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Deutsche Zusammenfassung

Die fortschreitende Urbanisierung ist ein globales Phänomen. Schon heute resultieren

daraus diverse Probleme, wie etwa Staus, Unfälle, ein Mangel an Parkplätzen oder

die Emission von Feinstaub, Stickoxiden und CO2. Bis 2050 prognostiziert die OECD

eine Verdreifachung des Personenverkehrs. In den kommenden Jahren und Jahr-

zehnten werden deshalb die durch urbane Mobilität verursachten Probleme weiter

zunehmen. Gleichzeitig besteht die Aussicht, dass innovative Entwicklungen wie

etwa Elektrifizierung, Automatisierung, Vernetzung und Informationstechnologie im

Allgemeinen bei der Bewältigung dieser Herausforderungen behilflich sein werden.

In dieser Dissertation entwerfen, implementieren und evaluieren wir praxisnahe

Algorithmen für diverse Probleme aus dem Bereich der urbanen Mobilität.

Für die moderne Entwicklung von praxisnahen Algorithmen (Algorithm Enginee-
ring) sind realistische Experimente wesentlich. Die Verfügbarkeit von Benchmark-

Daten ist deshalb eine notwendige Voraussetzung. Für Algorithmen aus dem Bereich

der urbanen Mobilität enthält die Eingabe typischerweise ein Straßennetz und Nach-

fragedaten. Weltweite Daten zu Straßen und Gebäuden werden inzwischen von

OpenStreetMap zur Verfügung gestellt. Frei verfügbare Nachfragedaten existieren

jedoch kaum. Im ersten Themenbereich dieser Dissertation entwerfen wir deshalb

skalierbare Algorithmen zur Generierung realistischer Nachfragedaten. Die theoreti-

sche Grundlage bildet das vor kurzem vorgeschlagene Radiation-Modell. Wir stellen

mehrere Algorithmen zur Nachfrageberechnung gemäß dieses Modells vor, die eine

zunehmend bessere Lösungsqualität und Rechenzeit aufweisen. Unser schnellster

Algorithmus ist 100 000-mal schneller als eine naive Anwendung des Modells.

Die zeitaufwendigste Aufgabe bei unseren Algorithmen zur Nachfrageberechnung
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besteht darin, zu einem gegebenen Startpunkt einer Fahrt den nächsten Endpunkt zu

bestimmen, der spezielle Eigenschaften erfüllt. Dies ist eine Verallgemeinerung des

Problems der nächsten Nachbarn in Straßennetzen, bei dem der nächste Endpunkt zu

einem gegebenen Startpunkt bestimmt wird. Zunächst stellen wir für das Problem der

nächsten Nachbarn einen neuen Algorithmus vor, den wir in einem zweiten Schritt

auf die Nachfrageberechnung anwenden. In unseren Experimenten verhält sich der

neue Algorithmus in etwa genauso gut wie die besten existierenden Techniken für

die Bestimmung nächster Nachbarn in Straßennetzen. Für die Nachfrageberechnung

führt er zu einer beträchtlichen Beschleunigung.

Im zweiten Themenbereich dieser Dissertation beschäftigen wir uns mit Verkehrs-

umlegungen. Dabei ist die Aufgabe, für ein gegebenes Straßennetz und gegebene

Nachfragedaten die Auslastung jeder Strecke im Netz zu berechnen. Verkehrsumle-

gungen sind seit Jahrzehnten ein allgegenwärtiges Werkzeug für verkehrsplanerische

Untersuchungen. Dem Einsatz zum intelligenten Echtzeit-Verkehrsmanagement stan-

den bisher relativ langsame Rechenzeiten im Wege. In dieser Dissertation entwerfen

wir deshalb einen Algorithmus, der eine Verkehrsumlegung für eine Metropolregion

mit mehreren Millionen Einwohnern innerhalb von wenigen Sekunden berechnen

kann. Dies ist fast 40-mal schneller als der bisher beste Algorithmus und macht

Verkehrsumlegungen zu einem Echtzeit-Werkzeug.

Mitfahrgelegenheiten, wie sie von Unternehmen wie Uber und Lyft angeboten

werden, bilden den dritten Themenbereich dieser Dissertation. Gegeben ist dabei

eine Flotte von Fahrzeugen und eine Menge von Fahrtanfragen, die den Fahrzeu-

gen möglichst intelligent zugewiesen werden sollen, wobei Fahrten von mehreren

Fahrgästen geteilt werden können. Für dieses Problem stellen wir einen neuartigen

Algorithmus vor, der nicht nur 30-mal schneller als bisherige Verfahren ist, son-

dern im Gegensatz zu diesen auch beweisbar optimale Lösungen findet. Schnelle

Rechenzeiten sind insbesondere für Verkehrssimulationen von großer Bedeutung, bei

denen ein Szenario vielfach mit unterschiedlichen Modellparametern simuliert wird.

Die Rechenzeit solcher Simulationen kann mit unserem Algorithmus von mehreren

Tagen auf wenige Stunden verringert werden.

Das Herzstück der Algorithmen aus den drei zuvor genannten Themenbereichen

bildet die Kürzeste-Wege-Technik Customizable Contraction Hierarchies (CCHs).

Wie fast ausnahmslos alle Algorithmen zur Routenplanung wurde sie unter der ver-

einfachenden Annahme entworfen, dass Abbiegekosten und Abbiegeverbote außer

Acht gelassen werden. Während Abbiegekosten für Fernreisende auf Autobahnen

vernachlässigbar sein mögen, sind sie für innerstädtische Routen von großer Bedeu-

tung. Deshalb untersuchen wir in dieser Dissertation, wie Abbiegekosten möglichst

effizient in CCHs integriert werden können. Während sich eine naive Integration in

10-mal langsameren Rechenzeiten niederschlägt, kann unsere beste Variante dies auf

einen in der Praxis akzeptablen Faktor 3 verringern.
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Algorithmen zur Routenplanung führen typischerweise eine Vorberechnung durch,

um nachfolgende Kürzeste-Wege-Anfragen zu beschleunigen. Alle anpassbaren (engl.:

customizable) Techniken, zu denen auch der CCH-Algorithmus gehört, partitionieren

das Straßennetz als ersten Vorberechnungsschritt. Zur Partitionierung eines stati-

schen Straßennetzes existieren in der Literatur eine Vielzahl von Algorithmen. In

der Praxis ändern sich Straßendaten jedoch überraschend häufig (in OpenStreetMap

gibt es mehrere Millionen Änderungen pro Tag). Zum Abschluss dieser Dissertation

entwerfen wir deshalb einen Algorithmus, der zur Partitionierung eines Straßen-

netzes die Partition einer älteren Version desselben Netzes ausnutzen kann. Dies

verringert nicht nur die Rechenzeit, sondern auch die Unterschiede zwischen den

beiden Partitionen, was für viele Anwendungen von Nutzen ist.
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1 Introduction

Advancing urbanization is a global phenomenon. Already today, this results in various

problems, such as traffic jams, accidents, a lack of sufficient parking space, or the

emission of particulate matter, nitrogen oxides, and CO2. Moreover, the Organization

for Economic Co-operation and Development (OECD) predicts that urban traffic

will triple by 2050 [ITF19]. The problems caused by urban mobility will therefore

continue to increase in the coming years and decades. At the same time, there is

a reasonable prospect that innovations in areas such as electrification, automation,

connectivity, and information technology in general will help to cope with these

challenges. In this thesis, we design, analyze, implement, and experimentally evaluate

practical algorithms for various problems in the area of urban mobility, including the

computation of mobility flows, traffic assignment, and dynamic ridesharing.

1.1 Algorithm Engineering
Our focus is on algorithms that are easy to implement and have good performance

in practice. Therefore, we guide and justify our design choices by experiments rather

than asymptotic worst-case analyses. While we are not somuch interested in provable

bounds on running time, we are aiming for provably optimal solutions (at least for

problems that are polynomial-time solvable).

Classic algorithm theory focuses on designing algorithms with simple machine

and problem models in mind, and giving theoretical performance guarantees by

asymptotic worst-case analyses. While this methodology frequently results in el-
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Figure 1.1: Visualization of the algorithm engineering methodology.

egant and timeless algorithms, these algorithms are often difficult to understand

and implement. Moreover, worst-case analyses may not be very informative as to

whether an algorithm works well in practice, since they ignore constant factors and

lower-order terms, and the worst case may not arise in practice.

The more recent algorithm engineering methodology [San09, MS10, SW11] com-

plements classic algorithm theory by experimental studies. To be able to conduct

experiments, we first need to implement the algorithm, taking into account the fea-

tures of modern computer architectures, such as cache memory and parallelism on

different levels. Experiments give more insight into problem and algorithm, which

helps us to design a revised version of the algorithm. Therefore, algorithm engi-

neering can be seen as repeating cycles of design, analysis, implementation, and

experimental evaluation (see Figure 1.1 for an illustration).

We employ the algorithm engineering methodology throughout the whole thesis.

The iterative process is particularly pronounced in Chapters 3 and 4, in which we

develop practical algorithms for generating travel demand data in a road network

based on the recently introduced radiation model.

We start by designing a straightforward yet carefully tuned algorithm. Our analysis

shows that its running time is 𝑂 (𝑀2
log𝑀), where𝑀 is a parameter that measures

the size of the network. The superquadratic running time suggests that the straight-

forward algorithm is useful only for small input sizes. This is confirmed by our

experiments, which show that the algorithm takes months on a continental network.

To come upwith amore practical algorithm, we use a completely different approach

during the second design phase. The analysis leads to an𝑂 (𝑀 log𝑀 log log𝑀) bound.
Since the output grows linearly with the size of the network, this bound comes close

to the simple lower bound of Ω(𝑀), and thus our new algorithm is almost optimal.

Our experiments show that the algorithm can indeed handle networks of continental

size, but still takes up to a few hours on them.
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To decrease the running time even further, we choose to replace shortest-path

distances by geometric distances, which are much easier to compute. This simplifi-

cation allows us to come up with a more sophisticated algorithm during the third

design phase. Our experimental results indeed show a big decrease in running time.

Compared to the straightforward and near-optimal algorithm, the geometric algo-

rithm takes only seconds rather than months and hours, respectively. However, the

experiments also show a decrease in solution quality, and thus cannot fully justify

the use of geometric rather than shortest-path distances.

Although the geometric algorithm yields only lower-quality solutions, its algo-

rithmic heart proves to be fast. Therefore, we combine the main ideas from the

geometric algorithm with shortest-path distances during the fourth design phase.

Our experiments show that the new algorithm obtains high-quality solutions like

the straightforward and near-optimal algorithm, but at much lower cost.

The algorithm engineering methodology is not as pronounced in all chapters as

in the chapters on travel demand generation. In particular, performance guarantees

are difficult to achieve for most of our algorithms. Where applicable, we still give

theoretical guarantees for subroutines that are easier to analyze.

1.2 Main Contributions
This section gives a brief overview of the contributions of this thesis. Each of the

following subject areas corresponds to a chapter of this thesis, in which the subject

area is studied in detail, including extensive and thorough experimental studies.

Travel Demand Generation. Realistic experiments are essential for the algorithm

engineering methodology. The availability of benchmark data is therefore a necessary

requirement. Algorithms in the area of urban mobility typically take as input a road

network and travel demand data. OpenStreetMap now provides data about roads and

buildings all over the world. However, there is hardly any publicly available demand

data. In the first subject area of this thesis, we thus design scalable algorithms for

generating realistic demand data. The recently proposed radiation model serves as the

theoretical foundation. We present multiple algorithms for travel demand generation

according to this model, which obtain increasingly better solution quality and running

times. Our fastest algorithm is 100 000 times faster than a straightforward application

of the model, making it practical for continental networks.

Nearest-NeighborQueries for Demand Generation. The most time-consuming

task executed in our algorithms for travel demand generation is as follows. Given a

starting point of a trip, we need to find the closest destination that satisfies certain
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properties. This is a generalization of the nearest-neighbor problem in road networks,

which asks for the destination closest to a given starting point. We first present a

novel algorithm for finding nearest neighbors, which we then, in a second step, apply

to travel demand generation. In our experiments, the novel algorithm is on a par

with state-of-the-art algorithms for finding nearest neighbors in road networks. For

travel demand generation, it achieves significant speedups.

Traffic Assignment. In the second subject area of this thesis, we study traffic

assignments. Given a road network and demand data, the goal is to compute the

traffic flow on each road segment in the network. Traffic assignments have been

a ubiquitous tool used in traffic engineering analyses for decades. So far, their use

for intelligent real-time traffic management has been prevented by relatively slow

running times. In this thesis, we therefore design an algorithm that can compute a

traffic flow pattern on a metropolitan area with several million inhabitants in a few

seconds. This is almost 40 times faster than the current state of the art and makes

traffic assignments a real-time tool in the future.

Dynamic Ridesharing. Ridesharing services such as Uber and Lyft form the third

subject area of this thesis. Here we are given a fleet of vehicles and a set of ride

requests that are to be assigned to the vehicles as intelligently as possible, exploiting

the fact that rides can be shared by multiple riders. We present a novel algorithm

for this problem, which not only is 30 times faster than existing algorithms, but also

finds provably optimal solutions (which is not the case for most existing algorithms).

Fast running times are of particular importance for transport simulations, where a

scenario is simulated many times with varying model parameters. Our algorithm can

decrease the running time of such simulations from multiple days to a few hours.

Turn Costs and Restrictions. At the heart of the algorithms from the three subject

areas mentioned above is the shortest-path technique customizable contraction

hierarchies (CCHs). Like almost all algorithms for route planning, it was developed

under the simplifying assumption that turn costs and restrictions are ignored. While

turn costs may be negligible for long-distance travelers on highways, they are of

utmost importance for inner-city routes. In this thesis, we therefore study how to

incorporate turn costs into CCHs as efficiently as possible. While a naive integration

results in a slowdown of an order of magnitude, our best variant can reduce this to a

factor of 3, which is reasonable in practice.

Partitioning Evolving Road Networks. Algorithms for route planning typically

use special preprocessing to accelerate shortest-path queries. All customizable tech-
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niques, including the CCH algorithm, partition the road network as a first preprocess-

ing step. There is a large number of algorithms for partitioning static road networks

in the literature. In practice, however, road network data changes surprisingly fre-

quently (there are several million changes to OpenStreetMap each day). Therefore,

we conclude this thesis by designing an algorithm for partitioning an evolving road

network that exploits the partition of a previous network snapshot. This decreases

not only the running time, but also the difference between the two partitions, which

is useful for many applications in practice.
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2 Fundamentals

We aim to make each chapter of this thesis as self-contained as possible while still

avoiding repetition. Therefore, we prefer to describe fundamentals and related work

in the chapter in which they are needed, as long as they are limited to a single

chapter. Here we introduce some basic techniques that will play an important role

throughout the whole thesis. This includes Dijkstra’s shortest-path algorithm and the

speedup technique contraction hierarchies (CHs), including its variants customizable

contraction hierarchies (CCHs) and contraction hierarchies with buckets (BCHs).

In the simplest case, we treat a road network as a directed graph𝐺 = (𝑉 , 𝐸) where
each vertex represents an intersection and each edge represents a road segment. Each

edge (v, 𝑤) ∈ 𝐸 has a nonnegative length ℓ (v, 𝑤) that represents the travel time from

the tail v to the head 𝑤. The shortest-path distance (i.e., travel time) from v to 𝑤 is

denoted by dist (v, 𝑤). For simplicity, we often assume that𝐺 is strongly connected.

2.1 Dijkstra’s Algorithm
Dijkstra’s algorithm [Dij59] computes the shortest-path distances from a source 𝑠 to

all other vertices. For each vertex v , it maintains a distance label 𝑑𝑠 (v), representing
the length of the shortest 𝑠–v path seen so far. Moreover, it maintains an addressable

priority queue 𝑄 [SMDD19] of vertices, using their distance labels as keys. Initially,

𝑑𝑠 (𝑠) = 0 for the source 𝑠 , 𝑑𝑠 (v) = ∞ for each vertex v ≠ 𝑠 , and 𝑄 = {𝑠}.
The algorithm repeatedly extracts a vertex v with minimum distance label from the

queue and settles it by relaxing its outgoing edges (v, 𝑤). To relax an edge 𝑒 = (v, 𝑤),
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the path from 𝑠 to 𝑤 via v is compared with the shortest path from 𝑠 to 𝑤 found so

far. More precisely, if 𝑑𝑠 (v) + ℓ (𝑒) < 𝑑𝑠 (𝑤), the algorithm sets 𝑑𝑠 (𝑤) = 𝑑𝑠 (v) + ℓ (𝑒)
and inserts 𝑤 into the queue. It stops when the queue becomes empty. Note that

Dijkstra’s algorithm has the label-setting property, i.e., each vertex is settled at most

once. Therefore, when computing a point-to-point shortest path from a source 𝑠 to a

target 𝑡 , we can stop the search when 𝑡 is settled.

2.2 Contraction Hierarchies
Although Dijkstra’s algorithm runs in almost linear time, it still takes a few seconds

on continental road networks. Therefore, speedup techniques have been developed

that rely on a slow preprocessing phase to enable fast queries. Contraction hierarchies
(CHs) [GSSV12] are a two-phase speedup technique to accelerate point-to-point com-

putations, which exploits the inherent hierarchy of road networks (their organization

into residential roads, urban roads, highways, motorways, etc.). To differentiate them

from customizable CHs, we sometimes call them weighted or standard CHs.

Preprocessing. The preprocessing phase heuristically orders the vertices by impor-

tance, and contracts them from least to most important. Intuitively, vertices that hit

many shortest paths are considered more important, such as vertices on highways

and other main roads. To contract a vertex v , it is temporarily removed from the

graph, and shortcut edges are added between its neighbors to preserve distances in

the remaining graph (without v). Note that a shortcut is only needed if it represents

the only shortest path between its endpoints, which can be checked by running a

witness search (local Dijkstra) between its endpoints. The output of preprocessing is

the input graph plus the shortcuts added during contraction. We call this graph 𝐻 .

Queries. The query phase performs a bidirectional Dijkstra search on 𝐻 that only

relaxes edges leading to vertices of higher ranks (importance). More precisely, let a

forward CH search be a Dijkstra search that relaxes only outgoing upward edges, and

a reverse CH search one that relaxes only incoming downward edges. A CH query
runs a forward CH search from the source and a reverse CH search from the target

until the search frontiers meet. The stall-on-demand [GSSV12] optimization prunes

the search at any vertex v with a suboptimal distance label.

