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Abstract
Customers in the manufacturing sector, especially in the automotive industry, have 
a high demand for individualized products at price levels comparable to traditional 
mass-production. The contrary objectives of providing a variety of products and 
operating at minimum costs have introduced a high degree of production planning 
and control mechanisms based on a stable order sequence for mixed-model assembly 
lines. A major threat to this development is sequence scrambling, triggered by both 
operational and product-related root causes. Despite the introduction of Just-in-time 
and fixed production times, the problem of sequence scrambling remains partially 
unresolved in the automotive industry. Negative downstream effects range from dis-
ruptions in the Just-in-sequence supply chain, to a discontinuation of the produc-
tion process. A precise prediction of sequence deviations at an early stage allows 
the introduction of counteractions to stabilize the sequence before disorder emerges. 
While procedural causes are widely addressed in research, the work at hand requires 
a different perspective involving a product-related view. Built on unique data from 
a real-world global automotive manufacturer, a supervised classification model is 
trained and evaluated. This includes all the necessary steps to design, implement, 
and assess an AI-artifact, as well as data gathering, preprocessing, algorithm selec-
tion, and evaluation. To ensure long-term prediction stability, we include a continu-
ous learning module to counter data drifts. We show that up to 50% of the major 
deviations can be predicted in advance. However, we do not consider any process-
related information, such as machine conditions and shift plans, but solely focus on 
the exploitation of product features like body type, power train, color, and special 
equipment.
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Abbreviations
AI  Artificial Intelligence
ANN  Artificial Neural Network
AS/AR  Automated Storage and Retrieval
BTO  Build-to-Order
C  Trigger for the Relearning Cycle
D  Class of Delayed Instances
DoF  Degrees of Freedom
DSR  Design Science Research
FN  False Negative
FP  False Positive
I  Number of Instances for Pretraining the Artifact
ILVS  In-line Vehicle Sequencing
KPI  Key Performance Indicator
Λ  Parameter for the Page-Hinckley-Test
ML  Machine Learning
MMAL  Mixed-Model Assembly Line
OEM  Original Equipment Manufacturer
P  Class of punctual instances
PF  Product Family
PMS  Predictive Manufacturing System
PNR  Product Number
RG  Random Guess Classifier
SA  Sequence Adherence
SD  Sequence Deviation
SD0.9−quan  90% Quantile
SD0.95−quan  95% Quantile
SML  Supervised Machine Learning
SMOTE  Synthetic Minority Oversampling
STD  Standard Deviation
T  Binarization Threshold
TN  True Negative
TP  True Positive
XGBoost  Extreme Gradient Boosting

1 Introduction

Since Henry Ford made his famous statement, “Any customer can have a car 
painted any color that he wants, so long as it is black” in 1909, the principles of 
modern car manufacturing assembly lines have changed notably. A study by Stäblein 
et al. (2011) shows that the theoretical variety of products that can be configured and 
ordered from one original equipment manufacturer (OEM) in the automotive sector 
ranges between the factors of 109 to 1024 , depending on the car model and the mar-
ket region. According to this study, a given product specification is assembled 2.26 
times per year on average. For the US market, Fettermann and Freitas (2017) found 
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a variety of nearly 1034 across OEMs. However, for an average-sized automotive 
production plant with a yearly output of 250.000 cars, more than 100.000 unique 
configurations of cars are produced (EMEA 2019a, b). To cope with the resulting 
complexity, all major OEMs implement a build-to-order (BTO) strategy (Meiss-
ner 2010). In BTO, the production of goods is usually triggered by confirmed cus-
tomer orders. To realize such a broad product portfolio without incurring exorbitant 
assembly and setup costs, the concept of mixed-model assembly lines (MMAL) has 
become the industrial standard for high-value, customizable goods such as passen-
ger cars (Kern et al. 2017). The transformation to increase assembly sequence effi-
ciency is facilitated by several mathematical models that consider numerous factors.

Dörmer et  al. (2015) name five distinctive types of planning problems that are 
related to MMAL production operations. Besides the problems of line balancing, 
master production scheduling, and material flow, the authors identify both produc-
tion sequencing as well as re-sequencing as core activities. In the remainder of this 
study, we will tackle both sequencing as well as re-sequencing while master pro-
duction planning, line balancing, and material flow are out of scope. The downside 
of MMALs resides within their sensitivity to disruptions, leading to deviations in 
the process sequence (Lehmann and Kuhn 2019). The main factors that cause dis-
ruptions can be divided into product-related and operations or process-related fac-
tors (Meissner 2010). While product-related factors reside within the nature of the 
actual product, that is, the set of attributes which characterizes a product (color, 
type, size. etc.), process-related factors include process discipline, machine break-
downs, resource allocation, parts availability, and errors. Certain process-related 
factors, such as machine breakdowns or quality audits, are dynamic and not neces-
sarily determined at the start of the production of a specific customer order. The 
majority of research focuses on those dynamic, process-related causes, leading to a 
continuous improvement of JIT production systems by giving those systems more 
flexibility to react to unforeseen situations (Rudolf et al. 2014; Lehmann and Kuhn 
2019). However, those studies take a rather reactive perspective, i.e., the proposed 
strategies aim at redeeming sequence scrambling after the production process 
started. To adopt a novel perspective, the current work focuses on the influence of 
product-related factors on sequence deviations. This perspective is rather rare in cur-
rent research and industry. Product-related factors are deemed static, which means 
that they do not change once the customer order is placed. As most of the factors 
become known once a customer order is submitted to the production plant, a pre-
diction of the expected sequence deviation for that order can be made before the 
production starts. That allows us to take a prescriptive perspective, i.e., we aim to 
take counteraction against sequence scrambling before the production process starts. 
The objective is to identify and learn from hidden patterns in complex data. Arti-
ficial intelligence (AI) in general and supervised machine learning (SML) in par-
ticular provide the necessary techniques to achieve this goal by revealing hidden 
correlations; in this case, the patterns between product-related factors and sequence 
deviations (Kühl et  al. 2019). The predictions allow the identification of potential 
disruptions before creating the assembly sequence, which in turn allows preven-
tive counteraction. For our specific case, AI offers some advantages compared to 
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traditional mathematical models. Methods of SML allow us to utilize big data at 
comparably low cost. Furthermore, SML models can be tailored to react to changes 
in the underlying processes, i.e., a change in the distribution of products, production 
times, or scrambling rates.

To contribute to the area of Predictive Manufacturing Systems (PMS) (Peres 
et al. 2019) in general and sequence scrambling in particular, we address a current 
research gap by combining a singular product-related perspective with state-of-the-
art AI tools. However, being aware that process-related features exert a significant 
influence on the stability of a sequence (Boysen et  al. 2012; Lehmann and Kuhn 
2019), we consciously isolate product-related factors in our analysis and use them as 
features of our prediction model.

In the remainder of this study, we review the current state of research and provide 
essential conceptual foundations. This is followed by a presentation of our proposed 
methodology that shows how an AI artifact, which integrates a SML classification 
model and an online learning module, can be implemented to predict sequence 
deviations. Through this methodological approach, we conduct a field study in col-
laboration with a leading global automotive manufacturer. Finally, we evaluate our 
results, provide a critical discussion, and conclude with findings, limitations, and 
prospects.

2  Literature review

At the outset, to ensure a common understanding, we provide a structured overview 
of the related work and present our approach in the context of existing knowledge 
(see Table 1).

Analysis and simulation of disturbances in ILVS have been the subject of a rich 
body of research which, in general, can be subdivided according to its focus and 
methodological approach. Table  1 frames the existing research and provides an 
overview of the most relevant concepts. We distinguish between a product-oriented 
perspective that targets inherent product characteristics, and a process-/operation-
oriented view that deals with procedural, operational, and organizational factors. 
Methodologically, we distinguish between traditional concepts, namely simulation 
studies, heuristics or mathematical models, and perceptions based on the applied 
field of artificial intelligence.

First, the lower left quadrant of Table 1 includes literature based on traditional 
methods that has a process or operation-oriented focus. This perspective is adopted 
in various studies that evaluate the downstream effects of sequence scrambling: 
notably, the effect of individual workstations on sequence stability is quantified by 
Rudolf et al. (2014), whereas attainable stability levels and their preconditions are 
estimated by Lehmann and Kuhn (2019), using a simulation approach. The concept 
that denotes the reordering of products by performing a physical switch according to 
the desired sequence is physical resequencing (Boysen et al. 2012). A prerequisite 
of physical resequencing is the existence of at least one physical decoupling buffer 
within the line. An automated storage and retrieval buffer (AS/AR), which is located 
before the assembly line, enables the position switch of products (Inman 2003). 
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Building on this study’s results, authors subsequently developed alternative buffer-
ing systems to perform physical resequencing, such as mix-banks (Lahmar and Ben-
jaafar 2007; Meissner 2010) and pull-off tables (Gujjula and Günther 2009). Besides 
the dimensioning of buffers and acknowledging joint capacity restrictions, Urnauer 
et al. (2019) provide a simulation-based optimization methodology for the location 
and allocation of buffer spaces between subsequent production steps. Present buffer 
operating strategies are based either on the utilization of downstream buffers (Boy-
sen et al. 2011) or on specific shuffling areas that change the order of products. The 
harmful impact of inserting rescheduled products into an existing sequence in terms 
of worker utilization and work distribution can be reduced by employing a non-triv-
ial strategy (Lahmar and Benjaafar 2007; Gujjula and Günther 2009; Franz et  al. 
2015). These resequencing strategies, specifically in the specific context of complex 
automotive supply chains and assembly procedures, are benchmarked in detail. It is 
possible, depending on the complexity of the strategy, to avoid at least 75% of the 
overload situations (Franz et al. 2014, 2015). Moetz et al. (2019) adopted a network 
perspective by developing a conceptual model to manage short-term disruptions, 
resulting in a hierarchical planning system. However, most authors neglect the prac-
tical implementation of such a system.

