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Abstract

Active learning is a paradigm to involve users in a machine learning process. The core
idea of active learning is to ask a user to annotate a specific observation to improve
the classification performance. One important application of active learning is detecting
outliers, i.e., unusual observations that deviate from the regular ones in a data set. Applying
active learning for outlier detection in practice requires to design a system that consists
of several components: the data, the classifier that discerns between inliers and outliers,
the query strategy that selects the observations for feedback collection, and an oracle,
e.g., the human expert that annotates the queries. Each of these components and their
interplay influences the classification quality. Naturally, there are cost budgets limiting
certain parts of the system, e.g., the number of queries one can ask a human. Thus, to
configure efficient active learning systems, one must decide on several trade-offs between
costs and quality. The existing literature on active learning systems does not provide an
overview nor a formal description of the cost-quality trade-offs of active learning. All this
makes the configuration of efficient active learning systems in practice difficult.

In this thesis, we study different cost-quality trade-offs that are pivotal for configuring
an active learning system for outlier detection. We first provide an overview of the costs
of an active learning system. Then, we analyze three important trade-offs and propose
ways to model and quantify them. In our first contribution, we study how one can reduce
classification training costs by training only on a sample of the data set. We formalize the
sampling trade-off between classifier training costs and resulting quality as an optimization
problem and propose an efficient algorithm to solve it. Compared to the existing sampling
methods in literature, our approach guarantees that a classifier trained on our sample
makes the same predictions as if trained on the complete data set. We can therefore
reduce the classification training costs without a loss of classification quality. In our
second contribution, we investigate how selecting multiple queries allows trading off costs
against quality. So-called batch queries reduce classifier training costs because the system
only updates the classifier once for each batch. But the annotation of a batch may give
redundant information, which reduces the achievable quality with a fixed query budget.
We are the first to consider batch queries for outlier detection, a generalization of the
more common case to query sequentially. We formalize batch active learning and propose
several strategies to construct batches by modeling the expected utility of a batch. In our
third contribution, we propose query synthesis for outlier detection. Query synthesis
allows to artificially generate queries at any point in the data space without being restricted
by a pool of query candidates. We propose a framework to efficiently synthesize queries
and develop a novel query strategy to improve the generalization of a classifier beyond a
biased data set with active learning. For all contributions, we derive recommendations for
the cost-quality trade-offs from formal investigations and empirical studies to facilitate
the configuration of robust and efficient active learning systems for outlier detection.
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Zusammenfassung

Verfahren zur Ausreißererkennung suchen seltene und ungewöhnliche Beobachtungen in
großen Datenbeständen. Die Suche nach Ausreißern spielt in einer Vielzahl von Anwen-
dungen eine Rolle. Beispiele sind die Fehlererkennung in der maschinellen Fertigung, die
Aufdeckung von finanziellem Betrug und die Überwachung von Rechnernetzen.

Ein fundamentales Problem der Ausreißererkennung ist, dass die Definition eines Aus-
reißers stark von der Anwendung abhängt. Eine Möglichkeit dieses Problem zu adres-
sieren ist es, den Nutzer interaktiv in den Lernprozess einbinden. Sogenannte „Aktive
Lernverfahren“ fragen den Nutzer nach Feedback zu einzelnen Beobachtungen, die für
den Klassifikator einen hohen Informationsgehalt haben. Dabei sind die Fragen meist in
der Form „Handelt es sich bei der Beobachtung um einen Ausreißer (ja/nein)?“. Das so
gewonnene Nutzerfeedback wird verwendet, um den Klassifikator zu aktualisieren.

Ein aktives Lernverfahren besteht aus mehreren Komponenten: den Daten, dem Klassi-
fikator, dem Nutzer und der Anfragestrategie, die Beobachtungen für Feedback auswählt.
Zum einen hat jede dieser Komponenten einen Einfluss darauf, wie effektiv das System
die Erkennung von Ausreißern verbessert. Zum anderen sind diese Komponenten auf
vielfältige Art und Weise voneinander abhängig. Beispielsweise ist der Rechenaufwand
zur Aktualisierung eines Klassifikators und zur Anfrageauswahl abhängig von der Daten-
satzgröße. Ein anderes Beispiel ist, dass der Nutzer womöglich mehrere ähnliche Anfragen
schneller beantworten kann, als wenn sich die Anfragen stark unterscheiden. In der Praxis
muss der Anwender stets zwischen dem Aufwand, also der benötigten Rechenzeit für den
Klassifikator und die Anfragestrategie, der Zeit für die Annotation der Beobachtungen, und
dem Nutzen, also der resultierenden Klassifikationsgenauigkeit, abwägen. Die Literatur zur
Ausreißererkennung benennt zwar unterschiedliche Einflüsse auf die Effektivität des akti-
ven Lernens, gibt aber weder eine strukturierte Übersicht noch eine formale Beschreibung
der Kosten-Nutzen-Kompromisse. Zudem ist unklar wie sich diese Kompromisse empirisch
quantifizieren lassen. All dies erschwert es aktive Lernverfahren effizient einzusetzen.
In dieser Thesis beschäftigen wir uns mit der Frage, wie sich verschiedenen Kosten-

Nutzen-Kompromisse modellieren und quantifizieren lassen, sodass sich geeignete Desi-
gnentscheidungen bei der Realisierung aktiver Lernsysteme für die Ausreißererkennung
treffen lassen. Wir geben dafür eine Übersicht über die verschiedenen Kompromisse, die
beim aktiven Lernen auftreten. Anschließend betrachten wir drei wichtige Kompromis-
se genauer, geben jeweils theoretische Grundlagen zu deren Bewertung und schlagen
algorithmische Lösungen vor, damit der Nutzer diese Kompromisse kontrollieren kann.

Klassifikatortrainingslaufzeit reduzieren durch Auswahl einer Teilmenge der Daten

In einem ersten Schritt betrachten wir die Trainingslaufzeiten des Klassifikator und wie
diese reduziert werden kann, indem nur eine Teilmenge der Daten für das Training ausge-
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Zusammenfassung

wählt wird. Wir stellen uns dabei die Frage, wie die Anzahl der Beobachtungen reduziert
werden kann, ohne die Klassifikationsgenauigkeit zu verschlechtern. Hierzu formalisieren
wir die Datenreduktion als Optimierungsproblem. Aufbauend auf dem Optimierungspro-
blem schlagen wir einen neuen Ansatz zur Datenreduktion vor. Wir garantieren für unsere
Reduktion, dass ein auf den reduzierten Daten gelernter Klassifikator die Daten genauso
klassifiziert, wie wenn er auf dem kompletten Datensatz gelernt wird. Mit unserem neuen
Ansatz lassen sich komplexe, hochdimensionale Datensätze effizient reduzieren und lange
Trainingszeiten vermeiden.

Klassifikatoraktualisierung verzögern durch Batch-Anfragen

Als nächstes beschäftigen wir uns mit der Anfragenauswahl. Bisherige Ansätze im Bereich
der Ausreißererkennung arbeiten sequentiell. Sie selektieren eine einzelne Anfrage und
aktualisieren dann den Klassifikator basierend auf dem Feedback. Um die Anzahl der
Aktualisierungen des Klassifikators zu reduzieren, kann man mehrere Anfragen auf einmal
auszuwählen, sogenannte Batch-Anfragen, und den Klassifikator dann nur einmal für jedes
Batch aktualisieren. Die Auswahl von Batch-Anfragen ist schwieriger als die Selektion se-
quentieller Anfragen. Bei der Auswahl von Batches muss nicht nur der Informationsgehalt
einzelner Annotationen betrachten werden, sondern auch wie divers die Beobachtungen
eines Batches über den Datenraum verteilt sind. Wir stellen verschiedene Möglichkeiten
vor Batch-Anfragen für die Ausreißererkennung zu selektieren und evaluieren diese ge-
geneinander. Eine Einsicht unserer Evaluation ist, dass man mit der geeigneten Auswahl
der Batch- Anfragestrategie die Laufzeit für die das Training des Klassifikators um eine
Größenordnung verringern kann, ohne an Klassifikationsgenauigkeit zu verlieren.

Exploration des Datenraums zur Erhöhung der Klassifikationsgenauigkeit

Zum Abschluss der Thesis beschäftigen wir uns mit der Frage, wie ein Klassifikator zur
Ausreißererkennung über einen gegebenen Datensatz hinaus verbessert werden kann.
Damit der Klassifikator besser auf neue und während des Trainings nicht verfügbare
Daten generalisiert, muss das aktive Lernverfahren Feedback in unbekannten Regionen
des Datenraums sammeln, in denen bisher noch keine Beobachtungen vorkommen. In
einem hochdimensionalen Datenraum sind jedoch zufälligen Anfrage ineffizient. Daher
stellen wir uns die Frage, wie man ausgehend von einem gegebenen Datensatz und einem
darauf gelernten Klassifikator den Datenraum explorieren kann. Wir entwickeln dafür
ein neues Verfahren, das Anfragen effizient synthetisiert. Das gewonnene Nutzerfeedback
erweitert Bereiche, die als „normal“ klassifiziert werden, also keine Ausreißer enthalten,
und verbessert damit die Klassifikationsgenauigkeit über den Trainingsdatensatz hinaus.

Über die Thesis hinweg geben wir Empfehlungen, wie mit unseren Ansätzen die Kosten
des aktiven Lernens gesenkt werden können, ohne an Klassifikationsqualität zu verlieren.
Dabei ziehen wir unsere Schlüsse aus empirischen Untersuchungen und formal Garantien.
In der Praxis unterstützen unsere Formalisierungen den Anwender dabei Kosten und Nut-
zen in einem Anwendungsfall abzuwägen und die Komponenten des aktiven Lernsystems
entsprechend zu konfigurieren.

vi



Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

I. Introduction 1

1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1. Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3. Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2. Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2. Outlier Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1. Class Label Availability . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2. Detection Output . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3. One-Class Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3. Active Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1. Overview and Components . . . . . . . . . . . . . . . . . . . . . 14
2.3.2. Query Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.3. Cost-Quality Trade-offs . . . . . . . . . . . . . . . . . . . . . . . 17

2.4. Active Learning for Outlier Detection . . . . . . . . . . . . . . . . . . . . 20
2.4.1. Learning Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.2. Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.3. Query Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5. Evaluating One-Class Active Learning . . . . . . . . . . . . . . . . . . . . 22
2.5.1. Benchmark Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.2. Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1. Speed up the SVDD Classifier . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1. Categorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.2. Sampling Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2. Query Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

vii



Contents

II. Cost-Quality Trade-Offs in One-Class Active Learning 31

4. Efficient SVDD Sampling with Approximation Guarantees . . . . . . . . . . . . 33
4.1. Density-based Sampling for SVDD . . . . . . . . . . . . . . . . . . . . . . 34

4.1.1. Density-based Pre-Filtering . . . . . . . . . . . . . . . . . . . . . 36
4.1.2. Optimal Sample Selection . . . . . . . . . . . . . . . . . . . . . . 37
4.1.3. A RAPID Approximation . . . . . . . . . . . . . . . . . . . . . . . 40

4.2. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.1. Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.2. Evaluation of Sample Characteristics . . . . . . . . . . . . . . . . 42
4.2.3. Benchmark on Real-World Data . . . . . . . . . . . . . . . . . . . 45

4.3. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5. Batch Selection for One-Class Active Learning . . . . . . . . . . . . . . . . . . . 49
5.1. Formalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1.1. A Theoretical Model . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.1.2. A Relaxed Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.1.3. A Practical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2. Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2.1. Batch Utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2.2. Batch Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3.1. Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6. Query Synthesis in One-Class Active Learning . . . . . . . . . . . . . . . . . . . 63
6.1. Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.1.1. Active Learning Scenario . . . . . . . . . . . . . . . . . . . . . . 65
6.1.2. One-Class Classifier . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.1.3. Query Synthesis Strategy . . . . . . . . . . . . . . . . . . . . . . 66

6.2. Domain Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.2.1. Formalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.2.2. Our Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2.3. Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.3. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.4. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.4.1. Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.4.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

III. Conclusions 75

7. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

viii



Contents

8. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

ix





Part I.

Introduction

1





1. Motivation

Machine learning systems are omnipresent in our everyday life. They help us solve many
ordinary tasks more quickly, such as transcribing conversations via speech recognition or
categorizing images. They give us personal recommendations that affect our consumption
behavior [MS10] and can now surpass the human level of play in many games, like chess,
Shogi (Japanese chess), and Go by only learning from self-play [Sil+17].

The goal of a machine learning system is to learn a mathematical model for a given task
from experience without requiring explicit programming [Alp20]. Here, the experience
is data collected upfront and during the learning process. The learning process is a data-
driven. Thus, the performance of the learned machine learning system hinges on the
quantity and quality of the data. Since data collection incurs costs, researchers investigate
how to collect data for machine learning efficiently [FLS06; Set12].
One common application of machine learning is outlier detection. Outlier detection

searches for observations that are significantly different from the rest of the data [Agg15].
Outlier detection is well-motivated in real-world applications such as spam filtering [BB08;
Cor08], fraud detection [AFR97; FP99], and monitoring of machines [FYM05; KLC02;
YWF18], of health sensors [Lin+05; Won+03], or of network traffic [Gör+09; Laz+03;
Sto+08]. Detecting outliers is a difficult task because they are rare and are thus difficult to
model. One approach to outlier detection is to use one-class classifiers. These classifiers
learn the concept of one target class. They then classify all observations that are different
from this concept as outliers.

A fundamental problem with outlier detection is that the definition of an outlier depends
on the use case. For example, during network traffic monitoring, a sudden high amount
of traffic identified as unusual in a residential area may be completely average in a data
center. One way to address this problem is to interactively include an expert in the
learning process [AZL06]. So-called active learning systems ask a user for feedback on
individual observations to improve the classification. They select queries that have high
informativeness for the classifier, e.g., observations for which the classifier is unsure
about their classification. The questions for the user are usually in the simple form “Is
the observation an outlier (yes/no)?”. After answering the query, the system updates the
classifier with the user feedback. This way, a user influences the classifier and improves
its performance for the given use case.
Labeling queries with a human annotator is the most prevalent scenario for active

learning. However, there also are other scenarios where the oracle is not a human ex-
pert [BSM19]. One such scenario is design space exploration [CF17a; CF17b; LM12].
There, one tries to learn feasible regions in a potentially unbound data space. An example
application is a search for designs that improve the aerodynamics or the robustness in
crash tests [Gor+09]. In design space exploration, annotations come from simulations or
real-world experiments. In some cases, the active learning system can automatically run
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1. Motivation

the simulation. In other cases, the system requires additional external help from a human
to set up and run the experiment. Although the intellectual effort for annotating queries
in these cases no longer lies with a human, there still are annotation costs. For instance,
computing the answer for a query requires resources such as computational power, actual
materials and takes time.
An active learning system consists of several components: the data, the classifier,

the oracle that answers the questions, and the query strategy that selects observations
for feedback. On the one hand, each of these components impacts how effective the
system is in improving the detection of outliers. On the other hand, these components
are interdependent in many ways. For example, the computational costs for updating a
classifier and for query selection depend on the size of the data set. Another example is that
the oracle may answer several similar queries faster than if they are very different to each
other. For instance, this is the case if there are change-over costs between experiments,
which are negligible when experiments are similar to each other but high for dissimilar
experiments [GK11].
Cost budgets limit certain aspects of an active learning system. For example, a project

deadline limits the time for active learning, and there may be a fixed monetary budget.
There may also be physical limits, such as the laboratory space for running experiments.
An operator that configures an active learning system must adhere to these budgets. So on
the one side, the interplay of all components influences the classification quality. On the
other side, cost budgets limit certain design choices when configuring an active learning
system. In practice, the operator must consider the trade-off between costs and quality to
configure an efficient active learning system. Otherwise, he may configure an inefficient
system that wastes resources or an ineffective system that does not achieve a required
classification quality.
Although the literature on active learning for outlier detection is aware of a few of

the cost-quality trade-offs that influence active learning, it gives neither a structured
overview nor a formal description of these trade-offs. Existing works focus on individual
components, e.g., speed up the classifier training [Ala+20; HZH14; Kra+18; Li+18; Li+19;
Li11; Qu+19; Sun+16; Xia+14; Zhu+14] without considering all other active learning system
components. Understanding these trade-offs is crucial to efficiently apply active learning
for outlier detection. In this thesis, we address the question of how one can model and
quantify different cost-quality trade-offs to facilitate the configuration of outlier-detection
active learning systems.

1.1. Challenges

Configuring an active learning system for outlier detection is difficult. It requires expertise
in the research area of outlier detection as well as active learning. We identify the fol-
lowing three challenges that make the application of active learning for outlier detection
challenging.

(C1) Large Configuration Space Recall that an active learning system consists of multiple
components: the data, the classifier, the query strategy, and the oracle. The use case
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typically determines the data and the oracle, i.e., these two components are fixed. How-
ever, the classifier and query strategy are configurable. The operator has to select one
out of the many available algorithms for both of the components. Additionally, there
are dependencies between these two components that restrict the choices. Some query
strategies require a specific classifier, while others are independent of the classifier choice.
Next, when the data set is large, classifier training and query selection have long runtimes.
Here, the operator must rely on approximations, e.g., suboptimal query selection from only
a fraction of the data. Approximations require to trade off costs against quality. When
considering approximations, there are various options that the operator can choose from to
reduce the computational runtime during active learning. Literature lacks an overview of
the various components and approximations available. This makes it difficult to configure
an active learning system in practice.

(C2) Incoherent Evaluation Standards Another challenge is the difficulty of accessing the
performance of an active learning system. The lack of coherent evaluation standards makes
it difficult to cope with the large configuration space. This is challenging on two levels:
On the one hand, there are many algorithms for specific components and approximations,
e.g., reducing the classifier training time [Ala+20; HZH14; Kra+18; Li+18; Li+19; Li11;
Qu+19; Sun+16; Xia+14; Zhu+14]. Since literature lacks an exhaustive experimental
comparison, it is difficult to choose a particular method over another one. On the other
hand, the performance of the active learning system depends on the interplay of all these
components and approximations. While there is a study comparing existing one-class
active learning classifiers and query strategies [TEB21], it does not cover approximations,
i.e., scenarios where the operator has to take additional measures to trade off costs against
quality. Literature does not provide ways to quantify the influence of approximations on
the resulting quality of the active learning system.

(C3) Outlier Properties Outliers are rare, unusual, and may not follow a common distribu-
tion. These properties challenge all components of an active learning system. Generally,
solutions and insights from multi-class active learning may not apply to active learning for
outlier detection. For example, classifiers and query strategies that use density estimation
require modifications before one can use them. Outliers may also affect the annotation
because they are more difficult or expensive to annotate. The operator must therefore
factor in the outlier properties when configuring an active learning system.

1.2. Contributions

In this thesis, we address the question of how to model and quantify different cost-quality
trade-offs so that an operator can make appropriate design decisions when configuring
active learning systems for outlier detection. To this end, we give an overview of the
different cost-benefit trade-offs that occur in active learning. We discuss the various
components of an active learning system as well as existing approximations that allow
trading between quality and costs. This overview addresses challenge (C1) Large Con-
figuration Space. Afterwards, we take a closer look at three important trade-offs, give
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1. Motivation

theoretical ground for their evaluation, and propose new state-of-the-art algorithms so
that the operator can control these trade-offs.

Reduce classifier training time by selecting a data subset In a first step, we look at the
training runtimes of the classifier and how one can reduce them by selecting a sample of
the data for training. We ask how one can reduce the number of observations without
reducing the classification accuracy. For this purpose, we formalize sample selection as an
optimization problem. Based on the optimization problem, we propose a new approach for
data reduction named Reducing sAmples by Pruning of Inlier Densities (RAPID). RAPID
guarantees that a classifier learned on the reduced data yields the same predictions as if it
was learned on the complete data set. With our new approach, we can efficiently reduce
complex, high-dimensional data sets and avoid long training times.

Delay classifier updates through batch queries Next, we deal with the selection of queries.
Previous approaches in outlier detection work sequentially. They select a single query
and then update the classifier based on the feedback. To reduce the number of updates of
the classifier, one can select multiple queries at once, so-called batch queries. One must
then update the classifier only once for each batch. But the annotation of a batch may give
redundant information if the queries are similar to each other, which reduces the quality.
Selecting batch queries is, therefore, more complex than selecting sequential queries. Batch
query strategies must consider both the expected informativeness for annotating a single
observation and the annotation dependency between them. Thereby, they must decide
how to distribute the queries of a batch over the data space. We propose different ways to
select batch queries for outlier detection suitable for the (C3) Outlier Properties. We then
evaluate them against each other. One takeaway from of our evaluation is that with the
appropriate selection of the batch query strategy, one can reduce the runtime to train the
classifier by one order of magnitude without losing classification accuracy.

Exploration of the data space to increase classification accuracy Finally, we deal with the
question of how to improve the generalization of classifier for outlier detection to new data.
One way is to collect feedback in unknown regions of the data space where no observations
were available during the training. However, in a high-dimensional data space, randomly
querying or even structured querying, for example, with a grid, is inefficient because such
queries do not take acquired annotations into account. Therefore, we ask ourselves how
to actively explore the data space starting from a given data set and a trained classifier.
We propose a framework for one-class query synthesis to efficiently find queries based on
an expected informativeness function of a query. Based on our framework, we develop a
novel query synthesis strategy named Domain Expansion Stragegy (DES). DES asks for
feedback to extend the inlier regions. DES improves the classification accuracy beyond the
training data set. Evaluating query synthesis is challenging because one requires an oracle
that can annotate arbitrary queries. Existing works on outlier detection only consider
queries from a fixed pool of observations. We propose three different ways to simulate
oracles to evaluate query synthesis for outlier detection with respect to (C2) Evaluation
Standards and (C3) Outlier Properties.
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1.3. Thesis Outline

1.3. Thesis Outline

The thesis consists of three parts. In the first part, we explain the fundamentals of outlier
detection and active learning (Chapter 2). We go over the various components of an
active learning system for outlier detection and discuss their interplay with each other. In
Chapter 3, we review related work. The second part is the core of this thesis and describes
our three contributions. In Chapter 4 we propose RAPID, our novel approach to sample
data set to reduce training runtimes. Chapter 5 discusses the selection of batch queries
to further reduce classifier and query selection runtimes during active learning. Finally,
we present our novel approach DES to improve a classifier beyond a given data set in
Chapter 6. In the last part of this thesis, we conclude with a summary (Chapter 7) and
discuss open questions for future research (Chapter 8).
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2. Fundamentals

This chapter introduces the notation and fundamentals for outlier detection and active
learning. In Section 2.3.3 we discuss the cost-quality trade-offs of active learning. This
chapter reuses Section 2 of [Eng+20a].

2.1. Preliminaries

Data Let X = ⟨𝑥1, 𝑥2, . . . , 𝑥𝑁 ⟩ be a data set of 𝑁 observations from the domain X = R𝑀

where 𝑀 is the number of dimensions. Each observation 𝑥 ∈ X is an 𝑀-dimensional
numerical vector. Let a sample be a subset S ⊆ X of the data set with a sampling ratio |S|/𝑁 .
Further, we denote 𝑥 ∈ S as a selected, and 𝑥 ∉ S as a not-selected observation.