Levels. Sometimes it is helpful to assign levels to vertices. If a vertex v has no

lower-ranked neighbors, then v is assigned a level of zero. Otherwise, v is assigned a

level of 𝐿+1, where 𝐿 is the level of the highest-ranked of v’s lower-ranked neighbors.
Levels can be computed as we contract the vertices during preprocessing.
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2.3 Customizable Contraction Hierarchies
Customizable contraction hierarchies (CCHs) [DSW16] are a three-phase technique

that splits CH preprocessing into a metric-independent part, taking only the network

structure into account, and ametric-dependent part (the customization), incorporating
edge weights (the metric). A fast and lightweight customization is a key requirement

for important features such as real-time traffic updates and personalized metrics.

CCHs require the road network to be bidirected, i.e., for each edge (v, 𝑤), the
reverse edge (𝑤, v) must also be present. This restriction is not as severe as it may

seem at first sight, since a one-way road segment from v to 𝑤 can be modeled by

setting ℓ (𝑤, v) = ∞. Before describing the three phases of CCHs, we must be familiar

with the concepts of separator decompositions and nested dissection orders.

Separator Decompositions. A separator decomposition [BCRW16] of a strongly

connected 𝑛-vertex bidirected graph 𝐺 = (𝑉 , 𝐸) is a rooted tree T = (X , E) whose
nodes 𝑋 ∈ X are disjoint subsets of 𝑉 and that is recursively defined as follows.

If 𝑛 = 1, then T consists of a single node 𝑋 = 𝑉 . If 𝑛 > 1, then T consists of a

root𝑋 ⊆ 𝑉 that separates𝐺 into multiple strongly connected subgraphs𝐺0, . . . ,𝐺𝑑−1.

The children of 𝑋 are the roots of separator decompositions of 𝐺0, . . . ,𝐺𝑑−1. For

clarity, an element v ∈ 𝑉 is always called vertex and an element 𝑋 ∈ X is always

called node. We denote by T𝑋 the subtree of T rooted at 𝑋 and we denote by 𝐺𝑋
the subgraph of 𝐺 induced by the vertices contained in T𝑋 . The vertex set of 𝐺𝑋 is

represented by 𝑉 (𝐺𝑋 ), and the edge set by 𝐸 (𝐺𝑋 ).
In general, a separator 𝑋 should be small, and the resulting subgraphs 𝐺0, . . . ,𝐺𝑑

should be balanced. Therefore, separator decompositions are typically obtained by

recursive dissection. Modern graph dissection algorithms tailored to road networks

include Inertial Flow [SS15], FlowCutter [HS18], and InertialFlowCutter [GHUW19].

Nested Dissection Orders. A separator decomposition T of 𝐺 induces a (not

necessarily unique) nested dissection order 𝜋 on the vertices in𝐺 [Geo73]. To obtain

one, we number the vertices in the order in which they are visited by a postorder tree

walk of T , where the vertices in each node are visited in any order. Note that the

resulting order 𝜋 = ⟨𝜋0, . . . , 𝜋𝑑−1, 𝜋𝑑⟩ is split into 𝑑 + 1 contiguous subsequences 𝜋𝑖 ,

where𝑑 is the number of children𝑌𝑗 of the root𝑋 of T . The subsequences 𝜋0, . . . , 𝜋𝑑−1

are nested dissection orders on 𝑉 (𝐺𝑌0
), . . . ,𝑉 (𝐺𝑌𝑑−1

) and 𝜋𝑑 is an arbitrary vertex

order on 𝑋 . We denote by 𝜋−1 (v) the rank of v in 𝜋 .

Preprocessing. The metric-independent preprocessing phase computes a separator

decomposition of𝐺 , determines an associated nested dissection order on the vertices
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in 𝐺 , and contracts them in this order. To contract a vertex v , it is temporarily

removed, and shortcut edges are added between its neighbors. In contrast to standard

contraction hierarchies, we run no witness searches (which depend on the metric)

but add every potential shortcut. Again, the output of preprocessing is the input

graph plus the shortcuts added during contraction, and we call this graph 𝐻 . We

denote by 𝑁
↑
𝐻
(v) the set of neighbors of v in 𝐻 ranked higher than v .

Customization. The customization phase computes the lengths of the edges in 𝐻

by processing them in bottom-up fashion. To process an edge (𝑢, 𝑤), it enumerates

all triangles {v, 𝑢, 𝑤} in 𝐻 where v has lower rank than 𝑢 and 𝑤, and checks whether

the path ⟨𝑢, v, 𝑤⟩ improves the length of (𝑢, 𝑤).

Queries. There are two query algorithms. First, one can run a standard CH query

without modification. In addition, there is a query algorithm based on the elimination
tree of 𝐻 . The parent of a vertex v in the elimination tree is the lowest-ranked

vertex in 𝑁
↑
𝐻
(v). Bauer et al. [BCRW16] prove that the ancestors of a vertex v in

the elimination tree are exactly the set of vertices scanned by a Dijkstra-based CCH

search from v . An elimination tree search from v therefore scans all vertices in the

CCH search space of v in order of increasing rank by traversing the path in the

elimination tree from v to the root. Since elimination tree queries use no priority

queues, they are usually faster than Dijkstra-based CCH queries.

2.4 Contraction Hierarchies with Buckets
The bucket-based approach by Knopp et al. [Kno+07] extends any hierarchical speedup
technique such as CHs and CCHs to batched shortest paths. In the one-to-many

shortest-path problem, the goal is to compute shortest paths from a source 𝑠 ∈ 𝑉
to each target 𝑡 ∈ 𝑇 ⊆ 𝑉 . A bucket-based CH (BCH) search maintains a tentative

distance𝐷𝑠 (𝑡) from 𝑠 to each 𝑡 , initialized to∞, and for each vertexℎ an initially empty

bucket 𝐵(ℎ). First, the algorithm runs a reverse CH search from each 𝑡 and inserts, for

each vertex ℎ settled, an entry (𝑡, 𝑑𝑡 (ℎ)) into 𝐵(ℎ). Note that (𝑡, 𝑑𝑡 (ℎ)) can be thought

of as a shortcut from ℎ to 𝑡 with length 𝑑𝑡 (ℎ). Then, the algorithm runs a forward CH

search from 𝑠 and loops, for each vertex ℎ settled, over all entries (𝑡, 𝑑𝑡 (ℎ)) ∈ 𝐵(ℎ). If
𝑑𝑠 (ℎ) + 𝑑𝑡 (ℎ) < 𝐷𝑠 (𝑡), it sets 𝐷𝑠 (𝑡) = 𝑑𝑠 (ℎ) + 𝑑𝑡 (ℎ). Many-to-one queries from each

source 𝑠 ∈ 𝑆 ⊆ 𝑉 to a target 𝑡 ∈ 𝑉 work analogously. In this case, each bucket 𝐵(ℎ)
stores entries that represent shortcuts from several 𝑠 to ℎ.



11

3 Travel Demand Generation

Determining travel demandwithin a region of interest takes a considerable calibration

effort, requiring transportation surveys, traffic counts, and empirical trip volumes.

However, there is a need for demand calculation without substantial calibration,

for example to generate large-scale benchmark data for evaluating transportation

algorithms. In this chapter, we present several approaches for demand calculation

that take as input only publicly available data, such as population and POI densities.

Our algorithms build upon the recently proposed radiation model, which is inspired

by job search models in economics. We show that a straightforward implementation

of the radiation model does not scale to continental road networks, taking months

even on a modern 16-core server. Therefore, we introduce more scalable implemen-

tations, substantially decreasing the running time by five orders of magnitude from

months to seconds. An extensive experimental evaluation shows that the output of

our algorithms is in accordance with demand data used in production systems. Com-

pared to simple approaches previously used in algorithmic publications to generate

benchmark data, our algorithms output demand data of better quality, take less time,

and have similar implementation complexity.

Chapter is based on joint work with Peter Sanders and Dorothea Wagner [BSW19a].

3.1 Introduction
Determining travel demand within a region of interest is no automatic process,

but requires calibration by transportation experts based on transportation surveys,
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traffic counts, and empirical trip volumes. Usually, such cost intensive and time-

consuming travel forecasts are made for urban and transport planning purposes

by counties, municipalities, or transport authorities, which do not make their data

publicly available. On the other hand, there is a need for demand calculation with

low calibration effort that does not require transportation surveys or traffic counts.

Our main motivation is the generation of large-scale benchmark data for evaluating

transportation algorithms. Another application is the prediction of human mobility

flows in developing nations, where empirical data andmeasurements are not available.

Such regions benefit even from slightly less accurate demand data, which supports

them in transport planning and epidemic modeling [Col+07, Ves12, Tiz+14].

Our goal is to develop algorithms for demand calculation that require as input only

a road network (modeled as a directed graph) and a population grid covering the

region of interest. Both kinds of data are publicly available for large parts of the world.

OpenStreetMap maintains data about roads all over the world. Population grids are

often produced and freely published along with census data, at least in industrial

nations. For example, Eurostat, the statistical office of the European Union, provides

a population grid with a resolution of 1 km for all EU and EFTA member states
1

1 https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/

population-distribution-demography/geostat

.

In addition, some countries like Germany
2

2 https://www.zensus2011.de/DE/Home/Aktuelles/DemografischeGrunddaten.html

and Switzerland
3

3 https://www.bfs.admin.ch/bfs/de/home/dienstleistungen/geostat/geodaten-bundesstatistik/

gebaeude-wohnungen-haushalte-personen/bevoelkerung-haushalte-ab-2010.html

publish countrywide

population grids with a higher resolution of 100m. There are also projects (e.g.,

Global Human Settlement Layer
4

4 https://ghsl.jrc.ec.europa.eu/datasets.php

) trying to provide a population grid for the whole

world, by combining census data with fine-scale satellite imagery.

Human mobility models have received considerable attention recently; see e.g.

[Bar+18] for an overview. The three prevailing models, however, have been the

gravity model [Zip46], intervening opportunities model [Sto40, Sch59], and radiation

model [SGMB12]. Considering a region of interest divided into zones, each model

provides a closed formula for the mobility flow 𝑇𝑖 𝑗 from zone 𝑖 to zone 𝑗 , depending

on the population of 𝑖 and 𝑗 , and the spatial relation between them. A big advantage

of the radiation model compared to the two other mobility models is the absence of

parameters to be calibrated. Therefore, we take it as the foundation for our algorithms.

OurContribution. Generally, humanmobility models like the gravity and radiation

model are applied at an aggregated level [Bar+18]. That is, the region of interest

is divided into several zones (e.g., counties or municipalities), and the models are

used for predicting the mobility flows between all pairs of zones. In this chapter,

we apply and evaluate the radiation model at the level of individuals. The output of

our algorithms is a set of origin-destination (OD) pairs where each pair represents a

trip taken by an individual between two specific locations (i.e., vertices in the road

network). Such microscopic demand data is necessary to evaluate a large number of

transportation algorithms, including methods for ridesharing [Gei+10, DL13] and

https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/population-distribution-demography/geostat
https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/population-distribution-demography/geostat
https://www.zensus2011.de/DE/Home/Aktuelles/DemografischeGrunddaten.html
https://www.bfs.admin.ch/bfs/de/home/dienstleistungen/geostat/geodaten-bundesstatistik/gebaeude-wohnungen-haushalte-personen/bevoelkerung-haushalte-ab-2010.html
https://www.bfs.admin.ch/bfs/de/home/dienstleistungen/geostat/geodaten-bundesstatistik/gebaeude-wohnungen-haushalte-personen/bevoelkerung-haushalte-ab-2010.html
https://ghsl.jrc.ec.europa.eu/datasets.php
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autonomous vehicle dispatching [BM16]. We show that a variant of the radiation

model known as radiation model with selection [SMN13] can be used for generating

trips that are in accordance with data used in production systems.

On a macroscopic level, the mobility flows between all pairs of zones can be

computed by evaluating the closed formula provided by the radiation model for

each pair of zones. In its original publication [SGMB12], the radiation model is

applied to the United States at the level of counties. Since there are 3141 counties,

computing mobility flows between all pairs needs about 10 million evaluations of the

formula, which is quite feasible on a modern machine. However, when switching

to the microscopic level, we are confronted with road networks having tens or

hundreds of millions of vertices [Bas+16]. Computing mobility flows between all

pairs of vertices then requires trillions or quadrillions of evaluations. When executed

sequentially, this would take a few years on a modern machine (see Section 3.6.3).

Therefore, in this chapter, we present more scalable implementations of the radiation

model, substantially decreasing the running time from minutes to milliseconds on

our metropolitan instances, and from months to seconds on our continental instances.

This makes applications of the radiation model to the largest metropolitan areas and

even continental networks at the microscopic level practical.

Finally, we compare our new radiation-based algorithms with approaches previ-

ously used in algorithmic publications to generate benchmark data. We show that our

algorithms output demand data of better quality (i.e., being in better accordance with

demand data used in production systems), take less time, have similar implementation

complexity, and require only publicly available data.

Outline. This chapter is organized as follows. Section 3.2 reviews the radiation

model (with selection) and discusses previously used benchmark data. Section 3.3

describes two simple approaches to calculate demand data. Section 3.4 introduces

our new implementations of the radiation model. Section 3.5 shows how to take

advantage of multiple cores. Section 3.6 presents an experimental evaluation of our

radiation-based algorithms. Section 3.7 concludes with final remarks.

3.2 Preliminaries
We treat a road network as a directed graph 𝐺 = (𝑉 , 𝐸) where vertices represent
intersections and edges represent road segments. Each edge (𝑖, 𝑗) ∈ 𝐸 has a nonneg-

ative length ℓ (𝑖, 𝑗) representing the travel time between 𝑖 and 𝑗 . The problem we

consider is computing the number 𝑇𝑖 𝑗 of trips between each pair (𝑖, 𝑗) of vertices 𝑖, 𝑗 .
Each vertex 𝑖 ∈ 𝑉 has a nonnegative number𝑚𝑖 of inhabitants, and𝑀 denotes the

total population in the graph. We denote by 𝑟𝑖 𝑗 the shortest-path distance between
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𝑚𝑖

𝑚 𝑗

𝑟𝑖 𝑗

𝑠𝑖 𝑗

Figure 3.1: Input variables of human mobility models, such as the radiation model.

Note that𝑚𝑖 denotes the population of vertex 𝑖 , 𝑟𝑖 𝑗 denotes the shortest-path distance

between two vertices 𝑖 and 𝑗 , and 𝑠𝑖 𝑗 denotes the population of all vertices in the

shortest-path circle of radius 𝑟𝑖 𝑗 centered on 𝑖 .

two vertices 𝑖 and 𝑗 . Moreover, 𝑠𝑖 𝑗 is the population of all vertices that are closer to 𝑖

than 𝑗 . In other words, 𝑠𝑖 𝑗 is the population of all vertices in the shortest-path circle

of radius 𝑟𝑖 𝑗 centered on 𝑖 (minus𝑚𝑖 and𝑚 𝑗 ). See Figure 3.1 for an illustration.

3.2.1 Radiation Model
The radiation model is inspired by job search models in economics [CMFB16, McC70,

LM76]. There, a job searcher is assumed to consider job offers in increasing distance

from his or her residence and stop when an offer is reached that provides working

conditions (salary, insurance, office space, equipment, and so on) that fulfill the

searcher’s expectations. Since employers evaluate and value the searcher’s skills dif-

ferently, the working conditions obey a certain probability distribution. Similarly, the

searcher’s expectations also depend on his or her skills, and it is a natural assumption

that they obey the same probability distribution (a searcher whose skills are highly

valued by many prospective employers probably also has high expectations). The

radiation model applies similar ideas to the choice of a traveler’s destination.

Given a region of interest divided into several zones, the radiation model [SGMB12]

assumes that each zone has a number of inhabitants and an amount of opportunities.

In the simplest version, the number of opportunities is approximated by the popula-

tion, i.e., there are𝑀 opportunities in a region with a population of𝑀 . The mobility

flow out of each zone is proportional to its population. Destination selection is based

on the following main idea: Each traveler assigns to all opportunities a fitness or

attractiveness value, drawn independently from a common distribution. Then, the

traveler selects the closest opportunity with a fitness higher than the traveler’s fitness

threshold, drawn from the same distribution. See Figure 3.2 for an illustration.
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Figure 3.2:Destination selection in the radiation model. The traveler (square) assigns

to all opportunities (circles) a fitness value. Among those opportunities with a fitness

value higher than the traveler’s fitness threshold (filled circles), the traveler selects

the closest one as the destination of their trip.

Original Radiation Model. Under the assumptions mentioned above, Simini et

al. [SGMB12] show that the mobility flow 𝑇𝑖 𝑗 from zone 𝑖 to zone 𝑗 satisfies

𝑇𝑖 𝑗 = 𝛾𝑚𝑖⏞⏟⏟⏞
𝑂𝑖

1

1 − 𝑚𝑖

𝑀⏞ˉ̄⏟⏟ˉ̄⏞
𝑐𝑖

𝑚𝑖𝑚 𝑗

(𝑚𝑖 + 𝑠𝑖 𝑗 ) (𝑚𝑖 +𝑚 𝑗 + 𝑠𝑖 𝑗 )⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
p𝑖 𝑗

(3.1)

Note that p𝑖 𝑗 is the probability that a trip starting at 𝑖 ends at 𝑗 , under the as-

sumption that there are infinitely many opportunities in the study area. It can be

shown that the probability that a traveler starting at 𝑖 does not find a sufficiently

fit opportunity among the 𝑀 closest opportunities is𝑚𝑖/𝑀 [MSJB13]. Therefore,

we normalize p𝑖 𝑗 so that the probability that a travelers selects one of the𝑀 closest

opportunities is 1, by dividing p𝑖 𝑗 by 1−𝑚𝑖/𝑀 . This is the purpose of the normalizing

constant 𝑐𝑖 . Intuitively, a traveler who failed the first time draws all fitness values

and the fitness threshold again. Overall, the mobility flow 𝑇𝑖 𝑗 from 𝑖 to 𝑗 is the

product of the flow 𝑂𝑖 = 𝛾𝑚𝑖 out of 𝑖 (where 𝛾 is the proportionality constant) and

the probability 𝑐𝑖p𝑖 𝑗 that a trip starting at 𝑖 ends at 𝑗 .