Second, along with the aforesaid process and operation-based strategies, the 
product-oriented approaches listed in the upper left quadrant of Table 1 utilize the 
similarities and disparities of product characteristics. Several studies confirm the 

Table 1  Overview of related research approaches

Method

Traditional Artificial Intelligence

Focus Product-oriented Postponement (Fournier and 
Agard 2007)

Virtual Resequencing (Inman 
and Schmeling 2003; Meißner 
et al. 2008; Boysen et al. 
2009)

Optimal AS/AR Pre-filling 
(Gunay and Kula 2016, 2018)

Intentional Sequence Scram-
bling (Gusikhin et al. 2007; 
Meissner 2010)

Our approach

Process-/operation-oriented Simulation of Downstream 
Effects (Rudolf et al. 2014; 
Lehmann and Kuhn 2019)

AS/AR Buffer Sizing and Allo-
cation (Inman 2003; Urnauer 
et al. 2019)

Resequencing Strategies (Ding 
and Sun 2004; Lahmar and 
Benjaafar 2007; Gujjula and 
Günther 2009; Boysen et al. 
2011; Franz et al. 2014, 2015; 
Moetz et al. 2019)

Multistage Quality Control 
(Peres et al. 2019)

Outcome-Oriented Predictive 
Process Monitoring (Teinemaa 
et al. 2017)

Remaining Time Prediction (Tax 
et al. 2017; Polato et al. 2018)
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influence of substitution approaches, such as the flexibilization of the sequence, 
by postponing the assignment of products to customer orders (Fournier and Agard 
2007) or by decoupling orders from physical products (Inman and Schmeling 2003). 
The latter, usually referred to as virtual resequencing, is extensively analyzed 
(Inman and Schmeling 2003; Fournier and Agard 2007; Meißner et al. 2008; Boy-
sen et al. 2009). For postponement, points of differentiation are introduced. Products 
are uniformly produced up to the first point of differentiation. Fournier and Agard 
(2007) analyze the introduction of two points of differentiation in the automotive 
production system and indicate that a 39,70% reduction of missing vehicles in the 
assembly line is achievable. Since these authors accept a uniform distribution of fea-
ture frequencies, a real production system’s results would be less profitable. How-
ever, the benefits of postponement emerge when differentiation is delayed, that is, 
when products are standardized as much as possible for as long as possible. Again, 
the authors ignore practical implementation. To enable efficient virtual resequenc-
ing, it is essential to pre-fill the buffers with spare products. Gunay and Kula (2016) 
evaluated the provisioning of an optimal buffer pre-filling level and mixture in their 
two-stage stochastic model, as did Jin et  al. (2019) in a hybrid simulation model. 
Another product-oriented approach is the reduction of sequence scrambling by tak-
ing preventive action. Collectively, these approaches are known as hedging strate-
gies. (Meissner 2010) distinguishes between two different types of hedging strate-
gies. The first focuses on implementing a high degree of process discipline and lean 
thinking to counteract disruptions; the second involves generic, proactive measures 
to counteract sequence scrambling. A least in-sequence probability heuristic for 
mixed-volume production lines is introduced to intentionally manipulate the input 
sequence (Gusikhin et al. 2007). The proponents of this technique show that high-
volume products have a higher probability of meeting their required sequence posi-
tion than low-volume ones. Thus, as a precautionary measure, they propose moving 
low-volume products ahead in the production sequence to introduce an individual 
time buffer for those products. This strategy is known as intentional sequence 
scrambling. The authors prove that a reduction of deviations could be achieved by 
combining this strategy with virtual resequencing approaches, allowing a size reduc-
tion of the physical buffer space by up to 30% based on the assumption that only 
three distinct products are produced.

Third, beyond these traditional methods, it is necessary to discuss existing work 
utilizing predictive models. These models that adopt a process-oriented view are 
summarized in the lower right quadrant of Table 1. While most of the traditional 
methods focus on reactive actions to restore the sequence, predictive models have 
the ability to guide proactive processes. The ability to predict the behavior of a run-
ning process is regarded as a key capacity of modern businesses (Houy et al. 2010). 
In a promising study, Peres et al. (2019) developed an automated defect detection 
tool based on SML. The authors showed how the early detection of defects, based 
on quality measures that are taken from inspection machines within the production 
line, leads to a reduction of scrap and deviation in the assembly line sequence. An 
automotive industry case study provided accuracy scores of 93% for the detection of 
defects in the automotive body shop. More recently, approaches also emerged in the 
area of predictive process monitoring and process mining. Evermann et al. (2017), 
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based on a process backlog of past events, proposed the application of a deep learn-
ing concept to predict the next step in a consecutive business process. A slightly 
different approach, proposed by Teinemaa et al. (2017), is the prediction of a process 
outcome. While business processes gained a lot of attention regarding process min-
ing, manufacturing processes have been neglected (Son et al. 2014). Some outcome-
oriented concepts regarding the exploitation of manufacturing process data focus on 
the prediction of the remaining time of a running process (Tax et al. 2017; Polato 
et  al. 2018). All these studies use AI-based methodologies. Next, we indicate the 
foundations of the In-line vehicle sequencing concept.

3  Foundations

The concept of ILVS was first introduced by Morrison (1991). He points out that 
ILVS is a precondition for Just-in-Sequence (JIS). Sometimes, both terms are used 
interchangeably. ILVS, in turn, is an essential part of intermixed production on 
MMAL. Because of parallel developments, ILVS is known as the pearl necklace 
concept or pearl-chain concept, especially in the automotive industry (Weyer and 
Spath 2009; Klug 2017; Lehmann and Kuhn 2019). The process of creating the 
assembly line sequence is referred to as initial sequencing. The outcome of initial 
sequencing is a technically feasible and economically favorable chronological order-
ing of customer-specific purchase orders and is known as assembly line sequence 
or frozen sequence (Lehmann and Kuhn 2019). An assembly line sequence is con-
sidered favorable if “vehicles with high-content options are spaced apart from each 
other to balance the work content” (Morrison 1991, p. 547).

Currently, there are more complex, multi-criteria mathematical models that foster 
the initial sequencing of customer orders along a fixed planning horizon, for exam-
ple, a day or a week (Drexl and Kimms 2001; Boysen et al. 2009; Giard and Jeunet 
2010; Mayrhofer et al. 2011; Zhang and Gen 2011; Saif et al. 2019). In all the pre-
sented models, economic factors are the key to evaluate the quality of an assembly 
line sequence. These factors include the efficient utilization of machinery and work-
ers, the setup costs, keeping to the delivery date promised to the customer, and the 
restriction of technical feasibility as well as minimizing searching costs for JIS parts 
on the assembly line. At the time of initial sequencing, JIS delivery schedules are 
submitted to the suppliers. It is important that the information lead time, that is, 
the time span between the initial sequencing and the entry into the assembly line is 
longer than the suppliers’ parts delivery lead time. However, both the supplier and 
the producer benefit from advanced knowledge of the sequence. Parts are only deliv-
ered to the assembly line if needed, thus saving costs on inventory, buffer space, 
handling, and potential waste (Rudolf et al. 2014; Lehmann and Kuhn 2019).

Several required pre-assembly steps are placed between the commencement of 
production at the sequencing point (Swaminathan and Nitsch 2007), where the 
initial sequencing takes place and the start of the assembly line (Fig.  1). Each 
step adds to the risk of disordering the sequence due to products falling behind 
or taking over. While Meissner (2010) distinguishes between product and pro-
cess-related factors, Grinninger (2012) distinguishes between product, process, 
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and infrastructural-related factors and further subdivides process-related factors 
into steering, material and quality. Product-related factors include differences in 
processing times, unsynchronized processes, the stage of the product lifecycle, 
and extra work. Process-related factors include missing parts, locally deviating 
conformity with objectives, steering errors, missing transparency, and the non-
availability of information, as well as quality audits, machine breakdowns, and 
worker shifts. Infrastructural factors relate to split-and-merge-architectures, rese-
quencing restrictions, and inappropriate conveyor technology. The negative effect 
of sequence deviations is called unintended sequence scrambling.