Class Labels Let Y = ⟨𝑦1, 𝑦2, . . . , 𝑦𝑁 ⟩ be the class labels of a data set X . Each entry 𝑦 ∈ Y
is the realization of a dichotomous variable Y = {in, out}. The class labels of a data set
are also called the ground truth.

Label Pools When working with a new data set, one may not have a class label for all
the observations. We differentiate between the set of unlabeled observationsU ⊆ X and
labeled observations L ⊆ X, which are complementary, i.e.,U ∪ L = X andU ∩ L = ∅.
Furthermore, we split the labeled observations L into a set of inliers L𝑖𝑛 and outliers L𝑜𝑢𝑡
so that L𝑖𝑛 ∪ L𝑜𝑢𝑡 = L and L𝑖𝑛 ∩ L𝑜𝑢𝑡 = ∅.

Data Density Let the probability density of X be 𝑝 (𝑥). One can estimate the empirical
density of X by kernel density estimation by calculating

𝑑X(𝑥) =
∑︂
𝑥 ′∈X

𝑘 (𝑥, 𝑥′) (2.1)

where 𝑘 is a kernel function with 𝑘 (𝑥, 𝑥) = 1. We use the shorthand 𝑑𝑥 = 𝑑X(𝑥) when
the reference to X is unambiguous. Note that 𝑑X requires normalization to represent a
probability density.

One can use densities to characterize observations in different ways.
Definition 1 (Level Set) A level set is a set of observations with equal density 𝐿𝜃 ≔ {𝑥 ∈
X : 𝑑𝑥 = 𝜃 }. A super-level set is a set of observations with 𝐿+

𝜃
≔ {𝑥 ∈ X : 𝑑𝑥 ≥ 𝜃 }.

One way to use level sets to categorize observations is to define a level-set classifier as a
function of type 𝑔 : X → Y with

𝑔X
𝜃
(𝑥) =

{︄
in if 𝑥 ∈ 𝐿+

𝜃

out else.
(2.2)
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2. Fundamentals

Another useful categorization is to separate observations into boundary points and inner
points. There are various ways to define a boundary of X [Ala+20; HZH14; Li+18; Li+19;
Li11; Qu+19; Xia+14; Zhu+14]. In this thesis, we define boundary points as observations
with density values close to the minimum empirical density.

Definition 2 (Boundary Point) Let 𝑑min = min𝑥∈X 𝑑𝑥 , and let 𝛿 be a small positive value.
An observation 𝑥 ∈ X is a boundary point of X if 𝑥 ∈ BX with BX = 𝐿+

𝑑min
\ 𝐿+(𝑑min+𝛿) .

2.2. Outlier Detection

The goal of outlier detection, often also called anomaly detection, is to find unusual, rare
observations in a data set. Hawkins gives the following definition of an outlier:

“ The intuitive definition of an outlier would be “an observation which deviates so
much from other observations as to arouse suspicions that it was generated by a
different mechanism”. Douglas Hawkins, 1980, [Haw80]”Outlier detection appears in a variety of real-world applications, see [Agg15] for an over-

view. Additionally, one can apply outlier detection to clean a data set, i.e., remove the
outliers, to facilitate further analysis [SM11].
There are a plethora of different approaches for outlier detection. We categorize them

by two criteria: the availability of class labels and the detection output they provide.

2.2.1. Class Label Availability

There are three scenarios for which class labels are available.

Unsupervised In the unsupervised scenario, no class labels are available, i.e., all observa-
tions are unlabeled. Formally the label pools areU = X with L𝑖𝑛 = L𝑜𝑢𝑡 = ∅. To perform
outlier detection in this scenario, one assumes that the majority of the observations are
inliers. The observations that deviate “considerably” from these inliers are outliers. Here,
the outlier detection approach defines what “considerably” is. When working with a new
data set, the unsupervised scenario is most common because, in a new application, no
labels are available initially.

Supervised In the supervised scenario, each observation has a label. Formally the label
pools are U = ∅ with L𝑖𝑛 ∪ L𝑜𝑢𝑡 = X. Since all labels are available, one can directly
learn a classifier. The key difference from other machine learning tasks is the unbalanced
nature of the labels. There are much fewer outliers than inliers, i.e., |L𝑜𝑢𝑡 | ≪ |L𝑖𝑛 |. The
supervised scenario for outlier detection is uncommon in practice because acquiring a
fully annotated data set is expensive.
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Semi-supervised In the semi-supervised scenario, there are both labeled and unlabeled
observations. Formally the label pools are L𝑖𝑛 ∪ L𝑜𝑢𝑡 ∪ U = X with U ≠ ∅. Typically,
there are far fewer labeled observations than unlabeled ones, i.e., |L| ≪ |U|. Semi-
supervised outlier-detection approaches are often extensions of unsupervised methods.
These extensions bias the detection with the available label information.

2.2.2. Detection Output

We follow [Agg15] and distinguish between two types of outlier detection outputs: outlier
scores and binary classification. We define both types in the following.

2.2.2.1. Outlier Scores

Outlier detection approaches of this type output a score for each observation that quantifies
the level of “outlierness” [Agg15].

Definition 3 (Outlier Score Function) An outlier score function is a function of type
𝑠𝑐𝑜𝑟𝑒 : X → R.

The 𝑠𝑐𝑜𝑟𝑒 function assigns a real-valued number to each observation in the data set X.
There are various ways to quantify the “outlierness” of an observation, e.g., based on
statistical analysis [AAR96; KSZ08] or with proximity-based models [Bre+00; Pap+03].
The 𝑠𝑐𝑜𝑟𝑒 function induces a ranking of the observations. Depending on the 𝑠𝑐𝑜𝑟𝑒

function, observations with higher (or lower) values have higher “outlierness”. One
can inspect this ranked list of observations with their scores to find outliers. However,
analyzing a list of thousands of values is difficult. In many cases, one is only interested in
a binary decision whether an observation is outlying or not. Then, one can set a threshold
value. One classifies observations with a score higher (or lower) than the threshold as
outliers. Finding this threshold is difficult in practice and may require domain knowledge.

2.2.2.2. Binary Classification

Outlier detection approaches of this type directly output a binary classification for each
observation. Their idea is to learn a boundary around the inliers and classify everything as
outliers outside of this boundary. Since they learn one concept, they are often also called
one-class classifiers. Formally the boundary is a decision function:

Definition 4 (Decision Function) A decision function 𝑓 is a function of type 𝑓 : X ↦→ R.
An observation belongs to the outlier class if 𝑓 (𝑥) > 0 and to the inlier class otherwise.

The decision function of a one-class classifier is more flexible than a score-based output.
The decision function can assign labels to any data point in the data space after training
the classifier. Score-based approaches calculate the scores once for a fixed data set and fix
the threshold. Classifying new observations manipulates these scores and thus requires a
recalculation of the scores and the threshold. For active learning, one-class classifiers are
also preferred over score-based approaches because they allow us to inject feedback, as
we see later in Section 2.3.
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2.2.3. One-Class Classifiers

There are two categories of one-class classifiers: support-vector classifiers and non-sup-
port-vector classifiers [KM14]. Support-vector classifiers are the prevalent choice for
one-class active learning [TEB21]. We now introduce two support-vector classifiers that
we use in this thesis.

SVDD Support Vector Data Description (SVDD) [TD04] is a one-class classifier that
learns a decision function. SVDD is an unsupervised classifier, i.e., it cannot use label
information. SVDD is a quadratic optimization problem that searches for a minimum
enclosing hypersphere with center 𝑎 and radius 𝑅 around the data. The goal of SVDD is to
include all observations in hypersphere. SVDDmay take a cost𝐶 to exclude an observation
from the hypersphere if this reduces the radius significantly. The SVDD optimization
problem is

SVDD : minimize
𝑎, 𝑅, 𝝃

𝑅2 +𝐶 ·
𝑁∑︂
𝑖=1

𝜉𝑖

subject to ∥𝜙 (𝑥𝑖) − 𝑎∥2 ≤ 𝑅2 + 𝜉𝑖, 𝑖 = 1, . . . , 𝑁
𝜉𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑁

(2.3)

with a cost parameter 𝐶 ∈ (0, 1], slack variables 𝝃 , and a function 𝜙 : X ↦→ H that maps
observations 𝑥 ∈ X to a reproducing kernel Hilbert spaceH . Solving SVDD gives a fixed
𝑎, 𝑅, and a decision function learned on a data set X

𝑓 X(𝑥) =
{︄
in if ∥𝜙 (𝑥) − 𝑎∥2 ≤ 𝑅2

out else.
(2.4)

Evaluating the decision function of the SVDD gives the distance to the decision boundary;
positive for outliers, negative or zero for inliers.
One can obtain a solution of SVDD by solving the dual optimization problem with

Lagrangian dual variables 𝛼𝑖 for each observation 𝑥𝑖 ∈ X

SVDDdual : maximize
𝛼

𝑁∑︂
𝑖=1

𝛼𝑖 ⟨𝜙 (𝑥𝑖), 𝜙 (𝑥𝑖)⟩ −
𝑁∑︂
𝑖=1

𝑁∑︂
𝑗=1

𝛼𝑖𝛼 𝑗 ⟨𝜙 (𝑥𝑖), 𝜙 (𝑥 𝑗 )⟩

subject to
𝑁∑︂
𝑖=1

𝛼𝑖 = 1

0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1, . . . , 𝑁 .

(2.5)

Since the SVDDdual only contains inner products of the form ⟨𝜙 (𝑥𝑖), 𝜙 (𝑥 𝑗 )⟩ one can ap-
ply the kernel trick. This is, all the inner products are replaced with a kernel function
𝑘 (𝑥𝑖, 𝑥 𝑗 ) → R where 𝑥𝑖, 𝑥 𝑗 ∈ X. Solving SVDDdual gives fixed values 𝛼𝑖 . One can then
calculate 𝑅2 with any support vector (SV), i.e., an observation ˆ︁𝑥 ∈ X with an ˆ︁𝛼 where
0 < ˆ︁𝛼 < 𝐶 holds:

𝑅2 = 𝑘 (ˆ︁𝑥,ˆ︁𝑥) − 2
𝑁∑︂
𝑖=1

𝛼𝑖𝑘 (ˆ︁𝑥, 𝑥𝑖) + 𝑁∑︂
𝑖=1

𝑁∑︂
𝑗=1

𝛼𝑖𝛼 𝑗𝑘 (𝑥𝑖, 𝑥 𝑗 ). (2.6)
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The decision function based on the dual solution is

𝑓 (𝑥) = 𝑘 (𝑥, 𝑥) − 2
∑︂
𝑗

𝛼 𝑗𝑘 (𝑥, 𝑥 𝑗 ) +
𝑁∑︂
𝑗=1

𝑁∑︂
𝑘=1

𝛼 𝑗𝛼𝑘𝑘 (𝑥 𝑗 , 𝑥𝑘)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
const

−𝑅2. (2.7)

The decision function 𝑓 (𝑥) based on the SVDDdual solution only relies on inner product cal-
culations between 𝑥 and some training observations, the support vectors. So classification
with SVDD is efficient if the number of support vectors is low.

SVDD has two hyperparameters: 𝐶 and a kernel function 𝑘 . 𝐶 ∈ R(0,1] is a trade-off
parameter to allow observations to fall outside of the hypersphere. Formally, observations
outside the hypersphere with positive slack 𝜉 > 0 are weighted by 𝐶 , see Equation 2.3.
High values for 𝐶 make excluding observations expensive; based on the dual of SVDD,
one can see that if 𝐶 = 1, SVDD degenerates to a hard-margin classifier [TD04].
The kernel function 𝑘 allows a decision boundaries of arbitrary shape. The – by far –

most popular kernel with SVDD is the Gaussian kernel, often also called the Radial Basis
Function (RBF) kernel,

𝑘RBF(𝑥, 𝑥′) = 𝑒−𝛾 ∥𝑥−𝑥
′∥2 . (2.8)

There is an equivalent formulation with a parameter 𝜎 with 𝑘RBF(𝑥, 𝑥′) = 𝑒−∥𝑥−𝑥
′ ∥2/2𝜎2

where 𝛾 = 1/2𝜎2. The bandwidth parameter 𝛾 controls the flexibility of the decision
boundary. Large values make the kernel pointy and thus increase the flexibility of the
decision boundary. Small values, in comparison, increase the smoothness. For 𝛾 → 0,
the decision boundary approximates a hypersphere. Choosing good values for the two
hyperparameters 𝛾 and 𝐶 is difficult [TBA20]. There is no established way of setting
the parameter values, and one must choose one of the many heuristics to tune SVDD in
an unsupervised setting [Lia+18; Sco15; TBA20; TD04; Wan+18]. Note, that there is an
alternative formulation of SVDD, called 𝜈-SVM, that learns a separating hyperplane instead
of a hypersphere but both classifiers are equivalent under mild assumptions [Sch+01].

SVDDneg Support Vector Data Description with negative Examples (SVDDneg) [TD04]
is a semi-supervised extension of SVDD to incorporate negative labels. SVDDneg assigns
costs𝐶1 for observations inU∪L𝑖𝑛 and costs𝐶2 for L𝑜𝑢𝑡 where𝐶1,𝐶2 ∈ (0, 1]. By adding
a constraint to SVDD, SVDDneg enforces that labeled observations in L𝑜𝑢𝑡 fall outside of
the decision boundary.

SVDDneg : minimize
𝑎,𝑅,𝝃

𝑅2 +𝐶1 ·
∑︂

𝑖 : 𝑥𝑖∈U∪L𝑖𝑛

𝜉𝑖 +𝐶2 ·
∑︂

𝑖 : 𝑥𝑖∈L𝑜𝑢𝑡

𝜉𝑖

subject to ∥𝜙 (𝑥𝑖) − 𝑎∥2 ≤ 𝑅2 + 𝜉𝑖, 𝑖 : 𝑥𝑖 ∈ U ∪ L𝑖𝑛
∥𝜙 (𝑥𝑖) − 𝑎∥2 ≥ 𝑅2 − 𝜉𝑖, 𝑖 : 𝑥𝑖 ∈ L𝑜𝑢𝑡
𝜉𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑁 .

(2.9)

Analogous to SVDD, the dual of SVDDneg only contains inner products of the form
⟨𝜙 (𝑥𝑖), 𝜙 (𝑥 𝑗 )⟩, and one can apply the kernel trick.
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Figure 2.1.: Overview of an active learning system.

2.3. Active Learning

The basic idea of active learning is that a learning algorithm performs better and requires
less training if it can select the data from which it learns compared to the case where one
provides a static training data set [Set12]. The active learning system selects so-called
queries that an external entity, called the oracle, annotates. Active learning is well-motivated
in practice. There often is an abundance of unlabeled data but acquiring the labels is time-
consuming and expensive. Example applications are fraud detection, speech recognition,
information extraction, or computational biology, see [Set12] and [FZL12] for an overview.

In this section, we first introduce the concept of active learning and explain the individual
components. Then, we give an overview of the cost-quality trade-offs an operator faces
when configuring a one-class active learning system. Finally, we discuss the specifics of
one-class active learning.

2.3.1. Overview and Components

An active learning system consists of four components: the data and label pools, the
classifier, the query strategy, and the oracle. Active learning is an iterative process where
each iteration consists of the following three steps: First, the system trains the classifier
with the available data and label pools. Second, the query strategy selects the queries. Third,
the oracle annotates these queries. The system iterates until it reaches some termination
criteria. Examples of termination criteria are the convergence of the classifier or the
exhaustion of a query budget. Figure 2.1 is an overview of an active learning system.

Data and Label Pools The data and label pools follow our description at the beginning
of this chapter in Section 2.1. Note that the data and label pools change throughout the
active learning process. The active learning system adds queries with their annotations,
i.e., the query labels, to the existing data and updates the label pools. Updating in this case
refers to adding the queries to the label pool L. One adds a query 𝑥in labeled as inlier to
L′𝑖𝑛 = L𝑖𝑛 ∪ {𝑥in} and a query 𝑥out labeled as outlier to L′𝑜𝑢𝑡 = L𝑜𝑢𝑡 ∪ {𝑥out}. If a query 𝑥
is from the unlabeled pool, i.e., 𝑥 ∈ U, one updates the poolU′ = U \ {𝑥}.
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Classifier The classifier is a model trained by the active learning system on the available
data and label pools. One can describe a classifier C as a mathematical function that maps
from the data space to the label space: X ↦→ Y. In the case of one-class classification,
we have formalized this as a decision function in Definition 4. The classifier choice for
active learning depends on the class label availability. We discuss the classifier choice for
one-class classification in Section 2.4.

Query Strategy A query strategy selects queries for annotation. Here, in each active
learning iteration queries are one or multiple observations 𝑥 ∈ X. These queries may be
existing observations from the pool of unlabeled observationsU or artificially generated
ones. We discuss the different query scenarios in Section 2.3.2.

In an active learning system, the query strategy takes the data, the pools and the trained
classifier to select the queries.

Definition 5 (Query Strategy) Given a data set X with label pools U, L𝑖𝑛 , L𝑜𝑢𝑡 , and a
classifier C, a query strategy𝑄𝑆 is a function of type𝑄𝑆 : C,U,L𝑖𝑛,L𝑜𝑢𝑡 → Q. Q is a query
that contains a set of observations with ∀𝑞 ∈ Q : 𝑞 ∈ X.

Depending on the size of the query chosen by a query strategy, we differentiate between a
sequential and a batch query strategy.

Definition 6 (Sequential Query Strategy) A sequential query strategy is a query strat-
egy according to Definition 5 that outputs a single element query Q with |Q| = 1.

Definition 7 (Batch Query Strategy) Given a batch size 𝑘 ∈ N+, a batch query strategy
is a query strategy according to Definition 5 that outputs a query Q with |Q| = 𝑘 .

For the case 𝑘 = 1 a batch query strategy equals a sequential query strategy.
Generally, the goal of a query strategy is to improve the classification quality of the

classifier. The annotation of a query is unknown during the query selection. A query
strategy has to estimate the “benefit” it expects from obtaining annotations for a query.
Literature formalizes the “benefit” with the informativeness criterion [TEB21]. Sometimes
the informativeness is also called the expected information gain of a query [Set12].

Definition 8 (Informativeness) Given a classifier C and label sets U, L𝑖𝑛, L𝑜𝑢𝑡 , the
informativeness is a function 𝜏 : 𝑥, C,U,L𝑖𝑛,L𝑜𝑢𝑡 ↦→ R that maps an arbitrary 𝑥 ∈ X to R.

𝜏 quantifies the informativeness, i.e., how valuable an arbitrary observation 𝑥 ∈ X is,
and generally higher values are better. As C,U, L𝑖𝑛 and L𝑜𝑢𝑡 are fixed in a given active
learning iteration, we only write 𝜏 (𝑥) for brevity.

There are various ways to quantify the informativeness of a query. The most common
idea is uncertainty sampling [LC94]. Here, queries have high informativeness if the
classifier is unsure about their classification. Other concepts to quantify informativeness
are querying-by-committee, observing the expected model change annotations would yield,
or calculating expected error reduction queries would give. We refer to [Set12] for an
overview. We present query strategies for one-class classification in Section 2.4.
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Oracle The oracle is the entity that annotates a query by providing labels. Active learning
abstracts from the entity that provides the labels:

Definition 9 (Oracle) An oracle is a function of type O : X → Y that annotates an obser-
vation 𝑥 ∈ X with a label 𝑦 ∈ Y.

The abstraction of the annotation entity as an oracle is convenient when developing
active learning algorithms. However, in some applications it is an oversimplification. The
oracle may return wrong labels or cannot annotate a query at all. Oracles returning errors
are called noisy oracles in literature [Set12]. To cope with a noisy oracle, one requires
robust query strategies and classifiers that handle oracle uncertainty [Set11]. For now, we
assume that the oracle always returns the ground-truth label. This simplifies the evaluation
of active learning systems since we can simulate the annotations. We discuss noisy oracles
in future work in Chapter 8.
We further distinguish between a human oracle and an experiment oracle. With a

human oracle, an individual receives, inspects, and tries to annotate the queries. With
an experimental oracle, an external process produces the annotations, e.g., by running
an experiment or a computer simulation. Next, annotations may have variable costs
depending on the query [Set11]. Some queries may be cheaper to annotate than others.
All these aspects of an oracle challenge the application of active learning. We come back
to this when discussing the active learning trade-offs later in this chapter.

2.3.2. Query Scenarios

A fundamental categorization of active learning methods is the query scenario that defines
from which data the query strategy selects the queries. There are three query scenar-
ios [Set12]: pool-based sampling, steam-based selective sampling, and query synthesis.

Pool-based Sampling Pool-based sampling assumes that there is a large pool of unlabeled
observationsU . This pool is usually “closed”, i.e., no observations are added toU during
the active learning. A pool-based query strategy selects the queries from this pool. By using
the informativeness criterion, one can rank the unlabeled observations inU and query
them greedily. Formally a sequential pool-based query strategy takes an informativeness
function 𝜏 and computes the query

Q = arg max
𝑥∈U

𝜏 (𝑥). (2.10)

For a batch pool-based query strategy, the naive approach is to choose the TopK observa-
tions with the highest informativeness as a query with a 𝑘 ∈ R+

Q = arg max
𝑍⊆U, |𝑍 |=𝑘

∑︂
𝑥∈𝑍

𝜏 (𝑥). (2.11)

More sophisticated solutions for pool-based batch query strategy include the diversity of
a batch during query selection. We discuss batch queries in Chapter 5.
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Stream-based Selective Sampling The second scenario is defined for a continuous stream
of unlabeled observations arriving from a data source. For each arriving observation, a
stream-based query strategy has to decide whether to query or discard it. One cannot
query any discarded observation later, it is gone forever.

Query Synthesis The third scenario is query synthesis. In this scenario, the query strategy
is not restricted by the available observation. Instead, a query synthesis strategy can
select any query in the data space X. Literature also uses the terms “artificially generated
queries” or “queries generated de novo” when describing query synthesis [Set12]. On
the one hand, query synthesis gives more freedom to the query selection than pool-based
query selection because one is not restricted by the poolU. On the other hand, generating
these artificial queries is also more difficult. One has to find the best queries in a potentially
unbound data space. When working with human oracles, artificially generated queries
may be unrealistic, making an annotation hard or even impossible. We formalize the query
synthesis framework for one-class active learning as one of our contributions in Section 6.1.

2.3.3. Cost-Quality Trade-offs

The overarching goal of active learning is to maximize classification quality while min-
imizing costs. In practice, there are external constraints for the costs. For example, the
monetary costs of active learning must not exceed a monetary budget of a project. The
operator must adhere to these budgets when configuring an active learning system. So, in
some cases, he may have to accept a reduced quality to cut costs. Thus, there is a trade-off
between costs and quality. In this section, we discuss the cost-quality trade-offs of active
learning. We first individually explain the various costs and quality dimensions of active
learning. We then describe approximation methods to balance both aspects.

2.3.3.1. Costs

We differentiate between two types of costs during active learning: annotation costs and
computational costs. These costs can be measured as temporal and monetary costs.