Radiation Model with Selection. While the radiation model obtains good results

at the level of counties [SGMB12], it performs worse at finer levels [MSJB13]. To com-

pensate for this drawback, Simini et al. [SMN13] propose to decrease the probability
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of selecting an opportunity by a factor of 1 − 𝜆. Intuitively, increasing 𝜆 increases
the expected trip length. Then, the mobility flow 𝑇𝑖 𝑗 satisfies

𝑇𝑖 𝑗 = 𝛾𝑚𝑖⏞⏟⏟⏞
𝑂𝑖

1

1 − 1−𝜆𝑀
1−𝜆𝑚𝑖

𝑚𝑖

𝑀⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
𝑐𝑖

1−𝜆𝑚𝑖+𝑠𝑖 𝑗
𝑚𝑖+𝑠𝑖 𝑗 −

1−𝜆𝑚𝑖+𝑚𝑗 +𝑠𝑖 𝑗
𝑚𝑖+𝑚 𝑗+𝑠𝑖 𝑗

1−𝜆𝑚𝑖

𝑚𝑖⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
p𝑖 𝑗

(3.2)

3.2.2 Previously Used Benchmark Data
Most experimental work [Bas+16, GH05, DGPW17, GSSV12, DSW16, ADGW11,

ALS13, BFSS07] on algorithms for route planning in transportation networks has

been evaluated on trips with the origin and the destination picked uniformly at

random. Since a routing engine processes the trips (i.e., queries) independently from

one another, this does not affect the validity of the evaluation. However, a meaningful

evaluation of transportation algorithms that process the trips as a single unit, such

as algorithms for traffic assignment, requires the trips to obey a realistic distribution.

One option is to consider real-world data sets. For example, Perederieieva et

al. [PERW15] evaluate various traffic assignment algorithms on a set of standard

benchmark instances. Those instances, however, have become outdated, i.e., their

size does not reflect the size of current production data. Ten out of twenty instances

have less than 1000 vertices, and even the largest instance consists of only 14 639

vertices. To compensate for this drawback, Schneck and Nökel [SN20] evaluate their

traffic assignment algorithm on data taken from current production systems. The

downside is that their data is proprietary and not publicly available.

Another option is to generate synthetic demand. For example, Luxen et al. [LS11]

evaluate a traffic assignment algorithm on graphs representing the road networks of

Belgium and Germany, drawing trip lengths from a geometric distribution.

3.3 Simple Approaches
In the past, several publications on different transportation algorithms resorted to

very simplistic approaches to calculate travel demand data (cf. Section 3.2.2). This

section describes our implementation of two simple ideas in detail.

3.3.1 Uniformly Distributed Endpoints
Arguably the simplest approach is to pick the origin and the destination uniformly

at random. More precisely, we repeatedly choose a pair of uniform random vertices
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from the region of interest, compute the shortest-path distance between them, and

stop as soon as the total network volume (i.e., the sum of the shortest-path distances

computed so far) exceeds a certain threshold. For the shortest-path computations,

we add the major roads in the surrounding region, to reduce boundary effects. This

is fairly common when modeling traffic [HNA16]. We call this approach RAND.

Note that despite its simplicity, the RAND algorithm yields endpoints that tend to

be in densely populated areas in the region of interest, since the population density

correlates highly with the density of the road network.

Shortest paths can be computed with Dijkstra’s algorithm [Dij59] or any other

modern speed-up technique [Bas+16]. The method of choice depends on the sce-

nario at hand. Generally, different speed-up techniques provide different trade-offs

between preprocessing effort, space requirements, query time, and implementation

complexity. On large road networks with high volumes, spending more time on

preprocessing is justified. For example, contraction hierarchies [GSSV12] perform

queries in about 100 microseconds with preprocessing times of a few minutes. Tran-

sit node routing [BFSS07, ALS13] and hub labeling [ADGW11] enable even faster

queries, at the cost of increased preprocessing time and space. On the other hand,

heavy preprocessing may not pay off on small road networks with low volumes,

where the time to reach the total network volume with a lightweight shortest-path

algorithm may be faster than a heavy preprocessing phase. In our experiments, we

use bidirectional search to keep implementation complexity low.

3.3.2 Geometrically Distributed Distances
The RAND algorithm yields unrealistic distributions of the trip length. We can do

better by drawing the trip length from a geometric distribution where the expected

value 𝜇 is equal to the average trip length. More precisely, we generate one trip at a

time. The origin vertex is picked uniformly at random from the region of interest. To

choose the destination vertex, we draw the trip length from a geometric distribution

with probability parameter p = 1/(𝜇 + 1). We then run Dijkstra’s algorithm from the

origin until we settle a vertex whose distance label is greater than or equal to the

trip length drawn before. That vertex is the destination we are looking for. When

the priority queue becomes empty before we settle such a vertex, we draw the trip

length again. We call this approach GEOM.

As in the RAND algorithm, we can add the major roads in the area surrounding

the region of interest to the search graph, in order to reduce boundary effects. In this

case, we stop the Dijkstra search as soon as we settle a vertex whose distance label is

greater than or equal to the trip length drawn before and that vertex is contained

in the region of interest. Again, the endpoints of the trips tend to be in densely

populated areas, due to the correlation between the population and network density.
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3.4 Radiation-Based Approaches
This section describes our main algorithmic contribution, several algorithms for

demand calculation at the microscopic level that build upon the radiation model with

selection discussed in Section 3.2. We start with a straightforward implementation

of the model. Despite some careful engineering, it runs in superquadratic time, and

thus does not scale to continental road networks with tens of millions of vertices.

Afterwards, we present two output-sensitive, more scalable algorithms, decreasing

the running time of the straightforward implementation on large road networks by

five orders of magnitude, making the radiation model practical.

3.4.1 Straightforward Implementation
As described in Section 3.2, the radiation model defines the mobility flow𝑇𝑖 𝑗 between

two zones 𝑖 and 𝑗 in the region of interest as the product of the flow 𝑂𝑖 out of 𝑖 and

the probability 𝑐𝑖p𝑖 𝑗 that a trip starting at 𝑖 ends at 𝑗 . Hence, 𝑇𝑖 𝑗 = 𝑂𝑖𝑐𝑖p𝑖 𝑗 ; see also
Equation (3.2). The most straightforward approach to calculate demand data based

on the radiation model is to evaluate this formula for all pairs of zones. In our case,

at the microscopic level, we view each vertex in the network as a zone of its own,

and need to compute 𝑇𝑖 𝑗 for all pairs of vertices.

There is one problem, however: we want the number of trips between any pair

of vertices to be a natural number (including zero), but Equation (3.2) evaluates to a

real number. At an aggregated level, we could simply round the mobility flow to the

nearest integer. At the microscopic level, however, the mobility flow is almost always

very close to zero. Rounding would probably result in no trips at all. Therefore, we

actually view 𝑇𝑖 𝑗 as a random variable that obeys a binomial probability distribution

with 𝑂𝑖 trials and success probability 𝑐𝑖p𝑖 𝑗 . Note that the expected value of 𝑇𝑖 𝑗 is

actually 𝑂𝑖𝑐𝑖p𝑖 𝑗 , which is consistent with Equation (3.2).

The situation for the outflow𝑂𝑖 is analogous to the situation for𝑇𝑖 𝑗 . The radiation

model defines 𝑂𝑖 as 𝛾𝑚𝑖 , which may become too small at the microscopic level.

Therefore, we actually view𝑂𝑖 as a random variable that obeys a binomial distribution

with 𝛾𝑀 trials and success probability 𝑚𝑖/𝑀 . Again, we stress that the expected

value of 𝑂𝑖 is 𝛾𝑚𝑖 , which is consistent with Equation (3.2).

We now show how to implement the straightforward approach efficiently. In order

to evaluate the formula for 𝑇𝑖 𝑗 (more precisely, to draw 𝑇𝑖 𝑗 accordingly), we need

the population𝑚𝑖 of vertex 𝑖 , the population𝑚 𝑗 of vertex 𝑗 , and the population 𝑠𝑖 𝑗
of all vertices that are closer to 𝑖 than 𝑗 . Population counts are maintained as an

array, indexed by vertex IDs, allowing efficient access to𝑚𝑖 and𝑚 𝑗 . To obtain 𝑠𝑖 𝑗 ,

we can run Dijkstra’s shortest-path algorithm from 𝑖 , stopping as soon as it scans 𝑗 .

Cumulating the population counts of all vertices scanned during the search yields 𝑠𝑖 𝑗 .
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Algorithm 3.1: Straightforward implementation of the radiation model,

evaluating Equation (3.2) for all pairs of vertices.

1 Function 𝐹𝑅𝐴𝐷 (𝐺 = (𝑉 , 𝐸), 𝛾, 𝜆)
2 foreach vertex 𝑖 ∈ 𝑉 do
3 if 𝑚𝑖 = 0 then continue

4 𝑂𝑖 ← binomialVariate(𝛾𝑀,𝑚𝑖/𝑀)
5 𝑠 ← 0

6 dijkstra.initialize(𝑖)
7 dijkstra.settleNextVertex ()
8 while dijkstra.queue ≠ ∅ do
9 𝑗 ← dijkstra.settleNextVertex ()

10 if 𝑚 𝑗 = 0 then continue

11 𝑠𝑖 𝑗 ← 𝑠

12 𝑇𝑖 𝑗 ← binomialVariate(𝑂𝑖 , 𝑐𝑖p𝑖 𝑗 )
13 for 𝑘 ← 1 to 𝑇𝑖 𝑗 do
14 output OD pair (𝑖, 𝑗)
15 𝑠 ← 𝑠 +𝑚 𝑗

Note that our search graph again consists of the union of all roads in the region of

interest and the major roads in the surrounding area.

Computing each 𝑠𝑖 𝑗 from scratch is wasteful, and we can do better by not resetting

Dijkstra’s algorithm between different runs from the same source. For each vertex 𝑖

in the region of interest (with a nonzero population, unpopulated vertices can be

skipped), we run Dijkstra’s algorithm until the priority queue is empty. During the

search, we maintain the cumulated population 𝑠 of all vertices scanned so far. In each

iteration, we extract a vertex 𝑗 from the queue, relax its outgoing edges, and check

whether 𝑗 has a nonzero population. If so, we draw𝑇𝑖 𝑗 from the binomial distribution

described above (𝑠𝑖 𝑗 is equal to 𝑠 at that point), and output as many trips between ver-

tices 𝑖 and 𝑗 . Algorithm 3.1 gives pseudocode for the straightforward implementation,

which we call FRAD (for formula-based radiation model implementation).

Asymptotic Analysis. By resuming the Dijkstra searches, we decrease the total

number of them from |𝑉 |2 to |𝑉 |. Since binomial variates can be generated in constant

expected time, for example by using the ratio-of-uniforms method [KM77, Sta90],

the total expected time of FRAD is 𝑂 ( |𝑉 |Dij( |𝑉 |, |𝐸 |)). Using a binary heap [Wil64]

or a Fibonacci heap [FT87], the running time Dij( |𝑉 |, |𝐸 |) of Dijkstra’s algorithm
becomes𝑂 (( |𝐸 | + |𝑉 |) log |𝑉 |) or𝑂 ( |𝐸 | + |𝑉 | log |𝑉 |), respectively. For sparse graphs
with |𝐸 | ∈ 𝑂 ( |𝑉 |), such as road networks, we obtain 𝑂 ( |𝑉 | log |𝑉 |) in both cases.

Therefore, the FRAD algorithm runs in superquadratic expected time 𝑂 ( |𝑉 |2 log |𝑉 |).
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3.4.2 Output-Sensitive Implementation

The superquadratic execution time restricts the applicability of the FRAD algorithm

to relatively small networks. However, the output size (i.e., the number of trips)

grows only linearly with the total population𝑀 , providing a lower bound Ω(𝑀) on
the execution time of our algorithms. In this section, we describe an output-sensitive

algorithm that comes close to this lower bound, is thus almost optimal, and scales to

continental networks having millions of vertices.

To obtain subquadratic time, we ignore the formula provided by the radiation

model, and build directly upon the underlying assumptions of the model. Recall that

the radiation model is based on the following main idea: Each traveler assigns to all

opportunities a fitness or attractiveness value, drawn independently from a common

distribution. Then, the traveler selects the closest opportunity with a fitness higher

than the traveler’s fitness threshold, drawn from the same distribution. The radiation

model with selection decreases the probability of selecting an opportunity by a factor

of 1 − 𝜆. In the simplest version, the number of opportunities is approximated by the

population, i.e., there are𝑀 opportunities in a region with a population of𝑀 .

Our output-sensitive algorithm repeatedly generates a trip until we have a total

of 𝛾𝑀 trips. We now show how to implement the generation of a single trip to run

in almost constant expected time. First, we pick the origin vertex. The radiation

model assumes that the flow 𝑂𝑖 out of vertex 𝑖 is proportional to the population𝑚𝑖

of 𝑖 , i.e., that 𝑂𝑖 = 𝛾𝑚𝑖 . Therefore, we draw the origin 𝑂 from a discrete distribution

determined by the probability function Pr[𝑂 = 𝑖] =𝑚𝑖/𝑀 .

It remains to pick a destination vertex corresponding to the chosen origin vertex.

Let 𝑋0 be the fitness threshold of the traveler and let 𝑋1, . . . , 𝑋𝑀 be the fitness values

of the𝑀 opportunities. We define 𝑂fit as the number of opportunities with a higher

fitness than the traveler’s fitness threshold. Since 𝑋0, . . . , 𝑋𝑀 are independently and

identically distributed, 𝑂fit is a uniform random number in 0..𝑀 . We define 𝑂sel as

the number of selectable opportunities, which obeys a binomial distribution with𝑂fit

trials and success probability 1− 𝜆. To pick the destination, we successively draw𝑂fit

and 𝑂sel from the respective distribution. If 𝑂sel is zero, the traveler did not find any

selectable opportunity. In this case, we draw 𝑂fit and 𝑂sel again, which is consistent

with the constant 𝑐𝑖 in Equation (3.2). Let 𝑂>0

sel
be the value of the first nonzero 𝑂sel.

Now, we know the total number of opportunities that can be selected by the traveler.

Let 𝑂int be the total number of opportunities that are closer to the origin vertex

than any selectable opportunity. Since the selectable opportunities are uniformly

distributed, 𝑂int can be seen as the number of failures in a sequence of draws from a

population of size𝑀 containing 𝑂>0

sel
successes before a success occurs. That is, 𝑂int

obeys a negative hypergeometric distribution. To finally pick the destination, we

draw𝑂int accordingly and run Dijkstra’s algorithm from the origin, stopping as soon
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Algorithm 3.2: Output-sensitive implementation of the radiation model,

repeatedly generating a trip using Dijkstra.

1 Function DRAD(𝐺 = (𝑉 , 𝐸), 𝛾, 𝜆)
2 for 𝑘 ← 1 to 𝛾𝑀 do
3 𝑂 ← discreteVariate(Pr[𝑂 = 𝑖] =𝑚𝑖/𝑀)
4 𝐷 ← 𝑂

5 while 𝑂 = 𝐷 do
6 𝑂

sel
← 0

7 while 𝑂
sel

= 0 do
8 𝑂

fit
← uniformIntVariate(1, 𝑀)

9 𝑂
sel
← binomialVariate(𝑂

fit
, 1 − 𝜆)

10 𝑂int ← negativeHypergeomVariate(1,𝑂
sel
, 𝑀)

11 dijkstra.initialize(𝑂)
12 while 𝑂int ≥ 0 do
13 𝐷 ← dijkstra.settleNextVertex ()
14 𝑂int ← 𝑂int −𝑚𝐷
15 output OD pair (𝑂, 𝐷)

as we have visited 𝑂int + 1 opportunities. The last vertex scanned by the search is

the destination we are looking for. Note that our search graph once again consists

of all roads in the region of interest and the major roads in the surrounding area.

Algorithm 3.2 gives pseudocode for the output-sensitive implementation, which we

call DRAD (for Dijkstra-based radiation model implementation).

Asymptotic Analysis. We start by estimating the expected running time for the

Dijkstra search. The stopping criterion of the search depends on the number 𝑂int

of opportunities that are closer to the origin than any selectable opportunity. More

precisely, the search stops when 𝑂int + 1 opportunities have been visited. Therefore,

we need to estimate the expected value of 𝑂int.

Recall that 𝑂int is the number of failures in a sequence of draws from a population

of size 𝑀 containing 𝑂>0

sel
successes before a success occurs. To obtain 𝑂>0

sel
, we

repeatedly draw 𝑂sel until a nonzero variate occurs. We ignore this complication for

now. Let 𝑂̂ int obey the same negative hypergeometric probability distribution as𝑂int,

with 𝑂>0

sel
replaced by 𝑂sel. We estimate the expected value of 𝑂̂ int. Let p = 1 − 𝜆 be

the probability that a sufficiently fit opportunity is selected. We obtain

E[𝑂̂ int] =
𝑀∑︁
𝑘=0

Pr[𝑂fit = 𝑘] E[𝑂̂ int | 𝑂fit = 𝑘]
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=

𝑀∑︁
𝑘=0

Pr[𝑂fit = 𝑘]
𝑘∑︁
ℓ=0

Pr[𝑂sel = ℓ | 𝑂fit = 𝑘] E[𝑂̂ int | 𝑂fit = 𝑘,𝑂sel = ℓ]

=

𝑀∑︁
𝑘=0

1

𝑀 + 1

𝑘∑︁
ℓ=0

(︃
𝑘

ℓ

)︃
pℓ (1 − p)𝑘−ℓ𝑀 − ℓ

ℓ + 1

=

𝑀∑︁
𝑘=0

𝑘∑︁
ℓ=0

(︃
1

ℓ + 1

− 1

𝑀 + 1

)︃ (︃
𝑘

ℓ

)︃
pℓ (1 − p)𝑘−ℓ

=

𝑀∑︁
𝑘=0

𝑘∑︁
ℓ=0

1

ℓ + 1

(︃
𝑘

ℓ

)︃
pℓ (1 − p)𝑘−ℓ − 1

𝑀 + 1

𝑀∑︁
𝑘=0

𝑘∑︁
ℓ=0

(︃
𝑘

ℓ

)︃
pℓ (1 − p)𝑘−ℓ

=

𝑀∑︁
𝑘=0

𝑘∑︁
ℓ=0

1

ℓ + 1

(︃
𝑘

ℓ

)︃
pℓ (1 − p)𝑘−ℓ − 1

𝑀 + 1

𝑀∑︁
𝑘=0

1

=

𝑀∑︁
𝑘=0

𝑘∑︁
ℓ=0

1

ℓ + 1

(︃
𝑘

ℓ

)︃
pℓ (1 − p)𝑘−ℓ − 1

=

𝑀∑︁
𝑘=0

𝑘∑︁
ℓ=0

1

𝑘 + 1

(︃
𝑘 + 1

ℓ + 1

)︃
pℓ (1 − p)𝑘−ℓ − 1

=
1

p

𝑀∑︁
𝑘=0

1

𝑘 + 1

𝑘∑︁
ℓ=0

(︃
𝑘 + 1

ℓ + 1

)︃
pℓ+1 (1 − p) (𝑘+1)−(ℓ+1) − 1

=
1

p

𝑀∑︁
𝑘=0

1

𝑘 + 1

𝑘+1∑︁
𝑢=1

(︃
𝑘 + 1

𝑢

)︃
p𝑢 (1 − p) (𝑘+1)−𝑢 − 1

=
1

p

𝑀∑︁
𝑘=0

1 − (1 − p)𝑘+1
𝑘 + 1

− 1

=
1

p

𝑀+1∑︁
𝑘=1

1 − (1 − p)𝑘
𝑘

− 1 ∈ Θ
(︄
𝑀∑︁
𝑘=1

1

𝑘

)︄
= Θ(log𝑀)