Several different Key Performance Indicators (KPIs) support the quality 
assessment of an ILVS production line. Meissner (2010) proposes different meas-
ures to evaluate sequence stability. The sequence deviation (SD) denotes the delta 
between the position of an order in the output and the input sequence:

While post
i
 represents the position number in the achieved sequence, post−1

i
 

represents the sequence position in the planned sequence that was inserted at the 
start of production. Therefore, SD denotes the degree of deviation for each order 
from its designated position in the input sequence. Relatively speaking, early 
orders have an SDi < 0 and late orders an SDi > 0 . The sequence adherence (SA) 
is a measure to assess the stability level of the entire assembly sequence. The 
number of violations v of the assembly sequence is summed and divided by the 
total number of orders n in the respective sequence:

Values between 0 and 100% can be obtained. Usually, the definition of a 
sequence violation is restricted to orders with sequence deviations of SDi > 0 , 
because the intended delaying of early orders is always possible at relatively low 
effort (Günther 2017). However, sequence deviations are interdependent. Each 
early product forces later products to be late.

SDi = post
i
− post−1

i

SA = 1 −
1

n

n
∑

i=1

vi
[

%
]

Fig. 1  Mixed-model production line
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The costs incurred by sequence scrambling emerge in multiple divisions, for 
example, logistics costs of the buffer space to enable physical resequencing, labor 
costs of the manual resequencing work, and capital costs of growing stocks. The 
sequence’s quality primarily determines the efficiency of the assembly line’s utili-
zation. Imbalanced work across products and workstations, leading to situations of 
work overload or wasting resources, constitutes a main cost block in the automotive 
production systems (Franz et al. 2014). If deviations become too severe, the logis-
tics department cannot guarantee the timely provision of the required material to the 
assembly line. As a result, empty cycles in the assembly sequence or termination of 
the assembly process may occur.

Machine learning (ML) is one of several method sets applied within the area of 
artificial intelligence. Kühl et al. (2019) provide a conceptual framework to specify 
the contribution of machine learning to AI and to enhance terminological clarity. 
The work at hand uses ML and AI interchangeably.

4  Methodology

Knowledge discovery is an evolving and dynamic area of research and, as a result, 
includes many different process models (Brodley and Smyth 1995; Kurgan and 
Musilek 2006; Choudhary et al. 2009). Hirt et al. (2017) provide a well-defined and 
specifically designed process model for SML tasks. In the next section, we follow 
the general steps of model initiation, model error estimation, and model deploy-
ment (Fig. 2). After describing the development of our SML classification model, 
we emphasize the need to consider continuous online learning. Hence, we embed 
the developed SML classification model in an AI artifact that features an additional 
online learning module and a continuous data input stream.

4.1  Business problem formulation

Before developing the SML classification model, it is necessary to clearly formu-
late the prevailing business problem. As discussed previously, disruptions in the 

Fig. 2  Process model for supervised machine learning model based on Hirt et al. (2017)
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assembly line sequence involve a loss in the production efficiency of ILVS produc-
tion systems. The objective of production managers is a sequence adherence of 
100%, implying that the achieved assembly line sequence is identical to the input 
sequence. Losses arise as soon as a product is delayed. Sequence deviations that 
are successfully reversed before entering the assembly line do not harm sequence 
adherence. Sequence deviations in pre-assembly steps can be reversed by applying 
physical resequencing in the AS/AR buffer. The resequencing capability of the AS/
AR buffer is an important parameter to assess the degree of acceptable sequence 
deviations in pre-assembly steps. Therefore, production control mechanisms aim to 
keep the sequence deviations in pre-assembly steps below the capacity of the AS/
AR buffer.

To maximize sequence adherence, the business objective of AI artifact devel-
opment is to identify products that are likely to produce a sequence deviation that 
exceeds the capacity of the AS/AR buffer. Considering the systems’ resequenc-
ing capability, a threshold T in terms of a critical sequence deviation measure is 
derived from differentiating between two distinct product classes: punctual instances 
p ∈ P,whereSDp ≤ T  and delayed instances d ∈ D,whereSDd > T . Accordingly, 
only instances d ∈ D with sequence deviations above T are relevant to the business 
problem under consideration. Therefore, we formulate the problem as a classifica-
tion task and use an externally provided threshold to binarize the target variable SD 
into two classes. Future research could formalize the business problem as a regres-
sion or a multi-class classification task.

4.2  Model initiation

Having formulated the business problem, we initiate the development of the classi-
fication model. SML models perform very well on large, high-dimensional datasets 
(Kotsiantis 2007). To obtain convincing results from a SML classification model, 
it is necessary to provide sufficient learning data (Wuest et  al. 2014). The initia-
tion steps comprise problem exploration and data gathering, performance measure 
selection, preprocessing, and algorithm selection. They require a preliminary under-
standing of both the business problem and the application domain. Whereas the 
business problem serves as the main input for model initiation, the outputs include 
a preprocessing pipeline, the ground truth dataset, and a suitable classification 
algorithm.

4.3  Problem exploration and data gathering

The exploration of problem-specific features is fundamental to successful SML clas-
sification models. First, all available product-related features from past instances 
must be identified, collected, and merged. The result is a set of categorical or numer-
ical variables describing historical instances. Typically, product-related features are 
organized in feature families. Each family contains at least two distinct product fea-
ture values; for example, the feature family color could have the values black, red, or 
white. Second, the target variable must be defined. The sequence deviation is either 
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directly retrieved from information storage systems or derived from related data. 
The target variable in the proposed SML classification model is the class that an 
instance belongs to. Based on the threshold T, the binary target variable is derived 
from the sequence deviation measure by performing a binarization. The result of the 
data gathering step is a list of M historic instances, described by a set of N product-
related features and the target variable (Table 2).

4.4  Performance measure

We consider various prediction performance measures for the binary classification 
task. The aim is to attain either the highest possible precision by minimizing the 
frequency of false predictions of punctual products as delayed—or the highest pos-
sible recall by maximizing the rate of detected delayed products. Focusing only on 
a single measure leads to mutual losses. Depending on the inferred costs, a suit-
able trade-off ensures that the overall error costs are minimized. Therefore, our key 
performance measure is the f�-score as recommended by (Powers 2011)) to counter 
prediction biases:

The parameter β can be adjusted to overweigh one of the two metrics, depending 
on the individual necessity of the model.

4.5  Preprocessing pipeline

The quality and representation of data instances used to train the classification 
model is a critical success factor of knowledge discovery in SML (Kotsiantis et al. 
2006). To attain a high level of training data quality, the collected set of raw data is 
subject to a set of preprocessing techniques. All preprocessing steps are incorpo-
rated into the preprocessing pipeline. Unfortunately, there is no unique, undisput-
able set of preprocessing steps that performs best across datasets. The selection of 
favorable preprocessing techniques depends on the data characteristics, as well as 
on the classification model’s architecture. Accordingly, we present an extract of pre-
processing techniques deemed suitable for the task at hand (Table 3). However, the 
ultimate implementation of the preprocessing techniques is limited to the specific 

f�-score =
(

1 + �2
)

∗
precision ∗ recall

�2 ∗ precision + recall

Table 2  Exemplary dataset of historic samples with assigned feature values and binary label

ID Fam 1 Fam 2 Fam 3 … Fam N-1 Fam N Target Variable

1 Value A Value A Value D Value B Value A D
2 Value B Value D Value G Value A Value E P
…
M Value A Value C Value C Value A Value J P
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application case. Therefore, a final selection of preprocessing techniques depends on 
an evaluation using the application data.

Some of the preprocessing steps are mandatory to enable implementation, that is, 
the removal of illegal, misspelled, and mislabeled variables or the conversion of val-
ues into a machine-readable format. An instance selection algorithm is employed to 
remove invalid instances from the dataset based on domain-specific filter rules. The 
use of filter rules requires knowledge of applicable filter criteria. If this knowledge 
is not feasible, an outlier removal algorithm serves as an alternative to detect faulty 
instances not representative of the dataset. The outlier removal algorithm dismisses 
instances that exceed a permission range in terms of absolute or statistical values, 
for example, variance (Kotsiantis et al. 2006).

A classification model can only interpret numerical data. We apply different 
feature encoding techniques to convert categorical values into machine-readable, 
numeric values. A one-hot-encoding transforms categorical data into binary col-
umns. The number of binary columns per feature column depends on the cardinality 
of the feature’s values. This ensures that the individual categorical values remain 
independent. Alternatively, label-encoding is suitable if the categorical variables 
can be brought into an ordinal dependency, for example, sizes or distances. Stand-
ardization manipulates the distribution of continuous values without changing the 
information content. Standardized values are easier to interpret by a machine learn-
ing model (García et al. 2016).

Although the dataset can be used to train an ML model, certain additional pre-
processing steps would increase its performance. Optional preprocessing steps aim 
to increase the model’s performance. Hence, we propose different techniques to 
reduce the dimensionality of the dataset. The first option is a manual feature selec-
tion, that is, the reduction of the potential space of factors based on expert knowl-
edge. To achieve satisfactory results from manual selection, it is necessary to retain 
features with a high impact while removing those of lesser or no importance. How-
ever, this requires some knowledge of the influence of individual features. A data-
centered technique to reduce the dimensionality of the feature space is frequency 
removal, that is, removal of feature columns with only one predominant feature 
value. Lastly, the technique of automated grouping identifies linear-dependent fea-
tures. Since these linear-dependent features do not add value to our dataset, they can 
be removed. A combination of multiple dimensionality reduction algorithms is also 
conceivable.

