 2ξ(N11� (N11þN22� 2N33)N11)þ 2
ffiffiffi
3

p
C I(1� 3N11),

0¼ 2ξ(N12� (N11þN22� 2N33)N12)� 6
ffiffiffi
3

p
C IN12,

0¼ 2ξ(�N13=2� (N11þN22� 2N33)N13)� 6
ffiffiffi
3

p
C IN13,

0¼ 2ξ(N22� (N11þN22� 2N33)N22)þ 2
ffiffiffi
3

p
C I(1� 3N22),

0¼ 2ξ(�N23=2� (N11þN22� 2N33)N23)� 6
ffiffiffi
3

p
C IN23,

0¼ 2ξ(�2N33� (N11þN22� 2N33)N33)þ 2
ffiffiffi
3

p
C I(1� 3N33):

(E1)

By solving the following equation ψ describing the orienta-
tion state in Eq. (20) is determined:

0 ¼ ξψ2 � (
ffiffiffi
3

p
C I þ ξ)ψ þ

ffiffiffi
3

p

3
C I: (E2)

The latter equation results in two real solutions for ψ in view
of the discriminant D(α, CI) . 0 (see Appendix B) shown in
Fig. 17. The physically meaningful solution ψ of Eq. (E2) is
as follows with β used as a shortcut:

ψ ¼ 1
6ξ

�
3(

ffiffiffi
3

p
C I þ ξ)�

ffiffiffi
β

p �
,

β ¼ 27C2
I þ 6

ffiffiffi
3

p
C Iξþ 9ξ2:

(E3)

For the surface plot of ψ , the reader is referred to the plot of
N33 for the compression flow in Fig. 3.

APPENDIX F: SIMPLE SHEAR FLOW

The asymptotic orientation state Nij for the simple shear
flow is defined by the exact solution of following system of
Eq. (F1). As stated before, the rate of deformation does not
influence the asymptotic solution leading to a discontinuity
in Nij at the centerline of infinite long channel flows,

0 ¼ 2N12 þ ξ(2N12 � 4N11N12)þ 2C I(1� 3N11),

0 ¼ �N11 þ N22 þ ξ(N11 þ N22 � 4N2
12)� 6C IN12,

0 ¼ N23 þ ξ(N23 � 4N12N13)� 6C IN13,

0 ¼ �2N12 þ ξ(2N12 � 4N12N22)þ 2C I(1� 3N22),

0 ¼ �N13 þ ξ(N13 � 4N12N23)� 6C IN23,

0 ¼ �4ξN33N12 þ 2C I(1� 3N33):

(F1)

FIG. 17. Discriminant D of the ψ-equations with respect to the fiber aspect ratio α and the interaction parameter CI for the different investigated flow cases.
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In case of a , 0 s�1, the latter system of equations can still
be used but changing the sign of N12 in Eq. (22). By solving
the following equation, ψ describing the orientation state in
Eq. (22) is obtained:

0 ¼ 4ξ2ψ3 þ 12C Iξψ
2 þ (9C2

I � ξ2 þ 1)ψ � C Iξ: (F2)

Analogously, the discriminant D(α, CI) . 0 is shown in
Fig. 17 resulting in one real and two complex solutions for ψ
(see Appendix B). The real solution of Eq. (F2) is as follows
with β and ζ used as a shortcut:

ψ ¼ 1
6ξ

ζ þ 3
ffiffiffi
β

p� �1=3
þ 3C2

I þ ξ2 � 1

2ξ ζ þ 3
ffiffiffi
β

pð Þ1=3
� C I

ξ
,

β ¼ 81C4
I (3� ξ2)þ 27C2

I (2� ξ4 þ 2ξ2)� 3ξ6 þ 3

þ 9ξ2(ξ2 � 1),

ζ ¼ 27C I(C
2
I þ 1):

(F3)

For the surface plot of ψ , the reader is referred to the plot of
N12 for the shear flow in Fig. 4.