Hence, if we allow 𝑂sel to be zero, the expected number of opportunities closer to

the origin than any selectable opportunity is Θ(log𝑀). Let us now consider the

case where 𝑂sel is not allowed to be zero, as is the case in the actual algorithm. We

estimate the expected value of 𝑂int. We have

E[𝑂int] = Pr[𝑂sel = 0] E[𝑂int] +
𝑀∑︁
ℓ=1

Pr[𝑂sel = ℓ] E[𝑂̂ int | 𝑂sel = ℓ]
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=

∑︁𝑀
ℓ=1

Pr[𝑂sel = ℓ] E[𝑂̂ int | 𝑂sel = ℓ]
1 − Pr[𝑂sel = 0]

=
E[𝑂̂ int] − Pr[𝑂sel = 0] E[𝑂̂ int | 𝑂sel = 0]

1 − Pr[𝑂sel = 0]
In order to proceed with the analysis, we need to determine the probability that 𝑂sel

is zero. Since 𝑂sel obeys the binomial distribution described above, we obtain

Pr[𝑂sel = 0] =
𝑀∑︁
𝑘=0

Pr[𝑂fit = 𝑘] Pr[𝑂sel = 0 | 𝑂fit = 𝑘]

=

𝑀∑︁
𝑘=0

1

𝑀 + 1

(︃
𝑘

0

)︃
p0 (1 − p)𝑘−0

=
1

𝑀 + 1

𝑀∑︁
𝑘=0

(1 − p)𝑘

=
1

𝑀 + 1

1 − (1 − p)𝑀+1
1 − (1 − p)

=
1 − (1 − p)𝑀+1

p (𝑀 + 1)
Substituting this expression into the expression for the expected value of 𝑂int yields

E[𝑂int] =
E[𝑂̂ int] − 1−(1−p)𝑀+1

p (𝑀+1)
𝑀−0

0+1

1 − 1−(1−p)𝑀+1
p (𝑀+1)

=
E[𝑂̂ int] − 1−(1−p)𝑀+1

p
𝑀
𝑀+1

1 − 1−(1−p)𝑀+1
p

1

𝑀+1

∈ Θ(E[𝑂̂ int]) = Θ(log𝑀)

Hence, forbidding 𝑂sel to be zero has no impact on the expected number of inter-

vening opportunities closer to the origin than any selectable opportunity. Under

the assumptions that the number of opportunities is proportional to the size of the

network and that the opportunities are evenly distributed over the network, the

Dijkstra search runs in expected time 𝑂 (log𝑀 log log𝑀).
Since all of our variates can be generated in constant expected time, and the

number of draws before obtaining a nonzero𝑂sel obeys a geometric distribution with

probability parameter 1 − Pr[𝑂sel = 0] and expected value

Pr[𝑂sel = 0]
1 − Pr[𝑂sel = 0] =

1 − (1 − p)𝑀+1
p (𝑀 + 1) − 1 + (1 − p)𝑀+1

∈ Θ
(︃

1

𝑀

)︃
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the total expected time to generate a single trip is 𝑂 (log𝑀 log log𝑀). Since we

generate 𝛾𝑀 trips, DRAD runs in expected time𝑂 (𝑀 log𝑀 log log𝑀). Note that this
bound comes close to our simple lower bound of Ω(𝑀).

3.4.3 Scalable Implementation
Although the DRAD method is almost optimal, the constant factors involved are

actually large. In this section, we describe an algorithm that improves the practical

performance even further, taking only seconds on continental networks. The algo-

rithm, which we call TRAD, works similar to DRAD: It repeatedly generates a trip

until we have a total of 𝛾𝑀 trips. Like DRAD, it draws the origin vertex 𝑂 from a

discrete distribution determined by the probability function Pr[𝑂 = 𝑖] =𝑚𝑖/𝑀 , and

generates the number 𝑂sel of selectable opportunities as described above. However,

it differs from DRAD in how it picks the destination vertex based on 𝑂sel.

The general idea is to find the selectable opportunity closest to the origin using

a nearest-neighbor search [FBF77] in a kd-tree [Ben75]. Each node in a kd-tree

corresponds to a region of the plane. The region of the root is the whole plane and

the leaves correspond to small disjoint blocks partitioning the plane. Given an origin

vertex, we sample selectable opportunities only in regions that are close to the origin,

and pick the closest opportunity among those. In order to do so, we need to know

how many selectable opportunities we have to sample in which region.

We make the following crucial observation. Define 𝑂sel (v) as the number of se-

lectable opportunities in the region corresponding to a node v and define 𝑂tot (v) as
the total number of opportunities in the region corresponding to v . Consider a node p
and let 𝑐l and 𝑐r be its left child and right child, respectively. Then, 𝑂sel (𝑐l) can be

seen as the number of successes in 𝑂sel (p) draws from a population of size 𝑂tot (p)
containing 𝑂tot (𝑐l) successes. In other words, 𝑂sel (𝑐l) obeys a hypergeometric dis-

tribution. Consequently, 𝑂sel (𝑐r) is 𝑂sel (p) - 𝑂sel (𝑐l). In the following, we turn this

observation into an algorithm and work out the details.

Building the Tree. Before we can generate the first trip, we need to build a kd-tree

storing the vertices in our network. It suffices to build a kd-tree for all vertices with a

nonzero number of opportunities, since only those vertices are potential destinations.

We split the set of vertices with a splitting line into two subsets of roughly equal size

and then recurse on each subset. The recursion ends when the resulting subsets are

sufficiently small (we use a recursion threshold of 16 in our experiments, determined

experimentally). We split with a vertical line at levels whose depth is even, and we

split with a horizontal line at levels whose depth is odd.

Each kd-tree node stores the line chosen to split the region corresponding to the

node. In addition, we store at each node v the total number 𝑂tot (v) of opportunities
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in the region. Moreover, we keep a list of all vertices with a nonzero number of

opportunities, starting with the vertices in the region of the leftmost leaf, followed

by the vertices in the region of the second leftmost leaf, and so on. For each interior

and leaf node v , the vertices in the region corresponding to v are thus a contiguous
sublist, whose starting and ending position we store at v . A second list stores the

opportunity counts of all vertices with a nonzero number of opportunities in the

same order. That allows efficient retrieval of the vertices in the region of the node v
and their corresponding opportunity counts.

Finding the Closest Selectable Opportunity. The query algorithm (see Algo-

rithm 3.3, with subroutines in Algorithm 3.4) traverses the kd-tree, starting at the

root, and maintaining the closest selectable opportunity seen so far. Moreover, we

maintain the number 𝑂sel (v) of selectable opportunities in the region corresponding

to the current node v . At the root 𝑟 , 𝑂sel (𝑟 ) is simply the number 𝑂sel of selectable

opportunities in the whole region of interest, generated as in the DRAD algorithm.

When the traversal reaches an interior node v with the left child 𝑐l and the right

child 𝑐r, we draw𝑂sel (𝑐l) from the hypergeometric probability distribution described

above, and set 𝑂sel (𝑐r) to 𝑂sel (v) −𝑂sel (𝑐l).
We then recurse on the child whose region is closer to the origin, and when control

returns, we recurse on the other child. Note that we use geographical instead of

shortest-path distances here. There are two pruning rules: We prune the search at

any node v with 𝑂sel (v) = 0, and at any node v whose region is further from the

origin than the closest selectable opportunity seen so far. When the traversal reaches

a leaf node, we proceed with the base case as follows.

Handling theBaseCase. When reaching a leaf node v , we sample𝑂sel (v) selectable
opportunities in the region corresponding to v . For each of those opportunities, we

check whether it improves the closest selectable opportunity seen so far. If this is the

case, we update the best solution found so far.

It remains to explain how we sample the selectable opportunities. More precisely,

we wish to sample 𝑂sel (v) vertices from all vertices {v1, v2, . . .} in the region of v .
The probability that a vertex is chosen should be proportional to the number of not

yet chosen opportunities at that vertex. Note that this problem is similar (but not

identical) to weighted sampling without replacement [Dev86, WE80].

Let𝑊 denote an array where𝑊 [ 𝑗] stores the number of not yet chosen opportuni-

ties at v𝑗 . Initially, we copy the (contiguous) sublist of opportunity counts at the v𝑗 ’s
to𝑊 . Besides, let 𝑆 ( 𝑗) be the prefix sums

∑︁𝑗

𝑘=1
𝑊 [𝑘]. To simplify notation, 𝑆 (0) = 0.

To sample the 𝑖-th vertex, we generate a uniform random number 𝑟 in 0..𝑂tot (v) − 𝑖 .
Then, we find 𝑗 such that 𝑆 ( 𝑗 − 1) ≤ 𝑟 < 𝑆 ( 𝑗) with a linear sweep over the array𝑊 .
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Algorithm 3.3: Tree-based destination selection method using geometric

distances, resembling a nearest-neighbor search in a kd-tree.

1 Global variables
2 𝑞 = (𝑞𝑥 , 𝑞𝑦 ) denotes the coordinates of the origin vertex

3 𝑏+ = (𝑏+𝑥 , 𝑏+𝑦 ) denotes the top-right of the current region
4 𝑏− = (𝑏−𝑥 , 𝑏−𝑦 ) denotes the bottom-left of the current region

5 𝐷 denotes the closest selectable opportunity seen so far

6 𝑑 denotes the distance from the origin vertex to 𝐷

7 Function findClosestSelOpportunity(v,𝑂sel (v))
8 if v is a leaf or recursion threshold is deceeded then
9 handleBaseCase(v,𝑂

sel
(v))

10 return
11 𝑂

sel
(𝑐𝑙 ) ← hypergeomVariate(𝑂

sel
(v),𝑂tot (𝑐𝑙 ),𝑂tot (v))

12 𝑂
sel
(𝑐𝑟 ) ← 𝑂

sel
(v) −𝑂

sel
(𝑐𝑙 )

13 dim← splitDim(v)
14 𝑠 ← splitVal(v)
15 if 𝑞dim ≤ 𝑠 then
16 if 𝑂

sel
(𝑐𝑙 ) > 0 then

17 (tmp, 𝑏+dim) ← (𝑏
+
dim, 𝑠)

18 findClosestSelOpportunity(𝑐𝑙 ,𝑂sel
(𝑐𝑙 ))

19 𝑏+dim ← tmp
20 if 𝑂

sel
(𝑐𝑟 ) > 0 then

21 (tmp, 𝑏−dim) ← (𝑏
−
dim, 𝑠)

22 if boundsIntersectDisk() then
23 findClosestSelOpportunity(𝑐𝑟 ,𝑂sel

(𝑐𝑟 ))
24 𝑏−dim ← tmp
25 else
26 if 𝑂

sel
(𝑐𝑟 ) > 0 then

27 (tmp, 𝑏−dim) ← (𝑏
−
dim, 𝑠)

28 findClosestSelOpportunity(𝑐𝑟 ,𝑂sel
(𝑐𝑟 ))

29 𝑏−dim ← tmp
30 if 𝑂

sel
(𝑐𝑙 ) > 0 then

31 (tmp, 𝑏+dim) ← (𝑏
+
dim, 𝑠)

32 if boundsIntersectDisk() then
33 findClosestSelOpportunity(𝑐𝑙 ,𝑂sel

(𝑐𝑙 ))
34 𝑏+dim ← tmp

The vertex we are looking for is v𝑗 . Finally, we decrement𝑊 [ 𝑗], since we have

chosen one of the opportunities at vertex v𝑗 , which has to be taken into account

when sampling the 𝑖 + 1-th vertex in the next iteration.
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Algorithm 3.4: Subroutines used by Algorithm 3.3.

1 Function handleBaseCase(v,𝑂sel (v))
2 let {v1, v2, . . . } be the vertices in the region of node v
3 copy the opportunity counts at the v𝑗 ’s into array𝑊

4 for 𝑖 ← 1 to 𝑂
sel
(v) do

5 𝑟 ← uniformIntVariate(0,𝑂tot (v) − 𝑖)
6 𝑗 ← 1

7 𝑠 ←𝑊 [1]
8 while 𝑠 ≤ 𝑟 do ( 𝑗, 𝑠) ← ( 𝑗 + 1, 𝑠 +𝑊 [ 𝑗 + 1])
9 𝑊 [ 𝑗] ←𝑊 [ 𝑗] − 1

10 if |coordinates(v𝑗 ) − 𝑞 |2 < 𝑑 then
11 𝐷 ← v𝑗
12 𝑑 ← |coordinates(v𝑗 ) − 𝑞 |2

13 Function boundsIntersectDisk()
14 𝑏 ← 0

15 if 𝑞𝑥 < 𝑏−𝑥 then
16 𝑏 ← 𝑏 + (𝑞𝑥 − 𝑏−𝑥 )2
17 else if 𝑞𝑥 > 𝑏+𝑥 then
18 𝑏 ← 𝑏 + (𝑞𝑥 − 𝑏+𝑥 )2
19 if 𝑞𝑦 < 𝑏−𝑦 then
20 𝑏 ← 𝑏 + (𝑞𝑦 − 𝑏−𝑦 )2
21 else if 𝑞𝑦 > 𝑏+𝑦 then
22 𝑏 ← 𝑏 + (𝑞𝑦 − 𝑏+𝑦 )2
23 return 𝑏 < 𝑑

Since we can efficiently retrieve the vertices in the region of any node, and their

opportunity counts, we may call the base-case algorithm not only for leaves but also

for interior nodes. Therefore, we should break the recursion as soon as handling the

base case is no more costly than handling the recursion. The base-case algorithm runs

in time 𝑂 (𝑂sel (v) · 𝑘), where 𝑘 is the number of vertices in the region corresponding

to v , and thus we switch to it as soon as 𝑂sel (v) · 𝑘 drops below some threshold (we

use a recursion threshold of 1024 in our experiments, determined experimentally).

3.4.4 Other Proxies for the Attraction Rate

In the simplest version, the radiation model assumes that the number of trips leaving

a zone is proportional to its population, and that the attractiveness of a zone is also

proportional to its population. Yang et al. [YHEG14] propose to distinguish the

production rate of a zone from its attraction rate, i.e., to use distinct proxies for them.
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They keep the population density as a proxy for the production rate, but use the

number of points-of-interest (POIs) in a zone as its attraction value. POIs are all

types of potential destinations, such as restaurants, post offices, groceries, schools,

churches, and hospitals. Note that POIs are also maintained in OpenStreetMap.

We can easily incorporate distinct proxies for the production and attraction rate

into our algorithms. Both rates are maintained as separate arrays, indexed by vertex

IDs, allowing efficient access to the production and attraction value of any vertex.

Adapting the FRAD algorithm is straightforward. When generating the flow 𝑂𝑖
out of vertex 𝑖 , we substitute the production rate of 𝑖 for𝑚𝑖 . When computing the

probability 𝑐𝑖p𝑖 𝑗 that a trip starting at vertex 𝑖 ends at vertex 𝑗 , we substitute the

attraction rates of 𝑖 and 𝑗 for𝑚𝑖 and𝑚 𝑗 , respectively, and let Dijkstra’s algorithm

cumulate the attraction values of scanned vertices to obtain 𝑠𝑖 𝑗 . The adaptation of

DRAD and TRAD is also straightforward. When picking the origin, we substitute

the production rate of each vertex 𝑖 for𝑚𝑖 . When choosing the destination, we use

the attraction value of each vertex 𝑖 as the number of opportunities at 𝑖 .

This way, we generate only trips from residential areas to opportunities. To also

take the reverse direction into account, we proceed as follows. Whenever we have

generated a trip, we swap origin vertex and destination vertex with probability pswap.
The choice of pswap depends on the traffic scenario. During the morning peak, trips

mainly go from residential areas to opportunities, and during the evening peak, it

is the opposite. In our experiments in Section 3.6, we thus use pswap = 0.3 for the

morning peak, pswap = 0.6 for the evening peak, and pswap = 0.5 for the whole day.

3.5 Parallelization
All algorithms described in this chapter are easy to parallelize with perfect speedups.

Let 𝑐 be the number of CPU cores available. RAND, GEOM, DRAD, and TRAD

generate one trip at a time. Since the generations of the trips are independent from

one another, we assign different trips to separate cores. Note that GEOM takes as

input the number𝑇 of trips to be generated and the expected trip length 𝜇, and DRAD

and TRAD take the number 𝑇 of trips and the model parameter 𝜆. In all cases each

core generates 𝑇 /𝑐 trips. RAND takes as input the total network volume 𝑉 , and thus

each core generates trips until its network volume exceeds 𝑉 /𝑐 .
The FRAD algorithm does not process one trip but one pair of vertices at a time.

Since all pairs (𝑖, ·) are examined during the same Dijkstra search, those pairs have

to be assigned to the same core. However, the examinations of pairs (𝑖, ·) and ( 𝑗, ·)
with 𝑖 ≠ 𝑗 are independent from each other, and can be allocated to distinct cores.

To obtain lock-free implementations, the cores write their trips to temporary files.

After generating all trips, we merge the temporary files into a single output file.
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3.6 Experiments
This section presents an extensive experimental evaluation of all algorithms consid-

ered. First, we describe our experimental setup. Second, we evaluate the quality of the

demand data calculated by our algorithms. Finally, we compare their performance.

3.6.1 Experimental Setup
Our publicly available code

5

5 https://github.com/vbuchhold/routing-framework

is written in C++14 (with OpenMP for parallelization)

and compiled with the GNU compiler 7.4 using the optimization level 3. We use

4-heaps [Joh75] as priority queues. To ensure a correct implementation, we make

extensive use of assertions (disabled during measurements). Our benchmark machine

runs openSUSE Leap 15.0 (kernel 4.12.14), and has 192GiB of DDR4-2666 RAM and

two Intel Xeon Gold 6144 CPUs, each with eight cores clocked at 3.50GHz and

8 × 64 KiB of L1, 8 × 1MiB of L2, and 24.75MiB of shared L3 cache.

Inputs. Our main benchmark instance, taken from a real-world production system,

is the Stuttgart Region [SHP11], Germany, encompassing about 2.6million inhabitants.

The experiments are run on the largest strongly connected component, which consists

of 134 663 vertices and 307 759 edges. The length of an edge represents the travel

time between its endpoints. Note that the network also contains the major roads in

the area surrounding the Stuttgart Region.