Many SML applications face the problem of imbalanced datasets. The imbalance 
leads to the biased training of the model. A class balancing technique is applied to 
balance the training data while the test data remain untouched. A balanced training 
dataset reduces the danger of prediction biases favoring the majority class (More 
2016). Different sampling techniques are available to cope with class imbalance. 
We present trivial techniques that include imbalanced training with and without 
weighted losses. The weighted losses regulate the classifier during training by over-
rating errors on the minority class according to the inverse of its relative frequency. 
Besides imbalanced training, we also identify under, over, and synthetic sampling 
techniques. The science behind sampling is linked to an extensive field of research 
(Chawla et  al. 2002; Batista et  al. 2004; He and Garcia 2009; Bach et  al. 2017; 
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Boardman et al. 2018). The literature recommends synthetic methods, although they 
infer an additional overlap between the classes, which disadvantages the prediction 
performance (Chawla et al. 2002).

Lastly, an extension of the feature space could be beneficial. For the SML task in 
an ILVS scenario and to account for effects that may occur in a pattern of subsequent 
instances, relevant feature engineering techniques cover the inclusion of neighbor-
hood features. Batch features aggregate the product features of preceding instances 
over a longer time period to elucidate macro-effects resulting from the distribution 
of product-related features across a larger production batch. Both features account 
for interdependency effects in the assembly line sequence.

4.6  Classification model

The selection of a suitable classification algorithm is important. Depending on the 
specificity of the task, a suitable algorithm is chosen on the basis of various techni-
cal and environmental factors (Reda et  al. 2019). Generally, an algorithm’s appli-
cability, prediction performance, and resource efficiency are important.1 Its degree 
of transparency is an additional factor. For the SML task, we consider four predic-
tive classification algorithms: A Logistic Regression, an Artificial Neural Network 
(ANN), a Random Forest, and an Extreme Gradient Boosting (XGBoost), which we 
will shortly introduce. A Logistic Regression models the probability of a certain 
class by assigning a probability between 0 and 1, based on a logistic function of 
the data (Tolles and Meurer 2016). An ANN is a collection of connected nodes (so-
called neurons), which are inspired by the biological neurons from the brain. Each 
connection can transmit a signal to other neurons. Signals travel from the input layer 
to the output layer, typically after traversing other layers multiple times (Hassoun 
1995). A Random Forest is a so-called ensemble learning model (Opitz and Mac-
lin 1999) for which operates by building multiple decision trees during training and 
outputting the class that is the mode of the individual trees (Breiman 2001). Similar 
to Random Forests, XGBoost is a technique producing a prediction model in the 
form of an ensemble of so-called “weak learner” prediction models, more precisely, 
boosted trees (Chen and Guestrin 2016). For more information on the inner work-
ings of the utilized classification models, we refer to related literature.

Depending on the classification algorithm, several parameters that cannot be 
learned from the data by training, known as hyperparameters, must be set. For the 
ANN, the relevant hyperparameters include the number of layers, the number of 
neurons per layer, and the activation functions. For an XGBoost, they include the 
booster technique and the maximum depth of the tree. For a Random Forest, the 
minimum number of samples that are required to split and the number of trees in the 
forest are important. The process of finding a suitable parameter setting is referred to 
as hyperparameter tuning.

1 In addition, fairness is also deemed important in some current applications (Barocas et al. 2018).
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4.7  Model error estimation

The selection of both suitable preprocessing techniques and the classification algo-
rithm affects the prediction model’s performance. Due to combinatorial cardinality, 
computing resource restrictions often preclude an exhaustive evaluation of all possi-
ble combinations of preprocessing techniques and classification algorithms. To cope 
with limited resources, we propose the independent testing of preprocessing steps 
and algorithms. Accordingly, we evaluate optional preprocessing techniques using a 
default hyper-parametrized XGBoost classification algorithm. To perform hyperpa-
rameter tuning, we use a set of default preprocessing techniques. A search space is 
defined for the relevant hyperparameters to perform a grid search, that is, to evaluate 
each permutation of the specified parameter values (Bergstra et al. 2011).

Within each step of preprocessing and algorithm tuning, we can either perform 
an exhaustive grid search, that is, an evaluation of each possible combination, or we 
can use a heuristic method based on a greedy strategy to evaluate the different alter-
natives. An exhaustive grid search requires extensive computing resources, whereas 
a greedy strategy is computationally more efficient because alternative techniques 
are evaluated in sequence. We propose the incorporation of nested k-fold cross-val-
idation (Varma and Simon 2006; Cawley and Talbot 2010) for both the exhaustive 
grid search and the heuristic method. This involves stepwise nested cross-validation, 
thus performing the hyperparameter tuning and model-error estimation indepen-
dently. The stepwise nested k-fold cross-validation is superior to a simple train-test-
split as it prevents the previously discussed possibility of overfitting (Cawley and 
Talbot 2010).

After independently obtaining suitable preprocessing steps and hyperparameters 
for the classifiers, a cross-algorithm comparison identifies the most suitable clas-
sification algorithm. To enable this, each model is provided with identical data and 
again evaluated on their tuned hyperparameters using a k-fold cross-validation. The 
algorithms are compared based on the achieved mean f�-score, and stability, that is, 
variance across the cross-validation runs. The training of the final model is based on 
the best-performing algorithm and its hyperparameter settings. In the final training, 
all available data samples serve as training instances. However, as we incorporate 
online learning, we do not deploy our SML classification model at this point. In the 
next chapter, we describe how to embed the SML classification model in an AI arti-
fact comprising a trained and evaluated SML classification model and an additional 
online learning module, based on the inputs of a continuous data stream.

4.8  AI‑artifact and deployment simulation

At this point, the SML classification model should be ready for deployment. 
However, within an industrial context, the data source is usually not stationary, 
especially if the data is collected over a long period of time (Baena-Garcia et al. 
2006). Therefore, continual evaluation under real-world conditions is necessary. 
According to Peres et al. (2018), the joint exploitation of real-time and historical 
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data is a prerequisite to ensure the long-term prediction stability and validity of 
data-driven prediction models. Thus, continual evaluation is a key factor in the 
successful deployment of our AI artifact.

Once the SML classification model is trained and evaluated, it is constantly 
fed with a data stream. The stream provides the model with features from new 
customer orders, as well as with new measures of sequence deviations obtained 
from completed production runs, that is, new values of the target variable. The 
submission of a new order triggers prediction before the commencement of the 
production of the corresponding product. The provision of sequence deviations 
measures allows continual performance monitoring by comparing the predictions 
with the actual sequence deviation measures. After deployment, the SML clas-
sification model is subject to continuous change. Changes in the underlying data 
may involve drifts in the distribution of product feature frequencies, entirely new 
features, or learning and scaling effects of existing features due to maturity in 
a product lifecycle. These sudden or incremental changes are widely referred to 
as concept drifts (Schlimmer and Granger 1986; Widmer and Kubat 1996). To 
cope with the changes in the underlying data and to avoid manual adjustments, a 
concept drift or online learning module is incorporated. Four different operating 
strategies are proposed for the online learning module (Table 4).

In the offline scenario, the model keeps on producing predictions on the 
incoming feature stream, but it is not updated. Whenever new instances with 
target variables are available, the SML classification model could be updated. 
Existing work on online learning strategies describes two trivial strategies. First, 
incremental learning describes a scenario where the model is updated, based on 
new, unseen data, but where it retains its full knowledge of old training instances 
(Baena-Garcia et al. 2006). The advantage of incremental learning is that it maxi-
mizes the size of the available training set. As a downside, obsolete instances are 
never dismissed from the training set. Second, and in contrast, the batch retrain-
ing strategy dismisses past training instances and completely discards the old 
model (Baier et al. 2019). A new prediction model is exclusively trained on the 
most recent data samples provided by the data stream. This strategy ensures that 
the updating of the classification model is always based on the most recent data. 
However, the number of training samples is reduced significantly, and long-term 
patterns may no longer be captured.

Based on drift detection techniques, it is possible to fuse the advantages of both 
strategies. We propose combined active decision learning that adapts its relearning 
strategy to its estimation of the underlying data. Whenever a new batch of data sam-
ples is provided, the model performs a statistical test to determine the occurrence 
of concept drift. A batch retraining is triggered when the data distribution or pat-
tern changes. Otherwise, the new data samples are incrementally learned, thereby 
extending the knowledge of the classification model. A suitable detection algo-
rithm is the Page-Hinckley-Test which detects concept drifts based on the observa-
tion of performance means. A drift is assumed if a mean exceeds a threshold value 
λ (Mouss et  al. 2004). Whenever a concept drift is detected, the batch relearning 
strategy is implemented. When no concept drift is detected, incremental learning is 
performed.
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The online learning module is integrated with our AI artifact and maintains 
the recency of the SML classification model. The architecture of the artifact is 
indicated in Fig.  3. The center of the artifact is the SML classification model, 
which is initially trained on historical data samples drawn from a database. Dur-
ing runtime, new instances are provided via the input stream. Once the new 
instances pass the preprocessing pipeline, the SML classification model gen-
erates a prediction. The prediction is propagated back via the output stream. 
Additionally, an error estimation is performed to monitor the SML classification 
model by comparing predicted and actual sequence deviations. The error is fed 
into the online learning module. According to the implemented online learning 
strategy, the online learning module triggers either no change to the model, or 
an incremental update, or dismission and entire retraining. Based on the pro-
posed methodology, we continue by accessing the industrial application case.

