KIT | KIT-Bibliothek | Impressum | Datenschutz

Avoiding the Center-Symmetry Trap: Programmed Assembly of Dipolar Precursors into Porous, Crystalline Molecular Thin Films

Nefedov, Alexei 1; Haldar, Ritesh 1; Xu, Zhiyun 1; Kühner, Hannes ORCID iD icon 2; Hofmann, Dennis; Goll, David; Sapotta, Benedikt 1; Hecht, Stefan; Krstić, Marjan 3; Rockstuhl, Carsten ORCID iD icon 3; Wenzel, Wolfgang 4; Bräse, Stefan 2,5; Tegeder, Petra; Zojer, Egbert; Wöll, Christof 1
1 Institut für Funktionelle Grenzflächen (IFG), Karlsruher Institut für Technologie (KIT)
2 Institut für Organische Chemie (IOC), Karlsruher Institut für Technologie (KIT)
3 Institut für Theoretische Festkörperphysik (TFP), Karlsruher Institut für Technologie (KIT)
4 Karlsruher Institut für Technologie (KIT)
5 Institut für Biologische und Chemische Systeme (IBCS), Karlsruher Institut für Technologie (KIT)

Abstract:

Liquid-phase, quasi-epitaxial growth is used to stack asymmetric, dipolar organic compounds on inorganic substrates, permitting porous, crystalline molecular materials that lack inversion symmetry. This allows material fabrication with built-in electric fields. A new programmed assembly strategy based on metal–organic frameworks (MOFs) is described that facilitates crystalline, noncentrosymmetric space groups for achiral compounds. Electric fields are integrated into crystalline, porous thin films with an orientation normal to the substrate. Changes in electrostatic potential are detected via core-level shifts of marker atoms on the MOF thin films and agree with theoretical results. The integration of built-in electric fields into organic, crystalline, and porous materials creates possibilities for band structure engineering to control the alignment of electronic levels in organic molecules. Built-in electric fields may also be used to tune the transfer of charges from donors loaded via programmed assembly into MOF pores. Applications include organic electronics, photonics, and nonlinear optics, since the absence of inversion symmetry results in a clear second-harmonic generation signal.


Verlagsausgabe §
DOI: 10.5445/IR/1000136146
Veröffentlicht am 26.08.2021
Originalveröffentlichung
DOI: 10.1002/adma.202103287
Scopus
Zitationen: 16
Web of Science
Zitationen: 17
Dimensions
Zitationen: 19
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Biologische und Chemische Systeme (IBCS)
Institut für Funktionelle Grenzflächen (IFG)
Institut für Nanotechnologie (INT)
Institut für Organische Chemie (IOC)
Institut für Theoretische Festkörperphysik (TFP)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2021
Sprache Englisch
Identifikator ISSN: 0935-9648, 1521-4095
KITopen-ID: 1000136146
HGF-Programm 43.33.11 (POF IV, LK 01) Adaptive and Bioinstructive Materials Systems
Weitere HGF-Programme 43.32.02 (POF IV, LK 01) Designed Optical Materials
Erschienen in Advanced Materials
Verlag John Wiley and Sons
Band 33
Heft 35
Seiten Art.-Nr. 2103287
Vorab online veröffentlicht am 21.07.2021
Nachgewiesen in Scopus
Dimensions
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page