The instance provides demand data for a whole week. The demand was originally

forecasted using mobiTopp [MKV13, MV15], which was calibrated from a household

travel survey [VRS11] conducted in 2009/2010. The raw data contains about 51.8 mil-

lion trips between 1174 zones, encompassing various modes of transportation such

as pedestrian, bicycle, public transit, and car. For our experiments, we only consider

car trips, and extract three different traffic scenarios: a morning peak, an evening

peak, and a whole day. We assume the endpoints to be uniformly distributed in the

zones, and pick for each trip the origin vertex and the destination vertex uniformly

at random from its origin and destination zone, respectively.

We take population densities from two different population grids. We mainly

use the grid made available by the Federal Statistical Office of Germany. It has a

resolution of 100m and covers Germany. We also use the population grid made

available by Eurostat, which has a resolution of 1 km and covers all EU and EFTA

member states. Note that POI data is provided by the Stuttgart instance.

Methodology. We evaluate the quality of the demand data calculated by our algo-

rithms and their performance. Measuring the latter is obvious. The solution quality

is evaluated by comparing synthetic data provided by our algorithms to reference

https://github.com/vbuchhold/routing-framework
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data used in production systems. However, how to make such a comparison is non-

obvious. We argue that two demand data sets are similar if they yield similar traffic

patterns in the road network. Therefore, we proceed as follows. First, we assign

the reference demand to the network (using the state-of-the-art traffic assignment

algorithm that we will introduce in Chapter 5), which provides the traffic volume of

each edge. Then, we assign the synthetic demand. Finally, we compare the saturation

of each edge resulting from the synthetic demand to the one resulting from the refer-

ence demand, by plotting the synthetic edge saturation against the reference edge

saturation. We prefer to compare saturation (i.e., the volume on an edge divided by its

capacity) rather than pure volume, since for the purposes of transportation planning,

it is particularly important to forecast the bottlenecks (i.e., strongly saturated road

segments that impede traffic flow) on a transportation network. Note that accurate

and reliable road capacities are also provided by the benchmark instances.

Moreover, we compare the trip duration distributions for the reference and syn-

thetic demand. This gives further insight into the solution quality obtained.

Population and POI Assignment. Formally, we assume that each vertex in the

road network has a nonnegative number of inhabitants. As input, however, we take

population grids. Assigning the grid to the graph works as follows. For each inhabi-

tant, we pick a vertex lying in that cell uniformly at random and assign the inhabitant

to it. If there is no such vertex, we choose one lying in the Moore neighborhood of

that cell with range 𝑟 = 1. If there is still no such vertex, we gradually increase 𝑟

up to some 𝑟max. In our experiments, we use 𝑟max = 1 for the German grid with a

resolution of 100m, and 𝑟max = 0 for the European grid with a resolution of 1 km.

In contrast, the POI data we are given is a list of geographical coordinates. We

assign each POI to the closest vertex no further than 𝑑max. We set 𝑑max to 200m.

RandomVariate Generation. In order to keep implementation complexity low, we

use existing implementations of random variate generation algorithms. The Standard

Template Library offers the three distribution classes uniform_int_distribution,

binomial_distribution, and geometric_distribution. Unfortunately, the STL pro-

vides neither a hypergeometric nor a negative hypergeometric distribution. To

generate hypergeometric variates, we use the stocc library
6

6 https://www.agner.org/random/

. However, we are not

aware of any C++ library that offers a generator for negative hypergeometric variates.

Therefore, when we need a negative hypergeometric variate, i.e., the number 𝑘 of fail-

ures in a sequence of draws from a population of size 𝑁 containing 𝑛 successes before

a success occurs, we approximate 𝑘 by a geometric variate with parameter p = 𝑛/𝑁 .

Note that the geometric distribution slightly underestimates the actual probability

for small values of 𝑘 , and slightly overestimates the probability for large values of 𝑘 .

https://www.agner.org/random/
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Table 3.1: Choice of the parameter 𝜆 for the Stuttgart Region.

attraction FRAD DRAD TRAD

POP 0.999 982 8 0.999 982 1 0.999 979 3

POI 0.997 41 0.997 32 0.996 81

Parameters. The algorithms described in this chapter have several input parameters.

RAND takes the total network volume 𝑉 , and GEOM takes the number 𝑇 of trips to

be generated and the expected trip length 𝜇. Moreover, FRAD, DRAD and TRAD also

take the number 𝑇 of trips and the model parameter 𝜆. We set 𝑇 to the number of

trips in the reference demand, and 𝑉 to 𝑇 𝜇.

It remains to determine 𝜇 and 𝜆. We assume an average trip length of 10min, and

thus set 𝜇 to 10min. Moreover, we determine 𝜆 such that the resulting average trip

length is 𝜇. Note that we do not fit 𝜆 to the reference demand data set; we only fit it

to our rough trip length estimate of 10min. After all, our goal is to show that our

algorithms do not require detailed data for calibration.

Table 3.1 shows our choice of 𝜆. When using POI densities as attraction rates, 𝜆

is much smaller, since the total number of POIs in our data is much smaller than

the total number of inhabitants. Moreover, 𝜆 is somewhat smaller for DRAD than

for FRAD due to our approximation of the negative hypergeometric distribution

by a geometric distribution. As discussed in the previous section, the geometric

distribution slightly underestimates the probability of short-range trips, which is

compensated for by a somewhat smaller 𝜆. Note that 𝜆 deviates more for TRAD

because it uses a different metric (geographical instead of shortest-path distances).

3.6.2 SolutionQuality

Figure 3.3 compares the quality obtained by our algorithms for a morning peak

(7.30–8.30 on a Tuesday) within the Stuttgart Region. The radiation-based algorithms

use POI densities as attraction rates. We observe that the radiation model produces

demand data sets that are quite similar to the reference demand, and significantly

outperform the simple approaches. Both RAND and GEOM grossly underestimate

the traffic volume of strongly saturated edges, whereas particularly FRAD and DRAD

obtain good estimates for edges of any saturation, and also reduce the amount of

dispersion. Moreover, the trip length distributions obtained by the radiation-based

algorithms approximate the reference distribution much better. While the curves

of the radiation-based algorithms closely follow the reference curve, the curves of

RAND and GEOM have a completely different shape.
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Figure 3.3: Quality of the demand data calculated by our algorithms for the morning

peak within the Stuttgart Region. We plot the edge saturation resulting from the

synthetic demand (calculated by the respective algorithm) against the edge saturation

resulting from the reference demand (cf. Section 3.6.1). The bottom-right plot shows

the distribution of the trip duration for the reference demand (thick line) and the

synthetic demand (thin lines). The radiation algorithms use the population densities

from the German grid as production rates and POI densities as attraction rates.

Note that the demand data sets produced by FRAD and DRAD are almost identical.

This is expected, since we specifically designed DRAD to generate the same trips as

FRAD, while spending much less time. The solution quality obtained by TRAD is

slightly worse than the one obtained by FRAD and DRAD, since TRAD resorts to

geographical instead of shortest-path distances. However, it still calculates demand

data of better quality than the simple approaches, with a better trip length distribution.

Using Population Densities as Attraction Rates. Figure 3.4 shows the solution

quality obtained by the radiation-based algorithms when using population instead of

POI densities as attraction rates. We see that switching to population densities has a

limited negative impact on the quality, however, particularly FRAD and DRAD still

perform better than RAND and GEOM (cf. Figure 3.3). Still, POI densities should be

preferred as attraction rates whenever they are available.
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Figure 3.4: Impact on the solution quality when using population instead of POI

densities as attraction rates. As in Figure 3.3, we consider the morning peak within

the Stuttgart Region, and take the population densities from the German grid.

Other Analysis Period. Next, we consider a different analysis period within the

Stuttgart Region. Figure 3.5 compares the solution quality obtained by our algorithms

for a whole day (a Tuesday). We observe that this period seems easier to be forecasted,

since all algorithms perform better than for the morning peak. We assume the reason

is that the traffic is more evenly distributed when averaged over a whole day, and

peaks are less pronounced. Still, there is a difference in quality between the radiation-

based algorithms and the simple approaches. In particular, both FRAD and DRAD

almost perfectly match the reference demand, with a small amount of dispersion.

Other Study Area: Greater London. Finally, we evaluate the solution quality

on another region. Besides the Stuttgart Region, we take Greater London from a

production system; see Table 3.2 for the key figures of the largest strongly connected

component of this transportation network. Figure 3.6 shows the quality obtained by

our algorithms for a peak hour. While all algorithms work quite well on average,

both RAND and GEOM suffer from a large number of outliers, and a wide dispersion.

Again, the radiation-based algorithms give reasonably accurate results, and the trip

length distribution they obtain almost exactly match the reference distributions.
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Figure 3.5: Solution quality for a whole day within the Stuttgart Region.
7

7
As in Figure 3.3, the radiation-based algorithms use population densities from the German grid as

production rates and POI densities as attraction rates.
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Figure 3.6: Solution quality for a peak traffic hour within Greater London.
8

8
The radiation-based algorithms use population densities from the European population grid made

available by Eurostat as both production and attraction rates.
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Table 3.2: Key figures of our benchmark instances.

source input # vertices # edges deg population # POIs

PTV Stuttgart 134 663 307 759 2.29 2 591 973 18 157

PTV London 45 158 101 897 2.26 8 208 889 –

DIMACS Belgium 462 843 1 112 155 2.40 11 094 164 –

DIMACS Germany 4 377 307 10 736 198 2.45 79 168 050 –

DIMACS Europe 18 017 748 42 560 275 2.36 372 443 839 –

3.6.3 Performance and Scalability

Our last experiment evaluates the performance of our algorithms on various bench-

mark instances. In addition to the Stuttgart Region and Greater London, we consider

three country- and continent-sized road networks from the Ninth DIMACS Implemen-

tation Challenge [DGJ09], namely Belgium, Germany, and Western Europe. Table 3.2

shows the key figures of these road networks.

Table 3.3 reports the running time of our algorithms on each network. Our experi-

mental observations strongly support the theoretical analyses in Section 3.4. While it

is quite feasible to run FRAD on smaller instances, such as the Stuttgart Region and

Greater London, it cannot scale to larger ones. It takes three days on Germany, and

on Europe, it would take two months (using all 16 cores, single-threaded execution

would take a few years). To estimate the running time of FRAD on Europe, we let

it generate trips for all pairs (𝑖, 𝑗) with 𝑖 ∈ 𝑆 ⊂ 𝑉 and 𝑗 ∈ 𝑉 , where the sample 𝑆

contained 1‰ of the vertices in Europe. We then scaled the running time by a factor

of 1000. Note that we estimated the running time of FRAD on Germany in the same

way (in addition to running the algorithm in full on Germany), and observed that

our projection differed only by 2% from the actual running time. Therefore, we are

convinced that our projections for Europe are quite accurate.

Overall, DRAD is faster than FRAD on the Western European road network by up

to a factor of 10 000, and TRAD even by up to five orders of magnitude, decreasing

the running time from months to seconds.

3.7 Conclusion

We introduced and evaluated three implementations of the recently proposed ra-

diation model [SGMB12] used for predicting human mobility flows. We showed

that a straightforward yet careful implementation, denoted by FRAD, does not scale

to continental road networks, taking months on our largest network even when
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Table 3.3: Running time (in seconds) of our algorithms on different benchmark

instances. 𝑇 denotes the number of trips to be calculated and 𝜇 the expected trip

duration in minutes. We use population densities as both production and attraction

rates. Figures marked with a * are projections.

𝑇 𝜇 RAND GEOM FRAD DRAD TRAD

S
t
u
t
t
g
a
r
t 10

5
10 5 6 119 4 0.05

10
5

20 9 18 119 15 0.04

10
6

10 45 59 124 37 0.29

10
6

20 90 181 124 152 0.23

L
o
n
d
o
n

10
5

10 3 3 19 2 0.03

10
5

20 5 9 19 8 0.03

10
6

10 27 32 19 23 0.24

10
6

20 53 84 19 76 0.15

B
e
l
g
i
u
m

10
6

10 120 52 3 263 28 0.46

10
6

20 242 252 3 240 149 0.44

10
7

10 1 184 497 3 343 265 3.58

10
7

20 2 343 2 467 3 335 1 432 3.48

G
e
r
m
a
n
y 10

6
10 809 59 227 880 56 1.43

10
6

20 1 616 322 249 875 251 1.39

10
7

10 8 083 581 244 775 507 6.13

10
7

20 16 134 3 231 264 938 2 405 5.91

E
u
r
o
p
e

10
7

10 13 949 498 5 136 007* 503 16.44

10
7

20 27 669 2 659 5 166 284* 2 207 12.09

10
8

10 138 546 4 932 5 298 487* 4 845 126.10

10
8

20 275 712 26 509 5 391 445* 21 739 79.72

using 16 CPU cores. Therefore, we presented two output-sensitive, more scalable

implementations. The first, denoted by DRAD, uses shortest-path distances, thus

delivering the same solution quality as the straightforward implementation, but de-

creasing the running time from months to minutes. The second one, TRAD, resorts to

geographical distances, thus sacrificing some solution quality in order to obtain even

better running times. In total, this algorithm is five orders of magnitude faster than

the straightforward implementation on our largest network representing Europe.

Our findings make applications of the radiation model to continental networks at

the microscopic level practical and can be used to generate large-scale benchmark

data for evaluating transportation algorithms. Compared to generation approaches

previously used in algorithmic publications, our algorithms produce demand data of
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better quality, take less time, have similar implementation complexity, and rely only

on publicly available data such as population grids.

Future work includes studying the output of our algorithms on other road net-

works. It would be particularly interesting to obtain production demand data from

Switzerland, because the Swiss Federal Statistical Office publishes a whole host of

grid data sets
9

9 https:

//www.bfs.admin.ch/bfs/de/home/dienstleistungen/geostat/geodaten-bundesstatistik.html

, including grid data on the number of inhabitants, workplaces and

employees per hectare. We expect the number of employees to be an even better

proxy for the attraction rate, at least during peak hours.

In the next chapter, we will develop an algorithm that combines the very efficient

tree-based sampling technique with shortest-path instead of geographical distances.

https://www.bfs.admin.ch/bfs/de/home/dienstleistungen/geostat/geodaten-bundesstatistik.html
https://www.bfs.admin.ch/bfs/de/home/dienstleistungen/geostat/geodaten-bundesstatistik.html
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4

Nearest-NeighborQueries
for Demand Generation

Customizable contraction hierarchies are one of the most popular route planning

frameworks in practice, due to their simplicity and versatility. In this chapter, we

present a novel algorithm for finding 𝑘-nearest neighbors in customizable contrac-

tion hierarchies. Compared to previous bucket-based approaches, our algorithm

requires much less target-dependent preprocessing effort. Moreover, we use our

novel approach in two concrete applications. The first application are online 𝑘-closest
point-of-interest queries, where the points of interest are only revealed at query time.

We achieve query times of about 25 milliseconds on a continental road network,

which is fast enough for interactive systems. The second application is travel demand

generation. We show how to accelerate the demand generators from the previous

chapter by a factor of more than 50 using our novel nearest-neighbor algorithm.

This chapter is based on joint work with Dorothea Wagner [BW21].

4.1 Introduction
Motivated by route planning in road networks, the last two decades have seen intense

research on speedup techniques [Bas+16] for Dijkstra’s algorithm [Dij59], which

rely on a slow preprocessing phase to enable fast queries. Particularly relevant to

real-world production systems are customizable speedup techniques, which split

preprocessing into a metric-independent part, taking only the network structure into

account, and a metric-dependent part (the customization), incorporating edge weights
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(the metric). A fast and lightweight customization is a key requirement for important

features such as real-time traffic updates and personalized metrics. The most promi-

nent customizable techniques are customizable route planning (CRP) [DGPW17]

and customizable contraction hierarchies (CCHs) [DSW16]. Both achieve similar

performance but with different trade-offs, and both are in use in industry.

Modern map-based services must support not only point-to-point shortest-path

queries but also many other types of queries. Over the years, both CRP and CCHs

have been extended to numerous types of queries and problems. Efentakis and

Pfoser [EP14] propose one-to-all and one-to-many algorithms within the CRP frame-

work, and Efentakis et al. [EPV15] extend CRP to nearest-neighbor queries. Delling

and Werneck [DW15] present alternative CRP-based algorithms for the one-to-many

and nearest-neighbor problem. Baum et al. [BDPW13] extend CRP so that it can find

energy-optimal paths for electric vehicles, and Kobitzsch et al. [KRS13] so that it can

find multiple alternate routes from the source to the target.

Customizable contraction hierarchies and in particular standard contraction hier-
archies (CHs) [GSSV12], the predecessors of CCHs, have also received considerable

attention; we refer to [Bas+16] for a recent overview. Since each CCH is a CH, all
algorithms operating on CHs carry over to CCHs. Delling et al. [DGNW13] introduce

PHAST, a one-to-all algorithm on CHs. RPHAST [DGW11] is an extension to the

one-to-many problem. Alternatively, one-to-many queries on CHs can be solved us-

ing the bucket-based approach by Knopp et al. [Kno+07]. Geisberger [Gei11] extends

the bucket-based approach to the nearest-neighbor problem.

In this chapter, we introduce a novel algorithm for finding 𝑘-nearest neighbors

in CCHs. The 𝑘-nearest neighbor problem takes as input a graph 𝐺 = (𝑉 , 𝐸), a
source 𝑠 ∈ 𝑉 , a nonempty set 𝑇 ⊆ 𝑉 of targets, and an integer 𝑘 with 1 ≤ 𝑘 ≤ |𝑉 |.
The goal is to find the 𝑘 targets 𝑡𝑖 ∈ 𝑇 closest to 𝑠 , i.e., those that minimize dist (𝑠, 𝑡𝑖 ),
where dist (v, 𝑤) is the shortest-path distance from v to 𝑤. Modern nearest-neighbor

algorithms tailored to road networks work in up to four phases [DW15, DGW11,

ACT16]. Preprocessing takes as input only the network structure, customization
incorporates the metric into the preprocessed data, selection (or target indexing)
incorporates the set of targets into the data, and queries take a source and find the 𝑘

targets closest to the source. Our algorithm follows this standard four-phase setup.

Note that there is already a nearest-neighbor algorithm by Geisberger [Gei11]

which operates on CHs. However, its relatively heavy selection phase makes it only

suitable for offline queries, where the set of targets is known in advance. This is the

case for simple store locators of franchises. However, more common in interactive

map-based services are online queries, where the set of targets is only revealed at

query time. An example is the computation of the closest businesses whose name

contains a user-defined keyword. We are not aware of any CH-based algorithm that

can solve such queries fast enough for interactive services.
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There is indeed an algorithm [DW15] for online nearest-neighbor queries within

the CRP framework. As already mentioned, however, CRP and CCHs are on a par

with each other and both used in industry with good reasons. For a production

system based on the CCH framework, it is usually not desirable to simultaneously

maintain a CRP setup to support nearest-neighbor queries. All different types of

queries should be solvable within the CCH framework.