5  Case study

We conducted a thorough field study to implement and evaluate the methodol-
ogy within a real-world industrial production environment. We used data from a 
MMAL provided by a leading global automotive OEM. The daily output of the 
production line varies between 565 to 612 vehicles within the two-year scope of 
this industrial dataset. The dataset comprises more than 200,000 vehicles that 
were assembled between January 2018 and March 2020. The dataset consists of 
several different subsets, which feature the order details (body type, color, etc.), 
information regarding the production process (delays, position in the sequence), 
and other information such as the week of production. Each vehicle in the data-
set is identified by a unique vehicle identifier. The subsequent discussion of our 
application case involves three aspects. First, the provision of further insights 
into the automotive production system. Second, the implementation of our AI 
artifact based on the specificities of the presented case. Finally, the presenta-
tion of our results and an evaluation of the SML classification model and the AI 
artifact.

Fig. 3  AI artifact comprising the preprocessing pipeline, a trained SML classification model and an 
online learning module



1 3

AI for in-line vehicle sequence controlling: development…

5.1  Foundations of the automotive production system

Typically, the sequence-based value chain of automotive OEMs comprises three 
consecutive production segments: body shop, paint shop, and assembly line (Fig. 4). 
Based on the order stock, an input sequence is formed according to the requirements 
and restrictions of the assembly line. In the automotive industry, the initial sequenc-
ing takes place at least three to four days before the start of production (Boysen et al. 
2012). The production starts with the assembly of metal sheets to form vehicle bod-
ies in the body shop. Once the assembly in the body shop commences, a physical 
entity for each customer order exists, and each work-in-progress item is assigned to 
a unique customer order. The metal bodies are painted in the paint shop according to 
the purchase order. The painted bodies are stored in an AS/AR buffer. Subsequently, 
the painted bodies are released from the AS/AR buffer and transferred to the start of 
the final assembly line. At the exit of the AS/AR buffer, the quality of the achieved 
assembly sequence is estimated. Once released from the buffer, missing bodies can 
no longer be inserted into the sequence.

5.2  Business problem formulation

As unintended sequence scrambling occurs in the body and paint shop, the study 
focuses on these two segments. The AS/AR buffer supports physical resequencing 
and is regarded as a deterministic system. However, the latter is beyond the scope of 
this study and is a topic for future research. The assembly line itself is not a major 
source of deviations. The assembly work is based on an independent MMAL with 
minimum or no interference by other production lines. The system’s resequenc-
ing capability determines the choice of our SML classification model’s threshold. 
The AS/AR has a total capacity of 653 slots for models of the considered MMAL. 
The buffer is designed as an automated storage and retrieval system with random 
access, and it has both a decoupling and a resequencing effect. Almost 50% of the 
buffer space is specifically reserved for physical resequencing. The remaining capac-
ity is designed to decouple the assembly line from pre-assembly steps. However, 
in general, the production system does not allow any kind of virtual resequencing 

Fig. 4  Sequencing along the production line in the automotive industry based on Lehmann and Kuhn 
(2019)
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or postponement. In accordance with experts from the field of study, T = 400cycles 
is chosen as the threshold to binarize this study’s target variable. The main KPI 
to measure the quality of the overall sequence is the sequence adherence SA. The 
objective is to reach SA > 95%. The SD is determined separately for each vehicle.

The leading root causes of sequence deviations in the body shop are due to a 
varying effort for rework. Some models include specific features such as rear spoil-
ers and scarce body types that require manual polishing of the body. Those bodies 
are released from the sequence and inserted again at a later stage for the manual pol-
ishing step. Another reason is that some special classes of customer orders inhere a 
manual quality check, e.g., models for public exhibitions, automotive fairs, or orders 
that require armored standards. In the paint shop, the sources of sequence scram-
bling are manifold. Certain types of paint need to be applied twice to the body. The 
same is required for some convertibles or two-toned bodies. Another root cause of 
scrambling in the automotive paint shop is the formation of blocks of bodies applied 
with the same color to reduce the effort of manually changing the spray cans. How-
ever, if specific colors are ordered very rarely, the block formation leads to high 
deviations for those orders.

5.3  Model initiation

The goal of this study is the development of an AI artifact that exploits product fea-
tures to predict the deviation behavior of each individual entity in a mixed-model 
sequence. The prediction model is designed as a SML model in accordance with the 
presented methodology.

5.4  Problem exploration and data gathering

To distinguish the technical specifications of orders, a system of three-digit, alpha-
numeric production-numbers (PRN) is used. The system is organized in production-
families (PF). Each family features a set of PRNs that is unique across PFs. A PRN 
String comprises all PRNs related to an order and provides a finite bill of materials. 
The PRN String is submitted to the production plant by the sales department. Apart 
from PRNs, the color-codes, model type, and the planned starting and desired finish-
ing dates of production are utilized to chronologically sort the orders. Table 5 shows 
three exemplary instances, namely a selection of PFs from the industrial dataset, 
their respective PRNs, and the sequence deviation measure for these instances.

Table 5  Anonymized sample from the industrial dataset

Vehicle ID Model code Production family

 ~ 1AAB  ~ 1ABC  ~ 1ACD …  ~ 1ZZY SD

A-22–4321 8AB3DE  ~ 2E00  ~ 21TA  ~ 21RN …  ~ 28HH 38
A-22–5492 7G5CFG  ~ 2E01  ~ 21TR  ~ 21RN …  ~ 28HG -11
A-22–5826 8AB3DE  ~ 2E01  ~ 21TA  ~ 21RP …  ~ 28HL 533
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The available industrial dataset consists of 211,584 vehicles of 98 different mod-
els assembled between January 2018 and December 2019. Each vehicle is described 
by 198 PFs, whereas between two and 91 different PRNs were captured per PF. 
Binary PFs either describe optional features, for example, an optional Head-up Dis-
play, or exclusionary features, such as the fuel system (diesel or gasoline). More 
diverse PFs, for example, include an optional rear spoiler (five options) or the sales 
region of a vehicle (91 values). On average, 6.3 distinct values existed within each 
PF.

A proper analysis of the ground truth dataset shows underlying effects and par-
ticularities of the industrial dataset (Table  6). The sequence deviation measures 
SDMIN and SDMAX are similar across the individual production segments. For the 
paint shop, the quantiles are slightly higher. Overall, the magnitude of sequence 
deviations within the body and paint shop are comparable. For classification pur-
poses, we are specifically interested in the share of vehicles that belong to the class 
of delayed vehicles d ∈ D,whereSDd > 400cycles . The measures imply that 2,28% 
of the total vehicles have a critical deviation of SDi > 400cycles. However, the 
impact of the body shop is slightly more severe than that of the paint shop. The 
distribution of vehicles across classes P and D shows that the industrial dataset is 
imbalanced by a factor of approximately 44. This means that the punctual class P 
includes 44 times more vehicles than the delayed class D.

According to our product-oriented view, we analyze the behavior of identically 
configured vehicles in the industrial dataset. Two vehicles are deemed to be identical 
if all feature values are equivalent. We build clusters of identical vehicles with a car-
dinality of at least 50 instances. Overall, 356 clusters are found. We present the five 
vehicle clusters with the highest and the lowest SDMEAN in Fig. 5.

Table 6  Distribution of sequence deviations across production segments

Notes: SD0.9−quan = 90% quantile, SD0.95−quan = 95% quantile, STD = standard deviation

Production segment SDMIN SDMAX SDMEAN SD0.9−quan SD0.95−quan SDSTD
|D|∕|P|

Body shop −212 5524 0 59 116 129.47 1.161%
Paint shop −365 4759 0 105 169 125.17 0.881%
Total −434 5346 0 112 210 169.91 2.282%

Fig. 5  Sequence deviation distribution of vehicle clusters
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If product-related features are the only root cause of sequence deviations, vehi-
cles in the same cluster should behave uniformly regarding their sequence deviation. 
However, within clusters of equivalent vehicles, we observe non-uniform behav-
ior. Hence, we propose two further explanations for the observed patterns. First, 
sequence deviations are interdependent because preceding vehicles affect the devia-
tion of subsequent vehicles and vice versa. The dependencies arise when product-
related features of neighboring vehicles have effects on other vehicles. Although 
all vehicles within a group ultimately have an identical set of features, the neigh-
borhood environment in terms of preceding vehicles in the sequence may be very 
different. Second, the influence of process-related factors is not incorporated in the 
model. Nevertheless, the observed SDMEAN allows a ‘fuzzy’ differentiation of the 
vehicle groups.

5.5  Performance measure

To evaluate the prediction performance, we prefer the f�-score as the performance 
metric. The overall goal is to minimize prediction errors. However, based on the 
business application, we must set � to determine the trade-off between recall and 
precision. Based on the domain knowledge of experts from the application case, the 
cost of missing a delayed vehicle in the prediction is higher than the cost of a falsely 
predicted delayed vehicle. Consequently, we regard recall to be more important than 
precision. Therefore, we choose � = 2 to overweigh recall against precision.