Annotation Costs The annotation cost is the price for querying an oracle for annotations.
The annotation costs highly depend on the use case, i.e., the real-world entity that produces
the labels. There are two aspects of the annotation costs that one must consider during
query selection. For the first aspect, we differentiate whether the annotation costs are
static or variable for each observation. Annotations costs are variable when they depend
on the complexity of the query, e.g., the costs may linearly depend on the query length.
The second aspect is that annotation costs can be known or unknown [Set11]. An active
learning system can consider known annotation costs during query selection. For example,
annotation costs are unknown when the oracle is a simulation where the runtime is
unknown in advance. When annotation costs are unknown, one can try to predict them,
e.g., by learning a regression cost-model alongside the active learning system [Set11].
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Computational Costs We discern between four computational costs for classifier training,
query selection, query presentation, and data flow management.

First, there is the classifier training cost for learning the classifier. The cost depends on
the type of classifier, i.e., its training complexity. For SVDD and SVDDneg, the classifier
training complexity to solve the QP problem is in 𝑂 (𝑁 3) [CTK04], i.e., it only depends on
the size of the training data set.
Second, there is the query selection cost, i.e., the cost for choosing a query. While the

exact cost varies between the query strategies, the cost generally depends on the number of
considered query candidates. For example, the cost of a pool-based query selection depends
on the number of unlabeled observations |U|. All observations inU are query candidates.
Then, for each query candidate, the query strategy evaluates the informativeness function.
Some query strategies additionally require the evaluation of the decision function of the
classifier for each query candidate.

Third, there is the query presentation cost to present a query to the oracle. This cost only
appears when working with a human oracle. The system presents the selected query to
the human in the annotation interface. Usually, it is not enough to present the query in raw
form, e.g., the numeric vector, because it is too difficult for a human to annotate. Instead,
the active learning system computes additional contextual and explanatory information to
support the human during the annotation [TEB19]. An example is the visualization of the
classifier decision function and data set in a plot. Computing these additional elements
results in a query presentation cost.

Fourth, there are the costs to manage the data flow [TEB19]. These costs depend on the
software architecture and implementation of the active learning system. The system must
transfer the data set to the classifier and query strategy. Some query strategies require
the decision function of the classifier. So there is direct communication between both
components. When working with human oracles, the system has to provide data and
visualizations to the annotation interface. Finally, the system has to store all annotations
acquired during active learning. Such data flows incur costs for transferring and storing
data. While literature mostly neglects the question of how to implement and optimize
the data flow, we have identified that they are crucial when developing an active learning
system in practice, see our previous work in [TEB19].

Budgets In practice, there are external constraints for the costs. We differentiate between
two types of budgets. On the one hand, there is a global budget, such as a fixed project
deadline or a monetary limit. The global budget limits the overall active learning process,
i.e., it gives a maximum that the sum of all costs over all the active learning iterations
cannot exceed. On the other hand, there are more fine-granular local budgets. They are
externally given as well and apply to individual steps during one active learning iteration.
An example is the downtime between two annotations, which may not exceed a threshold
that guarantees that an annotator has low idle times. Budgets are restrictions that the
operator has to adhere to when configuring an active learning system.
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2.3.3.2. Quality

The quality of active learning depends on the learning objective. The prevalent objective
is to improve the prediction quality of the classifier. In this case, one can quantify the
classification quality of active learning by evaluating the classification on independent test
data. To do so, one computes an evaluation metric suitable for the given data distribution.
The evaluation metric quantifies the quality of the active learning progress at a given
iteration. We discuss evaluation metrics for active learning systems in Section 2.5.2 and
continue with the abstract discussion here.
A second aspect to consider is the annotation quality that is the correctness of the

answers of the oracle. Annotation quality is high if the annotations correspond to the
ground truth. Typically, there is a strong dependency between classification quality and
annotation quality. The capabilities of the classifier determine the correlation between
classification and annotation quality. On the one hand, the classifier may have limited
capability and thus cannot consider all labels. Then a high annotation quality may still
result in a low classification quality. On the other hand, a robust classifier internally
corrects incorrect annotations. Thus, classification quality may still be high if there are
many low-quality annotations. As we have discussed earlier, we focus on oracles that
return correct annotations, for now, we refer to the classification quality when we speak of
the quality of an active learning system in the following. We come back to the annotation
quality in our outlook in Chapter 8.

2.3.3.3. Approximation methods

So far, we have described the two aspects, costs, and quality of active learning, indepen-
dently. However, in an active learning system, one must jointly consider them. There are
cases where one may have to trade off costs against quality. A reason is that the system
exceeds a budget and there is no alternative algorithm with the same efficiency, and the
budget cannot be changed. One way to deal with this is to accept a decrease in quality
to cut costs. We call methods that trade costs against quality approximations. We use
the term “approximation” because they are lossy, i.e., they reduce the costs and may also
reduce the quality. During the configuration of a system, the operator may use multiple
approximation methods to trade off costs against quality.

Note that an alternative method to reduce costs without changing the quality is not an
approximation, and we call it a lossless alternative. The operator can add them to the active
learning system without any effect on the quality, i.e., they are free. For instance, there
may be a more efficient solver for the QP problem of an SVDD that produces a solution of
the same quality as the original solver. The operator should always pick the best lossless
alternative when configuring a system initially.
The literature proposes a plethora of approximation methods to reduce the costs of

active learning. These methods target all components of the system. However, there is no
overview over all the different methods one may use when configuring a system. In the
following, we explain the basics of approximation methods by categorizing them by their
underlying concept of how they work. We review literature on approximation methods
for outlier detection with active learning later in Chapter 3.

19



2. Fundamentals

Sampling The first concept is sampling. Sampling selects a subset of the data as the input
for a subsequent algorithm. For algorithms that depend on the input data size, sampling
reduces computational runtime. Thus, sampling reduces the classifier training costs. One
can also use sampling during query selection. Selecting a subset of query candidates
reduces the query selection costs. However, sampling may reduce active learning quality
since one does not use not all available data.

Projections The second concept are projections. While sampling targets the data set size,
projections reduce the dimensionality of the data. Projections, for instance, reduce the
search space when generating artificial queries. In an annotation interface, projections can
reduce the complexity of the visualizations for a human. A downside of using projections
is that complex dependencies may not be present anymore, which in turn reduces the
annotation quality.

Delaying/Skipping The third concept is delaying or skipping. Methods of this category
delay or skip the execution of specific steps of an active learning system. An example is
training the classifier after acquiring annotations for multiple queries instead of retraining
it after each annotation. Active learning components that depend on the classifier may then
use the last available trained classifier, e.g., for query selection or visualization. However,
using outdated information may reduce the active learning quality. For instance, a query
strategy would have selected a different query if the classifier had been updated with all
annotations.

Updating The fourth concept is updating. Instead of rerunning an algorithm every
iteration from scratch, updating reuses the output of the previous iteration. One can use
the concept updating to incrementally train a classifier with new annotations. But update
mechanisms may yield suboptimal solutions. For instance, retraining a classifier on all
available data may yield a higher classification quality than incrementally updating.

Overall, the concrete trade-off the operator takes when configuring an active learning
system depends on the actual data set and the specific algorithms. Approximation methods
that come with recommendations or guarantees for the cost-quality trade-off facilitate the
configuration for the operator. For instance, a guarantee for a sampling algorithm could
be that it halves the runtime while the classification quality does not deteriorate by more
than 5%. A central topic of this thesis is how one can derive such recommendations and
guarantees from theoretical investigations or empirical studies.

2.4. Active Learning for Outlier Detection

In the previous two sections, we have introduced the two distinct research areas, outlier
detection, and active learning. One-Class Active Learning (OCAL) for outlier detection
brings both areas together. We have given an overview and evaluated state-of-the-art
methods for OCAL in a comprehensive benchmark in a previous work of ours [TEB21].
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Here, we only summarize the most important parts for this thesis, namely the learning
scenario, and the choice of classifiers and query strategies for OCAL.

2.4.1. Learning Scenario

The learning scenario consists of the different assumptions researchers make regarding
the application and the interaction with the oracle. Literature on OCAL often does not
explicitly state these assumptions, which makes it difficult to configure an active learning
system for a new application. We have identified the following assumptions that restrict
the applicability of classifiers and query strategies in [TEB21].

Class Distribution One-class classification allows learning one concept in an imbalanced
data sets. We distinguish between two cases. In the first case, the target concept is the
“minority class”, one groups all other classes to form the outlier class. Literature calls
this the one-vs-all multi-class classification task [Gha+11a; JD03]. In the second case, the
target concept is the “majority class”, and all other observations are unusual. This second
case is typical for outlier detection and what we assume in this thesis.

Learning Objective The most common learning objective of an active learning system
is to improve the prediction quality of the classifier. Literature proposes to deviate from
this objective when there is a specific interest in one of the two classes. In that case,
one may prefer queries that the system expects to be inliers [Gha+11a; Gha+11b] or
outliers [Das+16]. In this thesis, we do not assume any class preference during the query
selection.

Initial Pools The label information available at the beginning of the active learning defines
the initial pools. We can distinguish between the case that (1) all observations are unlabeled
and that (2) there are some labeled observations available. In the second case, the amount
of available labels depends on the use case. Additionally, some query strategies technically
require a certain amount of labels, e.g., to avoid a singular correlation matrix. Acquiring
these initial labels results in annotation costs. Since active learning is specifically designed
to acquire labels cost-efficiently, case (1) where all observations are unlabeled is more
common. So in this thesis, we assume initially unlabeled pools.

2.4.2. Classifier

For OCAL, we use a one-class classifier that discerns between the inliers and outliers by
learning a decision function. We have reviewed one-class classifiers for outlier detection
in Section 2.2.3. There is an essential difference between unsupervised and semi-supervised
classifiers and how they can use the annotations acquired during active learning. Unsuper-
vised classifiers work without labels and require an additional mechanism to use the label
information. One way is to only expose them to a subset of the data set during training,
e.g., only to the labeled inliers. Another way is to tune the parameters of the classifier by
evaluating the classifier predictions on the available labels. Semi-supervised classifiers, in
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turn, do not require an additional mechanism. They can explicitly use both unlabeled and
labeled data for training.
Existing works on OCAL for outlier detection use the unsupervised SVDD [TD04],

semi-supervised SVDDneg [TD04] that uses labeled outliers, and semi-supervised Semi-
Supervised Anomaly Detection (SSAD) [Gör+13] that uses labels from both classes. We
have introduced SVDD and SVDDneg in Section 2.2.3. SSAD extends SVDDneg with
additional constraints to use labeled inliers. SSAD adds a hyperparameter to balance the
weight between the two classes. Our benchmark shows that tuning this hyperparameter
is difficult and SSAD does perform better than SVDDneg [TEB21]. Therefore, we only use
SVDD and SVDDneg in this thesis.

2.4.3. Query Strategies

All query strategies that literature proposes for OCAL are pool-based query strategies.
We have given an overview of them and have evaluated them against each other in our
benchmark [TEB21] and only provide a summary here. We propose a framework for query
synthesis for OCAL in Section 6.1.
Following [TEB21], we categorize the query strategies into data-based, model-based,

and hybrid query strategies. Data-based query strategies select queries independent of the
classifier, i.e., solely based on the available data and label pools U and L. Model-based
query strategies directly use the decision function of the one-class classifier to select
queries. Finally, hybrid query strategies combine both approaches by using the classifier
information and data statistics.
Our overview and evaluation in [TEB21] shows that model-based query strategies are

most flexible, i.e., they work with any initial pool. Additionally, they outperform the other
strategies in the experimental comparison. In this thesis, we use the two model-based
query strategies proposed in literature: decision-boundary and high-confidence querying.
Recall that 𝑓 is the decision function of a one-class classifier, which returns 𝑓 (𝑥out) > 0
for outliers and 𝑓 (𝑥in) ≤ 0 for inliers.

Decision Boundary Querying [Gör+09] This query strategy selects observations closest to
the decision boundary. The informativeness function is

𝜏DB = −|𝑓 (𝑥) |. (2.12)

High-Confidence Querying [BBJ15] This query strategy selects observations that match
the inlier class the least. Given the decision function 𝑓 , the informativeness is

𝜏HC = 𝑓 (𝑥). (2.13)

2.5. Evaluating One-Class Active Learning

In this section, we discuss the evaluation of one-class active learning. We present the data
sets and metrics we use in this thesis.
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Table 2.1.: Overview over the benchmark data sets published in [Cam+16].
Data set Observations (𝑁 ) Dimensions (𝑀) 𝑝out

ALOI 49534 27 0.0304
Annthyroid 7129 21 0.0749
Arrhythmia 450 259 0.4578
Cardiotocography 2114 21 0.2204
Glass 214 7 0.0421
HeartDisease 270 13 0.4444
Hepatitis 80 19 0.1625
InternetAds 1966 1555 0.1872
Ionosphere 351 32 0.3590
KDDCup99 48113 40 0.0042
Lymphography 148 3 0.0405
PageBlocks 5393 10 0.0946
Parkinson 195 22 0.7538
PenDigits 9868 16 0.0020
Pima 768 8 0.3490
Shuttle 1013 9 0.0128
SpamBase 4207 57 0.3991
Stamps 340 9 0.0912
WBC 223 9 0.0448
WDBC 367 30 0.0272
WPBC 198 33 0.2374
Waveform 3443 21 0.0290
Wilt 4819 5 0.0533

2.5.1. Benchmark Data

To evaluate the classification quality of OCAL, we require labeled outlier detection data
sets. In this thesis, we run experiments on real-world and synthetic data.

Real-world data There only exist few labeled real-world data sets for outlier detection.
One common solution in literature is to resample binary or multi-class classification data
sets [Cam+16; Dom+18; Emm+13]. One class is selected as the inlier class and all other
classes are downsampled and grouped to form the outlier class. In this thesis, we work
with the well-established benchmark suit published in [Cam+16]. Table 2.1 shows the
data sets of the benchmark. The benchmark contains data set from various applications,
and the data sets have different sizes (80 to 49 534 observations), dimensionality (3 to 1555
dimensions), and outlier ratios 𝑝out (0.2 % to 75.38 %, median 9.12 %). The size and diversity
of the benchmark data sets enable us to study the performance of our contributions in
comprehensive experiments.
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Synthetic data We also generate synthetic data sets in this thesis. Synthetic data sets
allow us to study specific desired properties of the outlier detection method. We can control
all the characteristics of a data set during the generation, e.g., the size, the number of
dimensions, or the complexity of a data set. In this thesis, we generate small 2-dimensional
data sets to visualize and explain how our algorithms work. Additionally, we generate
synthetic data sets to evaluate how well algorithms scale with increasing data set size,
dimensionality, and complexity. We introduce the generation process in the corresponding
subsections in Section 4.2 and Section 6.4.

2.5.2. Metrics

To evaluate our experiments and quantify the quality of an OCAL system, we require
evaluation metrics. The metrics must cope with the imbalance of outlier detection data
sets. We first present the metric we use to evaluate a one-class classifier and then what we
use to evaluate an active learning system.

One-Class Classification One metric robust for evaluating a binary classification is the
Matthews Correlation Coefficient (MCC). MCC is robust against the imbalance of a data
set. Given a confusion matrix with true positives (𝑇𝑃 ), true negatives (𝑇𝑁 ), false positives
(𝐹𝑃 ) and false negatives (𝐹𝑁 ), one calculates

𝑀𝐶𝐶 =
𝑇𝑃 ·𝑇𝑁 − 𝐹𝑃 · 𝐹𝑁√︁

(𝑇𝑃 + 𝐹𝑃) · (𝑇𝑃 + 𝐹𝑁 ) · (𝑇𝑁 + 𝐹𝑃) · (𝑇𝑁 + 𝐹𝑁 )
. (2.14)

The value range of MCC is [−1, 1]. A perfect classification results in a MCC value of 1
since 𝐹𝑃 = 𝐹𝑁 = 0. A completely wrong prediction, i.e., predicting the inverse label for
each observation, results in a MCC value of −1. With a MCC value of 0, the classification
is not better than random.

Active Learning Evaluating active learning is more involved than a static evaluation of a
classifier. During active learning, we can evaluate the classifier after each iteration. Instead
of a single value like in a static setting, we then have a sequence of values, which we call
an active learning progress curve [TEB21].

Visually comparing the performance of different active learning systems does not scale
with the number of experiments. Manually comparing hundreds of progress curves is
prohibitive. To facilitate extensive evaluations, one can summarize a progress curve. We
have studied summary statistics of progress curves in a previous work of ours in [TEB21].
There, we discuss summary statistics proposed in literature and develop new ones to
capture some characteristic of the learning progress. For example, we have distinct metrics
to capture the quality increase at the start of the training or the convergence by calculating
how stable the classification quality is over multiple iterations.

In this thesis, we focus on the End Quality (EQ) of an active learning system. We calculate
𝐸𝑄 by evaluating the classification quality after the system has exhausted the budget and
updated the classifier with the last annotation from the oracle. As an evaluation metric
for the classification quality, one may use any quality metric. Since we are evaluating
one-class classifiers, we use the previously presented MCC.
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In this chapter, we review the related work for our contributions. In the first part, we
discuss approximation methods that speed up the SVDD classifier. In the second part,
we review work on active learning with query synthesis for outlier detection. The first
part is extracted from [Eng+20a] (Section 3) and the second part is extracted from [EB20]
(Section 2).

3.1. Speed up the SVDD Classifier

Training SVDD requires solving a quadratic problem (QP). The time complexity of solving
SVDD is in O(𝑁 3) [CTK04]. Thus, training does not scale well to large data sets. However,
the time complexity for classification is only linear in the number of support vectors
O(|𝑆𝑉 |). So for large 𝑁 , training time is much larger than classification time. Still, long
classification times may be an issue, e.g., in time-critical applications. So curbing the
runtimes has long become an important topic in the SVDD literature. In Section 3.1.1, we
categorize existing approaches that focus on SVDD speedup, see Figure 3.1 for an overview.
In Section 3.1.2, we then turn to Sampling, the category our contribution belongs to.

3.1.1. Categorization

We distinguish between Fast Training and Fast Classification.

Fast Training To speed up training of SVDD, one has two options: reduction of the
problem size and optimization of the solver. For Reduction, one can distinguish further:
A first type reduces the number of observations by Sampling [Ala+20; HZH14; Kra+18;
Li+18; Li+19; Li11; Qu+19; Sun+16; Xia+14; Zhu+14]. A second type reduces the size of
the Kernel matrix, e.g., by approximation [AMS02; FS02; NHJ08; Sch+00]. Examples are
the Nyström-method [WS01] and choosing random Fourier features [Yan+12].
Optimization, on the other hand, decomposes the QP into smaller chunks that can be

solved efficiently. Literature features methods that decompose with clustering [Kim+07]
andwithmultiple random subsets [Cha+18]. Themost widely used decompositionmethods
are sequential minimal optimization (SMO) [Pla98] and its variants. These methods
iteratively divide SVDD into small QP sub-problems and solve them analytically. Finally,
there is a core-set method that expands the decision boundary by iteratively updating an
SVDD solution [CL19; CTK04]. Core-set approaches are (1 + 𝜀) approximations, i.e., they
may not find the exact decision boundary, given training data.
Reduction and Optimization are orthogonal to each other. Thus, one can use problem-

size reduction in a pre-processing step before solving SVDD efficiently.
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Fast Training
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pre-processing

Figure 3.1.: Categorization of literature on SVDD speedup.

Fast Classification When SVDD uses a non-linear kernel, one cannot compute the pre-
image of the center 𝑎. Instead, one must compute the distance of an observation to 𝑎 by a
linear combination of the support vectors in the kernel space, see Equation 2.7. However,
literature proposes several approaches to approximate the pre-image of 𝑎 [BWS04; KT04;
LLC10; Mik+99; PX11]. With this, classification no longer depends on the support vectors,
and is in O(1). Fast Classification is orthogonal to Fast Training, i.e., it can come as a
post-processing step, after training.

3.1.2. Sampling Methods

Sampling methods take the original data set X as an input and produce a sample S. All
existing sampling methods for SVDD assume the target-only scenario, i.e., all observations
in X are from the target class. This is equivalent to a supervised setting where one knows
the ground truth and Y = ⟨in, in, . . . , in⟩. Thus, one must modify these methods to apply
them in the outlier scenario, see Section 4.1.1. We categorize them into different types:
Edge-point detectors, Pruning methods, and Others. Table 3.1 provides an overview.

Edge-point Most sampling approaches focus on selecting observations that demarcate
the estimated inlier density from the outlier one, and therefore are expected to be support
vectors. Such observations are called “edge points” or “boundary points”. Literature
proposes various ways to identify edge points. One idea is to use the angle between an

26



3.1. Speed up the SVDD Classifier

Table 3.1.: Sampling methods proposed for SVDD.
Method Publication Year Exogenous Parameters*

BPS Li [Li11] 2011 𝑘= ⌊10 ln𝑁 ⌋, 𝜀=0.05
DAEDS Hu, Zhou, and Hu [HZH14] 2014 𝑘=30, 𝜀=0.1, 𝛿=0.3
DBSRSVDD Li et al. [Li+19] 2019 minPts=7, 𝜀=0.5
FBPE Alam et al. [Ala+20] 2020 𝑛=360
HSR Sun et al. [Sun+16] 2016 𝑘=20, 𝜀=0.01 ·𝑀
HSC† Qu et al. [Qu+19] 2019 𝑘=20
IESRSVDD Li et al. [Li+18] 2018 𝜀=0.5
KFNCBD Xiao et al. [Xia+14] 2014 𝑘=100, 𝜀=0.2
NDPSR Zhu et al. [Zhu+14] 2014 𝑘=20, 𝜀=10
OCSFLSDE† Krawczyk et al. [Kra+18] 2018 8 different parameters

* The listed values for the exogenous parameters are the ones used
in our experiments in Section 4.2.
† Not included in our experiments, see Section 4.2.1 for details.

observation and its 𝑘 nearest neighbors [Li11; Zhu+14] as an indication. An observation is
selected as edge point if most of its neighbors lie within a small, convex cone with the
observation as the apex. One has to specify a threshold for the share of neighbors and
the width of the cone [Li11] as exogenous parameters. Others suggest to identify edge
points through a farthest neighbor search. For instance, one suggestion is to first sort the
observations by decreasing distance to its k-farthest neighbors (KFN) [Xia+14], and then
select the top 𝜀 percent as edge points. The rationale presented in the paper is that inner
points are expected to have a lower KFN distance than edge points. A more recent variant
uses angle-based search [Ala+20]. The idea of the paper is to initialize the method by the
mean over all observations as the apex and divide the space into a pre-specified number
of cones. For each cone, one only keeps the farthest observation as edge point.

Next, there are methods that select edge points by density-based outlier rankings, e.g.,
DBSCAN [Li+19] and LOF [HZH14]. Here, the assumption is that edge points occur
in sparse regions of the data space. A similar idea is to rank observations with a high
distance to all other observations [Li+18]. Others have suggested to rank observation
highly if they have low density and a large distance to high-density observations [Qu+19].
Naturally, ranking methods require to set a cutoff value to distinguish edge points from
other observations.