APPENDIX G: SUPERPOSITION—COMPRESSION
AND SHEAR

The following system of Eq. (G1) (given multiplied by 2)
is solved numerically for the asymptotic solution Nij. The
kinematic parameters a, b . 0 s�1 only affect the asymptotic
state via the ratio a=b. This ratio provides information about
whether the shear flow or the compression flow dominates.
According to Eq. (24) a=b , 1 represents a dominating shear
and for a=b . 1 the compression is more distinct. The physi-
cal correct solution is found by checking for real components
Nij first. The second step is characterized by checking the
necessary properties of Nij. Throughout this work, N11 � 0,
N22 � 0 and tr(N) ¼ 1 is checked. This method always gives
a clear result for the remaining components N33 and N12

0 ¼ 4bN12 þ 2ξ(aN11 þ 2bN12 � (aN11 þ aN22 � 2aN33 þ 4bN12)N11)þ C I

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12a2 þ 16b2

p
(1� 3N11),

0 ¼ �2bN11 þ 2bN22 þ 2ξ(bN11 þ aN12 þ bN22 � (aN11 þ aN22 � 2aN33 þ 4bN12)N12)� 3C I

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12a2 þ 16b2

p
N12,

0 ¼ 2bN23 þ 2ξ(� aN13=2þ bN23 � (aN11 þ aN22 � 2aN33 þ 4bN12)N13)� 3C I

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12a2 þ 16b2

p
N13,

0 ¼ �4bN12 þ 2ξ(2bN12 þ aN22 � (aN11 þ aN22 � 2aN33 þ 4bN12)N22)þ C I

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12a2 þ 16b2

p
(1� 3N22),

0 ¼ �2bN13 þ 2ξ(� aN23=2þ bN13 � (aN11 þ aN22 � 2aN33 þ 4bN12)N23)� 3C I

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12a2 þ 16b2

p
N23,

0 ¼ 2ξ(� 2aN33 � (aN11 þ aN22 � 2aN33 þ 4bN12)N33)þ C I

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12a2 þ 16b2

p
(1� 3N33):

(G1)

APPENDIX H: MATERIAL PARAMETERS

In this section, the material parameters are listed for deter-
mining the anisotropic elastic behavior based on the MT
method. Within this study, the glass fiber-reinforced UPPH
matrix material is considered with the following values for
Young’s modulus E and the Poisson’s ratio ν [45]:

EM ¼ 3:4GPa, νM ¼ 0:385,
EF ¼ 73GPa, ν F ¼ 0:22:

(H1)

Please note that for calculating the anisotropic viscous behav-
ior no material parameters are required besides the fiber
volume fraction f and the aspect ratio α within the nondi-
mensional Dinh–Armstrong model [17]. Throughout this
paper, f ¼ 0:1 and α ¼ 10 are used to represent anisotropic
properties.

APPENDIX I: symQC FOR ORIENTATION
EVOLUTION DESCRIPTION

First of all, it is shown that using NsymQC defined in
Eq. (39) violates the condition tr( _N) ¼ 0. Based on NsymQC,

the closure term in the FTE reads

N symQC[D] ¼ sym(N� N)[D]
1
3 (1þ 2kNk2)

¼ 1
1
3 (1þ 2kNk2)

1
3

�
(N � D)Nþ 2NDN

�

¼ 1

1þ 2kNk2
�
(N � D)Nþ 2NDN

�
: (I1)

The condition tr(N[D]) ¼ D � N given in Eq. (40) is violated
by NsymQC since

tr(N symQC[D]) ¼ 1

1þ 2kNk2
�
N � Dþ 2tr(NDN)

�

¼ 1

1þ 2kNk2
�
N � Dþ 2D � N2

�

= D � N: (I2)

Please note that tr(NDN) ¼ D � N2 holds. The idea now is to
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introduce a scalar factor A in the following closure term:

N symQC[D] ¼ A

1þ 2kNk2
�
(N � D)Nþ 2NDN

�
, (I3)

in such a way that the FTE is consistent in the sense of the
trace conservation of N,

A

1þ 2kNk2
�
N � Dþ 2D � N2

� !¼D � N: (I4)

After a quick analysis, the process-dependent quantity A can
be eliminated

A ¼ (1þ 2kNk2)N � D
N � Dþ 2D � N2 : (I5)

By inserting Eq. (I5) into Eq. (I3), the sought closure func-
tion being nonlinear in D is as follows:

N symQC[D] ¼ N � D
N � Dþ 2D � N2

�
(N � D)Nþ 2NDN

�

¼ 3N � D
N � Dþ 2D � N2 sym(N� N)[D]

¼ G(N, D): (I6)

It should be noted that the term 1þ 2kNk2 introduced in Eq.
(39) cancels out. Furthermore, G is a homogeneous function
of degree 1 in D. The definition of κ given in Eq. (42) and
applied in Eq. (43) is based on considering the complete
closure term of the FTE

2N[D] � κ sym(N� N)[D], κ ¼ 6N � D
N � Dþ 2D � N2 : (I7)