5.6  Preprocessing pipeline

To implement the model, we use the Python programming language (version 3.7). 
Moreover, we utilize several well-recognized machine learning packages, such as 
Scikit-Learn (version 0.22) (Pedregosa et al. 2011), TensorFlow (version 2.0.1), and 
Keras (version 2.3.1) (Géron 2019). As discussed earlier, conducting an exhaustive 
grid search is computationally expensive. Hence, we opted to implement a greedy 
heuristic to find favorable preprocessing techniques. An overview of this is presented 
in Table 7. The default techniques (d) and the mandatory techniques are marked sep-
arately (m). The set of default techniques is used to evaluate preceding preprocess-
ing steps. Once a favorable technique is identified, it is kept for the evaluation of 
the next preprocessing steps. The favorable techniques are marked separately (+). 
Wherever possible, the option not to perform a preprocessing step is included. Since 
no algorithm selection and hyperparameter tuning have taken place at this point, we 
perform the preprocessing based on an XGBoost classifier with default hyperparam-
eters. To prevent the model from overfitting, we implement sixfold cross-validation.

The mandatory steps of instance selection and feature transformation are per-
formed first. We use filter rules to remove pre-series and scrapped vehicles from 
the industrial dataset. We perform a one-hot-encoding to convert the categori-
cal features to a machine-readable format. One-hot-encoding is preferred because 
it does not imply any relationship between feature values within the same fam-
ily. After filtering, 199,277 datapoints remained in the industrial dataset. Due 
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to feature encoding, the number of columns increased to 1,249 binary feature 
columns. We continue with the evaluation of feature selection techniques. The 
manual feature selection is based on the distinction between those features that 
impact the processing in the body and paint shop and those that do not have a 
direct influence. We test if a subset of the features sufficiently represents the 
influencing factors. This subset features PRNs which describe basic measures of 
vehicles, such as their body shape, color, propulsion system, and quality clas-
sification, but which neglect other features that are irrelevant to the processes in 
the body and paint shop. A subset of 21 out of 198 PFs is identified, and its cor-
responding, one-hot-encoded columns are kept. We generalize the problem space 
by reducing the number of features. The results show that an 8.4% increase in the 
f2-score is achieved on average. Due to the generalization of the feature space, 
the precision decreases while the recall increases. In proceeding, we keep to the 

Table 7  Comparison of f2-scores for the proposed preprocessing techniques. Mandatory (m), optional 
default (d), and favorable techniques ( +) are marked separately

Important results are given in bold

Preprocessing step Strategy f2-score Precision Recall

Instance cleaning Filter Rules m – – –
Feature transformation One-Hot-Encoding m – – –
Feature selection Use All Features d 0.358 0.661 0.321

Manual Selection + 0.388 0.568 0.360
Frequency cut-off No Cut-Offs d 0.388 0.568 0.360

0.5% / 0% 0.393 0.574 0.364
0% / 0.5% 0.388 0.576 0.359
0.5% / 0.5% + 0.395 0.576 0.365
…
2% / 2% 0.379 0.585 0.348

Feature selection No Grouping d/+ 0.395 0.576 0.365
Automated Grouping 0.395 0.543 0.370

Sampling None (Equal Losses) 0.305 0.860 0.263
None (Weighted Losses) 0.320 0.118 0.557
Random Undersampling 0.292 0.097 0.585
Replicative Oversampling 0.317 0.117 0.555
SMOTE Sampling d 0.395 0.576 0.365
SMOTE + ENN Sampling + 0.403 0.516 0.382
SMOTE + Tomek Sampling 0.389 0.571 0.360
ADASYN Sampling 0.373 0.595 0.341

Feature engineering No Additional Features d/+ 0.395 0.576 0.365
Neighborhood Features 0.293 0.821 0.252
Batch Features 0.358 0.765 0.316

Instance selection No Filter Rules d 0.395 0.576 0.365
Filter Rules + 0.462 0.526 0.448
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strategy of manual selection. Frequency cut-offs remove features based on fre-
quency thresholds. A lower threshold determines how often a feature, as a mini-
mum, must occur in the industrial dataset, whereas an upper threshold determines 
how often a feature, at most, could occur. We tested different cut-off levels in 
0.5% intervals. A cut-off tuple of (0.5%/0.5%) for the upper and lower threshold 
increases the f2-score by 1.8%. Both precision and recall increase. An automated 
grouping condenses linear-dependent features into new, representative parental 
features. Although the grouping boosts the recall, there is no positive effect on 
the f2-score. Therefore, we exclude automated grouping from further evaluation.

To cope with the imbalance, several different class balancing techniques are 
evaluated for the training step. To balance the industrial dataset, SMOTE + ENN 
sampling turns out to yield the highest f2-score with an increase of 2.0%. This 
corresponds with studies that confirm the supremacy of this technique (More 
2016). In general, synthetic sampling algorithms outperform static sampling tech-
niques. Interestingly, the synthetic sampling algorithms, especially if combined 
with ENN or Tomek, increase recall and decrease precision. According to Board-
man et al. (2018), this is due to the expansion and generalization of the minority 
class boundaries and the shift of the classification bias toward the minority class. 
This is achieved by removing instances that are misclassified by their three near-
est neighbors. The disadvantage of SMOTE + ENN is that this sampling requires 
significant computational resources. For our industrial dataset, each training 
iteration takes about five additional hours, which is an increase of 900%. Due 
to limited resources, we exclude SMOTE + ENN from the further evaluation of 
preprocessing steps. We continue the preprocessing evaluation, as well as the 
algorithm hyperparameter tuning by implementing SMOTE. However, we use 
SMOTE + ENN for the final evaluation of the model.

Moreover, we evaluate if feature engineering increases prediction perfor-
mance and test if the performance increases due to the inclusion of the neighbor-
hood features of the five preceding vehicles. Additionally, we test batch features, 
that is, rolling means of features for a short-term horizon of 100 cycles and a 
long-term horizon of 600 cycles. The shorter horizon accounts for a timespan 
of approximately half a shift, whereas the longer horizon captures the effects of 
an entire day. The horizons are set based on the knowledge of domain experts. 
The expansion of the feature space by these additional features does not notably 
improve prediction performance. Lastly, we perform another instance selection 
strategy based on filter rules. Here, the selection is optional as it aims to dismiss 
those vehicles from the training set that are mainly affected by process-related 
factors, that is, vehicles that were subject to quality checks or product audits. 
According to our product-oriented view, the influence of process-related factors 
is neglected. The vehicles that are subject to product audits and quality checks are 
randomly selected from the sequence and cannot be identified a priori. In total, 
by removing 1,903 affected vehicles from the training set, an increase of 14.6% is 
observed in the f2-score.

Based on the evaluation results, we derive the preprocessing pipeline as the suc-
cessive application of filter rules, one-hot-encoding, upper and lower frequency 
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cut-offs at 0.5%, SMOTE + ENN, and the removal of audited and quality-checked 
vehicles (Fig. 6).

5.7  Classification model

We pre-selected three algorithms for further evaluation: An Artificial Neural Net-
work, an Extreme Gradient Boosting Classifier, and a Random Forest Classifier. 
Each algorithm is separately hyperparameter tuned. To reduce a preprocessing bias, 
we apply the default preprocessing steps (d) for the hyperparameter search.

5.8  Model error estimation

We test and evaluate different preprocessing techniques based on a non-hyperpa-
rameter-tuned classification algorithm. We implement a grid search to determine 
hyperparameters for the classification algorithms. The hyperparameter grid search 
is performed on an Intel Xeon CPU E5-2667 v4 with 3.20 GHz, 4 processors with 
8 physical kernels each, and 64 GB of RAM. A detailed summary of the hyperpa-
rameter grid search, as well as the final hyperparameter selection, is presented in 
Table  12 (see the Appendix). The hyperparameters are used later to evaluate and 
benchmark the algorithms.

Again, we emphasize the evaluation under real-world conditions. To simulate 
the effects of an online learning model, the industrial dataset is chronologically 
ordered and fed into the model instance-by-instance. This enables the monitoring of 
the models’ performance over time and a simulation of real-time behavior. We use 
Scikit-Multiflow framework to stream data (Montiel et al. 2018). The first relevant 
parameter to be selected is the size of the initial training batch I. The initial batch is 
used to pretrain the SML classification model before its deployment in the AI arti-
fact. We use one quarter of the available data to pretrain, that is, 50,000 data points. 
Once the stream of feature values commences, the model makes batchwise predic-
tions. An online learning module runs in parallel to trigger relearning. The relearn-
ing cycle can be either continual, that is, in fixed batch sizes, or continuous, that is, 
separately for each new instance. We decided to evaluate continual relearning with a 
fixed trigger that sets off relearning after receiving C new instances of the minority 
class. At least one new instance per class is required to improve the model on new, 
unseen data. We evaluate different values for C to find a suitable parameter setting. 
If the minimum cycle C = 1 is chosen, that is, the maximum relearning frequency, 
quasi-continuous learning is applied. However, C > 1 is recommended to prevent 

Fig. 6  Preprocessing pipeline with respective increases of the average f2-score 
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overfitting. The relearning batches differ in size whenever datapoints of the minor-
ity class are not uniformly distributed along the time horizon. If delayed vehicles 
occur more frequently, the relearning cycle is shortened, and vice versa. Four differ-
ent strategies are implemented and evaluated to cope with concept drifts: No Online 
Learning, Incremental Learning, Batch Retraining, and Active Decision Learning 
with different values of λ for the Page-Hinckley-Test.