Pruning The idea of pruning is to iteratively remove observations from high-density
regions as long as the sample remains “density-connected”. One way to achieve this is by
pruning all neighbors of an observation closer than a minimum distance, starting from
the observation closest to the cluster mean [Sun+16]. However, this approach requires to
set the minimum distance threshold, and a good choice is data-dependent.
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Others There is one method that differs significantly from the other ones [Kra+18]. The
basic idea is to generate artificial outliers to transform the problem into a binary classifica-
tion problem. Based on the augmented data, one can apply conventional sampling methods
such as binary instance reduction. The sampling method then relies on an evolutionary
algorithm where the fitness function is the prediction quality on the augmented data. Fi-
nally, the method only retains the remaining inliers and discards all artificial observations.
However, this requires solving many SVDD instances in each iteration.

To summarize, there are many methods to select a sample for SVDD. However, they
are based upon some intuition regarding the SVDD and do not come with any formal
guarantee for the resulting classification quality when training on the sample. Edge point
detectors, in particular, return an insufficient sample in some cases since they do not
guarantee the coherence of a selected sample, as we will see in Chapter 4. Further, all
existing approaches require to set some exogenous parameter. But the influence of the
parameter values on the sample is difficult to grasp. Finally, existing sampling methods
are designed for the target-only scenario. It is unclear whether they work well with the
outlier scenario.

3.2. Query Synthesis

In this section, we reviewwork onmulti-class query synthesis and one-class active learning.
We also discuss how artificial outlier generation, adversarial attacks, and experimental
design are related to one-class query synthesis.

Multi-class Query Synthesis Research has proposed several approaches for query synthesis
in a binary classification setting. One uses observation pairs that belong to opposite
classes to synthesize queries along the decision boundary [Wan+15]. Two others choose
queries that shrink the version space of potential decision boundaries [AGZ15; CHK17].
Another option is to cluster the data and synthesize a query between the centroids of the
clusters [HWY12; Jos11]. All these approaches require negative examples, which may be
missing in a one-class setting. Next, previous work features handcrafted query synthesis
strategies, e.g., from biology [Kin+04; Kin+09], that do not generalize to other domains.

One-Class Active Learning As we have discussed in Section 2.4.3, all existing one-class
approaches are pool-based query strategies. They compute the informativeness for all un-
labeled observations and then query the best one. Following the categorization in [TEB21],
there are three types of one-class query strategies. The first type, data-based query strate-
gies, select queries independent of the classifier only based on data characteristics such as
densities [Gha+11a; Gha+11b]. The other two types of strategies base on a one-class clas-
sifier that learns a decision boundary, e.g., support vector data description (SVDD) [TD04].
Model-based strategies query the unlabeled observation closest to [Gör+09] or farthest
from [BBJ15] the learned decision boundary. Without unlabeled observations, it is unclear
what a query far away from the decision boundary would be. We will use the idea of query-
ing observations that lie on the decision boundary and combine it with query synthesis.
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The last category of query strategies are hybrid strategies that combine the distance to
the decision boundary with neighborhood information [Gör+13; YWF18]. Data-based and
hybrid query strategies are not suitable for query synthesis. The generated queries are
inserted back into the original data set. These queries then misguide classifiers and query
strategies that work with densities and neighborhoods.

Artificial Outliers Another area where observations are synthesized in the context of
one-class learning is artificial outlier generation. Artificial outliers are used to transform an
unsupervised problem to a supervised one [AZL06; BKB07; Dés+13]. They allow to balance
a classification problem for, say, outlier detection. One can then use traditional binary
classifiers such as a SVM [BKB07]. Literature also suggests to tune the hyper-parameters
of one-class classifiers with synthetic outliers [TD01; Wan+09; Wan+18]. In both use cases,
the goal is to train a classifier with a high outlier detection rate. However, algorithms for
artificial outlier generation are not designed for active learning since they are independent
of the classifier.

Adverserial Attacks Query synthesis is also used in the context of adversarial attacks.
Here, an attacker seeks to evade the detection by a classifier while changing his malfeasance
only minimally. There are approaches that try to reconstruct the decision boundary [LM05;
SK18] or search for an attack instance close to the desired malfeasance that the classifier
does not detect [Nel+12]. Adversarial query strategies assume a fixed classifier, i.e., they
do not consider feedback from an oracle.

Design of Experiments Engineers perform query synthesis to explore the experimental
design space. The literature distinguishes between exploration of this space, i.e., finding
new feasible regions, and exploitation, the refinement in areas with existing observa-
tions [CF17a]. Several approaches take a bounded design space and perform adaptive
sampling [BM08; Bry+06; LJ08; LM12; RP11]. One other approach exists that explores
an unbounded design space [CF17a]. Existing work then trains a surrogate model on the
obtained labels – commonly a Gaussian process classifier [Bry+06; CF17a; LJ08; LM12] or
a SVM [BM08; RP11]. Both models are not applicable since they are binary classifiers and
require labels of both classes.

29





Part II.

Cost-Quality Trade-Offs in One-Class Active
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4. Efficient SVDD Sampling with
Approximation Guarantees for the
Decision Boundary

In the first part of this thesis, we have introduced the basics of one-class active learning. One
of the issues that we have discussed is high classification training costs. In this chapter, we
take a closer look at the cost-quality trade-off one faces with training Support Vector Data
Description (SVDD).1 SVDD is the most popular and actively research one-class classifier
for anomaly and novelty detection [LLC10; TD04; TEB21]. Recall from Section 2.2.3 that
SVDD is an unsupervised classifier that fits a tight hypersphere around the majority of
observations, the inliers, to distinguish them from irregular observations, the outliers.
Despite its resounding success, a downside is that SVDD and its progeny do not scale
well with data size [TEB19]. Even efficient solvers like decomposition methods [Cha+18;
CTK04; Kim+07; Pla98] result in training times prohibitive for many applications. In these
cases, sampling for data reduction is essential [Ala+20; HZH14; Kra+18; Li+18; Li+19; Li11;
Qu+19; Sun+16; Xia+14; Zhu+14].

One of the defining characteristics of SVDD is that only a few observations, the support
vectors, define a decision boundary. Thus, a good sample is one for which SVDD selects
support vectors similar to the original ones, i.e., the ones obtained on the complete data
set. This has spurred the design of sampling methods that try to identify support-vector
candidates in the original data, to retain them in the sample [Ala+20; HZH14; Li+18; Li+19;
Li11; Qu+19; Xia+14; Zhu+14]. A common approach is to select so-called “boundary
points” as support-vector candidates, e.g., observations that are dissimilar [Li11; Zhu+14].
But calibrating existing methods such that they indeed identify boundary points is

difficult. A reason is that the sample they return depends significantly on the choice
of exogenous parameters, and selecting suitable parameter values is not intuitive (see
Section 4.2). A further shortcoming is that including all boundary points in a sample does
not guarantee SVDD training to indeed yield the original support vectors. The issue is
that selection of support vectors hinges on other aspects, such as the ratio between inliers
and outliers in the sample and a sufficient number of non-boundary observations in the
sample. Disregarding them may, for instance, fragment contiguous inlier regions and
yield wrong outlier classifications after sampling, see Figure 4.1. The influence of these
aspects on SVDD is known, but their effects on sample selection are not well studied. It is
an open question how to select a sample where SVDD indeed approximates the original
1 The remainder of this chapter bases on the article [Eng+20a]: Adrian Englhardt et al. “Efficient SVDD

Sampling with Approximation Guarantees for the Decision Boundary”. In: arXiv preprint arXiv:2009.13853
(2020). We have shortened the text to be less repetitive, applied minor corrections, and changed the
formatting and notation so that it is in line with the format and structure of this thesis.
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Competitor Our Method

True Boundary

Sample Boundary

Figure 4.1.: Sample and decision boundary of the state-of-the-art boundary-point method
FBPE [Ala+20] and of our method RAPID.

decision boundary. Finally, a point largely orthogonal to these issues is that there also
is very limited experimental comparison among competitors. This makes an empirical
selection of suitable SVDD sampling methods difficult as well.

Contributions In this chapter, we propose a novel way to SVDD sampling. We make
three contributions. First, we reduce SVDD sampling to a decision-theoretic problem of
separating data using empirical density values. Based on this reduction, we formulate
SVDD sampling as a constrained optimization problem. Its objective is to find a minimal
sample where the density of all observations of the data set is close-to-uniform. We provide
theoretical justification that a sample obtained in this way i) prevents a fragmentation
of the inlier regions, and ii) retains the observations necessary to identify the original
support vectors.

Second, we propose RAPID, an efficient algorithm to solve the optimization. RAPID is
the first SVDD sampling algorithm with theoretical guarantees on retaining the original
decision boundaries. RAPID does not require any parameters in addition to the ones
already required by SVDD. This lets RAPID stand out from existing methods, which all
hinge on mostly unintuitive, exogenous parameters. RAPID further is easy to implement,
and scales well to very large data sets.
Third, we conduct the – by far – most comprehensive comparison of SVDD sampling

methods. We compare RAPID against 8methods on 23 real-world and 85 synthetic data sets.
In all experiments, RAPID consistently produces a small sample with high classification
quality. Overall, RAPID outperforms all of its competitors in the trade-off between runtime,
sample size, and classification accuracy, often by one order of magnitude.

4.1. Density-based Sampling for SVDD

In this section, we present an efficient and effective sampling method for scaling SVDD
to very large data sets. In a nutshell, we exploit that an SVDD decision boundary is in
fact a level-set estimate [VV06], and that inliers are a super-level set. The idea behind our
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θpre

Step 1: Pre-Filtering

dX

pout-th quantile

inlier
outlier

sample

Step 2: Sampling

θmax
θmin

dS

Figure 4.2.: The idea of density-based sampling for SVDD.

Algorithm 1: Pre-filtering
Input :Data set X ∈ R𝑁×𝑀 , Kernel function 𝑘 (𝑥𝑖, 𝑥 𝑗 ),

Outlier percentage 𝑝out ∈ [0, 1]
Output : Indices for inliers I and outliers O, density 𝑑

1 𝑑 = ⟨∑︁𝑁
𝑗=1 𝑘 (𝑥1, 𝑥 𝑗 ), . . . ,

∑︁𝑁
𝑗=1 𝑘 (𝑥𝑁 , 𝑥 𝑗 )⟩ ⊲ O(𝑁 2)

2 𝜃pre = sort-ascending(𝑑)⌊𝑝out·𝑁 ⌋ ⊲ O(𝑁 log𝑁 )
3 I = {𝑖 | 𝑖 ∈ {1, . . . , 𝑁 }, 𝑑𝑖 ≥ 𝜃pre} ⊲ O(𝑁 )
4 O = {𝑖 | 𝑖 ∈ {1, . . . , 𝑁 }} \ I ⊲ O(1)
5 𝑑 = 𝑑−⟨∑︁ 𝑗∈O 𝑘 (𝑥1, 𝑥 𝑗 ), . . . ,

∑︁
𝑗∈O 𝑘 (𝑥𝑁 , 𝑥 𝑗 )⟩ ⊲ O(𝑁 2)

6 return I, O, 𝑑

sampling method is to remove observations from a data set such that the inlier super-level
set does not change. To this end, we show that for the Gaussian kernel, the super-level set
of inliers does not change as long as not-selected observations have a higher density than the
minimum density of selected observations. If a sample violates the density rule, sampling
may produce “gaps”, i.e., regions of inliers that become regions of outliers. Such gaps
curb the SVDD quality. Thus, we strive for a sample of the minimal size that satisfies the
density rule.

Figure 4.2 illustrates our approach. In a first step, we separate the unlabeled data into
outlier and inlier regions based on their empirical density, see Section 4.1.1. We then frame
sample selection as an optimization problem where the constraints enforce the density rule
in Section 4.1.2. In Section 4.1.3 we propose RAPID, an efficient and easy-to-implement
algorithm to solve the optimization problem. RAPID returns a small sample with close-to-
uniform density, i.e., a small sample that still obeys the density rule, and also contains the
boundary points of the original data.
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4.1.1. Density-based Pre-Filtering

Any sampling method faces an inherent trade-off: reducing the size of the data as much
as possible while maintaining a good classification on the sample. Recall that formally a
sample is a subset S ⊆ X of the data set and that we denote 𝑥 ∈ S as selected, and 𝑥 ∉ S as
not-selected observations. This allows us to frame sampling an optimization problem

minimize
S⊆X

|S| (4.1)

subject to diff(𝑓 S, 𝑓 X) ≤ 𝜀,

where diff is a similarity between two decision functions and 𝜀 a tolerable deterioration in
accuracy. Solving Optimization Problem 4.1 requires knowledge of 𝑓 X. But obtaining this
knowledge is infeasible. The reason is that |X| is too large to solve — SVDD would not
need any sampling in the first place otherwise. Thus, one cannot infer which observations
𝑓 X classifies as inlier or outlier. However, we know that the SVDD hyperparameter 𝐶
defines a lower bound on the share of observations predicted as outliers in the training
data [TD04]. A special case is if 𝐶 = 1, since 𝑓 X(𝑥 ; 𝐶 = 1) = in,∀𝑥 ∈ X. Recall that
this is the upper bound of the cost parameter 𝐶 where SVDD degenerates to a hard-
margin classifier, cf. Section 2.2.3. In this case, diff is zero if SVDD trained on S, i.e., 𝑓 S,
also includes all observations within the hypersphere. Further, we can make use of the
following characteristic of SVDD.

Characteristic 1 (SVDD Level-Set Estimator) SVDD is a consistent level set estimator
for the Gaussian kernel [VV06].

In consequence, inliers form a super-level set with respect to the decision boundary.
Formally, this means that there exists a level set 𝐿𝜃 and a corresponding level-set classifier
𝑔X
𝜃
such that 𝑔X

𝜃
≡ 𝑓 X. We can exploit this characteristic as follows. First, we pre-filter the

data based on their empirical density, such that a share of 𝑝out observations are outliers.
Formally, 𝑝out is equivalent to choosing a threshold 𝜃pre on the empirical density, where
𝜃pre is the 𝑝out-th quantile of the empirical density distribution. Using this threshold in a
level-set classifier separates observations into inliers I and outliers O.2

I = {𝑥 ∈ X : 𝑔X
𝜃pre

= in} O = {𝑥 ∈ X : 𝑔X
𝜃pre

= out}.

Second, we replace 𝑓 X with 𝑓 I and set𝐶 = 1. With this, we know that 𝑓 I(𝑥) = in,∀𝑥 ∈ I,
without training 𝑓 I. Put differently, pre-filtering the data with an explicit threshold allows
us to get rid of an implicit outlier threshold 𝐶 . This in turn allows estimating the level
set estimated by SVDD without actually training the classifier. Algorithm 1 is the pseudo
code for the pre-filtering.

Pre-filtering does not add any new exogenous parameter, but replaces the SVDD trade-
off parameter 𝐶 with 𝑝out. Further, 𝑝out is a parameter of SVDD, not of our sampling
method. We also deem 𝑝out slightly more intuitive than 𝐶 , since it makes the lower bound
defined by 𝐶 tight, i.e., pre-filtering assumes an exact outlier ratio of 𝑝out = |O|/|X|. This in
turn makes the behavior of SVDDmore predictable. We close the discussion of pre-filtering
with two remarks.
2 For brevity, we do not use the active learning notation L𝑖𝑛 and L𝑜𝑢𝑡 in this chapter.
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Remark 1 Technically, one may directly use the level-set classifier 𝑔X
𝜃pre

instead of SVDD.
However, classification times are very high, since calculating the kernel density of an unseen
observation is in O(𝑁 ). So one would give up fast classification, one of the main benefits of
SVDD. Next, one may be tempted to interpret this pre-filtering step as a way to transform
an unsupervised problem into a supervised one to train a binary classifier (e.g., SVM) on O
and I. However, binary classification assumes the training data to be representative of the
underlying distributions. This assumption is not met with outlier detection, since outliers may
not come from a well-defined distribution. Thus, binary classification is not applicable.

Remark 2 Pre-filtering is a necessary step with all sampling methods discussed in related
work. In Section 3.1, we have explained that existing sampling methods assume to only have
inliers in the data set, i.e., I = X and O = ∅. However, if X contains outliers, this affects the
sampling quality negatively and leads to poor SVDD results, see Section 4.2.3.

4.1.2. Optimal Sample Selection

After pre-filtering, we can reduce Optimization Problem 4.1 to a feasible optimization
problem. We begin by replacing 𝑓 X with 𝑓 I.

minimize
S⊆X

|S| (4.2)

subject to diff(𝑓 S, 𝑓 I) ≤ 𝜀.

With Characteristic 1, we further know that both classifiers have equivalent level-set
classifiers. We set 𝑔I

𝜃pre
as the equivalent level-set classifier for 𝑓 I. For 𝑓 S, there also exists

a level-set classifier 𝑔S
𝜃 ′, but the level set 𝜃

′ depends on the choice of S. Thus, we must
additionally ensure that 𝜃 ′ indeed is the level set estimated by training SVDD on S. The
modified optimization problem is

minimize
S⊆X

|S| (4.3)

subject to diff(𝑔S
𝜃 ′, 𝑔

I
𝜃
) ≤ 𝜀 (4.3a)

𝑔S
𝜃 ′ ≡ 𝑓

S, (4.3b)

where ≡ denotes the equivalence in classifying S. Constraint 4.3b is necessary, since one
may select a sample that yields a level-set classifier similar to the one obtained from I, but
on which SVDD returns another decision boundary. This can, for instance, occur if S does
not contain the boundary points of I. Optimization Problem 4.3 still is very abstract. We
will now elaborate on both of its constraints and show how to reduce them so that the
problem becomes practically solvable.

Constraint 4.3a We now discuss how to obtain a sample that minimizes diff(𝑔S
𝜃 ′, 𝑔

I
𝜃
). To

this end, we use the following theorem.

Theorem 1 𝑔S
𝜃 ′ ≡ 𝑔

I
𝜃
if 𝑑S is uniform on I.
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Proof Think of a sample S ⊆ I with uniform empirical density 𝑑S. Then S has exactly
one level set 𝜃 ′ = 𝜃min = min𝑥∈S 𝑑S(𝑥). Further, it also holds that 𝑑S(𝑥) = 𝜃min, ∀𝑥 ∈ I. It
follows that min𝑥∈I\S 𝑑S(𝑥) = min𝑥∈S 𝑑S(𝑥), and consequently 𝑔S

𝜃min
(𝑥) = 𝑔I

𝜃
(𝑥),∀𝑥 ∈ I. □

Theorem 1 implies that one can satisfy Constraint 4.3a with 𝜀 = 0 if one reduces the
sample to one with a uniform empirical distribution 𝑑S. However, any empirical density
estimate on a finite sample can only approximate a uniform distribution. So one should
strive for solutions of Optimization Problem 4.3 where 𝜀 is small. Put differently, one can
interpret the difference between a perfect uniform distribution and the empirical density to
assess the quality of a sample. We propose to quantify the fit with a uniform distribution as
the difference between the maximum density 𝜃max = max𝑥∈S 𝑑S(𝑥) and minimum density
𝜃min = min𝑥∈S 𝑑S(𝑥) with

ΔS
fit = 𝜃max − 𝜃min. (4.4)

There certainly are other ways to evaluate the goodness of fit between distributions.
However, ΔS

fit has some desirable properties of the sample, which we discuss in Theorem 2.
One further consequence of only approximating a uniform density is that there may be

some not-selected observations 𝑥 ∈ I \ S with a density value 𝑑S(𝑥) less than 𝜃min. Since
the level set estimated by 𝑓 S is 𝐿𝜃min , these not-selected observations would be wrongly
classified as outliers. Thus, we must also ensure that S is selected so that 𝑑S(𝑥) ≥ 𝜃min,∀𝑥 ∈
I \ S. We can now re-formulate Constraint 4.3a as a sample optimization problem SOP.

SOP : minimize
v,w,𝜃min,𝜃max

𝜃max − 𝜃min (4.5)

subject to
∑︂
𝑗∈I

𝑣 𝑗 ·𝑘 (𝑥𝑖, 𝑥 𝑗 )⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
𝑑S (𝑥𝑖 )

≥ 𝜃min, ∀𝑖 ∈ I (4.5a)

∑︂
𝑗∈I

𝑣 𝑗 ·𝑘 (𝑥𝑖, 𝑥 𝑗 ) ≤ 𝜃max, ∀𝑖 ∈ I (4.5b)∑︂
𝑗∈I

𝑤𝑖 ·𝑣 𝑗 ·𝑘 (𝑥𝑖, 𝑥 𝑗 ) ≤ 𝜃min, ∀𝑖 ∈ I (4.5c)∑︂
𝑗∈I

𝑣 𝑗 > 0;
∑︂
𝑗∈I

𝑤 𝑗 = 1; 𝑣 𝑗 ≥ 𝑤 𝑗 ,∀𝑗 ∈ I ∪ O (4.5d)

𝑣 𝑗 = 0,∀𝑗 ∈ O; 𝑣 𝑗 ,𝑤 𝑗 ∈ {0, 1},∀𝑗 ∈ I ∪ O (4.5e)

where I = {𝑖 | 𝑖 ∈ {1, . . . , 𝑁 }, 𝑥𝑖 ∈ I}, O = {1, . . . , 𝑁 } \ I. The decision variable 𝑣 𝑗 = 1
indicates if an observation 𝑥 𝑗 is in S, i.e., S = {𝑥𝑖 ∈ X | 𝑣𝑖 = 1}. Constraint 4.5b is a
technical necessity to obtain the maximum density of 𝑑S. The first constraint in 4.5d rules
out the trivial solution 𝑣 = 0⃗. The first constraint in 4.5e results from the pre-filtering, cf.
Section 4.1.1. If the solution set of SOP is not singular, we select the solution where |S| is
minimal to minimize training time.
Constraints 4.5a, 4.5c, and 4.5d together guarantee that the density of not-selected

observations is at least 𝜃min, as follows. Only for one observation 𝑗 we have𝑤 𝑗 = 1 and for
all other observations 𝑖 ≠ 𝑗, 𝑤𝑖 = 0. Then for Constraint 4.5c and 4.5d to hold, 𝑗 must be
the observation with the minimum density and 𝑑S(𝑥 𝑗 ) = 𝜃min. Additionally, with 𝑣 𝑗 ≥ 𝑤 𝑗
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it follows that 𝑣 𝑗 = 1, thus observation 𝑗 is in the sample S. So, for any feasible solution of
SOP all not-selected observations have a density of at least the minimum density of the
selected observations. From 4.5a, it follows that 𝑑S(𝑥) ≥ 𝜃min,∀𝑥 ∈ I. So any solution of
SOP satisfies Inequality 4.3a with a small 𝜀.

Constraint 4.3b We now show that a solution of SOP also satisfies Constraint 4.3b. To
this end, we make use of the following characteristic.

Characteristic 2 (Boundary Points) The set of boundary points are a superset of the
support vectors of SVDD [TD04].

So for Constraint 4.3b to hold, an optimum of SOP must contain boundary points of I. We
show that a solution with boundary points is preferred over one without boundary points
by the following theorem.