By looking at Eq. (I7), the isotropic fiber orientation state
NISO ¼ I=3 is critical in view of incompressible flows since
tr(D) ¼ D � I ¼ 0 causes a division by zero. For this case,
κ ¼ 0 is sufficient resulting in the same strain rate part of the
FTE as for the QC preserving tr(N) ¼ 1. In addition, for
flows with vanishing strain rate D ¼ 0, the direction of the
strain rate is not defined and κ ¼ 0 also applies. During the
simulations, nontrivial singularities of the form D � N = 0
and D � Nþ 2D � N2 ¼ 0 must be excluded
8D = 0, N = Niso. This is part of further research. These
singularities exist, as the following example shows

Dij ¼
1 0 0

0 1 0

0 0 �2

0
B@

1
CA, Nij ¼

51�7
ffiffiffiffi
33

p
20 0 0

0 1
10 0

0 0 �33þ7
ffiffiffiffi
33

p
20

0
BB@

1
CCA,

D �N¼ 119� 21
ffiffiffiffiffi
33

p

20
, 0¼D �Nþ 2D �N2:

(I8)

Any nonsingular states 0 � D � Nþ 2D � N2 and D � N = 0
have to be treated numerically by small time steps to suffi-
ciently resolve _N. Correction schemes used in other studies
[10,60,61] may apply to ensure the necessary algebraic

properties of the solution N. The special case of 2D fiber ori-
entation states and incompressible suspensions,

Nij ¼ N11 N12

N12 1� N11

� �
, Dij ¼ D11 D12

D12 �D11

� �
, (I9)

leads to κ ¼ 2 since D � N ¼ D � N2. Please note that for this
case D = 0 and N = Niso is required in 2D. Otherwise,
κ ¼ 0 holds for D ¼ 0 or N ¼ Niso as already described.

NOMENCLATURE

A Correction factor symQC (—)
a, b Deformation rates (s−1)
anm, c

n
m Coefficients orientation tensors (—)

Bι Base tensors (—)
Bιγ Base tensors (—)
bi Coefficients orientation average (Pa)
CI Fiber-fiber interaction parameter (—)
C Stiffness tensor (Pa)
D Discriminant of ψ-equation (—)
Di Eigenvalues of D0 (s

−1)
D, D0 Strain rate tensors (s−1)
d Tensile/shear direction (—)
E Young’s modulus (Pa)
e Closure error (—)
ei Cartesian base vectors (—)
eHi Eigenvectors of D0 (—)
F Closure function (—)
f Probability density function (—)
G Closure function (s−1)
I Identity on first-order tensors (—)
I Identity on second-order tensors (—)
IS Identity on sym. sec.-order tensors (—)
K Kinematics tensor (s−1)
ki, ~ki, p, q Abbreviations within D (—)
L Argument list of R (—)
L Velocity gradient (s−1)
Ncells Number of grid cells (—)
N First-kind orientation tensor (—)
N First-kind orientation tensor (—)
N

(k)
hni nth-order, kth-kind orientation tensor (—)

n Tensor order (even) (—)
n Fiber direction (—)
P0 Polarization tensor (Pa−1)
P1, P2 Projectors (—)
p Shear plane normal (—)
Q, QD Orthogonal tensors (—)
R Right-hand side of FTE (s−1)
S Surface of unit sphere (—)
T Abbreviation within Mori–Tanaka (Pa)
t Time (s)
V, Vi Domain/cell volume (m3)
V Viscosity tensor (Pa s)
W Spin tensor (s−1)
x Actual placement (m)

Greek

α Fiber aspect ratio (—)
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_γ Shear rate (s−1)
η, ηM, η1 Shear viscosities (Pa s)
κ Correction factor symQC (—)
Λ Parameter spin-free flows (—)
ν Poisson’s ratio (—)
ξ Fiber shape parameter (—)
f Fiber volume fraction (—)
w, θ Angles spherical coordinates (rad)
ψ, β, ζ Abbreviations asymptotic states (—)

Abbreviation

2D/3D Two-/three-dimensional
BFS Backward-facing step flow
CF Channel flow
F Fiber
FTE Folgar–Tucker equation
IBOF Invariant-based optimal fitting
ISO Isotropic
M Matrix
MT Mori–Tanaka method
OA Orientation average
PDF Probability density function
PI Planar isotropic
QC Quadratic closure
symQC Symmetric quadratic closure
UD Unidirectional
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