First, we build the SML classification model according to our prior findings on 
favorable preprocessing steps and the selected algorithm hyperparameter set. We 
train the model on the first 50,000 data points and simulate a constant stream of 
new vehicle features to trigger predictions according to parameter C. Afterwards, 
we compare the predictions with the true values and monitor the performance of the 
model over time. A detailed summary of the parameter search for the Page-Hinck-
ley-Test is presented in Table 13 (see the Appendix). The best strategy is selected 
based on the average f2-scores that we achieve (Table 8).

Generally, we observe a higher average f2-scores for shorter relearning cycles. 
A possible explanation is the advantages of shorter reaction times on the local pat-
tern, which outweigh the disadvantages of smaller training batches. For every evalu-
ated relearning cycle, the active decision learning algorithm outperforms alterna-
tive strategies. Therefore, we recommend the implementation of an active decision 
learning strategy that selects a suitable strategy for every batch from either batch 
retraining or incremental learning.

6  Results and evaluation

The evaluation is divided into two parts: first, the evaluation of the offline SML clas-
sification model; second, the evaluation of the AI artifact incorporating online learn-
ing. For the evaluation, we merge our findings—separately derived for each classifi-
cation algorithm—on favorable preprocessing steps and hyperparameters.

6.1  Offline SML classification model

We evaluate three distinct classification algorithms based on their mean f2-scores 
(Table 9). The evaluation of the algorithms’ performance is based on 12-fold cross-
validation. Each iteration of the cross-validation provides an f2-score of the model on 
unseen data. The minimum and maximum scores denote the performance boundaries 
of the classifier. Besides the mean performance, the variance is also of interest. The 

Table 8  Evaluation of different 
online learning strategies and 
relearning cycles based on 
average f2-scores 

Important results are given in bold

I = 50,000 C = 10 C = 100 C = 250

No online learning 0.1602 0.1210 0.0910
Incremental learning 0.4177 0.3819 0.3568
Batch retraining 0.3822 0.3471 0.2726
Active Decision Learning 0.4183 0.3910 0.3885
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standard deviation of the performance measure over the cross-validation runs provides 
an estimation of the expected error on future data. The lower the standard deviation 
of a classifier, the higher the estimation of its prediction confidence. For purposes of 
illustration and comparability, we also provide the means of precision and recall.

Because of the novelty of the presented methodology, no benchmark model exists 
that predicts sequence deviations in a comparable manner. In the absence of a feasi-
ble metric or ‘gold standard’, also considering that humans do not perform this task, 
the machine learning algorithms are benchmarked against different random guess 
strategies. We assess three different random guess classifiers (RG): an informed RG 
that guesses by using the underlying class distribution (p = 0.0228), a uniformed 
RG that guesses with a probability of p = 0.5, and an RG that assigns all instances 
to the minority class (p = 1). The latter performs best in maximizing the f2-score. 
Moreover, we apply a multi-variate logistic regression as an additional baseline. 
To compare the different performances, we conduct an ANOVA with Tukey HSD-
Post-hoc Tests. The detailed results of both tests are depicted in Tables 14 and 15 in 
the Appendix. The ANOVA is highly significant (p-value < 0.00001), which means 
there are significant differences between the classification performances of the indi-
vidual models. The Tukey HSD Post-hoc test reveals significant differences between 
all direct comparisons, except for the comparison between XGBoost and Random 
Forest, which, in conclusion, can therefore be seen as equal. For simplification, we 
will exemplarily discuss our results in the upcoming chapters based on the perfor-
mance of the XGBoost algorithm.

Looking exemplarily at the XGBoost, the improvement compared to random 
guessing is above 300%, and compared to the logistic regression, it is above 34%. 
The Random Forest Classifier performs similarly and, relatively, the ANN per-
forms worst. The XGBoost reaches a precision of 0.5058 and a recall of 0.4478; 
that is, almost every second delayed vehicle is identified in advance. Moreover, 
the relatively low variation across cross-validation runs indicates that the SML 
classification model is not subject to overfitting.

Since we are interested in the sensitivity of the SML classification model, a 
threshold T was selected based on the systems’ resequencing capability to bina-
rize the target value for our binary classification task. We evaluate how a change 

Table 9  Evaluation of classification algorithms

Important results are given in bold

Classification Algo-
rithm

f MAX
2

f MIN
2

f MEAN
2

f Std.Dev.
2

precisionMEAN recallMEAN Improve-ment

RG (p = 0.0228) – – 0.0230 – 0.0228 0.0228 1892%
RG (p = 0.5) – – 0.0960 – 0.0228 0.5 377%
RG (p = 1) – – 0.105 – 0.0228 1 336%
Log. Regression 0.4450 0.1880 0,3414 0.1230 0.2030 0.4115 34%
ANN 0.4975 0.2629 0.3809 0.0771 0.2605 0.5244 20%
XGBoost 0.4990 0.4189 0.4582 0.0225 0.5058 0.4478 –
Random Forest 0.4921 0.4087 0.4554 0.0218 0.5397 0.4385 0.6%
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of T influences the prediction performance of the current model. For T = 300 
the XGBoost delivers an f2-score of 0.4202, and for T = 200 an f2-score of 
0.3543. However, as the underlying class distribution is affected by a change of 
T, another set of preprocessing steps could yield better results.

6.2  Online AI‑artifact

After identifying the required preprocessing steps and tuning hyperparameters, and 
selecting the best-performing algorithm, the deployment of our artifact was simulated 
to access the performance in a real-world scenario from our field study. A quarter 
of the available data instances is used for initial training. The remaining instances 
are used to simulate real-time streaming data. This evaluation of the artifact under 
real-world conditions is important to determine its long-term predictive ability and 
to estimate its future performance on unseen data. By using a portion of the avail-
able data for the simulation of a run-time environment, it is possible to estimate the 
artifacts’ performance after deployment. Moreover, by providing boundaries for 
subsequent data batches, the evaluation facilitates an understanding of performance 
variations over time. We evaluate different strategies to cope with underlying data 
drifts. The relearning strategies are benchmarked against the offline SML classifica-
tion model that does not incorporate any online learning. We optimize the parameter 
λ for a Page-Hinckley-Test and evaluate different relearning cycles. The best results 
are produced by a relearning cycle of C = 10. The evaluation of relearning strategies 
based on C = 10 is presented in Table 10. For the Page-Hinckley-Test, λ = 5 is chosen.

Each of the evaluated relearning strategies outperforms the model that is deployed 
without an online learning strategy. Compared to the setting without online learning, 
the improvement realized by the active decision learning strategy is significant. This 
underlines the need to continuously update a deployed machine learning model. 
An active learning strategy that combines the advantages of incremental learn-
ing and batch retraining performs best on the industrial dataset and outperforms 
offline learning by 161%. However, we observe that the model’s performance highly 
depends on the specificity of the relearning batches, as indicated by a high standard 
deviation and a wide range of f2-scores between zero and one. This confirms the 
presence of local patterns in our industrial dataset that cannot be captured by our AI 
artifact.

Table 10  Evaluation of online learning strategies

Important results are given in bold

Online Learning Strategy f MAX
2

f MIN
2

f MEAN
2

f Std.Dev.
2

Improvement

No Online Learning 0.7692 0.0 0.1602 0.1424 161%
Incremental Learning 1.0 0.0 0.4177 0.3933 0.1%
Batch Retraining 1.0 0.0 0.2654 0.3380 57%
Active decision learning 1.0 0.0 0.4183 0.3915 –
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7  Conclusion

Our research focuses on making classification predictions about sequence scram-
bling effects on a mixed-model assembly line for in-line vehicle sequencing. At the 
outset, we identified a research gap concerning the leveraging of AI tools, especially 
in the analysis of product-related features. Whereas previous research focused on 
operational or process-related features, our practice-based results demonstrate that 
product features contribute significantly to the prediction of sequence deviations. 
The influence of other aspects, such as process-specific reasons, were not in the 
scope of the study. The subsequent results have considerable benefits for our indus-
try partner, as revealed by several interviews. As domain experts from our case com-
pany confirm, the predictive power of the model goes beyond human capabilities, 
especially if applied to the high number of cars that are assembled. The industry 
partner considered it very useful that the model has an integrated drift-detection and 
re-learning pipeline, as different car types shift over time. In addition to the predic-
tions, the development of the AI artifact revealed dependencies between product fea-
tures and process weaknesses, as well as previously unknown sequence deviations. 
For example, a major reason for sequence scrambling in the body shop appears due 
to manual rework issues. The AI artifact helped us to identify a certain car type that 
is typically subject to rework based on insufficient tooling at the shop floor.