Theorem 2 The set of boundary points does not change when solving SOP iteratively.

Proof Suppose that there is a sample S which is not a local optimum of SOP. Then there
is a boundary point 𝑥min = arg min𝑥∈S 𝑑S(𝑥), an observation 𝑥max = arg max𝑥∈S 𝑑S(𝑥) and
𝑥𝑝 ∈ S. Let S𝑝 = S\{𝑥𝑝} and Smax = S\{𝑥max}. If removing 𝑥𝑝 from S is an optimal choice,
no other observation reduces the objective more than 𝑥𝑝 . Thus, the following specific case
must hold:

Δ
S𝑝
fit ≤ ΔSmax

fit
⇔ 𝜃max−𝑘 (𝑥𝑝, 𝑥max)−(𝜃min−𝑘 (𝑥𝑝, 𝑥min))
≤ 𝜃max−𝑘 (𝑥max, 𝑥max)−(𝜃min−𝑘 (𝑥max, 𝑥min))

⇔ 𝑘 (𝑥𝑝, 𝑥max)−𝑘 (𝑥𝑝, 𝑥min) ≥ 1−𝑘 (𝑥max, 𝑥min).

(4.6)

We conclude that 𝑥𝑝 = 𝑥min is not feasible, because in this case the left hand side of
Inequality 4.6 is strictly negative, and right hand side positive. Since boundary points
have, per Definition 2, a density close to 𝜃min, they cannot be a candidate for removal.
Next, under two assumptions that (A1) the locations of the maximum and of the mini-

mum density are distant from each other, and that (A2) the kernel bandwidth is sufficiently
small, we have 𝑘 (𝑥max, 𝑥min) → 0, and 𝑘 (𝑥𝑝, 𝑥max) − 𝑘 (𝑥𝑝, 𝑥min) ≥ 1⇔ 𝑥𝑝 = 𝑥max. So in
this case, removing 𝑥max is optimal. From this, it also follows that the minimum density
does not significantly change when removing 𝑥max. With Definition 2, it follows that also
the set of boundary points does not change after removing 𝑥max. □

Remark 3 Our proof hinges on two assumptions: (A1) A sufficiently large distance between
𝑥max and 𝑥min. This assumption is intuitive since removing an observation with a density
close to max𝑥∈S 𝑑S(𝑥) improves Δfit more than removing one close to min𝑥∈S 𝑑S(𝑥). Generally,
the distance between 𝑥max and 𝑥min depends on the data distribution. However, we find that
this is not a limitation in practice, see Section 4.2. (A2) A sufficiently small kernel bandwidth.
This assumption is reasonable because when selecting the kernel bandwidth, one strives to
avoid underfitting, i.e., avoid a kernels bandwidth that is too wide. This holds empirically as
well, see Section 4.2.
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Algorithm 2: RAPID
Input :Data set X ∈ R𝑁×𝑀 , Kernel function 𝑘 (𝑥𝑖, 𝑥 𝑗 ),

Outlier percentage 𝑝out ∈ [0, 1]
Output :Sample indices S
⊲ Pre-filtering, see Algorithm 1

1 I,O, 𝑑 = pre-filtering(X, 𝑘, 𝑝out) ⊲ O(𝑁 2)
⊲ Sampling

2 S = I
3 for iter← 1 . . . |I | − 1 do ⊲ O(𝑁 2)
4 𝑟 = arg max𝑖∈S 𝑑𝑖
5 𝑑 = 𝑑 − ⟨𝑘 (𝑥1, 𝑥𝑟 ), . . . , 𝑘 (𝑥𝑁 , 𝑥𝑟 )⟩
6 𝜃min = min𝑖∈S (𝑑𝑖)
7 if ∃ 𝑖 ∈ I : 𝑑𝑖 < 𝜃min then
8 return S
9 end

10 S = S \ {𝑟 }
11 end
12 return S

Remark 4 Overfitting the kernel parameter of SVDD affects all sampling methods. When
the kernel bandwidth is very small, removing any observations from a sample yields a decision
boundary that is different from the one obtained with training on the full data set. For SOP an
overfitted kernel bandwidth results in density values of approximately 1 for all observations
with the Gaussian kernel, i.e., the density is already uniform. The objective function of SOP
then is already minimal, with a value of 0. Thus, SOP does not remove any observation from
the sample and retains the original decision boundary. In practice, one can rely on one of the
many heuristics to choose a suitable kernel parameter to avoid overfitting, see for example
our choice in Section 4.2.1.

SOP is theoretically appealing. However, it is a mixed-integer problem with non-convex
constraints, and it is hard to solve. Thus, solver runtimes quickly become prohibitive, even
for relatively small problem instances – this contradicts the motivation for sampling. We
therefore propose RAPID, a fast heuristic to search for a local optimum of SOP.

4.1.3. A RAPID Approximation

The idea of our approximation is to initialize S = I, which is a feasible solution to SOP,
and remove observations from S iteratively as long as S remains feasible, see Algorithm 2.
RAPID is a fast greedy algorithm, i.e., it may not produce the smallest sample with
uniformity, cf. objective function of SOP. However, the proofs for SOP that sampling
retains the decision boundary also hold for RAPID.
As input parameters RAPID takes the data set X, the expected outlier percentage 𝑝out

and a kernel function 𝑘 . Line 1 is the pre-filtering. RAPID then iteratively selects the
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most dense observation 𝑥max in the current sample S for removal (Line 4) and updates the
densities (Line 5). If S \ {𝑥max} is infeasible, RAPID terminates (Line 6–8). Line 7 checks
whether there is an observation 𝑥𝑖 ∈ I that violates Constraint 4.5a. As required by SOP,
RAPID does not remove boundary points. This is because 𝑥max must not be a boundary
point, as long as S is not uniform, i.e., ΔS

fit > 0. Thus, a solution of RAPID satisfies both
Constraint 4.3a and Constraint 4.3b. The return in Line 12 is the special case where a
single observations remains in the sample. In this case uniformity is achieved with one
observations, i.e., all observations are equal.

The overall time complexity of RAPID is in O(𝑁 2), see Algorithm 1 and Algorithm 2 for
the step-wise time complexities. Further, RAPID is simple to implement with only a few
lines of code. It is efficient, since each iteration (Line 4–8) only requires one pass over the
data set to update the densities, compute the new 𝑥max, 𝜃min and minimum inlier density
for the termination criterion. One may further pre-compute the Gram matrix K for X to
avoid redundant kernel function evaluations.

4.2. Experiments

We now turn to an empirical evaluation of RAPID. Our evaluation consists of two parts.
In the first part, we evaluate how well RAPID copes with different characteristics of the
data, i.e., with the dimensionality, the number of observations, and the complexity of the
data distribution, see Section 4.2.2. The second part is an evaluation on a large real-world
benchmark for outlier detection, see Section 4.2.3. We have implemented RAPID and the
competitors in an open-source framework written in Julia [Bez+17]. Our implementation,
data sets, raw results, and evaluation notebooks are publicly available. 3

4.2.1. Setup

We first introduce our experimental setup, evaluation metrics, and the parametrization of
SVDD and its competitors. Recall that RAPID does not have any exogenous parameter.
One must only specify 𝑝out instead of the SVDD hyperparameter 𝐶 , cf. Section 4.1.1.

Metrics Sampling methods trade classification quality for sample size, and one must
evaluate this trade-off explicitly. We report the sample size |S| and sample ratio |S|/|X| for
each result. For classification quality, we calculate the Matthews Correlation Coefficient
(MCC) as introduced in Section 2.5.2. Our experiments do not require a train-test split,
since all sampling methods are unsupervised. For non-deterministic methods, we report
average values over five repetitions. Our experiments ran on an AMD Ryzen Threadripper
2990WX with 64 virtual cores and 128 GB RAM.

SVDD SVDD requires to set two hyperparameters: the Gaussian kernel parameter 𝛾 and
the trade-off parameter𝐶 . We tune 𝛾 with Scott’s Rule [Sco15] for real-world data. For high-
dimensional synthetic data, however, we found that the Modified Mean Criterion [Lia+18]
is a better choice. Because of pre-filtering we set 𝐶 = 1, cf. Section 4.1.1.
3 https://www.ipd.kit.edu/ocs
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Competitors We compare our method against 8 competitors, see Table 3.1. The ap-
proaches from [Qu+19] and [Kra+18] require to solve several hundreds of SVDDs, re-
sulting in prohibitive runtimes. We do not include them in our evaluation. We initialize
the exogenous parameters according to the guidelines in the original publications. In
some cases, the recommendations do not lead to a useful sample, e.g., S = ∅. To ensure a
fair comparison, we mitigate these issues by fine-tuning the parameter values through
preliminary experiments.
Next, we compare two variants of each competitor: sampling on X as in their original

version, and sampling on I, i.e., after applying our pre-filtering. The pre-filtering requires
to specify the expected outlier percentage 𝑝out. In practice, one can rely on domain
knowledge or estimate it [Ach+10]. To avoid any bias when over- or under-estimating the
outlier percentage, we set it to the true percentage. Nevertheless, we have run additional
experiments where we deliberately deviate from the true percentage. We found that
deviating affects the performance of all sampling methods similarly. So, our conclusions
do not depend on this variation, and we report the respective results in the supplementary
materials.3

We also evaluate against random baselines. Each baseline Randr returns a random subset
with a specified sample ratio 𝑟 . We report results for a range of sample ratios 𝑟 ∈ [0.01, 1.0]
to put the quality of competitors into perspective. When choosing the 𝐶 parameter of
SVDD for the random baseline, one must observe that outliers may be part of the selected
sample. However, in experiments of ours, we have observed that 𝐶 = 1 generally yields
the most competitive baseline even if some outliers are part of the training data. Training
a 𝑟 = 1 baseline on the full data set is prohibitive for large data sets. So we only report the
values for the smaller data sets.

4.2.2. Evaluation of Sample Characteristics

The first part of our experiments validates various properties of RAPID and its competitors.
Our intention is to give an intuition of how a sample is selected, and to explore under
which conditions the sampling methods work well. The basis for our experiments are
synthetic data sets with controlled characteristics. Specifically, we generate data from
Gaussian mixtures with varying number of mixture components, data dimensions, and
number of observations. We run these experiments to answer the following two questions.
Q1 How are observations in a sample distributed?

To get an intuition about the sample distribution, we run RAPID and the competitors
on a bi-modal Gaussian mixture, see Figure 4.3. The tendencies of the methods to select
boundary points and inner points are clearly visible. For instance, BPS only selects a
sparse set of boundary points; IESRSVDD only prunes high-density areas. RAPID selects
both the boundary points and a uniformly distributed set of inner points. The decision
boundary of RAPID matches the one obtained from the complete data set perfectly. Only
three competitors (DAEDS, IESRSVDD, and NDPSR) also result in an accurate decision
boundary. But all of them produce significantly larger sample sizes than RAPID.
Q2 To what extent do data characteristics influence a sample and the resulting

classification quality?

42



4.2. Experiments

RAPID (|S| = 31, |FP| = 0) BPS (|S| = 8, |FP| = 13) DAEDS (|S| = 77, |FP| = 0)

DBSRSVDD (|S| = 9, |FP| = 227) HSR (|S| = 398, |FP| = 0) IESRSVDD (|S| = 195, |FP| = 0)

FBPE (|S| = 36, |FP| = 6) KFNCBD (|S| = 80, |FP| = 139) NDPSR (|S| = 95, |FP| = 0)

Figure 4.3.: Sampling strategies applied to a synthetic Gaussian mixture with two compo-
nents and 𝑁 = 400. The gray points are the original data set and the red/blue
diamonds the selected observations. The original decision boundary is the
gray line and the red/blue one is the boundary trained on the sample. |S| is the
sample size and |FP| the number of misclassified inliers.

To explore this question, we individually vary the number of observations, the dimen-
sionality, and the number of the mixture components. In the following visualizations, an
optimal sampling always yields a MCC of 1 in the upper row and very small sample sizes
in the bottom row, i.e., altering any data characteristic does not influence the sampling.
Some values for the competitors are missing since the sample has been empty.

Number of observations: Ceteris paribus, increasing the number of observations should
not have a significant impact on the observations selected. This expectation is reasonable
since increasing the data size does not change the underlying distribution and the true
decision boundary. Figure 4.4a graphs the sample quality and sample size for the different
methods. Many competitors (BPS, IESRSVDD, KFNCB, and DAEDS) do not scale well with
more observations, i.e., the sample sizes increase significantly. BPS scales worst and only
removes a tiny fraction of observations. Further, the sample quality drops significantly
with more than 500 observations for some competitors (DBSRSVDD and HSR). RAPID, on
the other hand, is robust with increasing data size, for both sample quality and sample size.
The sample sizes returned are small, even for large data sets, and the resulting quality is
always close to MCC = 1.0.
Dimensionality: The expectation is that the sample quality does not deteriorate with

increasing dimensionality. However, sample sizes may increase slightly. This is because
learning a decision boundary of a high-dimensional manifold requires more observations
than of a low-dimensional one. Figure 4.4b shows the sample quality and size. For
some competitors (HSR, NDPSR, and KFNCBD), sample quality decreases with increasing
dimensionality. This indicates that they do not select observations in all regions, which
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(a) Scaling N
(M=50, #Components=5)

(b) Scaling M
(N=1000, #Components=5)

(c) Scaling #Components
(N=1000, M=50)
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Figure 4.4.: Evaluation on synthetic data with varying data size (N), dimensionality (M),
and complexity (#Components). An optimal sampling always yields a MCC of
1 in the upper row and very small sample size in the bottom row, i.e., altering
any data characteristics does not influence the sampling. Some values for the
competitors are missing due to an empty sample.

leads to misclassification. Even tuning exogenous parameter values does not mitigate
these effects. RAPID returns a small sample in all cases, with high classification accuracy.

Number of Mixture Components: Finally, we make the data set more difficult by increas-
ing the number of Gaussian mixture components. Like before, we expect sample sizes to
increase slightly since the generated manifolds are more difficult to classify. Figure 4.4c
shows the sample quality and size. For HSR and DBSRSVDD, sampling quality fluctuates
significantly. NDPSR and DBSRSVDD do not prune any observation with only one com-
ponent. We think that these effects are due to the sensitivity to the exogenous parameters
of the various methods. This is, methods with fluctuating results would require different
parameter values for data sets of different difficulties. However, the competitors do not
come with a systematic way to choose parameter values to adapt to varying data set
difficulty. RAPID in turn, is very robust to changes in difficulty. As expected, the sample
size increases only slightly with increasing difficulty. The classification accuracy is close
to MCC = 1.0, even for high difficulties.

In summary, our experiments on synthetic data reveal that many competitors are sensitive
to data size, dimensionality, and complexity. Different parameter values may mitigate the
effects in a few cases, but selecting good values is difficult. RAPID, on the other hand, is very
robust. It adapts well to different data characteristics and without any parameter tuning.
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Figure 4.5.: Median MCC and ratio of observations removed by sampling (1 - sample ratio
= (𝑁−|S|)/|X|) over real-world data.5 Rand is shown for different 𝑟 ∈ [0.01, 1.0].
BPS with pre-filtering did not solve for large data sets.

4.2.3. Benchmark on Real-World Data

Next, we turn to data sets with real distributions and more diverse data characteristics.
The basis for our experiments are 23 standard benchmark data sets for outlier detec-
tion [Cam+16] that we have introduced in Section 2.5.1. Recall that Campos et al. con-
structed this benchmark from classification data where one of the classes is downsampled
and labeled as outlier. The data sets have different sizes (80 to 49 534 observations), di-
mensionality (3 to 1555 dimensions), and outlier ratios (0.2 % to 75.38 %, median 9.12 %4).
Again, we structure our experiments along two questions.

Q3 How well do methods adapt to real-world data sets?

First, we compare RAPID against competitors without any pre-processing. Figure 4.5
plots the median sample ratio against the SVDD quality over all data sets.5 Good sampling
methods return small sample ratios and yield high SVDD quality, i.e., they appear in the
upper right corner of the plot. All of the competitors in their original version, i.e., without
pre-filtering, result in poor SVDD quality, much lower than the Rand baselines. The reason
is that they expect all observations to be inliers.
With our pre-filtering, SVDD qualities of competitors improve considerably, see Fig-

ure 4.5 and Table 4.1. Still, RAPID outperforms its competitors; none of them produces a
sample with higher SVDD quality or smaller sample size than RAPID. The methods closest
to RAPID are DAEDS and IESRSVDD, with similar SVDD quality but significantly larger
sample sizes. On average, the sample selected by RAPID even yields the same quality as
training a SVDD without sampling.6

Q4 What are the runtime benefits of sampling?

4 Only the data set “Parkinson” has an outlier percentage higher than 40%.
5 We report the median statistics, but results also hold for mean values and individual comparisons (ranks),
see https://www.ipd.kit.edu/ocs.
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Table 4.1.: Median metrics over real-world data.5

runtimes sample quality
𝑡samp 𝑡train 𝑡class

∗ size ratio MCC
RAPID 0.02 0.02 0.01 21 0.03 0.13
BPS† 0.61 0.47 0.15 385 0.60 †
DAEDS 0.59 0.04 0.07 98 0.17 0.12
DBSRSVDD 0.01 0.02 0.01 40 0.07 0.03
FBPE 0.07 0.02 0.01 39 0.06 0.06
HSR 0.47 0.07 0.03 130 0.36 0.04
IESRSVDD 0.02 0.10 0.03 154 0.22 0.12
KFNCBD 0.53 0.06 0.04 100 0.18 0.05
NDPSR 0.51 0.07 0.03 103 0.21 0.08

* time for classification in seconds per 1000 observations.
† did not solve for large data sets.

Finally, we look at the impact of sampling on algorithm runtimes, see Table 4.1. We
measure the execution runtimes of the sampling method (𝑡samp), of SVDD training on
the sample (𝑡train), and of the classification (𝑡class). Overall, all methods have reasonable
runtimes for sampling, with BPS being the slowest with 0.61 s on average. However,
RAPID is the fastest method overall. Methods with runtimes similar to RAPID, such as
DBSRSVDD, feature significantly lower SVDD quality. Compared to SVDD applied to
large original data sets without sampling, RAPID reduces training times from over one
hour to only a few seconds.6

In summary, RAPID outperforms its competitors on real-world data as well. There is no
other method with higher SVDD quality and similarly small sample sizes. RAPID scales very
well to very large data sets and reduces overall runtimes by up to one order of magnitude.

4.3. Summary

In this chapter, we have studied the trade-off between classification quality and classifica-
tion training costs for SVDD. Since SVDD does not scale well to large data sets, working
with a sample instead of the original data has received much attention in literature. Various
existing sampling approaches guess the support vectors of the original SVDD solution
from data characteristics. These methods are difficult to calibrate because of unintuitive
exogenous parameters. They also tend to perform poorly regarding outlier detection. One
reason is that including support vector candidates in the sample does not guarantee them
to indeed become support vectors.
We have addressed these issues in this chapter. We have formalized SVDD sample

selection as an optimization problem, where constraints guarantee that SVDD indeed
6 Based on data sets with non-prohibitive runtime, i.e., 𝑁 < 25 000, see https://www.ipd.kit.edu/ocs for

details.
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yields the correct decision boundaries. We have achieved this by reducing SVDD to a
density-based decision problem, which gives way to rigorous arguments why a sample
indeed retains the decision boundary. To solve this problem effectively, we have proposed a
novel iterative algorithm named RAPID. RAPID does not rely on any additional parameter
tuning beyond the one already required by SVDD. RAPID is efficient and consistently
produces a small high-quality sample. Our experiments have shown that our way of
framing sampling as an optimization problem allows us to substantially outperform existing
methods with respect to runtimes, sample sizes, and classification accuracy.
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5. Batch Selection for One-Class Active
Learning

In the last chapter, we have proposed a new approach for sampling to reduce the clas-
sification training costs of the one-class classifier SVDD. In this chapter, we propose an
orthogonal extension to sampling to further reduce the classifier training costs. We in-
vestigate how we can use the concept of delaying classifier updates (cf. Section 2.3.3) to
reduce costs.

As discussed in Section 2.4.3, query strategies for one-class active learning are sequen-
tial.1 Once the oracle has provided a class label for a single observation, the active learning
system retrains the classifier. But there are cases when the sequential mode is unfavorable,
e.g., when classifier retraining is slow [TEB19], if several annotators are available in paral-
lel [Set11], or with changeover costs of experiments and simulations [GK11]. In such cases,
it seems natural to ask the oracle to annotate a batch of observations at a time. However,
the benefit of batch active learning hinges on trade-offs between the cost of active learning,
which comprises the costs for query selection, classifier training and annotation, and the
increase in classification quality. Literature tends to oversimplify these trade-offs: Large
batches yield slower learning rates, but they reduce the overall cost of active learning because
of less frequent classifier training, see [LG94; OJM17] for example. In reality, however, batch
selection is more involved. For example, it is difficult to model the cost terms or to select
a good batch size. Further, selecting a good batch requires (i) quantifying the expected
utility of a batch, and (ii) a strategy to traverse the space of candidate batches, which is
prohibitively large. These issues have not been studied for one-class active learning so far.
We are the first to study when exactly batch one-class active learning is useful, compared
to the sequential case. We break this motivation down into three specific questions:
(Q1) How can batch utility be quantified in the one-class setting?
(Q2) What are suitable schemes to select candidate batches?
(Q3) Is there a sweet spot between the costs of batch active learning and classification

accuracy?
Studying these questions is difficult. First, there are multiple ways to approach batch

selection, with varying levels of complexity. One example is the different models for
annotation costs. The costs can either be constant per label, decrease with the batch size,
or depend on the individual queries of the batch [Set11]. While some of these aspects
1 The remainder of this chapter bases on the article [Eng+20b]: Adrian Englhardt et al. “Finding the Sweet

Spot: Batch Selection for One-Class Active Learning”. In: SIAM International Conference on Data Mining
(SDM). SIAM. 2020, pp. 118–126. doi: 10.1137/1.9781611976236.14. We have shortened the text to be
less repetitive, applied minor corrections, and changed the formatting and notation so that it is in line
with the format and structure of this thesis.
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have been mentioned in literature, there neither exists an overview nor a formal model of
them. This makes it very hard to understand the trade-offs, to detect simplifications of the
batch-selection problem, and to justify the benefit of batches.

Second, literature does not feature a method to calculate the batch utility for one-class
active learning. In other domains, such as multi-class classification, the naive alternative to
select the top-k sequential queries for a batch often is sub-optimal, since these observations
tend to be similar to each other [Set12; She+04; SZ05]. Different ways to approach this issue
are conceivable, e.g., by introducing notions like batch diversity and representativeness.
But which notions actually are useful in a one-class setting, and how to possibly combine
them into one aggregate measure is unclear.
Finally, batch selection is a combinatorial problem: there are 2𝑁 − 1 potential batches

for 𝑁 unlabeled observations. Current work on batch utility is confined to balanced do-
mains and multi-class classification [Cha+13; RV18; WY15]. However, one-class problems
have several distinctive properties, such as a significant class imbalance and undefined
densities for the outlier class. These properties require specific sequential selection strate-
gies [TEB21], and we expect this for batch strategies as well.