Related Work. We start by briefly reviewing the CH- and CRP-based nearest-

neighbor algorithms mentioned above. Contraction hierarchies (CHs) [GSSV12]

are a point-to-point route planning technique that is much faster than Dijkstra’s

algorithm (four orders of magnitude on continent-sized networks). CHs replace

systematic exploration of all vertices in the network with two much smaller search

spaces (forward and reverse) in directed acyclic graphs, in which each edge leads

from a “less important” vertex to a “more important” one.

The basic idea behind the bucket-based nearest-neighbor algorithm [Gei11] is to

precompute and store the reverse CH search spaces of the targets during the selection

phase. More precisely, if v appears in the reverse search space from a target 𝑡 with

distance 𝑦 , then (𝑡, 𝑦) is stored in a bucket 𝐵(v) associated with v . The bucket entries
are sorted by nondecreasing distance. The query phase of the bucket-based nearest-

neighbor algorithm computes the forward CH search space from the source 𝑠 . For

each vertex v in the search space from 𝑠 with distance 𝑥 , we scan the bucket 𝐵(v).
For each entry (𝑡, 𝑦) ∈ 𝐵(v), we obtain an 𝑠–𝑡 path of length 𝑥 + 𝑦 . The algorithm
maintains the 𝑘 closest targets seen so far and stops bucket scans when 𝑥 + 𝑦 reaches

the distance to the 𝑘-th closest target found so far.

Customizable route planning (CRP) [DGPW17] is a point-to-point route planning

technique that splits preprocessing into a metric-independent part and a metric-

dependent customization. Metric-independent preprocessing partitions the network

into roughly balanced cells and creates shortcuts between each pair of boundary

vertices in the same cell. Customization assigns costs to the shortcuts by computing

shortest paths within each cell. Queries run a modification of bidirectional search

that uses the shortcuts to skip over cells that contain neither the source nor the target.

For better performance, we use multiple levels of overlays.

The CRP-based nearest-neighbor algorithm [DW15] marks all cells that contain

one or more targets during selection. Queries run a modification of Dijkstra that

skips over unmarked cells and descends into marked cells. Since the search discovers

targets in increasing order of distance, we can stop when the 𝑘-th target is reached.

Of course, there are also nearest-neighbor algorithms tailored to road networks that

are based on neither CRP nor CHs. Arguably the simplest one is incremental network
expansion (INE) [PZMT03], which runs Dijkstra’s algorithm until the 𝑘-th target
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is reached. Another straightforward approach is incremental Euclidean restriction
(IER) [PZMT03]. The basic idea behind IER is to repeatedly retrieve the next closest

target based on the straight-line distance (e.g., using an R-tree [Gut84]) and compute

the actual distance to it using any shortest-path algorithm as a black box. IER stops

when the geometric distance to the next closest target exceeds the shortest-path

distance to the 𝑘-th closest target so far encountered.

Since IER had only been evaluated using Dijkstra’s algorithm, its performance was

generally regarded as uncompetitive in practice. In particular, IER combined with

Dijkstra cannot possibly be faster than INE. More recently, IER was combined with

the speedup technique pruned highway labeling [AIKK14], yielding one of the fastest

nearest-neighbor algorithms in many cases [ACT16, AC17].

More sophisticated algorithms are SILC [SSA08, SAS05], ROAD [LLZT12, LLZ09],

and G-tree [Zho+15, ZLTZ13]. Since previously published results had disagreed on

the relative performance of these algorithms, Abeywickrama et al. [ACT16] carefully

reimplemented and reevaluated them once more. While G-tree was faster than SILC

and ROAD in most cases, the differences were relatively small. Delling and Wer-

neck [DW15] compare the CRP-based nearest-neighbor algorithm to G-tree, claiming

that CRP outperforms G-tree. To sum up, all algorithms have comparable perfor-

mance, with selection and query times of the same order of magnitude. However, a

big advantage of CRP (and also of our algorithm) compared to the other approaches

is a fast and lightweight customization phase, enabling important features such as

real-time traffic updates and personalized metrics.

Our Contribution. We introduce a novel algorithm for finding 𝑘-nearest neigh-

bors that operates on CCHs. Our algorithm systematically explores the associated

separator decomposition tree in a way similar to nearest-neighbor queries [FBF77]

in kd-trees [Ben75]. Its selection phase is orders of magnitude faster than the one of

previous bucket-based approaches, which makes it a natural fit for online 𝑘-closest

point-of-interest (POI) queries. On the road network of Western Europe, we achieve

selection times of about 20 milliseconds and query times of a few milliseconds or

less. This enables interactive online queries, which need to run both the selection and

query phase for each client’s request. We are not aware of any other nearest-neighbor

algorithm operating on CCHs that enables interactive online queries.

In addition to closest-POI queries, we also look at a second concrete application.

We show how a slightly modified version of our nearest-neighbor algorithm can be

used for travel demand generation (or mobility flow prediction). Here, the problemwe

consider is computing the number𝑇v𝑤 of trips between each pair (v, 𝑤) of vertices v, 𝑤
in a road network. Depending on the expected length of the generated trips, we

accelerate the demand generators from Chapter 3 by a factor of more than 50.
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Outline. Section 4.2 describes our novel nearest-neighbor algorithm in detail. Sec-

tion 4.3 continues with two concrete applications in which our algorithm can be used.

Section 4.4 presents an extensive experimental evaluation of various closest-POI

algorithms and travel demand generators. Section 4.5 concludes with final remarks.

The notation and terminology of CCHs were introduced in Section 2.3.

4.2 Our Nearest-Neighbor Algorithm
Our algorithm for finding nearest neighbors in CCHs is inspired by the algorithm of

Friedman et al. [FBF77] for finding nearest neighbors in kd-trees [Ben75]. (However,

our description requires no knowledge of that algorithm.) During the search, we

maintain the 𝑘 closest targets seen so far in a max-heap 𝑇 using their distances from

the source as keys. Initially, 𝑇 = {⊥} with key(⊥) = ∞. The basic idea is as follows:
We systematically explore the separator decomposition tree, but visit only nodes 𝑋

whose corresponding subgraph 𝐺𝑋 contains vertices that are closer to the source

than the 𝑘-th closest target found so far. For each visited node 𝑋 , we compute the

distance from the source to each target in the separator 𝑋 , and update 𝑇 accordingly.

The precise algorithm is most easily formulated as a recursive procedure (see

Algorithm 4.1). It takes a node 𝑋 in the separator decomposition tree as parameter.

At the first call, 𝑋 is the root of the separator decomposition. The first step of the

procedure is to examine all targets 𝑡 ∈ 𝑇 ∩ 𝑋 in the separator 𝑋 . To examine a

target 𝑡 , we compute the shortest-path distance dist (𝑠, 𝑡) from 𝑠 to 𝑡 with a standard

elimination tree search. If dist (𝑠, 𝑡) is less than the maximum key in 𝑇 , we insert 𝑡

into the heap. If 𝑇 now contains 𝑘 + 1 elements, we delete the maximum element

from the heap and discard it, since it cannot belong to the result.

Next, we loop over all children 𝑌 of 𝑋 in the separator decomposition tree. If

the subgraph 𝐺𝑌 induced by the vertices in T𝑌 contains any targets, we add a

pair (𝑌, dist (𝑠, 𝑌 )) to a set 𝐶 . We denote by dist (𝑠, 𝑌 ) the shortest-path distance

from 𝑠 to a closest vertex in𝐺𝑌 , i.e., dist (𝑠, 𝑌 ) = minv∈𝑉 (𝐺𝑌 ) dist (𝑠, v). If𝐺𝑌 contains

the source vertex, this distance is zero. Otherwise, we have to compute it, which we

will discuss in detail in the following sections.

Finally, we loop over all pairs (𝑌, dist (𝑠, 𝑌 )) ∈ 𝐶 in ascending order of distance

from the source. If dist (𝑠, 𝑌 ) is less than the distance to the 𝑘-th closest target seen

so far, we recurse on 𝑌 . Otherwise, T𝑌 cannot contain better solutions than those

already known, and we can skip this subtree.

Note that when 𝐺𝑋 is large but contains only a few targets, it is less costly to loop

over all these targets than to explore T𝑋 until the leaves are reached. Therefore, when

the number of targets in 𝐺𝑋 drops below a certain threshold, we stop the recursion

and examine all targets 𝑡 ∈ 𝑇 ∩𝑉 (𝐺𝑋 ) in 𝐺𝑋 (we use a recursion threshold of 8).
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Algorithm 4.1: Recursive formulation of our nearest-neighbor algorithm.

At the first call, the parameter 𝑋 is the root of the separator decomposition.

1 Function searchSepDecomp(𝑋 )
2 if the recursion threshold is deceeded then
3 examine all targets 𝑡 ∈ 𝑇 ∩𝑉 (𝐺𝑋 ) in the subgraph 𝐺𝑋
4 return
5 examine all targets 𝑡 ∈ 𝑇 ∩ 𝑋 in the separator 𝑋

6 𝐶 ← ∅
7 foreach child 𝑌 of 𝑋 do
8 if 𝑇 ∩𝑉 (𝐺𝑌 ) ≠ ∅ then
9 if 𝑠 ∈ 𝑉 (𝐺𝑌 ) then
10 𝐶 ← 𝐶 ∪ {(𝑌, 0)}
11 else
12 compute distance dist (𝑠, 𝑌 ) from 𝑠 to a closest vertex in 𝐺𝑌
13 𝐶 ← 𝐶 ∪ {(𝑌, dist (𝑠, 𝑌 ))}
14 foreach (𝑌, dist (𝑠, 𝑌 )) ∈ 𝐶 in ascending order of dist (𝑠, 𝑌 ) do
15 if dist (𝑠, 𝑌 ) is less than distance to 𝑘-th currently closest target then
16 searchSepDecomp(𝑌 )

Accessing Vertices and Targets in Subgraphs. Given a node 𝑋 in the separator

decomposition tree, our algorithm requires easy access to the set of vertices and the

set of targets in the subgraph𝐺𝑋 and in the separator 𝑋 . Accessing the set of vertices

in 𝐺𝑋 and in 𝑋 is particularly easy. To improve cache efficiency, the vertices in a

CCH are reordered according to the order of contraction. That is, the vertices are

numbered in the order in which they are visited by a postorder tree walk of T , where

the vertices in each node are visited in any order. Hence, for each 𝑋 ∈ X , the vertices

in 𝐺𝑋 are numbered contiguously, with the vertices in𝐺𝑋 \ 𝑋 appearing before the

vertices in 𝑋 . To support easy access to the vertices in 𝐺𝑋 and in 𝑋 , we only need to

store three indices with each 𝑋 : the vertex in 𝐺𝑋 with the smallest index, the vertex

in𝐺𝑋 with the largest index, and the vertex in 𝑋 with the smallest index. An efficient

representation of the separator decomposition already stores this information.

The set 𝑇 of targets is represented by a sorted array. To make the targets in

subgraphs (or separators) easily accessible, we use an auxiliary array 𝐴 of size |𝑉 | + 1.

The element 𝐴[𝑖], 0 ≤ 𝑖 ≤ |𝑉 |, stores the number of targets among the first 𝑖 vertices.

Note that 𝐴 can be filled by a single sweep through 𝑇 and 𝐴. In order to access the

targets in 𝐺𝑋 (or 𝑋 ), we first retrieve the index 𝑙 of the first vertex and the index 𝑟 of

the last vertex in𝐺𝑋 (or𝑋 ). The number of targets in𝐺𝑋 (or𝑋 ) is then𝐴[𝑟 +1] −𝐴[𝑙],
and the actual targets are stored contiguously in 𝑇 [𝐴[𝑙]], . . . , 𝑇 [𝐴[𝑟 + 1] − 1].
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Computing Shortest Paths to Subgraphs. The most straightforward approach

to compute the shortest-path distance dist (𝑠, 𝑋 ) from 𝑠 to a closest vertex in 𝐺𝑋 is

a standard Dijkstra-based CCH query, where the reverse search is initialized with

all vertices in 𝐺𝑋 . Let 𝑑r and 𝑄r be the distance labels and the queue of the reverse

search, respectively. To initialize the reverse search, we set 𝑑r [v] = 0 for each

vertex v ∈ 𝑉 (𝐺𝑋 ), 𝑑r [𝑤] = ∞ for each vertex 𝑤 ∈ 𝑉 \𝑉 (𝐺𝑋 ), and𝑄r = 𝑉 (𝐺𝑋 ). This
yields a correct but inefficient algorithm. However, we can do better.

We define the boundary 𝐵(𝑋 ) of 𝐺𝑋 as the set of vertices in 𝑉 \𝑉 (𝐺𝑋 ) that are
adjacent to 𝐺𝑋 , i.e., 𝐵(𝑋 ) = {𝑤 ∈ 𝑉 \𝑉 (𝐺𝑋 ) : (v, 𝑤) ∈ 𝐸, v ∈ 𝑉 (𝐺𝑋 )}. Note that the
boundary of any 𝐺𝑋 is easily accessible without any additional preprocessing.

Lemma 4.1. Let 𝑢 be any vertex in 𝐺𝑋 . Then, 𝜋−1 (𝑏) > 𝜋−1 (𝑢) for each 𝑏 ∈ 𝐵(𝑋 ).

Proof. Consider any vertex 𝑏 ∈ 𝐵(𝑋 ). Let 𝑏 be contained in the node 𝑌 ∉ 𝑉 (T𝑋 ).
We claim that 𝑌 lies on the path in T from 𝑋 to the root 𝑅. Assume otherwise, i.e.,

𝑌 does not lie on the 𝑋–𝑅 path. Let 𝑍 be the lowest common ancestor of 𝑋 and 𝑌 .

Since 𝑍 separates 𝐺𝑋 and 𝐺𝑌 in 𝐺𝑍 , there is no edge in 𝐺 that connects 𝐺𝑋 and 𝐺𝑌 .

This contradicts that 𝑏 is adjacent to a vertex in 𝐺𝑋 . Thus, 𝑌 lies on the 𝑋–𝑅 path.

Since the vertices are numbered in the order in which they are visited by a postorder

tree walk of T , the vertices in 𝑌 are assigned higher ranks than the ones in 𝑋 . In

particular, we have 𝜋−1 (𝑏) > 𝜋−1 (𝑢), which completes the proof. □

Theorem 4.2. Let 𝑢 be the highest-ranked vertex in 𝐺𝑋 . Then, 𝐵(𝑋 ) = 𝑁 ↑𝐻 (𝑢).

Proof. Let 𝑏 be a vertex in 𝐵(𝑋 ). We claim that 𝑏 ∈ 𝑁 ↑
𝐻
(𝑢). Since 𝐺𝑋 is by definition

connected, there is a path ⟨𝑢, v0, . . . , v𝑘 , 𝑏⟩ in𝐺 with v𝑖 ∈ 𝐺𝑋 . Since 𝜋−1 (v𝑖 ) < 𝜋−1 (𝑢)
by definition and 𝜋−1 (𝑢) < 𝜋−1 (𝑏) by Theorem 4.1, all v𝑖 ’s are contracted before 𝑢

and 𝑏. Therefore, CCH preprocessing adds a shortcut (𝑢,𝑏), and thus 𝑏 ∈ 𝑁 ↑
𝐻
(𝑢).

Conversely, let 𝑤 be a vertex in 𝑁
↑
𝐻
(𝑢), i.e., there is an edge (𝑢, 𝑤) in 𝐻 . Since 𝑢 is

the highest-ranked vertex in 𝐺𝑋 and 𝜋−1 (𝑢) < 𝜋−1 (𝑤), we have 𝑤 ∈ 𝑉 (𝐺) \𝑉 (𝐺𝑋 ).
We claim that𝑤 ∈ 𝐵(𝑋 ). Assume otherwise, i.e., 𝑤 ∈ 𝑉 \(𝑉 (𝐺𝑋 )∪𝐵(𝑋 )). Since 𝐵(𝑋 )
separates𝑢 and 𝑤 in𝐺 , the shortcut (𝑢, 𝑤) corresponds to some path ⟨𝑢, . . . , 𝑏, . . . , 𝑤⟩
in 𝐺 with 𝑏 ∈ 𝐵(𝑋 ). By construction, the vertex 𝑏 is contracted before 𝑢 and 𝑤. This

contradicts Theorem 4.1, completing the proof. □

If 𝑠 ∈ 𝑉 (𝐺𝑋 ), then dist (𝑠, 𝑋 ) = 0. So, assume 𝑠 ∉ 𝑉 (𝐺𝑋 ). Since 𝐵(𝑋 ) separates 𝑠
and 𝐺𝑋 , and all edge lengths are nonnegative, there is a closest vertex v∗ in 𝐺𝑋 such

that there is a shortest 𝑠–v∗ path ⟨𝑠, . . . , 𝑏, v∗⟩, 𝑏 ∈ 𝐵(𝑋 ). Note that (𝑏, v∗) is a shortest
edge among all edges (𝑏, v) ∈ 𝐸, v ∈ 𝑉 (𝐺𝑋 ); otherwise, v∗ would not be a closest ver-
tex in𝐺𝑋 . Therefore, dist (𝑠, 𝑋 ) = min𝑏∈𝐵 (𝑋 ) (dist (𝑠, 𝑏) +min{(𝑏,v) ∈𝐸:v∈𝑉 (𝐺𝑋 ) } ℓ (𝑏, v)).
That is, it suffices to initialize the reverse search of the query with all boundary
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vertices. More precisely, we set 𝑑r [𝑏] = min{(𝑏,v) ∈𝐸:v∈𝑉 (𝐺𝑋 ) } ℓ (𝑏, v) for each ver-

tex 𝑏 ∈ 𝐵(𝑋 ), 𝑑r [𝑤] = ∞ for each vertex 𝑤 ∈ 𝑉 \ 𝐵(𝑋 ), and 𝑄r = 𝐵(𝑋 ). This yields
a reasonable algorithm, but we can do even better by exploiting elimination tree

queries, which are usually faster than the Dijkstra-based CCH queries used so far.

Recall that the CCH search space 𝑆 (𝑏) of a vertex 𝑏 corresponds to the path in the

elimination tree from 𝑏 to the root 𝑟 . An elimination tree search from 𝑏 therefore

scans all vertices in 𝑆 (𝑏) in order of increasing rank by traversing the 𝑏–𝑟 path in

the elimination tree. Given a set 𝐵 of vertices, it is not clear how to enumerate all

vertices in the union of the search spaces, since the union generally corresponds to a

subtree rather than a path in the elimination tree. However, we can exploit the fact

that in our case the set 𝐵 is the boundary of 𝐺𝑋 .