Our study bridges a relevant research gap by adopting a product-oriented view to 
construct a prediction model. While prior research mainly focused on the exploita-
tion of process-oriented factors, we isolate product features for our analysis. Instead 
of making an ex-post analysis, we develop an a priori prediction model. We con-
tribute a generalizable methodology that describes the development of an AI arti-
fact by combining our product-oriented view and machine learning techniques with 
state-of-the-art online learning strategies. Our methodology provides a development 
framework for practitioners to design and implement a supervised machine learning 
classification model on a mixed-model assembly line. We also provide an overview 
of suitable preprocessing techniques and evaluate different classification algorithms. 
Our study shows that product-oriented factors play a compelling role in the predic-
tion of sequence scrambling based on an extensive assessment of preprocessing 
techniques, classification algorithms, and online learning strategies.

The study provides new insights into the relationship between product vari-
ability and sequence stability. Compared to the analysis of operational or process-
oriented factors as provided by (Rudolf et  al. 2014; Lehmann and Kuhn 2019; 
Urnauer et  al. 2019; Moetz et  al. 2019), the predictions are comparably cheap 
to obtain because no additional data is needed and it is not necessary to inter-
fere with the running processes. Moreover, no manual data processing is required. 
The employment of an AI artifact is possible at a relatively low cost compared to 
human-based analyses. The benefit of obtaining these predictions are manifold. 
First, the predictions can be used when considering improvements to the initial 
sequencing. While building the sequence, knowledge of expected delays could 
facilitate preventive counteraction. The input sequence can be manipulated inten-
tionally to account for expected delays, i.e., the position of a vehicle in the input 
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sequence can be adjusted to reverse the negative scrambling effect predicted by 
the AI artifact. This could ultimately lead to an increase in sequence adherence, 
thus a reduction of costs. Second, to identify process weaknesses, it is possible 
to increase the transparency of the prediction results. The XGBoost algorithm 
allows the analysis of feature impacts, which can guide future process improve-
ment projects.

By utilizing an XGBoost classification algorithm that is trained on product fea-
tures, the supervised machine learning model can identify 44% of the delayed vehi-
cles with a precision of 50%. Based on our industrial dataset, we prove that the pre-
diction outperforms random guessing by a factor of more than 300%. The simulated 
deployment within an AI artifact produced an f2-score of 41% in the online learning 
scenario under real-world conditions by using a quarter of the industrial dataset for 
pretraining and the remainder for continuous streaming. We show how local effects 
influence the performance variation of the artifact over time and estimate that a rela-
tively short relearning cycle of C = 10 instances of the minority class yields the best 
results. Compared to an offline scenario, an active decision learning strategy, which 
either performs incremental relearning or batch retraining based on a Page-Hinck-
ley-Test, ensures time-stable prediction performance and long-term validity. The 
best online learning strategy, according to our assessment, yields an improvement of 
161% compared to the deployment of the offline artifact.

Our research helps to solve the problem of sequence deviations that is one of 
the most detrimental downsides of modern production systems in the area of mass-
customization on mixed-model production lines. Based on existing data, production 
line managers can reduce the number of missing products in the assembly line by 
almost 50% at relatively low costs. The artifact facilitates a sustainable increase in 
resource efficiency and thus a reduction of costs, as the early detection of delayed 
vehicles helps to reduce manual resequencing work of JIS parts and facilitates a high 
level and smooth utilization of assembly line resources. The methodological design 
allows the adaptation and transference of the concept to different domains and appli-
cation industries. The AI artifact, including its preprocessing pipeline, SML clas-
sification model, and online learning module, can be tailored to different production 
settings. However, the results are subject to review, especially to evaluate whether 
the performance of the AI artifact justifies its integration into active processes. A 
higher level of prediction performance and stability could facilitate its implementa-
tion in the industry.

The artifact is limited by the fact that, due to computing resource restrictions, we did 
not perform an integrated preprocessing and hyperparameter optimization. Potentially, 
the simultaneous adjustment of preprocessing techniques and hyperparameters yields 
better results. Moreover, we selected preprocessing techniques based on a greedy heu-
ristic. An exhaustive search could reveal that another preprocessing pipeline may yield 
better results. Depending on some of its underlying assumptions, the model’s perfor-
mance could change significantly. If the system’s resequencing capability is decreased, 
for example, due to the gains of using the predictions to improve the sequence, differ-
ent thresholds T must be set for the classification algorithm. Another limitation is the 
restrictions on product-oriented features. The integration of a broader range of factors 
and (virtual) sensors (Martin et al. 2021) thus presenting a more comprehensive view, 
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would enhance prediction performance. The online learning shows that the continuous 
updating of the model significantly enhances its long-term mean validity. However, we 
noted a high standard deviation across relearning batches. This may be the result of the 
particularities of the industrial dataset. Although we evaluated different online learning 
strategies, the development of more advanced strategies could increase prediction per-
formance over time and support long-term validity. Deriving specific actions from the 
predictions is beyond the scope of this study. We discussed the possibility of incorporat-
ing the predictions during the initial sequencing to counter expected delays. Moreover, 
the predictions can be analyzed to identify underlying weaknesses of the production 
process for vehicles with a specific set of features—possibly by introducing the trans-
parency of the model (Vössing et al. 2019). Once the predictions are used to intention-
ally scramble the input sequence, the online learning module needs to take these effects 
into account. The validity of the AI artifact assumes that no actions are taken.

Further research is needed to integrate the proposed methodology and existing 
operational or process-oriented studies. An integrated approach that simultaneously 
acknowledges all relevant factors is required to improve the results of this study. Fur-
ther steps to improve the model could include continuous predictions, that is, a pro-
cess-mining methodology that updates the predictions based on the concurrent state 
of the production line, buffer filling level, and machine conditions. This methodol-
ogy can adjust predictions when issues arise during the runtime of the production 
line and when factors that were not known at the start of the production process are 
internalized. Apart from a binary classification, the problem can also be modeled as 
a regression. By discriminating vehicles according to their expected degree of delay, 
the results of a regression model would allow even more appropriate counteractions.

In accordance with the work of Peres et al. (2019) on multistage quality control using 
machine learning, we underline the potential improvements of artificial intelligence mod-
els to the stability of automotive production processes. However, currently, there is no 
comparable study that investigates the influence of product-related features on sequence 
scrambling using SML models. Our results indicate that, pending future research, 
improvements could be achieved by combining product, operational, and process-oriented 
features within a single AI artifact. Moreover, the assessment of advanced online learn-
ing strategies is an important area for further research. However, the generalizability of 
the model is limited to mixed-model production lines with a stabilized assembly line 
sequence. Additional studies are required to derive specific actions from the predictions. 
Further studies should also consider the interdependencies that arise when actions are 
taken to intentionally scramble the sequence while the model is updated and making pre-
dictions. The question needs to be answered how counteractions affect the stability of the 
prediction model. Nonetheless, our AI artifact’s current performance facilitates the intro-
duction of substantive improvements to complex production processes on mixed-model 
assembly lines and generates long-term value by utilizing artificial intelligence tools.

Appendix

See Tables 11, 12, 13, 14 and 15.
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Table 12  Classification algorithms hyperparameter grid search

Algorithm Parameter Search grid Selected value

ANN Hidden layer {4, 8} 8
Layer types {‘Dense’ + ‘Dropout’} ‘Dense’ + ‘Dropout’
Input activation {‘relu’} ‘relu’
Input neurons {50, 250, 500} 50
Dropout rate {0.3, 0.5} 0.5
Hidden neurons {50, 250, 500} 50
Hidden activation {‘relu’, ‘sigmoid’} ‘sigmoid’
Output activation {‘sigmoid’} ‘sigmoid’
Output neurons {1} 1
Optimizer {‘adam’} ‘adam’
Epochs {4, 8} 4
Batch size {50, 250, 500} 50

XGBoost Booster {‘gbtree’, ‘gblinear’, ‘dart’} ‘dart’
Eta {0.1, 0.2, 0.3, 0.4, 0.5} 0.2
Gamma {0, 0.1, 0.2, 1} 0.1
Max. depth {3, 6, 12} 6
Lambda {0.,5 1, 2, 6, 12} 2
Alpha {0, 0.5, 1, 4, 8} 1
Tree method {‘auto’} ‘auto’
Parallel trees {1, 3, 6, 12} 6

Random forest N estimators {100, 250, 500, 1000, 5000} 1000
Criterion {‘gini’, ‘entropy’} ‘entropy’
Min sample split {2, 5, 10, 25, 100} 10

Table 13  Online learning 
parameter search

I = 50,000 C = 10 C = 100 C = 500

No online Learning 0.0619 0.1210 0.0910
Incremental Learning 0.4137 0.3819 0.3568
Batch Retraining 0.2654 0.3471 0.2726
Active Decision Learning (λ = 0.05) 0.4105 0.3711 0.3848
Active Decision Learning (λ = 0.1) 0.4190 0.3638 0.3885
Active Decision Learning (λ = 0.25) 0.4084 0.3828 0.3565
Active Decision Learning (λ = 1) 0.4095 0.3861 0.3571
Active Decision Learning (λ = 2) 0.4152 0.3891 0.3784
Active Decision Learning (λ = 5) 0.4183 0.3892 0.3404
Active Decision Learning (λ = 10) 0.4142 0.3910 0.3854

Table 14  ANOVA between 
comparison of model 
performances

Sum of Squares DoF Variance F-metric P-value

0.4966 3 0.165549 30.025 5.12e−16
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