Contributions This chapter features the first principled approach to batch active learning
for one-class classification. We make two specific contributions: (i) We formalize batch
selection as a general and comprehensive optimization problem. Our framework trades
off batch utility against annotation, batch-selection, and classification costs under varying
batch sizes. To our knowledge, this is the first formal framework that makes assumptions
and simplifications for batch selection explicit. (ii) We propose several strategies to measure
batch utility, specific to one-class classification. We then combine our utility measures with
search strategies from four categories: top-k, iterative, partitioning, and filtering strategies.
We discuss their theoretical properties and compare them empirically on real-world data
against sequential selection and random baselines.
An important takeaway from this chapter is that batch queries with outlier detection

are indeed different from their multi-class counterparts. In contrast to the multi-class
case, batch diversity is not essential. Instead, selecting the top-k observations by infor-
mativeness suffices for good learning rates. There also is a sweet spot, and it is to use
the top-k observations ranked by a sequential strategy with batch sizes between 8 and 16
observations. This decreases computational cost by up to one order of magnitude, while
retaining the classification accuracy from the sequential case.

5.1. Formalization

In this section, we derive a formal model of batch selection, by framing it as an optimization
problem. We start with theoretical considerations and then propose simplifications.
Batch active learning selects a sequence of sets of observations for annotation and

retrains a classifier after each set has been annotated. The ultimate objective is that
the model has good classification accuracy after the last batch has been annotated. In
general, annotations have a positive expected marginal utility. This is because each
one provides additional information that helps to improve the classification model. But
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annotations may introduce a short-term bias, which can deteriorate classification accuracy
temporarily [Ber+18]. This bias diminishes when more annotations become available.
Next, one further assumes that active learning is subject to some budget restriction as
we have discussed in Section 2.3.3. For one, annotations require resources of real entities,
such as humans or technical equipment. Next, retraining a classifier and searching for
a good batch requires computational resources. One can assign resources specific costs,
be they monetary, be they in time equivalents, and restrict the resources to the budget
available. Existing cost-sensitive approaches merely focus on the annotation costs [CBP10;
Hae+08; TH19; TL19] and lack a comprehensive model.

5.1.1. A Theoretical Model

We have a data set X with 𝑁 observations and ground truth labels are 𝑦 ∈ {inlier, outlier}.
Formally, the objective of batch selection is to find a sequence of batches B = (𝐵1, . . . , 𝐵𝑙 )
where 𝐵𝑖 ∈ P(X), 𝐵𝑖 ∩ 𝐵 𝑗≠𝑖 = ∅ that yields the best possible classification accuracy 𝑎𝑐𝑐 on
data X with labels 𝑦, with a semi-supervised classifier that trains a𝑚𝑜𝑑𝑒𝑙 on the annotated
observations

⋃︁
𝐵𝑖∈B 𝐵𝑖 = L and the remaining observations U, a budget 𝑇 , and a cost

function 𝑐 : 𝐵𝑖 ↦→ R. Formally:

maximize
B

acc
(︄
model

(︄⋃︂
𝐵𝑖∈B

𝐵𝑖 ∪U
)︄
,X, 𝑦

)︄
subject to 𝑐 (B) ≤ 𝑇 .

This optimization problem only is of theoretical value, for two reasons. First, calculating
𝑎𝑐𝑐 requires access to ground truth labels. Since the very objective of active learning is
to obtain these labels, one cannot solve this optimization problem directly. Instead, one
must estimate the value of annotating a batch by a utility function 𝑢 that is independent
of a ground truth. One can interpret 𝑢 as a proxy, i.e., a high utility value of a batch is
expected to improve classification accuracy. An important property of 𝑢 is that it depends
on all batches that have already been annotated. This is because annotated batches provide
information on the classification problem that the batch selection method in turn, can use
when selecting future batches. So the optimal sequence of batches is the one with the
maximum cumulative utility, i.e.,

∑︁𝑙
𝑖=1𝑢 (𝐵𝑖 |

⋃︁𝑖−1
𝑗=1 𝐵 𝑗 ).

Second, the cost function is difficult to estimate. On the one hand, the various costs
depend on each other. For instance, humans may idle during classifier retraining, but
this only is cost-relevant when they cannot resort to some intermediary tasks. On the
other hand, annotation costs may vary over time, e.g., because of the complexity of the
query [Set11; TL19] or because humans become more experienced with annotating.
While this optimization problem is theoretical, it is important to state it to specify the

goal of batch active learning. The problem is a basis for deriving another problem that
one can solve in practice. Existing literature omits this step and performs batch selection
for each iteration of active learning independently.
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5. Batch Selection for One-Class Active Learning

5.1.2. A Relaxed Model

A simplification is to relax the budget constraint, as follows. First, one only restricts the
number of annotations. So the constraint becomes |⋃︁𝑙

𝑖=1 𝐵𝑖 | ≤ 𝑇, 𝑇 ∈ N. The second
simplification is to include the cost as independent and commensurable terms 𝑐𝑠 (select),
𝑐𝑎 (annotate), and 𝑐𝑡 (train) in the objective function. This may require normalizing cost
and utility terms. This gives

maximize
B

𝑙∑︂
𝑖=1

𝑢 (𝐵𝑖 |
𝑖−1⋃︂
𝑗=1
𝐵 𝑗 )−𝑐𝑠 (𝐵𝑖)−𝑐𝑎 (𝐵𝑖)−𝑐𝑡 (𝐵𝑖)

subject to |
𝑙⋃︂
𝑖=1

𝐵𝑖 | ≤ 𝑇, 𝑇 ∈ N, 𝐵0 = ∅.

Obtaining a solution to this relaxed problem still is difficult. Namely, as explained earlier,
the utility of 𝐵𝑖 depends on all previous batches. But the actual annotation of these batches
is not available at the time of optimization. At first sight, a remedy would be to calculate
the expected utility based on simulating all possible outcomes (inlier or outlier), for all
batches. However, the state space to consider is P(X × {𝑖𝑛𝑙𝑖𝑒𝑟, 𝑜𝑢𝑡𝑙𝑖𝑒𝑟 })𝑙 . Traversing
this space is prohibitive for a reasonably large number of observations, since it requires
retraining the classifier in each state.

5.1.3. A Practical Model

Tomake solving the optimization problem feasible, one can use an additional simplification.
Instead of optimizing for all batches (𝐵𝑖, . . . , 𝐵𝑙 ), the optimization variable only is the
current batch 𝐵𝑖 , after (𝐵1, . . . , 𝐵𝑖−1) have already been annotated. This allows to separate
the problem into two nested problems. The inner one is to find a good batch for a given
batch size 𝑘 . For this inner problem, only annotation costs are relevant. The reason is that
classifier retraining, as well as the search for a batch, are the same for all batch candidates
of size 𝑘 . The outer problem is to find an optimal 𝑘 . Formally:

max
𝑘

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎜⎜⎝
max

𝐵𝑖∈P=𝑘 (U)
𝑢 (𝐵𝑖 |

𝑖−1⋃︂
𝑗=1
𝐵 𝑗 ) −

∑︂
𝑥∈𝐵𝑖

𝑐𝑎 (𝑥, 𝐵𝑖)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
inner problem

⎞⎟⎟⎟⎟⎟⎟⎟⎠
−𝑐𝑡 (𝑘) − 𝑐𝑠 ·

(︃
|U|
𝑘

)︃]︃
· 𝑇
𝑘
.

Here, 𝑐𝑡 depends on k if the classifier is incremental, i.e., retrained 𝑘 times. Further, there
are

(︁ |U|
𝑘

)︁
possible batches of size 𝑘 to consider. The last term 𝑇

𝑘
is a technical constraint to

adhere to the budget restriction. It implicitly assumes that 𝑘 is fix for all batches, and that
𝑘 ∈ { 𝑗 ∈ N| (∃𝑖 ∈ N) [𝑖 · 𝑗 = 𝑇 ]}. However, this restriction is not crucial. In practice, one
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can repeat the optimization after the first batch is annotated, with the remaining budget
𝑇 ′ = 𝑇 − 𝑘 . The nested problem now gives way to model the cost terms as follows.

Classifier training: There is an essential difference between incremental and non-incre-
mental classifier training. If a classifier features dynamic updates, 𝑐𝑡 linearly depends on 𝑘 .
Otherwise, 𝑐𝑡 is constant, i.e., there only occurs one full retraining per batch. However, 𝑐𝑡
is likely to be much higher for a full retraining than in the incremental case.
Batch Selection: 𝑐𝑠 requires to calculate the utility for each possible batch. Thus, 𝑐𝑠 is

multiplied with the number of possible batches of size 𝑘 .
Annotation: The costs of annotation are specific for each observation and may depend

on the batch [Set11; TL19]. Further, observations may be easier to annotate in sufficiently
large batches [Set11]. However, a very common simplification is to assume identical
annotation costs for all observations independently of the batch size [CBP10]. In this case,
𝑐𝑎 (·) reduces to 𝑐𝑎 · 𝑘 and becomes part of the outer problem, since it only depends on 𝑘 .

With these simplifications, the inner problem depends solely on 𝑢. This is convenient
since it allows considering utility calculation and cost estimation independently. Put
differently, the inner problem, i.e., finding a batch of size 𝑘 with maximal utility, can be
studied independently of any cost function. So the remaining problem to solve under the
given simplifications is to find a batch of size 𝑘 given already annotated observations L by
evaluating a given utility function 𝑢. One can then vary 𝑘 and 𝑢 to find good batch sizes
and a suitable utility function.

5.2. Method

In this section, we propose different batch strategies for one-class active learning. First,
we discuss different criteria to measure batch utility. Then we present batch strategies to
select a batch based on these criteria.

5.2.1. Batch Utility

Intuitively, a utility function 𝑢 quantifies the expected benefit of annotating one or more
observations with respect to the classification accuracy. In the sequential case, 𝑢 is a
function 𝑢seq : X → R, i.e., it assigns a utility per observation. For batch selection, the
function is of type𝑢 :P(X) → R. So𝑢 quantifies the utility of a set. This allows considering
inter-observation relationships. For instance, annotating similar observations may have
information overlap, and having them in one batch can be suboptimal. So 𝑢 typically
considers three criteria: informativeness, representativeness, and diversity [She+04]. In
the following, we elaborate on these criteria, review different possibilities to implement
them with one-class classifiers, and describe our choice for this chapter. We focus on
general ways to quantify these criteria and do not consider application-specific ones, like
remote sensing [SDZ15] or document relevance [XAZ07].

5.2.1.1. Informativeness

Recall from Section 2.3 that informativeness is a function 𝜏 (𝑥) that quantifies how much
a classifier is expected to benefit from knowing the label of a single observation 𝑥 ∈ X.
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5. Batch Selection for One-Class Active Learning

There are several categories of informativeness functions, and many of them have been
proposed explicitly for one-class classification [TEB21] and we have already discussed
them in Section 2.4.3.

Our choice: We choose the two model-based query strategies that work with the decision
function 𝑓 of a one-class classifier (cf. Section 2.2.3). The first one is 𝜏DB and the second
one is 𝜏HC, see Section 2.4.3 for details.

5.2.1.2. Representativeness

Representativeness is a function 𝑟𝑒𝑝 (𝑥) that quantifies how well an observation represents
the underlying data set, and observations doing this well are preferred. However, there
are different interpretations of representativeness. An observation can be representative if
it lies in a dense area of the data distribution. This can be quantified by kernel density esti-
mation [HGX11] or by calculating the average distance to the 𝑘-nearest neighbors [KCR18;
ZLG03]. A different, implicit, approach is to cluster data and select the cluster medoids
as representative observations [DPB11; SZ05; XAZ07]. Finally, some approaches quan-
tify representativeness for a batch [CBP15; Cha+13; Du+17; Wan+16; WY15]. They use
maximum mean discrepancy (MMD) to measure how well the batch follows the full data
distribution.
Literature proposes strategies that combine representativeness and informativeness

for sequential query selection, e.g., a linear combination of the distance to the decision
boundary and the nearest neighbors [YWF18]. Whenever such a sequential strategy is
applicable in the following, we make this clear by writing 𝑢seq instead of 𝜏 or rep.

Our choice: In this thesis, we quantify representativeness using kernel density estimation.
We refer to Section 2.1 for an explanation on how to calculate the kernel density. However,
we also present two clustering approaches that choose representative queries implicitly,
see Section 5.2.2.3.

5.2.1.3. Diversity

While the first two criteria are defined for individual observations, the diversity criterion
is for batches. Intuitively, a batch is diverse if its observations are dissimilar to each other.
A high diversity of a batch is good since dissimilar observations are expected to have
little information overlap. There are several ways to enforce diversity, either implicitly
or explicitly. One explicit method is to maximize pair-wise distances, e.g., in the data or
kernel space [Bri03; CBP15]. Cluster-based strategies consider diversity implicitly since
they select observations from different clusters, which is likely to yield a diverse batch.
Our choice: We follow previous work to quantify the diversity 𝑑𝑖𝑣 of a batch 𝐵 as the

minimum pair-wise distance 𝑑 of two observations [Bri03; Car+17; KCR18]

𝑑𝑖𝑣 (𝐵) = min
𝑥𝑖 ,𝑥 𝑗∈𝐵

𝑑 (𝑥𝑖, 𝑥 𝑗 ). (5.1)

We use two distance functions. The first one is the Euclidean distance 𝑑ED in the data space.
The second one is a distance in the reproducing kernel Hilbert space of a kernel-based
classifier 𝑑AK = −

|︁|︁cos(∠(𝜙 (𝑥𝑖), 𝜙 (𝑥 𝑗 )))
|︁|︁. Intuitively, 𝑑AK is proportional to the angle of
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two observations in the kernel space [Bri03].

A key challenge is to combine these so-called batch criteria [She+04] into a single utility
measure. Before addressing this, we discuss some theoretical properties of the criteria in
the context of one-class classification for outlier detection. First, with outlier detection, a
large share of the data space is sparse. Given such a sparsity, diversity may not be useful.
This is because it is likely to include observations from sparse regions, which only provide
little information for the classifier. Second, with outlier detection, representativeness may
not be very useful either. The reason is that it focuses on regions of high density, which are
likely to contain only observations from the inlier class. The following example illustrates
these properties.

(a) Informativeness (b) Representativeness (c) Diversity

Figure 5.1.: Comparison of batch selection based on different criteria.

Example 5.2.1 Figure 5.1 shows a 2-dim synthetic data set with inliers (white circles) and
outliers (gray squares). We fit a one-class classifier, considering all observations as unlabeled;
the decision boundary is the black line. We then compute batches of 10 observations for each
criterion independently (red diamonds).
As expected, representativeness selects the observations where the data density is high.

The resulting batch contains a bulk of observations in a small region, with high similarity.
With diversity, the observations in the batch are well spread. Yet, some queries lie in very
sparse regions where feedback might only influence the classification of very few observations.
Informativeness with 𝜏DB selects the 10 observations closest to the decision boundary, see
Figure 5.1a. Although the batch does not cover the full data space, visually the observations
selected are diverse and representative, without explicit consideration of these criteria.

Given this, we propose the following hypothesis.

Hypothesis 5.2.1 (Batch Criteria) With one-class outlier detection, the representativeness
and diversity criteria are not useful for batch selection.

Our experiments on real-world data will confirm this hypothesis. The hypothesis also
holds for weighted combinations of the criteria, see Section 5.3.

5.2.2. Batch Strategies

In general, many ways to combine batch criteria to select a batch are conceivable. Some
strategies have been proposed for binary andmulti-class settings [Cha+13; WY15]. We only
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5. Batch Selection for One-Class Active Learning

Algorithm 3: Random-B Strategy
Input :𝑘 ,U
Output :𝐵

1 𝐵 = Draw an independent sample without replacement of size 𝑘 fromU

Algorithm 4: TopK Strategy
Input :𝑢seq, 𝑘 ,U
Output :𝐵

1 U𝑟𝑎𝑛𝑘𝑒𝑑 = sort 𝑥 inU by 𝑢seq, descending
2 𝐵 = select first 𝑘 fromU𝑟𝑎𝑛𝑘𝑒𝑑

Algorithm 5: Iterative Strategy
Input :𝜏 (𝑥), 𝑟𝑒𝑝 (𝑥), 𝑑𝑖𝑣 (𝐵), 𝜆inf, 𝜆rep, 𝜆div, 𝑘 ,U
Output :𝐵

1 𝐵 =

{︄
arg max
𝑥𝑖∈U

(︂
𝜆𝑖𝑛𝑓 · 𝜏 (𝑥𝑖) + 𝜆𝑟𝑒𝑝 · 𝑟𝑒𝑝 (𝑥𝑖)

)︂}︄
2 for 𝑖 ← 2 . . . 𝑘 do
3 𝑥∗𝑖 = arg max

𝑥𝑖∈U\𝐵

(︂
𝜆inf · 𝜏 (𝑥𝑖) + 𝜆rep · 𝑟𝑒𝑝 (𝑥𝑖) + 𝜆div · 𝑑𝑖𝑣 (𝐵 ∪ {𝑥𝑖})

)︂
4 𝐵 = 𝐵 ∪

{︁
𝑥∗𝑖

}︁
5 end

are aware of one summary for multi-label data [RV18] which requires other approaches
than our one-class setting. Further, there does not seem to be any strategy specific to
one-class classification. It is unclear whether existing multi-class approaches transfer
to the one-class setting. In this section, we, therefore, propose different batch selection
strategies for one-class active learning. We classify them into four categories: baseline,
iterative, partitioning, and filtering strategies.

5.2.2.1. Baselines

As one baseline, we propose random batch, which samples 𝑘 unlabeled observations
independent of any criteria, see Algorithm 3.
The second baseline is TopK, a straightforward extension of the sequential mode. The

idea is to calculate utility for each observation independently, with a given 𝑢seq, and then
choose the top 𝑘 observations, see Equation 2.11 and Algorithm 4.
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Algorithm 6: Cluster Strategy
Input :𝑘 ,U
Output :𝐵

1 C = 𝐾𝑀𝑒𝑑𝑜𝑖𝑑𝑠𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔(U, 𝑘)
2 𝐵 = ∅
3 foreach cluster 𝐶 ← C do
4 𝑥𝐶 = select medoid from 𝐶

5 𝐵 = 𝐵 ∪
{︁
𝑥𝐶

}︁
6 end

5.2.2.2. Iterative Strategy

Iterative strategies are heuristics to find a batch that maximizes the weighted sum of batch
criteria. Formally, this is

𝑢 (𝐵) =
∑︂
𝑥∈B

𝜆inf · 𝜏 (𝑥) + 𝜆rep · 𝑟𝑒𝑝 (𝑥) + 𝜆div · 𝑑𝑖𝑣 (𝐵), (5.2)

with weight parameters 𝜆inf, 𝜆rep, 𝜆div ∈ R to specify the importance of the three criteria. A
fundamental difficulty with this approach is that one must calculate 𝑢 for

(︁ |U|
𝑘

)︁
candidate

batches. So to find a good solution, one can instead build the batch greedily [Hoi+06;
XAZ07]. Thus, the observation that maximizes the weighted sum of the three criteria is
added to the batch in each iteration until the batch contains 𝑘 observations; see Algorithm 5.
If 𝜏 , 𝑟𝑒𝑝 and 𝑑𝑖𝑣 are submodular, the greedy solution has a lower bound of (1 − 1

𝑒
) · 𝑢 (𝐵∗),

relative to the optimal utility 𝑢 (𝐵∗) [Hoi+06].

5.2.2.3. Partitioning Strategies

A different approach is to emphasize diversity. The idea is to divide the data set into 𝑘
random or disjoint subsets and then select one observation from each subset. To this end,
two common approaches are to cluster data [DPB11; LGC12; She+04; SZ05; XAZ07] and to
train several classifiers on different samples of the data as an ensemble [LGC12].

One cluster strategy partitionsU into 𝑘 clusters, for instance by 𝑘-medoids clustering.
The medoids of each cluster then form the batch, see Algorithm 6. Cluster only considers
representativeness and diversity, but not informativeness.

An extension is cluster-TopK, see Algorithm 7. The idea is to include informativeness to
filter unlabeled observations. This is, cluster-TopK selects the𝑚 highest ranked unlabeled
observations according to 𝜏 (𝑥) where |U| ≫𝑚 ≫ 𝑘 and clusters them into 𝑘 clusters. As
before, the medoids of each cluster are the batch 𝐵.
An ensemble strategy randomly samples 𝑘 subsets of size |X|/𝑘 , see Algorithm 8. For

each subset, the strategy trains a classifier and selects the best observation for a given 𝑢seq.
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Algorithm 7: Cluster-TopK Strategy
Input :𝜏 (𝑥), 𝑘 ,𝑚 ≥ 𝑘 ,U
Output :𝐵

1 M = top𝑚 observations fromU ranked by 𝜏 (𝑥)
2 C = 𝐾𝑀𝑒𝑑𝑜𝑖𝑑𝑠𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔(M, 𝑘)
3 𝐵 = ∅
4 foreach cluster 𝐶 ← C do
5 𝑥𝐶 = medoid of 𝐶
6 𝐵 = 𝐵 ∪

{︁
𝑥𝐶

}︁
7 end

Algorithm 8: Ensemble Strategy
Input :X1, . . . ,X𝑘 , 𝐶1, . . . ,𝐶𝑘 , 𝑢seq,U
Output :𝐵

1 𝐵 = ∅
2 foreach sample X𝑖 with classifier 𝐶𝑖 do
3 𝑥∗𝑖 = arg max

𝑥𝑖∈X𝑖 ,𝑥𝑖∉𝐵

𝑢seq(𝑥𝑖)

4 𝐵 = 𝐵 ∪
{︁
𝑥∗𝑖

}︁
5 end

5.2.2.4. Filtering Strategies

Finally, there are filter strategies that proceed top-down to select a batch. The idea is
to start with all unlabeled observations and step-wise apply filter criteria until only 𝑘
observations are left. We see two types of filter strategies.

The filter similar strategy searches for the two most similar observations and removes
the one with less informativeness [Sad+17], see Algorithm 9.

The filter hierarchical strategy filters for each of the three criteria, step by step [Jia+14],
see Algorithm 10. This is, filter hierarchical first selects the 4 · 𝑘 most representative
observations and from these the 2 ·𝑘 most informative ones. From them, it greedily selects
the batch, similarly to the iterative strategy.

All batch strategies presented have the same objective, increasing classification accuracy.
But the realizations differ significantly. Based on plausibility arguments, there is no single,
superior approach. While literature has proposed strategies for the multi-class setting, it is
unclear which conclusions transfer to the one-class setting. We now derive two hypotheses.
If they hold, they help with the selection of a suitable approach in the one-class setting.

The first hypothesis extends Hypothesis 5.2.1 to batch strategies.