Theorem 4.3. Let 𝑙 be the lowest-ranked vertex in 𝐵(𝑋 ). Then, 𝑆 (𝑙) = ⋃︁
𝑏∈𝐵 (𝑋 ) 𝑆 (𝑏).

Proof. Since 𝑙 ∈ 𝐵(𝑋 ), we trivially have 𝑆 (𝑙) ⊆ ⋃︁
𝑏∈𝐵 (𝑋 ) 𝑆 (𝑏), so let 𝑏 ≠ 𝑙 be a vertex

in 𝐵(𝑋 ). We claim that 𝑆 (𝑏) ⊆ 𝑆 (𝑙). By Theorem 4.2, the highest-ranked vertex 𝑢 in

𝐺𝑋 is adjacent to both 𝑙 and 𝑏. Since 𝜋−1 (𝑢) < 𝜋−1 (𝑙) < 𝜋−1 (𝑏), CCH preprocessing

adds a shortcut (𝑙, 𝑏) when 𝑢 is contracted. We have 𝑏 ∈ 𝑆 (𝑙) and 𝑆 (𝑏) ⊆ 𝑆 (𝑙). □

By Theorem 4.3, we can compute the shortest-path distance dist (𝑠, 𝑋 ) with a

standard elimination tree query from 𝑠 to the lowest-ranked vertex in 𝐵(𝑋 ), where
we initially set 𝑑r [𝑏] = min{(𝑏,v) ∈𝐸:v∈𝑉 (𝐺𝑋 ) } ℓ (𝑏, v) for each vertex 𝑏 ∈ 𝐵(𝑋 ). Since a
lower bound on dist (𝑠, 𝑋 ) suffices to preserve the correctness of our nearest-neighbor

algorithm, we can also initialize the distance labels to zero. The resulting lower

bound is only slightly worse than the exact distance, but initialization is somewhat

faster. We observed the lowest running times when using lower bounds.

Accelerating Shortest-Path Searches. Note that the forward searches of all elimi-

nation tree queries done during the same nearest-neighbor query start at the same

source. Unless we use special pruning criteria (we will introduce one in Chapter 5),

the forward searches compute identical distance labels. To further accelerate our

nearest-neighbor algorithm, we run the forward search once before the systematic

exploration of the separator decomposition tree. Whenever we compute the dis-

tance to a target or subgraph, we run only the reverse search, which accesses the

precomputed distance labels of the forward search.

After scanning a vertex v , a standard elimination tree search immediately initializes

the distance label of v to∞, since it is not accessed anymore afterwards. We maintain

this initialization approach for the reverse searches. The forward search, of course,

must not immediately initialize the labels. Instead, after the exploration of the

separator decomposition tree, we traverse the path in the elimination tree from the

source to the root once again, and initialize the forward label of each visited vertex.
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4.3 Applications
We continue with two substantially different applications in which our nearest-

neighbor algorithm can be used. An obvious application are 𝑘-closest POI queries

in map-based services. Afterwards, we look at a more abstract application (travel

demand generation) where we make slight modifications to our algorithm.

4.3.1 Online Closest-POIQueries
Recall that modern closest-POI algorithms [DW15, DGW11, ACT16] work in up to

four phases: preprocessing, customization, selection, and queries. We now divide the

work our nearest-neighbor algorithm does into these standard phases. Note that our

nearest-neighbor algorithm does nothing else but the standard CCH preprocessing

and customization during the first two phases. To support easy access to the set of

vertices in a subgraph or separator, we indeed need to associate three indices with

each node 𝑋 ∈ X but an efficient representation of the separator decomposition

already stores this information. Therefore, we reuse the standard CCH preprocessing

and customization, without further modifications.

The selection phase runs POI-dependent preprocessing. The only preprocessed

data that depends on the set 𝑃 of POIs is the auxiliary array 𝐴, which makes the

POIs in a subgraph or separator easily accessible. As already mentioned, 𝐴 can

be filled by a single sweep through 𝑃 and 𝐴. Finally, the query phase runs the

systematic exploration of the separator decomposition tree (including the forward

search immediately before the exploration and the initialization of the forward

distance labels immediately after the exploration).

Note that our selection phase is lightweight and (as our experiments will show)

orders of magnitude faster than the one of previous bucket-based approaches. This

makes our nearest-neighbor algorithm a natural fit for online 𝑘-closest POI queries,
where the POIs are only revealed at query time. In this case, we need to run both the

selection and query phase for each client’s request. Except for simple store locators of

franchises, online queries are more common than offline queries in interactive map-

based services. For example, whenever the set of POIs is obtained from user-defined

keywords, we face online queries that should run in real time.

4.3.2 Travel Demand Generation
A substantially different application in which our nearest-neighbor algorithm can be

used is travel demand generation. Here, the problem we consider is computing the

number𝑇v𝑤 of trips between each pair (v, 𝑤) of vertices v, 𝑤 ∈ 𝑉 . This problem arises

when we want to generate benchmark data for evaluating transportation algorithms,
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or when we want to predict mobility flows. This section shows how our algorithm

can be used to accelerate the travel demand generators introduced in Chapter 3.

Radiation Model. Recall that the foundation for the aforementioned demand gen-

erators is the radiation model [SGMB12]. This model assumes that each vertex v ∈ 𝑉
has a nonnegative number𝑚v of inhabitants and a nonnegative amount 𝑛v of op-

portunities. We denote by 𝑀 the total population in 𝐺 and by 𝑁 the total number

of opportunities in 𝐺 . The mobility flow out of each vertex is proportional to its

population. Destination selection is based on the following main idea: Each traveler

assigns to all opportunities a fitness or attractiveness value, drawn independently

from a common distribution. Then, the traveler selects the closest opportunity with a

fitness higher than the traveler’s fitness threshold, drawn from the same distribution.

The radiation model with selection [SMN13] decreases the probability of selecting an

opportunity by a factor of 1 − 𝜆. Intuitively, increasing 𝜆 increases the expected trip

length. In the simplest version, the number of opportunities is approximated by the

population, i.e., there are𝑀 opportunities in a graph with a population of𝑀 .

Previous Implementations. In Chapter 3, we introduced two practical imple-

mentations of the radiation model. DRAD obtains high-quality solutions based

on shortest-path distances and TRAD obtains high performance but uses geomet-

ric distances. Both implementations generate one trip after another. First, they

draw the origin 𝑂 from a discrete distribution determined by the probability func-

tion Pr[𝑂 = v] =𝑚v/𝑀 . Second, they choose the number 𝑂fit of opportunities with

a fitness higher than the traveler’s fitness threshold uniformly at random in 0..𝑁 .

Third, they draw the number 𝑂sel of selectable opportunities from a binomial distri-

bution with 𝑂fit trials and success probability 1 − 𝜆. It remains to find the selectable

opportunity closest to𝑂 , given the total number𝑂sel of selectable opportunities in𝐺 .

This is realized differently by the two implementations.

DRAD draws the number 𝑂int of opportunities closer to 𝑂 than any selectable

opportunity from a negative hypergeometric distribution determined by 𝑂sel and 𝑁 ,

and runs Dijkstra’s algorithm from 𝑂 , stopping as soon as 𝑂int + 1 opportunities are

visited. The last vertex scanned by the search is the destination of the current trip.

The basic idea of TRAD is to find the selectable opportunity closest to 𝑂 using

a nearest-neighbor query [FBF77] in a kd-tree [Ben75]. Each node in a kd-tree

corresponds to a region of the plane. The region of the root is the whole plane and the

leaves correspond to small disjoint blocks partitioning the plane. The query algorithm

traverses the kd-tree, starting at the root, and maintaining the number 𝑂sel (v) of
selectable opportunities in the region corresponding to the current node v . Let𝑂tot (v)
be the total number of opportunities in the region of v .



Applications Section 4.3

49

When the traversal reaches an interior node v in the kd-tree, the algorithm draws

the number 𝑂sel (𝑙) of selectable opportunities in the region of the left child 𝑙 from a

hypergeometric distribution with 𝑂sel (v) draws without replacement from a popu-

lation of size 𝑂tot (v) containing 𝑂tot (𝑙) successes. The number 𝑂sel (𝑟 ) of selectable
opportunities in the region corresponding to the right child 𝑟 is set to𝑂sel (v) −𝑂sel (𝑙).
The algorithm then recurses on the child whose region is closer to 𝑂 , and when

control returns, it recurses on the other child. The search is pruned at any vertex v
with 𝑂sel (v) = 0, and at any vertex whose region is farther from 𝑂 than the closest

selectable opportunity seen so far during the query.

When the traversal reaches a leaf node v , the algorithm samples 𝑂sel (v) selectable
opportunities in the region corresponding to v . For each of these opportunities, the

algorithm checks whether it improves the closest selectable opportunity seen so far.

Our Implementation. We introduce a new implementation of the radiation model,

called CRAD. Our implementation follows TRAD but uses nearest-neighbor queries

in a CCH rather than in a kd-tree. In this way, we combine the efficient tree-based

sampling approach from TRAD with shortest-path distances. As a result, our imple-

mentation obtains high-quality solutions like DRAD, but at much lower cost.

To use our nearest-neighbor algorithm in CRAD, we only need to make slight

modifications to the procedure presented in Section 4.2 (see Algorithm 4.2 for the

modified procedure). In addition to a node 𝑋 in the separator decomposition tree, it

now takes the number 𝑂sel (𝐺𝑋 ) of selectable opportunities in𝐺𝑋 as second parame-

ter. At the first call, 𝑋 is the root of the separator decomposition and 𝑂sel (𝐺𝑋 ) is the
number𝑂sel of selectable opportunities in𝐺 , obtained as before in DRAD and TRAD.

Let 𝑌0, . . . , 𝑌𝑑−1 be the children of 𝑋 . As the first step, the procedure now distributes

the𝑂sel selectable opportunities in𝐺𝑋 over the subgraphs𝐺𝑌0
, . . . ,𝐺𝑌𝑑−1

and the sep-

arator 𝑋 . In contrast to the previous TRAD implementation where the opportunities

are distributed among exactly two regions (left and right child), we now have 𝑑 + 1 re-

gions (𝑑 children and the separator). Therefore, 𝑂sel (𝐺𝑌0
), . . . ,𝑂sel (𝐺𝑌𝑑−1

),𝑂sel (𝑋 )
obey a multivariate hypergeometric distribution.

In order to aid intuition, we can think of this discrete probability distribution as

drawing 𝑂sel (𝐺𝑋 ) balls without replacement from an urn containing 𝑂tot (𝐺𝑌𝑖 ) balls
of type 𝑖 for 𝑖 = 0, . . . , 𝑑 − 1 and 𝑂tot (𝑋 ) balls of type 𝑑 . We obtain 𝑂sel (𝐺𝑌𝑖 ) balls of
type 𝑖 for 𝑖 = 0, . . . , 𝑑 − 1 and 𝑂sel (𝑋 ) balls of type 𝑑 .
After obtaining 𝑂sel (𝐺𝑌0

), . . . ,𝑂sel (𝐺𝑌𝑑−1
),𝑂sel (𝑋 ), we sample 𝑂sel (𝑋 ) selectable

opportunities in the separator 𝑋 , and check whether any of them improves the

closest selectable opportunity so far encountered. Next, we loop over all children 𝑌

of 𝑋 in the separator decomposition tree. If the subgraph 𝐺𝑌 contains any selectable

opportunities, we add a pair (𝑌, dist (𝑂,𝑌 )) to a set𝐶 (recall that𝑂 is the origin vertex
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Algorithm 4.2: Procedure for finding the closest selectable opportunity in

the subgraph 𝐺𝑋 , given the number of selectable opportunities in 𝐺𝑋 .

1 Function findClosestSelectableOpportunity(𝑋,𝑂sel (𝐺𝑋 ))
2 if the recursion threshold is deceeded then
3 sample 𝑂sel (𝐺𝑋 ) selectable opportunities in the subgraph 𝐺𝑋
4 return
5 ⟨𝑂sel (𝐺𝑌0

), . . . ,𝑂sel (𝐺𝑌𝑑−1
),𝑂sel (𝑋 )⟩ ←

multiHypergeomVariate(𝑂sel (𝐺𝑋 ), ⟨𝑂tot (𝐺𝑌0
), . . . ,𝑂tot (𝐺𝑌𝑑−1

),𝑂tot (𝑋 )⟩)
6 sample 𝑂sel (𝑋 ) selectable opportunities in the separator 𝑋

7 𝐶 ← ∅
8 foreach child 𝑌 of 𝑋 do
9 if 𝑂sel (𝐺𝑌 ) > 0 then

10 if 𝑂 ∈ 𝑉 (𝐺𝑌 ) then
11 𝐶 ← 𝐶 ∪ {(𝑌, 0)}
12 else
13 compute distance dist (𝑂,𝑌 ) from 𝑂 to a closest vertex in 𝐺𝑌
14 𝐶 ← 𝐶 ∪ {(𝑌, dist (𝑂,𝑌 ))}
15 foreach (𝑌, dist (𝑂,𝑌 )) ∈ 𝐶 in ascending order of dist (𝑂,𝑌 ) do
16 if dist (𝑂,𝑌 ) is less than distance to cur. closest sel. opportunity then
17 findClosestSelectableOpportunity(𝑌,𝑂sel (𝐺𝑌 ))

of the current trip). The shortest-path distance dist (𝑂,𝑌 ) is computed as discussed

in Section 4.2. Finally, we loop over all pairs (𝑌, dist (𝑂,𝑌 )) ∈ 𝐶 in ascending order of

distance from the origin. If dist (𝑂,𝑌 ) is less than the distance to the closest selectable

opportunity so far encountered, we recurse on 𝑌 .

4.4 Experiments
This section presents a thorough experimental evaluation of both applications. First,

we describe our experimental setup, including our machine, the inputs, and imple-

mentation details. Next, we evaluate various closest-POI algorithms, with a focus on

their selection and query phases. Finally, we compare CRAD to DRAD and TRAD.

4.4.1 Experimental Setup

Our publicly available code
10

10 https://github.com/vbuchhold/routing-framework

is written in C++17 and compiled with the GNU com-

piler 9.3 using optimization level 3. We use 4-heaps [Joh75] as priority queues. To

https://github.com/vbuchhold/routing-framework
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ensure a correct implementation, we make extensive use of assertions. Our bench-

markmachine runs openSUSE Leap 15.2 (kernel 5.3.18), and has 192GiB of DDR4-2666

RAM and two Intel Xeon Gold 6144 CPUs, each with eight cores clocked at 3.50 GHz

and 8 × 64 KiB of L1, 8 × 1MiB of L2, and 24.75MiB of shared L3 cache. Note that we

consider only single-core implementations.

Inputs. Our benchmark instance is the road network of Western Europe. The net-

work has a total of 18 017 748 vertices and 42 560 275 edges and was made available by

PTV AG for the 9th DIMACS Implementation Challenge [DGJ09]. For the evaluation

of the travel demand generators, we use the population grid
11

11 https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/

population-distribution-demography/geostat

made available by

Eurostat, the statistical office of the European Union. The grid has a resolution of

one kilometer and covers all EU and EFTA member states, as well as the United

Kingdom. We follow the approach in Chapter 3 to assign the grid to the graph. For

each inhabitant, we pick a vertex lying in their cell uniformly at random and assign

the inhabitant to it. If there is no such vertex, we discard the inhabitant.

Implementation Details. We use the recent network dissection algorithm Inertial

Flow [SS15] to compute separator decompositions and associated nested dissection

orders, with the balance parameter 𝑏 set to 3/10 (determined experimentally). CCH

customization uses perfect witness searches [DSW16].

For comparison, we carefully reimplemented the bucket-based nearest-neighbor

algorithm by Geisberger [Gei11], which we call BCH. CH preprocessing is taken from

the open-source library RoutingKit
12

12 https://github.com/RoutingKit/RoutingKit

. Both the forward and reverse CH searches use

the stall-on-demand optimization [GSSV12].

The bucket-based nearest-neighbor algorithm can be used as is on CCHs, without

further modifications. For better performance, however, we use a tailored version

where we replace the Dijkstra-based CH searches used during the selection and

query phase by elimination tree searches. Note that in contrast to CH searches,

CCH searches are faster without the stall-on-demand technique. On the other hand,

stall-on-demand decreases the bucket sizes. Therefore, we use stall-on-demand only

for the reverse searches. We call this version BCCH.

To keep implementation complexity of the demand generators low, we use exist-

ing implementations of random variate generation algorithms. The Standard Tem-

plate Library (STL) offers the three distribution classes uniform_int_distribution,

binomial_distribution, and geometric_distribution. The STL provides neither

a hypergeometric nor a negative hypergeometric distribution. To generate hyper-

geometric variates, we use the stocc library
13

13 https://www.agner.org/random/

. Since we are not aware of any C++

library that offers a generator for negative hypergeometric variates, we approximate

negative hypergeometric variates by geometric variates, as in Chapter 3.

https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/population-distribution-demography/geostat
https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/population-distribution-demography/geostat
https://github.com/RoutingKit/RoutingKit
https://www.agner.org/random/
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Table 4.1: Performance of different closest-POI algorithms for various POI distribu-

tions. For each distribution, we report the time to index a set of POIs (selection time),

the space consumed by the index (selection space), and the time to find the 𝑘 = 1, 4, 8

closest POIs (query time). For CRP, we take the figures for the online version from

the original publication by Delling and Werneck [DW15].

|𝑃 | = 2
12, |𝐵 | = 2

20 |𝑃 | = 2
14, |𝐵 | = |𝑉 |

selection query time [µs] selection query time [µs]

space time POIs to be reported space time POIs to be reported

algo [MiB] [ms] 𝑘 = 1 𝑘 = 4 𝑘 = 8 [MiB] [ms] 𝑘 = 1 𝑘 = 4 𝑘 = 8

Dij – – 846 210 855 438 873 716 – – 113.4 439.3 883.7

BCH 72.4 134 20 20 21 83.6 481 5.0 8.5 10.7

BCCH 85.5 453 51 52 53 134.9 1 753 6.0 8.8 11.1

CCH 68.7 21 2 353 3 501 4 629 68.7 23 306.7 494.8 702.0

CRP – – – – – 0.0 8 – 640.0 –

4.4.2 Online Closest-POIQueries

We start by comparing our nearest-neighbor algorithm (simply called CCH in this

section) to Dijkstra’s algorithm, BCH, BCCH, and CRP. Note that the performance of

closest-POI algorithms is affected not only by the number of POIs but also by their

distribution. For example, the set of all restaurants may be distributed evenly over

the whole network, whereas a certain franchise may operate in a local region. To

model this, we follow the methodology used by Delling et al. [DGW11] to evaluate

different one-to-many shortest-path algorithms.