Hypothesis 5.2.2 (Batch Selection Strategy) With one-class outlier detection, a strategy
solely based on informativeness is expected to outperform more sophisticated strategies that
explicitly incorporate representativeness and diversity.
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Algorithm 9: Filter Similar Strategy
Input :𝜏 (𝑥), 𝑑 (𝑥𝑖, 𝑥 𝑗 ), 𝑘 ,U
Output :𝐵

1 𝐵 = U
2 while |𝐵 | > 𝑘 do
3 𝑎, 𝑏 = arg min

𝑥𝑖 ,𝑥 𝑗∈𝐵
𝑑 (𝑥𝑖, 𝑥 𝑗 )

4 𝐵 = 𝐵 \
{︁

arg min
𝑥∈{𝑎,𝑏}

𝜏 (𝑥)
}︁

5 end

Algorithm 10: Filter Hierarchical Strategy
Input :𝜏 (𝑥), 𝑟𝑒𝑝 (𝑥), 𝑑𝑖𝑣 (𝐵), 𝑘 ,U
Output :𝐵

1 M = 4 · 𝑘 highest ranked 𝑥 inU by 𝑟𝑒𝑝 (𝑥)
2 M = 2 · 𝑘 highest ranked 𝑥 inM by 𝜏 (𝑥)
3 𝐵 = {select highest ranked 𝑥𝑖 inM by 𝜏 (𝑥)}
4 for 𝑖 ← 2 . . . 𝑘 do
5 𝑥∗𝑖 = arg max

𝑥𝑖∈M\𝐵
𝑑𝑖𝑣 (𝐵 ∪ {𝑥𝑖})

6 𝐵 = 𝐵 ∪
{︁
𝑥∗𝑖

}︁
7 end

Based on this hypothesis, we expect TopK to perform well, compared to more sophisticated
approaches.
The second hypothesis concerns the cost trade-offs, see Section 5.1. Batch selection

strategies have different complexity. When assuming constant evaluation costs for 𝑢seq
and 𝜏 , we derive the following complexities: constant for random batches, O(𝑛) for TopK,
O(𝑘𝑛) for Iterative, approximately O(𝑘𝑛𝑑𝑖) with dimensionality 𝑑 and a number 𝑖 of
clustering steps for cluster-based, O(𝑘 (𝑛/𝑘)2) for Ensemble where 𝑘 classifiers are learned
on𝑛/𝑘 large partitions, O(𝑘+𝑛2) for Filter Similar where𝑛2 is the complexity of computing
the similarity matrix, and O(𝑘𝑛) for Filter Hierarchical. With this, we expect the runtime
cost of the batch selection strategies to be low compared to the classifier training, which
requires solving a quadratic optimization problem for standard one-class classifiers, like
SVDDneg. All this motivates the following hypothesis.

Hypothesis 5.2.3 (Cost Trade-Offs) The classifier cost 𝑐𝑡 dominates the batch selection
costs 𝑐𝑠 during active learning with batches in most cases.

When this hypothesis holds, batch selection costs 𝑐𝑠 are not relevant, and we can simplify
the optimization model, see Section 5.1.3. An exception is Ensemble, which requires
training 𝑘 classifiers on 𝑛/𝑘 partitions of the data set. Our experiments on real world data
confirm both hypotheses, see Section 5.3.

59



5. Batch Selection for One-Class Active Learning

5.3. Experiments

We now present our empirical findings and discuss them in the context of the three hy-
potheses introduced earlier. Our implementation, raw results, and notebooks are available
at https://www.ipd.kit.edu/bocal.

5.3.1. Setup

We use 21 standard data sets for outlier detection [Cam+16], introduced in Section 2.5.1.
We use three resampled versions, with an outlier ratio of 5%, and up to 1000 observations.

Classifier: Our base classifier is SVDDneg [TD04] with the Gaussian kernel (cf. Equa-
tion 2.8), tuned as proposed in [Wan+18], and the cost parameter set as proposed in [TD04].
We also use the obtained kernel parameter for kernel density estimation and for the kernel
angle distance 𝑑AK.

Active Learning: We choose 𝜏DB as the informativeness criterion, since it has yielded the
best results in preliminary experiments of ours. For diversity, we use 𝑑AK unless stated
differently. We set𝑚 = 10𝑘 for Cluster-TopK. We start with no labels, a budget of 𝑇 = 128
and evaluate 𝑘 ∈ {1, 2, 4, 8, 16, 32, 64, 128}.

Evaluation Metrics: We evaluate classification accuracy with the Matthews Correlation
Coefficient (MCC), see Section 2.5.2 for details. We report the end quality (EQ), i.e., the
accuracy after the budget is exhausted, as the median over all data sets. Our experiments
run on an AMD Ryzen Threadripper 2990WX with 64 virtual cores. We measure the total
runtime 𝑡 and the query selection time 𝑡s in seconds.

5.3.2. Results

We first evaluate the usefulness of the three batch criteria in the one-class setting. We
then compare the batch strategies presented in Section 5.2. We compare all strategies
against the sequential mode and evaluate the sensitivity to varying batch sizes. Finally, we
present runtime measurements and discuss them with resepect to the trade-offs introduced
in Section 5.1.

Batch Criteria We evaluate the usefulness of batch criteria by varying the weights of the
iterative strategy. Figure 5.2 shows the median EQ for the different combinations with
a batch size of 𝑘 = 4. The EQ is highest for 𝜆rep = 0, as indicated by the red dots on the
bottom line of the triangle. Results with different batch sizes or 𝜏HC as the informativeness
criterion are similar. With 𝑑ED as diversity, a small value 𝜆rep > 0 does not reduce EQ as
much as for 𝑑AK but 𝜆rep = 0 also results in the highest EQ. On a per-data-set level, there
are some instances where setting 𝜆div > 0 has a positive effect on EQ. However, tuning the
weight parameters per data set is unrealistic. Namely, this would require a labeled training
set. We conclude that combining the three criteria with strictly positive weights does not
increase the model quality in the one-class setting. Informativeness has a dominating
influence on EQ – this supports Hypothesis 5.2.1. So 𝜆inf = 1, 𝜆rep = 0, 𝜆div = 0 is the best
choice, which corresponds to the TopK strategy. This is a strong difference to the balanced
and multi-class domain [KCR18].
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Figure 5.2.: Influence of batch criteria on end quality.

Table 5.1.: Median EQ over all data sets in comparison to a sequential baseline.
k rand-B TopK Clust ClustTopK Ensemble FiltSim FiltHrch Seq
1 0.49 0.81 0.00 0.70 0.81 0.70 0.00 0.81
2 0.43 0.81 0.28 0.81 0.81 0.81 0.64 -
4 0.49 0.81 0.35 0.79 0.81 0.79 0.78 -
8 0.49 0.81 0.54 0.76 0.81 0.78 0.79 -
16 0.49 0.80 0.57 0.68 0.80 0.78 0.77 -
32 0.49 0.79 0.60 0.62 † 0.75 0.75 -
64 0.49 0.79 0.57 0.60 † 0.70 0.74 -
128 0.49 0.75 0.57 0.57 † 0.70 0.71 -

Rank‡ 5.10 1.99 4.72 3.42 - 2.79 2.98 -
†Optimization problem infeasible for 𝑘 > 16. Sequential and ensemble strategy are
excluded.
‡ Mean of the rank calculated for each data set and batch size.

Batch Strategies Next, we compare the performance of the different batch strategies
proposed in this chapter. See Table 5.1 for the median EQ. TopK outperforms all other
strategies. Up to a batch size of 𝑘 = 8, the EQ is 0.81 and hence equal to the sequential
strategy. Up to 𝑘 = 64, the accuracy loss is small compared to the sequential strategy.
The more complex partitioning or filtering strategies generally yield results similar to or
worse than TopK. This supports Hypothesis 5.2.2. These results are again contrary to multi-
class batch strategies, where partitioning and iterative strategies outperform TopK [SZ05;
XAZ07], and where end quality increases with the batch size in some cases [RV18].

Trade-offs Table 5.2 shows the 𝑡 and 𝑡s for varying batch sizes. The sequential strategy
has a runtime of 178s where 5.9% of the time is spent on batch selection. In all cases,
𝑡 decreases with increasing batch size. As expected, batch selection makes up only a
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Table 5.2.: Median experiment runtime 𝑡 in seconds and ratio 𝑡/𝑡s of time spent for query
selection in %.

k rand-B TopK Clust ClustTopK Ensemble FiltSim FiltHrch
1 129s/0.1% 158s/6.7% 179s/1.9% 213s/6.3% 344s/49.2% 180s/12.4% 158s/13.4%
2 70s/0.1% 71s/6.2% 99s/1.8% 79s/5.4% 117s/34.7% 99s/10.3% 93s/7.5%
4 41s/0.0% 45s/5.3% 58s/0.3% 44s/5.9% 53s/34.2% 55s/11.0% 40s/9.1%
8 18s/0.1% 24s/5.1% 23s/0.1% 19s/7.1% 35s/45.9% 22s/11.0% 23s/7.4%
16 10s/0.0% 12s/5.0% 13s/0.2% 14s/5.8% 25s/59.6% 14s/10.4% 12s/6.6%
32 6s/0.0% 5s/5.4% 7s/0.1% 6s/6.1% - 8s/13.4% 6s/8.8%
64 3s/0.0% 4s/3.5% 3s/0.3% 4s/4.7% - 4s/11.0% 4s/5.6%
128 2s/0.0% 2s/3.6% 3s/0.4% 3s/2.9% - 3s/7.8% 3s/6.4%

fraction of the overall runtime, except for ensemble. The experiment runtime is roughly
proportional to 1/𝑘 . The dominating factor is the number of classifier trainings 𝑇 /𝑘 .

Overall, the runtime costs of classifier training are two magnitudes higher than the ones
of batch selection, i.e., 𝑐𝑡 ≫ 𝑐𝑠 . This confirms Hypothesis 5.2.3. We conclude that, in a
one-class setting, computational costs can decrease by a factor of 10 with TopK without
sacrificing accuracy, compared to the sequential case. More sophisticated batch selection
strategies do not improve results in the one-class setting (Q2). So the sweet spot between
active learning costs and classification accuracy is to use TopK batches with decision
boundary informativeness (Q1) and setting 𝑘 to a value in [8, 16] (Q3). The sweet spot
relies on the assumption that annotation costs are fix, see Section 5.1. However, our
conclusions also hold if annotation costs decrease with the batch size until 𝑘 = 8. Namely,
increasing the batch size does not affect classification accuracy.

5.4. Summary

In this chapter, we have studied how we can reduce costs with batch active learning. Batch
active learning gives way to annotate observations in parallel when classifier retraining is
slow or experimental changeover costs are high. To utilize computational and annotation
resources most efficiently, we strive to find a sweet spot between the costs of one-class
batch active learning and the improvement in classification quality. To this end, we have
presented a formal framework for batch query selection. Based on it, we have proposed
several batch selection methods tailored towards one-class classification. Our general con-
siderations and experiments have shown that selecting the top-k observations according
to a sequential query strategy is a dominant choice, compared to more sophisticated strate-
gies. This finding is different from the situations in multi-class and binary active learning.
Batch one-class active learning achieves the classification quality of a sequential strategy
while reducing computational costs for classifier training by one order of magnitude.
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6. Query Synthesis in One-Class Active
Learning

In the previous chapter, we have studied how to efficiently select queries in batches from
an unlabeled pool of observations. However, there are scenarios where no unlabeled
observations are available because data collection is limited or expensive. One must
then synthesize queries to collect feedback. Query synthesis is a difficult task in a high-
dimensional data space. Random queries or structured queries with grids are inefficient
because they do not take acquired annotations into account. So, the trade-off we will
investigate in this chapter is how one can reduce the costs to generate a synthetic query
with high informativeness against how the query improves the classification quality.1

In this chapter, we study how we can use query synthesis to expand the classifier
knowledge beyond an initial sample of inliers that form a single connected region in
an unbound data space. An example application is a compute-intensive simulation for
design-space exploration [CF17a; CF17b; LM12], where the collected data set often is small
and biased, i.e., does not represent the real data distribution well. We call this the domain
expansion problem. Figure 6.1 is an illustration. We start with a small initial sample of
mostly inliers and seek to expand the classifier boundaries of a one-class classifier towards
the real boundaries.
Existing approaches for query synthesis are for the multi-class setting and require ob-

servations from all classes [Jos11; Wan+15]. They cannot synthesize queries in directions
where no observations exist, as it is the case with domain expansion. Next, methods for
design space exploration [CF17a; CF17b; LM12] and reliability-based design optimiza-
tion [LJ08] use the prediction uncertainty of a binary classifier for query generation. But
this uncertainty may not be obtainable from a one-class classifier. So we target a method
for domain expansion that performs query synthesis in one-class active learning.

Challenges Query synthesis in the one-class settings is difficult for three reasons.
High dimensionality: Existing one-class query strategies use the unlabeled observations

as query candidates and query the one with the highest informativeness [TEB21]. Without
such observations, the volume of a high-dimensional data space is too large for a random
candidate generation. This calls for a more selective candidate placement, e.g., near the
current observations.
1 The remainder of this chapter bases on the article [EB20]: Adrian Englhardt and Klemens Böhm. “Exploring
the Unknown – Query Synthesis in One-Class Active Learning”. In: SIAM International Conference on
Data Mining (SDM). SIAM. Jan. 2020, pp. 145–153. doi: 10.1137/1.9781611976236.17. We have shortened
the text to be less repetitive, applied minor corrections, and changed the formatting and notation so that
it is in line with the format and structure of this thesis.
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Figure 6.1.: Domain expansion with query synthesis.

Data Set Pollution: During query synthesis, artificially generated queries and their
feedback are inserted into the original data set. This affects the data density and the
neighborhoods. To illustrate, querying in the same region several times increases the
data density where it may be low in reality. However, several one-class classifiers such as
Nearest Neighbor Description [Tax02] and pool-based query strategies [Gha+11a; Gha+11b;
Gör+13; YWF18] rely on these data characteristics. Query synthesis may then misguide
the classifiers and query strategies.
Evaluation standards: Evaluation standards from pool-based one-class active learning

do not carry over to query synthesis. On the one hand, an evaluation needs a simulated
annotator, a so-called oracle. It is unclear how to simulate an oracle that can provide an
answer for an arbitrary query with query synthesis. On the other hand, one must compare
a new query synthesis strategy to a baseline. But the existing baseline to select a random
query [Gör+13] is infeasible, and sampling from a potentially unbounded data space is
ineffective. In this chapter, we study how to construct a more realistic baseline, by deriving
boundaries from the available data.

Contributions This chapter features an approach for query synthesis for one-class active
learning. It performs domain expansion based on initial observations from one class. Our
contributions are as follows:

Framework: We generalize pool-based one-class active learning and propose a framework
for query synthesis in one-class active learning (SYNOCAL). The framework is defined
by the initial labels, a one-class classifier and a query synthesis strategy. We frame query
synthesis as an optimization problem. This allows for efficient query synthesis, given
any query strategy that quantifies the informativeness of a candidate. We then use meta-
heuristics to solve this problem even for high-dimensional data.

Domain Expansion Stragegy (DES): We propose a new query-synthesis strategy to expand
the classifier knowledge beyond the initial, potentially biased, data sample by leveraging
work on adaptive data shifting [Wan+18]. Our novel strategy allows us to learn in areas of
uncertainty where no observations exist.
Evaluation standards: We propose evaluation standards for one-class query synthesis.

We introduce three ways how to define an oracle using synthetic and real-world data.
Additionally, we derive two realistic baseline strategies for query synthesis from existing
artificial outlier generation algorithms [AZL06; Dés+13].
In the evaluation, we perform extensive experiments for different domain expansion

problems. We show that our new query-synthesis strategy outperforms all alternatives
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in settings with few inlier labels. We publish the implementation of our framework to
reproduce our results.2

6.1. Framework

In this section, we present our framework. We formalize one-class query synthesis and
present several query strategies that serve as baselines later. The framework is the funda-
ment for our novel domain expansion strategy. Yet, it is general and facilitates research on
one-class query synthesis strategies.

Definition 10 (Query synthesis strategy) Given a data set𝑋 with label poolsU, L, and
a classifier C, a query synthesis strategy𝑄𝑆𝑆 is a function of type𝑄𝑆𝑆 : C,U,L → Q where
∀𝑞 ∈ Q : 𝑞 ∈ X is an artificial query for feedback collection.

Definition 11 (Query synthesis) Query synthesis is a method to improve the classification
by a classifier C on data X by acquiring feedback from an oracle O on queries generated by a
query synthesis strategy 𝑄𝑆𝑆 .

In a one-class setting, classifier and query synthesis strategy must cope with imbalanced
class distributions. To this end, we propose a new framework called SYNOCAL to perform
query SYNthesis in One-Class Active Learning. SYNOCAL consists of three elements: (1)
active learning scenario, (2) one-class classifier, and (3) query synthesis strategy.

6.1.1. Active Learning Scenario

Previous research on one-class active learning relies on assumptions that affect the in-
teraction of a user with the active learning system or confine the choice of the classifier
and the query strategy [TEB19; TEB21]. The active learning scenario specifies initial
class label availability. We have already introduced the three scenarios: unsupervised,
semi-supervised, and supervised in Section 2.2.1 Pool-based query strategies only work
with the unsupervised and semi-supervised scenario, while query synthesis works with
any setup.

6.1.2. One-Class Classifier

The second element of our framework is the one-class classifier (OCC). A one-class classifier
outputs a decision function, see Definition 4.

6.1.2.1. Requirements

We derive two requirements that a one-class classifier must meet for query synthesis:

• Semi-supervised: The classifier must be able to learn from feedback. So the classifier
must be semi-supervised to use labeled and unlabeled observations.

2 https://www.ipd.kit.edu/des
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• Boundary-based: To avoid data set pollution, the classifier must not use densities
or neighborhoods. This calls for a classifier that learns tight enclosing boundaries
around the inliers.

6.1.2.2. One-Class Classifiers Choice

Research proposed various one-class classifiers [KM14] with many specific variants, like
classification with weights [Zha+09] or in subspaces [TB19]. Following our requirements
leaves us with classifiers based on SVDD [TD04]. The original SVDD is unsupervised
and requires additional help to learn from feedback, see our discussion in Section 2.4.2.
SVDDneg and SSAD are semi-supervised extensions of SVDD that can use label informa-
tion. SVDDneg and SSAD meet all our requirements for one-class query synthesis.

6.1.3. Query Synthesis Strategy

The third element of our framework is the query synthesis strategy. Such a strategy uses
the classifier, available observations, and labels to generate an artificial query. We focus
on sequential query synthesis strategies, i.e., where |Q| = 1, and consider batch query
synthesis future work. We differentiate between direct and indirect 𝑄𝑆𝑆 .

Direct QSS The first type directly synthesizes the query given the classifier, available
observations, and labels. Baseline strategies that randomly generate a query are direct
strategies. To define these baselines, we follow the approaches for artificial outlier genera-
tion [AZL06; Dés+13; TD01] and bound the data space with a hyper-rectangle that encloses
all observations. A hyper-rectangle 𝐻 is defined by two boundary vectors 𝑎, 𝑏 ∈ R𝑑 , usu-
ally the minima and maxima along each dimension. 𝐻𝜀 stands for such an expanded
hyper-rectangle where 𝜀 ∈ R+ is the expansion, e.g., 𝐻0.1 for a 10% expansion. This gives
way to our two baselines.

• 𝐷𝑄𝑆𝑆rand: Samples a random query Q ∈ 𝐻𝜀 .

• 𝐷𝑄𝑆𝑆rand-o: Samples a query Q ∈ 𝐻𝜀 with 𝑓 (Q) > 0, i.e., classified as outlier by C.

Indirect QSS The second type, on the other hand, first defines the informativeness for
an arbitrary observation which is then optimized. 𝜏 quantifies the expected information
gain, i.e., how valuable an arbitrary observation 𝑥 ∈ X is, see Definition 8. One can then
optimize 𝜏 (𝑥) to obtain the optimal synthetic query:

Definition 12 (Query synthesis optimizer) Given an indirect query synthesis strategy
with a function 𝜏 (𝑥), a query synthesis optimizer (𝑄𝑆𝑂) yields the optimal query Q by
computing Q = arg max𝑥∈X 𝜏 (𝑥).

There is a variety of optimization algorithms, and the optimal choice depends on 𝜏 (𝑥). Pre-
liminary experiments of ours have shown that the derivative-free meta-heuristic optimizer
DXNES [Fuk+11] offers high solution quality in reasonable compute time.
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initial sample
real boundaries

Figure 6.2.: 1-dimensional domain expansion problem.

𝐼𝑄𝑆𝑆DB: Querying observations close to the decision boundary [Gör+09] is a pool-based
strategy (cf. Equation 2.12) that we can adapt as an indirect query synthesis strategy.
Given the decision function 𝑓 of a classifier, 𝐼𝑄𝑆𝑆DB defines 𝜏DB = −|𝑓 (𝑥) |. The strategy
gives high informativeness to queries on the margin between the two classes where the
classification uncertainty is highest.

6.2. Domain Expansion

This section deals with the domain expansion problem. We first formalize it and then
present our novel query synthesis strategy.

6.2.1. Formalization

We define C∗ as the optimal one-class classifier for the data space X. One starts with a
sample of inliers X drawn from the data space X and seeks to learn a classifier C that
matches C∗. To do so, we use query synthesis and perform one-class active learning. The
challenge now is the definition of a query synthesis strategy to achieve this. We split this
problem into two subproblems.

Identification of exploration direction (IED) The first challenge is the identification of an
exploration direction. Figure 6.2 gives a 1-dimensional example with an initial sample and
the real boundaries. Here, one might prefer exploring to the left, due to the higher density
of the sample in this area. However, first exploring to the right is more beneficial. The
space uncovered by the initial sample is larger to the right than to the left when looking at
the hidden real boundaries. Generally, the initial sample does not give any information on
the direction to choose. This is because it can be biased and may not represent the actual
distribution of the data. Initially, one has to rely on guessing. In high dimensional data
spaces where the boundaries of the initial sample match the real boundaries well, and only
a few directions would yield an improved boundary, it becomes more difficult to guess
the “improving” directions. So more queries are necessary to check all directions. When
an oracle has labeled an outlier in a direction 𝑑out, one should either explore in different
areas or decrease the vector length of 𝑑out to query between the outlier and the inliers.

Identification of exploration magnitude (IEM) One has to define how far to explore in
a given direction. Initially, one only has inlier samples. One option again is to guess
the exploration magnitude. But different value ranges require different magnitudes. To
illustrate, exploring a 1-dimensional data set with a hidden value range of [1, 100] and
initial sample value range of [5, 80] with an exploration magnitude of 0.001 requires many
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queries. So one should infer the magnitude from the initial sample. If one continuously
retrieves inlier feedback for queries in one direction, one could gradually increase the
magnitude to explore the direction more quickly. When outlier labels become available,
one should decrease the magnitude in the outlier direction to query between the outlier
and the known inliers.

6.2.2. Our Solution

We now present our solution and say how we address the two subproblems. We propose
Domain Expansion Stragegy (DES) that performs query synthesis. We briefly describe the
intuition behind our approach first and then present its components.

Intuition Our new query strategy is an indirect query synthesis strategy with an infor-
mativeness function. Following our previous discussion, all exploration directions initially
have the same weight. Since the dimensionality and the shape of the inlier region vary
between data sets, we derive these directions directly from the SVDD-based classifier.
Without loss of generality, all exploration directions are orthogonal to the decision bound-
ary. When restricting them to length 𝜀, they form a hull around the initial sample. This
hull corresponds to the decision boundary shifted away from the initial sample by some 𝜀.
Additionally, we must consider any labeled outliers and decrease the exploration magni-
tude in directions with outliers, i.e., shift the boundary less far. To this end, we propose
SVDDnegEps that learns such a shifted decision boundary while respecting outlier labels.
We propose a parametrization method to compute the exploration magnitude, i.e., the shift
𝜀. Finally, we introduce a method to quickly prune the search space of the exploration
directions and magnitudes by decreasing the informativeness in areas with outliers. This
pruning enforces query diversity over multiple active learning cycles.

SVDDnegEps Our novel one-class classifier called Support Vector Data Description with
negative Examples and Epsilon Shift (SVDDnegEps) learns a shifted decision boundary
where outliers stay outside of the hypersphere. SVDDnegEps enforces an extended bound-
ary by injecting the exploration magnitude, i.e., the shift amount 𝜀, into the constraints of
the SVDDneg optimization problem (cf. Equation 2.9):

minimize
𝑅,𝑎,𝜉

𝑅2 +𝐶1
∑︂
𝑖

𝜉𝑖 +𝐶2
∑︂
𝑙

𝜉𝑙

subject to ∥Φ(𝑥𝑖) − 𝑎∥2 + 𝜀 ≤ 𝑅2 + 𝜉𝑖, ∀𝑖
∥Φ(𝑥𝑙 ) − 𝑎∥2 ≤ 𝑅2 − 𝜉𝑙 , ∀𝑙
𝜉𝑖, ≥ 0, ∀𝑖
𝜉𝑙 , ≥ 0, ∀𝑙

(6.1)

The index 𝑖 refers to observations inU ∪L𝑖𝑛 and 𝑙 to labeled outliers in L𝑜𝑢𝑡 , 𝜉𝑖 and 𝜉𝑙 are
the corresponding slack variables and 𝐶1,𝐶2 ∈ [0, 1] the cost parameters. After solving
the problem, we have a fixed center 𝑎 and radius 𝑅 that define the enclosing hypersphere.
We can then use Equation 2.4 to get a decision function.
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Parametrization We use the artificial outlier generation approach from [Wan+18] to
infer 𝜀. The approach generates artificial outliers to tune the hyper-parameters of a SVDD.
The generation process places artificial outliers around the data by shifting boundary
observations along their negative data density estimated from the neighborhoods. So the
approach adapts to arbitrary value ranges. Our idea is to use these artificial outliers to
quantify the maximum magnitude of how far one should explore. We can measure the
distance of these outliers to the decision boundary of an OCC with the decision function
𝑓 of the classifier. Given 𝑓 and artificial outliers Xout, the shift is:

𝜀 = max
𝑥𝑖∈Xout

𝑓 (𝑥𝑖) (6.2)

This bounds the maximum exploration to the farthest artificial outlier generated from the
initial sample.

Domain Expansion Strategy Our novel query strategy 𝐼𝑄𝑆𝑆DES is similar to the decision
boundary strategy 𝐼𝑄𝑆𝑆DB, except that it queries on the shifted decision boundary of a
SVDDnegEps. 𝑓𝜀 stands for this decision function, to make the difference to 𝑓 explicit. The
informativeness of 𝐼𝑄𝑆𝑆DES is:

𝜏DES = −|𝑓𝜀 (𝑥) |. (6.3)
We can then use our framework to perform query synthesis with an optimizer.

Search space pruning In high dimensional data spaces, one should punish areas with
negative feedback and should encourage exploration elsewhere. To this end, we propose a
method to quickly prune the search space of the exploration directions and magnitudes.
This extension is general and works with an arbitrary indirect query synthesis strategy
(IQSS) that defines an informativeness. The idea is to reduce the informativeness in areas
with outliers automatically. To this end, we train a binary SVM on the available data.
By using a binary SVM, one can quantify the distance to the decision boundary in the
same kernel space as for the SVDD-based classifier. So no value-range adjustment is
needed, and we can directly combine the distance to the SVM and the OCC. The decision
function for an SVM is 𝑓SVM. Again, an outlier 𝑥 yields 𝑓SVM(𝑥) > 0, and an inlier 𝑥 gives
a value 𝑓SVM(𝑥) ≤ 0. Given an IQSS with informativeness 𝜏 , we then define a combined
informativeness function 𝜏∗:

𝜏∗(𝑥) = 𝜏 (𝑥) −max(𝑓SVM(𝑥), 0) (6.4)

This modification of 𝜏 punishes areas with negative feedback (IED) and reduces the
exploration magnitude in the direction of outliers (IEM).

6.2.3. Example

We now illustrate how our query synthesis strategy with search space pruning, dubbed
𝐼𝑄𝑆𝑆∗DES, works, cf. Figure 6.3. Figure 6.3a shows the start of the active learning cycle.
Here, the black line is the decision boundary fitted by a SVDDneg, and the dashed line
is the oracle, i.e., the target boundary that we want to learn. The initial sample does not
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(a) Iteration 1 (b) Iteration 5 (c) Iteration 15

Figure 6.3.: Expanding the decision boundary of a SVDDneg with our new 𝐼𝑄𝑆𝑆∗DES with
search space pruning.

cover the full valid space and misses a large area to the right. The heat map indicates
the informativeness – the darker, the higher. After five queries, we have expanded the
boundary and have acquired the first outlier. The pruning then punishes the area around
the outlier, see Figure 6.3b, and the query strategy starts exploring other areas. The state
after 15 queries is visualized in Figure 6.3c. Our method has already approximated the real
decision boundary quite well.

6.3. Evaluation

Previous work uses benchmark data sets with ground truth and performs pool-based
active learning. However, an evaluation is more difficult in the context of query synthesis
because the oracle must provide a label for arbitrary queries. We see three options how to
evaluate one-class query synthesis.

Synthetic Data The first option relies on synthetic data. Here, one defines a function
that acts as the oracle. For instance, one can use a multivariate distribution. The oracle
function then labels an observation as an outlier if the density falls under a threshold.
Additionally, the distribution allows to generate an arbitrary volume of test data to evaluate
the classifier.

Ground Truth Fitting The second option relies on existing one-class data sets. One can fit
a classifier to the ground truth data to obtain an oracle. The fitted classifier can then serve
as an oracle to answer arbitrary queries in the active learning cycle. Example classifiers
are SVDD or also basic classifiers such as SVM or kNN classifier. There are two problems
with this approach. First, the oracle is limited by the capabilities of what the underlying
classifier can learn. So one may not achieve a perfect fit to the data, and queries may yield
wrong feedback. Second, one-class outlier benchmark sets are unbalanced. The oracle
classifier has high uncertainty in these sparse areas. Additionally, we also have a very
limited number of outliers for testing. Active learning may improve a classifier, but there
is no test data to reflect this improvement.

Hybrid Query Synthesis The third option avoids crafting an oracle by only allowing
queries for existing observations. With query synthesis, one can use a hybrid approach:

70



6.4. Experiments

One first uses any strategy to synthesize a query Q. Then the observation closest to Q
under some distance function 𝑑𝑖𝑠𝑡 becomes the query:

Q∗ = arg min
𝑥∈X

𝑑𝑖𝑠𝑡 (𝑥,Q) (6.5)

This hybrid approach generally avoids the problem of awkward queries [BL92] and has
already been used to evaluate multi-class query synthesis [Wan+15]. However, we see a
problem in the one-class setting with this option. The selected unlabeled observation may
be far away from the synthesized query due to data sparsity. Then, a query strategy may
have preferred a completely different observation when computing the informativeness of
the unlabeled observations, compared to the one chosen by the hybrid approach.

6.4. Experiments

In this section, we evaluate our framework and our new query synthesis strategy on
various domain expansion problems. In the first part, we use synthetic data of different
dimensionality. In the second part, we assess the performance of our method on common
real-world data sets for outlier detection [Cam+16]. We have implemented the query
synthesis framework and the benchmark setup in Julia [Bez+17]. Our implementation,
the raw results of all settings and notebooks to reproduce experiments and evaluation are
publicly available at https://www.ipd.kit.edu/des.

6.4.1. Setup

We first present the setup of our experiments.

Data and Oracle We use synthetic and real-world data sets for our experiments. We
present the data sets and how we define the oracle.

Synthetic data: Gaussian mixtures allow to flexibly generate synthetic domain expansion
problems. We generate 100 random Gaussian Mixtures for each combination of 3, 5 and 7
components and 2, 4, 6, 8 and 10 dimensions. To bias the initial sample, we then choose the
initial sample only from one of the components. Given the Gaussian mixture with density
function 𝑝 (𝑥), we use a threshold 𝑡 = 0.1 to define the oracle: Observations are inliers if
𝑝 (𝑥) ≥ 𝑡 and outliers otherwise. To evaluate the classifier, we generate 1000 inliers and
outliers each in addition to the initial sample.
Real-world data: For the real-world experiments, we use the publicly available outlier

benchmark data sets from [Cam+16], see Section 2.5.1. We use the normalized and dedu-
plicated version of 15 different data sets. They have different sizes (80–7129 observations)
and outlier ratios (4–75%). To limit the search space, we perform feature selection to
extract the 5 most meaningful features using mutual information. This is in line with the
discussion in Section 6.2, where we argue that guessing an exploration direction at the
start of the learning becomes more difficult with increasing dimensionality. To choose the
initial sample, we perform a neighborhood walk: We first randomly select one observation
and iteratively add the nearest neighbor to the initial sample until we reach the desired
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Figure 6.4.: End quality for synthetic data sets with different dimensionality.

sample size. In this way, we bias the initial sample into one area. We run 10 resamples
of the initial sample for each data set. For the oracle, we perform ground truth fitting.
Preliminary experiments have shown that a binary SVM performs better as an oracle than
a one-class classifier when using all labels. We additionally generate synthetic inliers and
outliers with the method proposed in [Wan+18] to tune the kernel parameter of the oracle
SVM with cross-validation.

Parametrization To simulate a small biased sample to expand from, we set the number of
initial observations to 25. We then run 100 active learning iterations with our framework.
As a model, we use the SVDDneg [TD04] with a hard margin 𝐶1,𝐶2 = 1.0 and tune
parameter of the Gaussian kernel (cf. Equation 2.8) with the method proposed in [Wan+18].
We use the same parameters for the SVDDnegEps of 𝐼𝑄𝑆𝑆DES. For the baseline query
strategies 𝐷𝑄𝑆𝑆rand and 𝐷𝑄𝑆𝑆rand-o, we set the hyper-rectangle expansion to 𝜀 = 0.1 as
in [AZL06]. For the indirect query synthesis strategies we use distance-weighted exponential
natural evolution strategy [Fuk+11] (DXNES) with the default parameters implemented
in [Fel18]. We fix the optimization boundaries to an extended hyper-rectangle 𝐻1.0 with
100% expansion beyond the labeled inliers.

Evaluation metrics To evaluate the results, we calculate the Matthews Correlation Co-
efficient (MCC) to compare the classifier prediction for the test data with the ground
truth for each iteration. We then calculate the End Quality (EQ) [TEB21] to quantify the
performance of the classifier after the active learning. See Section 2.5.2 for details on how
to calculate MCC and EQ.

6.4.2. Results

We now present and discuss the results of our experiments to show the superiority of our
novel query strategy on different domain expansion problems.

72



6.4. Experiments

Table 6.1.: Median end quality on real world data sets.
Data set rand rand-o DB DES DES∗

Annthyroid 0.05 0.07 0.03 0.04 0.08
Arrhythmia 0.18 0.24 0.17 0.18 0.27
Cardio 0.09 0.14 0.06 0.07 0.20
Glass 0.13 0.16 0.11 0.20 0.24
HeartDisease 0.22 0.27 0.18 0.26 0.28
Hepatitis 0.28 0.31 0.27 0.19 0.21
InternetAds 0.22 0.65 0.13 0.14 0.73
Ionosphere 0.22 0.26 0.22 0.27 0.49
PageBlocks 0.10 0.17 0.05 0.06 0.22
Parkinson 0.62 0.62 0.64 0.60 0.42
Pima 0.14 0.13 0.15 0.14 0.14
SpamBase 0.19 0.46 0.13 0.12 0.44
Stamps 0.15 0.26 0.11 0.14 0.22
WPBC -0.03 -0.06 -0.02 -0.05 0.01
Wilt -0.08 -0.06 -0.06 -0.05 -0.08

Synthetic Data We first run our framework with two baselines 𝐷𝑄𝑆𝑆rand, 𝐷𝑄𝑆𝑆rand-o, in-
direct query synthesis strategies 𝐼𝑄𝑆𝑆DB, 𝐼𝑄𝑆𝑆DES, and with search space pruning 𝐼𝑄𝑆𝑆∗DES
on the synthetic data. Figure 6.4 shows the end quality for different dimensionalities. Our
framework allows to improve the classifier from a small initial sample even in the absence
of unlabeled observations. The end quality decreases with increasing data dimensionality.
This is because finding a helpful exploration direction becomes more difficult and thus
requires more queries – here we are using a fixed number of 100 iterations. Our proposed
approach with search space pruning 𝐼𝑄𝑆𝑆∗DES outperforms or is at least on par with all
other strategies. The baseline strategy 𝐷𝑄𝑆𝑆rand-o proposed earlier yields competitive
results. This is similar to the results in [TEB21] where a random baseline for pool-based
one-class learning outperforms other strategies on one-third of the data sets. Querying
directly on the decision boundary with 𝐼𝑄𝑆𝑆DB does not yield any improvement. 𝐼𝑄𝑆𝑆DB
mostly queries inliers near the initial sample and does not gain insights beyond the sample.

Real-World Data We run the same setup on the real-world data sets. Table 6.1 shows the
median end quality for all the proposed query synthesis strategies on different data sets.
The end quality with active learning varies from data set to data set. For the WPBC and
Wilt data set, no method yields any considerable improvement, resulting in a low end
quality. Except for them, our proposed method 𝐼𝑄𝑆𝑆∗DES achieves the best results overall,
winning in 9 out of 13 data sets. Model quality significantly increases from the initial
set with 𝐼𝑄𝑆𝑆∗DES. Similarly, to the synthetic evaluation, our method benefits from search
space pruning. One can see this by comparing the results of 𝐼𝑄𝑆𝑆DES and 𝐼𝑄𝑆𝑆∗DES.
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6.5. Summary

This chapter studies the domain expansion problem where one strives to improve a one-
class classifier by extending a small initial data sample with additional training data. To
this end, we have proposed a general framework that formalizes query synthesis in the
one-class setting as an optimization problem. We have then proposed a novel domain
expansion strategy that explores the data space and does away with the bias of small
samples. The method includes pruning of the considered exploration space that diversifies
the queries considerably. Evaluating query synthesis strategies requires an oracle that
can provide an answer for arbitrary queries. In this chapter, we derive three ways to use
synthetic and real-world data to simulate such an oracle. Comprehensive experiments
on synthetic and real-world domain expansion problems demonstrate that our method
efficiently expands the knowledge of a classifier beyond a biased sample and outperforms
realistic baselines.
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7. Conclusions

An active learning system consists of several components that work together in an iterative
process. Because the components are strongly intertwined, it is difficult to configure an
active learning system in practice. With most applications, there are budgets that limit
certain parts of the system, e.g., the runtime of a classifier or the number of queries. When
the system exhausts budgets, the operator has to reconfigure the system and lower the
costs. This often implies a loss of classification quality. So, when configuring an active
learning system in a new application, the operator has to trade off costs against quality.
In this thesis, we have discussed the various costs of active learning and have reviewed
approximation methods to trade off costs against quality in Chapter 2. We have then taken
a closer look at three important trade-offs and have proposed conceptual and technical
contributions for each of them. We summarize our contributions in the following and
state how they facilitate the configuration of a one-class active learning system.

First, we have analyzed how one can reduce classification training costs of the one-class
classifier SVDD with sampling in Chapter 4. Sampling selects a subset of the data for
training and thereby lowers the runtime. Existing sampling methods are heuristics and do
not come with any guarantee on the resulting classification quality. In this thesis, we have
taken a more principle approach where sampling does not reduce the classification quality
compared to an SVDD trained on the complete data set. Therefore, we have formalized
sampling as an optimization problem and have added constraints that guarantee the
original decision boundary. To solve this optimization problem efficiently, we have then
proposed the iterative algorithm RAPID. RAPID has three key advantages compared to
sampling methods from literature. First, it does not require any additional parameters
beyond the ones already required by SVDD. Second, the constraints guarantee that RAPID
yields the same classification quality as a classifier trained on the complete data set.
Third, RAPID is efficient and consistently produces small samples. With comprehensive
experiments, we have shown that RAPID substantially reduces classification training costs
by one order of magnitude compared to training an SVDD on the complete data set.

Second, we have studied querying in batches instead of single observations for one-class
active learning in Chapter 5. Batch queries reduce the classification training costs because
they delay the classifier update. Batch queries also have an advantage over sequential
querying when multiple oracles are available in parallel or the changeover costs between
experiments are high. We have studied how to construct batch queries for one-class active
learning. In a first step, we have formalized batch queries as an optimization problem.
Our formalization enables us to study the cost-quality trade-offs of batch selection. In
a second step, we have proposed different strategies to construct batches based on the
informativeness, representativeness, and diversity criteria of a batch. Afterwards, we have
compared these heuristics in an empirical study. Our evaluation has shown that a simple
top-k batch selection outperforms all other more sophisticated strategies. Tuning the
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batch size 𝑘 gives the operator control over the costs of active learning. We have identified
a sweet spot where we can retain the classification quality of a sequential strategy and
reduce classification training costs by one order of magnitude.
Third, we have proposed query synthesis for one-class active learning in Chapter 6.

Query synthesis allows to collect feedback at any point in the data space without being
restricted by a pool of query candidates. However, finding queries that improve the
classification quality is difficult, in particular in a unbound data space. To enable efficient
query synthesis for one-class active learning, we have made two contributions. First, we
have proposed a framework for query synthesis that efficiently searches the data space
with black-box optimizers. Second, we have established evaluation standards to simulate
oracles with synthetic and real-world data to allow an experimental comparison of query
synthesis strategies. Based on our two contributions, we have then studied one specific
one-class active learning problem: the domain expansion problem. To this end, we have
developed a novel query synthesis strategy DES to expand the decision boundary of a
one-class classifier. With DES and our framework, one can improve the generalization of
a one-class classifier to new data efficiently.
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In this thesis, we focus on the cost-quality trade-offs an operator has to take when config-
uring an active learning system for outlier detection. Understanding these trade-offs is
crucial to realize one-class active learning systems in practice. Our contributions focus on a
few trade-offs, but there are other, still unexplored, cost-quality trade-offs. In the following,
we elaborate on open research questions that are closely related to our contributions.

Annotation cost dependencies between queries In Chapter 5, we have studied how batch
queries reduce classification training costs. We have shown that a high diversity of the
queries in a batch yields high classification quality. However, there are scenarios where
similarity between queries reduces costs. Query similarity can, for example, reduce the
change-over costs between experiments [GK11]. Our theoretical formalization of batch
queries in Section 5.1.3 already considers this cost dependency. But none of the methods
we have proposed for batch construction considers the annotation cost dependencies. They
assume that the annotation step is independent for each query, i.e., there is no annotation
cost dependency between the observations of one batch. It is an open question of how
to extend batch-construction methods to be more cost-sensitive. Technically, one has to
identify the cost dependencies between queries in real-world applications and model them.
The follow-up question is then how one can incorporate such a dependency model into
the batch construction.

Multiple noisy oracle Throughout this thesis, we have assumed that there is a single
oracle that correctly annotates all the queries. Several challenges arise when annotations
are incorrect and when multiple annotators are available.

First, one has to study how tomodel imperfect oracles that produce incorrect annotations
in the active learning system. A simple model is that oracles return incorrect annotations
based on some fixed probability [Set11]. But there can be other reasons why annotation
quality deteriorates. For example, fatigue reduces the annotation quality of human oracles.
The annotation quality may also depend on the complexity of the query, and sparse regions
of the data set where outliers reside may be more difficult to annotate. It is an open question
if one can cope with imperfect oracles by learning an uncertainty model of an oracle from
the queries and their annotations. Existing studies [CS17; SPI08] are mostly theoretical,
and it is yet unclear if they apply to one-class active learning. So a follow-up question is
how one can use an oracle uncertainty model in an active learning system. One option is
to use the uncertainty to weight the observations during classifier training. Another idea is
to incorporate oracle uncertainty into the query selection. On the one hand, one can query
areas with high oracle uncertainty multiple times to receive more reliable annotations. On
the other hand, querying close to labeled observations can improve the oracle uncertainty
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model. In both cases, the additional queries increase the costs. Therefore, new cost-quality
trade-offs arise with imperfect oracles.
Second, the configuration of an active learning system becomes even more difficult if

there are multiple oracles that differ in their annotation quality and cost. This is relevant
when one seeks to collect robust annotations with crowdsourcing [KOS14]. Another
scenario is choosing between a cheap simulation with low annotation quality or an
expensive real-world experiment with high annotation quality. One must then jointly
consider the individual oracle uncertainty and annotation costs when choosing an oracle
during query selection. Multiple imperfect oracles with varying annotation quality and
costs have not yet been studied with one-class active learning.

Query presentation costs for human oracles In Section 2.3.3 we have discussed that query
presentation costs arise when working with human oracles. Providing auxiliary information
to the query in the annotation interface may reduce the annotation costs and increase
annotation quality. This idea has sparked research on Visual Interactive Analytics (VIA)
and Visual Inter-Active Labeling (VIAL). These research areas study which kinds of
visualization assist a human to interactively explore and label a data set, e.g., to find
outliers [Ber+18; Bög+17; Lei+18; Lin+17; Wil18]. However, computing these visualization
requires additional computational resources. The cost-quality trade-off of a sophisticated
query presentation is still unexplored for active learning. We have proposed a prototype
implementation and a road map to study these cost-quality trade-offs for one-class active
learning with a user study [TEB19]. The insights from such a study will help understand
how to support human annotations efficiently.

Streaming-based OCAL In this thesis, we have studied one-class active learning with
pool-based querying and query synthesis. As explained in Section 2.3.2, the third query
scenario is stream-based selective sampling. It is unexplored how the existing solutions for
one-class active learning transfer to a stream setting. Cost budgets may be particularly
tight in a stream setting, which challenges all parts of an active learning system: classifier
updates, query selection, and annotation. It is an open question if existing algorithms
yield a sufficiently high classification quality when trading costs against quality to adhere
to these budgets.

To conclude, this thesis advances the state-of-the-art on one-class active learning for
outlier detection. Our conceptual and technical contributions help to trade off costs
against quality when realizing one-class active learning systems in practice. Finally, we
have discussed several open research questions that emerge from our research. We deem
them interesting, and they may contribute to the overarching goal of simplifying the
configuration of robust and efficient one-class active learning systems.
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