To obtain our problem instances, we first pick a center 𝑐 uniformly at random. We

then use Dijkstra’s algorithm to grow a ball 𝐵 of size |𝐵 | centered at 𝑐 . Finally, we

pick a POI set 𝑃 of size |𝑃 | from 𝐵. By varying the parameters |𝐵 | and |𝑃 |, we can
model the aforementioned situations. For each combination, we generate 100 POI

sets. Each POI set is evaluated with 100 sources picked uniformly at random. That is,

each data point is an average over 10 000 queries.

Main Results. Table 4.1 shows the performance of different closest-POI algorithms

for two POI distributions on the road network of Western Europe. We observe that

Dijkstra’s algorithm has reasonable performancewhen the POIs are evenly distributed

over the whole graph (|𝐵 | = |𝑉 |). In this case, any potential source is relatively close

to some POI, and thus the Dijkstra search can always stop early. However, Dijkstra

is not robust to the POI distribution. When |𝐵 | = 2
20
, many potential sources are
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relatively far from any POI, and the average running times are around one second,

which is too slow for interactive map services.

BCH achieves the best (offline) query times for both POI distributions. Note,

however, that BCH is no competitor to BCCH, CCH, and CRP, since it operates

on standard contraction hierarchies, which cannot handle frequent metric updates.

We only include BCH for comparison with BCCH, since the bucket-based nearest-

neighbor algorithm has not yet been tested on customizable contraction hierarchies.

Although we tailored the bucket-based algorithm to CCHs, BCCH is still somewhat

slower than BCH. This is expected, since CCHs contain more shortcuts and are thus

denser than CHs. The slowdown is a factor of about 3.5 for selection. When |𝐵 | = |𝑉 |,
BCCH has only slightly higher (offline) query times than BCH, since the queries relax

only a few edges. However, BCCH queries are roughly 2.5 times slower than BCH

queries when the targets are in a local region (|𝐵 | = 2
20
).

We observe that our nearest-neighbor algorithm (simply called CCH in this section)

has considerably higher offline query times than BCCH. On the other hand, CCH

achieves much faster selection times. For example, when |𝑃 | = 2
14
, offline CCH

queries are slower by a factor of 51–63 but CCH selection is faster by a factor of 77.

Note that although CCH queries are significantly slower than BCCH queries, they

are still slightly faster than CRP-based queries.

Online queries need to run both the selection and query phase for each client’s

request. Therefore, the time taken by an online query is the sum of selection and

query time. We observe that BCCH is not suitable for online queries. When |𝑃 | = 2
12
,

BCCH takes half a second to answer an online query, and it takes even 1.8 seconds

when |𝑃 | = 2
14
. In contrast, CCH takes only about 25 milliseconds.

Table 4.1 includes various alternative closest-POI algorithms. In addition, it seems

natural to adapt existing one-to-many shortest-path algorithms to the closest-POI

problem. Promising candidates that are not based on buckets are CTD [Eis+11,

DGW11] and RPHAST [DGW11]. However, since CTD and RPHAST selection take

more than 100 milliseconds when |𝐵 | = |𝑉 |, online closest-POI queries based on CTD

or RPHAST would be at least four times slower than ours.

Impact of the POI Distribution. Our next experiment considers the impact of

the ball size on the performance of the different closest-POI algorithms. Figure 4.1

plots selection and (offline) query times for various ball sizes. We omit online query

times for clarity. Since the online query times are dominated by the selection times,

online query times would closely follow the selection curves. Except for Dijkstra’s

algorithm, all selection and query times are very robust to the ball size. While all query

algorithms benefit from an even distribution of the POIs (for the aforementioned

reasons), this effect is most pronounced for Dijkstra.
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Figure 4.1: Selection and query times of various closest-POI algorithms with |𝑃 | = 2
14

POIs picked at random from a ball of varying size |𝐵 |. Queries find the 4 closest POIs.

Impact of the Number of POIs. Next, we evaluate the impact of the number of

POIs on the performance of Dijkstra’s algorithm, BCH, BCCH, and CCH. Figure 4.2

plots selection and (offline) query times for various numbers of POIs. As before, online

query times would closely follow the selection curves. We observe that the CCH

selection time is independent of the number of POIs, whereas the BCCH selection time

grows linearly. For |𝑃 | = 2
14
, CCH selection is 76 times faster than BCCH selection.

The speedup increases to more than three orders of magnitude for |𝑃 | = 2
18
, the

largest number of POIs tested in our experiment.

Once again, queries tend to become faster as |𝑃 | gets larger, since they can stop (in

the case of Dijkstra-based searches) or prune (in the case of elimination tree searches)

earlier. The exception are CCH queries, which become slower initially. The reason is

that for very small values of |𝑃 |, we do not explore the separator decomposition tree

but trigger the base case at the root (which simply finds |𝑃 | point-to-point shortest
paths by running standard elimination tree queries from the source to each POI).

4.4.3 Travel Demand Generation
Next, we evaluate CRAD, including a comparison to DRAD and TRAD. Since CRAD

uses shortest-path distances rather than geometric distances, it obtains high-quality

solutions like DRAD. We verified this experimentally by rerunning the experiments
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Figure 4.2: Selection and (offline) query times of different closest-POI algorithms

with a varying number |𝑃 | of POIs picked uniformly at random from a ball of fixed

size |𝐵 | = |𝑉 |. Queries find the 𝑘 = 4 closest POIs.

in Chapter 3 for CRAD, using the same instances and methodology. We refer to

Chapter 3 for a comparison of the quality with shortest-path and geometric distances.

In this chapter, we focus on the performance of the three implementations of the

radiation model. Since DRAD is at its heart a Dijkstra search from the trip’s origin

to its destination, the performance depends heavily on the expected length of the

generated trip (which is controlled by the parameter 𝜆; see Section 4.3.2). In contrast,

TRAD and CRAD are robust to the trip length.

Figure 4.3 plots the time to generate a single trip for various values of 𝜆. Note that

a value of 𝜆 = 1 − 10
−4/1 = 0.9999 leads on our instance to an average trip length

of 9 minutes, and a value of 𝜆 = 1 − 10
−4/100 = 0.999999 to an average trip length

of 72 minutes. Between two data points, the average trip length increases by about

7 minutes. All data points are averages over 100 000 trip generation executions.

We observe that CRAD outperforms DRAD for each value of 𝜆 tested. Since TRAD

resorts to geometric distances, it still is faster than CRAD by a factor of 28–74. As it

obtains worse solutions, however, TRAD is no competitor to CRAD. For an average

trip length of about 23 minutes, CRAD gains an order of magnitude over DRAD, and

for the largest value of 𝜆 tested in our experiment, we see a speedup of 59. Note that

this increase in speed is quite useful in practice. While travel demand generation does

not need to run in real time, its performance should remain reasonable. However,
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Figure 4.3: Time (in milliseconds) to generate a single trip with different travel

demand generators for various values of 𝜆.

DRAD takes about 7 hours to generate one million one-hour trips. In contrast, CRAD

takes less than 10 minutes, a significant speedup.

4.5 Conclusion
We presented a novel 𝑘-nearest neighbor algorithm that operates on CCHs. With

selection times of about 20 milliseconds and query times of a few milliseconds or less,

it is the first nearest-neighbor algorithm operating on CCHs that is fast enough for

interactive online queries. Interestingly, our algorithm achieves similar performance

as the online nearest-neighbor queries by Delling and Werneck [DW15] within the

CRP framework. This confirms that CCHs and CRP are on an equal level and solve

many different types of problems equally well.

Moreover, we used our nearest-neighbor algorithm to significantly accelerate the

demand generators from Chapter 3. We proposed CRAD, a new implementation of the

radiation model that combines the advantages of the two previous implementations

DRAD and TRAD. CRAD obtains high-quality (shortest-path based) solutions like

DRAD, but follows a more efficient tree-based sampling approach like TRAD.

Future work includes accelerating our nearest-neighbor algorithm even further.

Note that we compute distances to subgraphs corresponding to the topmost nodes in
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the separator decomposition more often than distances to subgraphs corresponding

to leaves. It would be interesting to see if it pays to precompute the reverse search

spaces of the topmost subgraphs. Another possible approach would be to keep

frequently used reverse search spaces in an LRU cache. Another interesting project

is a parallel version of our algorithm that uses for example task-based parallelism

to explore the separator decomposition tree. Finally, it would be interesting to port

other point-of-interest algorithms to CCHs, for example best-via queries.
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5 Traffic Assignment

Given an urban road network and a set of origin-destination pairs, the traffic as-

signment problem asks for the traffic flow on each road segment. Common solution

algorithms require a large number of shortest-path computations. In this chapter,

we significantly accelerate the computation of flow patterns, enabling interactive

transportation and urban planning applications. We achieve this by building a traffic

assignment procedure upon customizable contraction hierarchies (CCHs), revisiting

and carefully engineering CCH customization and queries, and adapting CCHs to

compute batched point-to-point shortest paths. Although motivated by the traffic

assignment problem, our optimizations apply to CCHs in general. In contrast to pre-

vious work, our evaluation uses real-world production data for all parts of the input.

On a metropolitan area encompassing about 2.7 million inhabitants, we decrease the

flow-pattern computation for a typical 1-hour morning peak (a quarter million trips)

from 90.9 to 14.1 seconds on one core and 2.4 seconds on a 16-core machine. This

represents a speedup of 37 over the state of the art and more than three orders of

magnitude over the Dijkstra-based baseline.

This chapter is based on joint work with Peter Sanders and DorotheaWagner [BSW18,

BSW19b].

5.1 Introduction
The number of drivers traveling along a road segment within a given period is the

result of many individual decisions. The common behavioral assumption in practice
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is that motorists driving between a given origin and destination choose the path with

the minimum travel time (known asWardrop’s first principle [War52]). This seems

natural, since travel is usually not a goal in itself, but entails disutility. However, the

travel time on a path depends on the route choice of all other drivers, who themselves

are trying to choose minimum travel time routes. Due to congestion, the travel time

on a road segment increases with the traffic flow on it. As a result, some drivers

choose at some point alternative routes, which can also get congested, and so on.

When no driver can improve his travel time by unilaterally changing routes, each

route used between a given origin and destination has the same travel time. This

condition is known as the user equilibrium, and the corresponding flow pattern is

called the equilibrium flow pattern [She85].

We study the efficient computation of equilibrium flow patterns in road networks.

More formally, given an urban road network (represented by a weighted directed

graph) and a set of origin-destination (OD) pairs, we want to compute the traffic flow

on each road segment at equilibrium. This is known as traffic assignment, and it is one
of the major problems faced by transportation engineers and urban planners [She85].

In this chapter, we accelerate traffic assignments significantly (by a factor of 37),

thereby achieving our goal to enable interactive transportation and urban planning

applications. Real-time performance is particularly important for applications based

on traffic assignments running at road traffic centers, which control and monitor

road traffic in real time (for example by opening the hard shoulder for vehicles).

Related Work. The traffic assignment problem has been studied for over 60 years,

and motivated extensive research in the operations research community. A compre-

hensive introduction is offered by the textbook by Sheffi [She85], and the text by

Florian and Hearn [FH95]. Perederieieva et al. [PERW15] give a recent overview of

practical traffic assignment algorithms. In this chapter, we focus on the static deter-

ministic traffic assignment problem, which was first formulated as a mathematical

program in 1956 [BMW56], and is still a ubiquitous tool for traffic and transport

analysis. The solution algorithms are often classified into three families [PERW15,

FH95], depending on how the solution is represented.

The first family includes link-based algorithms, which explore the space of link

flows, i.e., the solution is represented by variables 𝑓𝑒 denoting the flow on each

link 𝑒 in the road network. The prototypical method among these approaches is the

Frank-Wolfe (FW) algorithm [FW56], a feasible-direction method for solving convex

optimization problems with linear constraints. Starting at an initial solution, the FW

algorithm repeatedly generates a feasible direction of descent, and shifts the current

solution along the descent direction. The algorithm terminates when some stopping

criterion is met. Other link-based algorithms are variants of the FW algorithm, such
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as the conjugate FW algorithm and the biconjugate FW algorithm [ML13]. These

methods generate better descent directions, by taking into account the directions

from the last and last two iterations, respectively.

The second family includes path-based algorithms, which explore the space of path

flows. The solution therefore is represented by variables 𝐹𝑘 denoting the flow on

each simple path 𝑘 in the road network. For each OD pair p , path-based algorithms

maintain a set 𝐾+p of promising paths between the origin location and destination

location. In each iteration, each OD pair p is processed in succession. First, 𝐾+p
is updated by removing unpromising paths (paths having no flow in the current

solution) and inserting new promising paths (paths being cheaper in the current

solution than any path in 𝐾+p ). Then, 𝐾
+
p is equilibrated, i.e., flow is shifted between

the paths in 𝐾+p to equalize their costs. Path-based algorithms differ in how they

equilibrate𝐾+p . The PE algorithm [Daf68, FH95] equalizes the costs of the cheapest and

costliest path in 𝐾+p . The GP algorithm [JTPR94] distributes flow to the cheapest path

from all other paths in 𝐾+p . The PG algorithm [FCF09] shifts flow from paths costlier

than average to paths cheaper than average. Similarly, the ISP algorithm [KP11]

divides the paths in 𝐾+p into two parts, one that contains paths whose cost exceeds

a certain threshold, and one that contains all other paths. Flow is distributed from

paths in the first part to paths in the second one.

The third family includes bush-based algorithms, which explore the space of

origin flows, where the solution is represented by variables 𝑓𝑒𝑜 denoting the flow on

link 𝑒 that originates at origin 𝑜 . While path-based algorithms maintain a set 𝐾+p of

promising simple paths for each OD pair p , bush-based algorithms maintain a bush 𝐵𝑜
for each origin 𝑜 . A bush 𝐵𝑜 is a directed acyclic graph that comprises promising paths

from the origin 𝑜 to all destinations. Bush-based algorithms work similar to path-

based methods. In each iteration, each origin 𝑜 is processed in succession. First, 𝐵𝑜 is

updated by removing links that have no flow in the current solution, and inserting

new links that give rise to cheaper paths. Then, 𝐵𝑜 is equilibrated. Again, bush-based

algorithms differ in how they equilibrate 𝐵𝑜 . Algorithm B [Dia06, Nie10] examines all

destinations 𝑑 in reverse topological order, equalizing the costs of the cheapest and

costliest 𝑜–𝑑 path in 𝐵𝑜 . The LUCE algorithm [Gen14] generates a feasible direction of

descent by solving a quadratic minimization program for each destination, and shifts

flow along the descent direction. Some authors, e.g., Perederieieva et al. [PERW15],

also classify the TAPAS algorithm [Bar10] as a bush-based method. Although TAPAS

does not maintain bushes, the solution is also represented by origin flows.

The variety of algorithms provide different trade-offs between convergence rate,

space requirements and implementation complexity, and all families are implemented

in commercial software. In this chapter, we build upon link-based algorithms (more

precisely, the CFW algorithm), due to their simplicity and low space consumption.

Moreover, although all families require a large number of shortest-path computa-
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tions, the amount of work for everything else done during link-based algorithms is

particularly negligible. Hence, they benefit the most from advances in route planning.

The past decade has seen intense research on speedup techniques [Bas+16] for

Dijkstra’s algorithm [Dij59], which rely on a slow preprocessing phase to enable

fast queries. One of the most prominent and versatile techniques among these are

contraction hierarchies (CHs) [GSSV12], which exploit the inherent hierarchy of the

network. A fairly recent development in the area of route planning are customizable

speedup techniques [DGPW17, DSW16, EP13], which split preprocessing into a

slow metric-independent part, taking only the graph structure into account, and a

fast metric-dependent part (the customization), incorporating new edge costs (the

metric). Customizable route planning (CRP) [DGPW17] and customizable contraction

hierarchies (CCHs) [DSW16] are the most prominent among them.

Note that CRP and CCHs do not have the fastest known queries for road networks.

Transit node routing (TNR) [BFSS07, ALS13] and hub labeling (HL) [ADGW11]

achieve even faster query times. The downside is that their preprocessing is much

heavier than the quick and lightweight customization of CRP and CCHs. Therefore,

TNR and HL are less suited for a dynamic scenario such as traffic assignment, where

the edge costs change quite frequently due to flow shifts.

Despite the utmost importance of shortest-path computations for traffic assignment

algorithms, there seems to be only a single paper [LS11] that solves the traffic

assignment problem using a state-of-the-art shortest-path algorithm (standard CHs

in their case). Even recent experimental studies, e.g. [PERW15], resort to the 50-year-

old A* algorithm [HNR68] to compute shortest paths.

Our Contribution. The contribution of this chapter is twofold. First, we acceler-

ate the state of the art in the area of traffic assignment. On our main benchmark

instance, our procedure building upon CCHs gains a speedup of 37. This is more

than three orders of magnitude faster than the Dijkstra-based baseline. However, the

optimizations we propose to achieve this are also independent contributions, not

restricted to the traffic assignment problem, but generally applicable to CCHs (and

thus a wide variety of shortest-path problems [Bas+16]). Our three main optimiza-

tions are as follows: (1) We thoroughly reengineer the CCH customization phase,

obtaining substantial speedups for both the single- and multi-threaded versions. We

especially focus on the third customization subphase, which received less attention

in the original CCH publication. (2) Currently, there are two CCH query algorithms,

one based on Dijkstra’s algorithm and one based on elimination trees (a structure

encoding the search space of each vertex). We carefully engineer the elimination

tree search, providing a unified query algorithm that combines good local-query

with good global-query performance. (3) We introduce a centralized elimination tree
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search for computing batched point-to-point shortest paths fast. While there is a large

amount of work on one-to-all, one-to-many, many-to-many, and point-of-interest

queries [DGNW13, DGW11, EP14, EPV15, Kno+07, DW15], we are the first that

accelerate batched point-to-point shortest paths. All optimizations are extensively

experimentally evaluated using solely real-world data, whereas previous work fell

back on synthetic origin-destination pairs [LS11].

Outline. This chapter is organized as follows. Section 5.2 provides a precise defini-

tion of the traffic assignment problem and briefly reviews the Frank-Wolfe method.

Section 5.3 shows how to incorporate customizable contraction hierarchies into the

Frank-Wolfe algorithm. Section 5.4 describes the original CCH customization and

shows how to accelerate it. Section 5.5 discusses the original elimination tree search

and our improved variant. Section 5.6 describes our optimizations for batched point-

to-point shortest paths. Section 5.7 presents an extensive experimental evaluation

of our traffic assignment procedures, and also evaluates our engineered customiza-

tion and elimination tree search on its own on a well-known benchmark instance.

Section 5.8 concludes the chapter with final remarks.

5.2 Preliminaries
We now formally define the traffic assignment problem and briefly review the main

algorithms we build upon. First, we describe the Frank-Wolfe algorithm. Then, we

discuss how previous work accelerated Frank-Wolfe by replacing Dijkstra’s shortest-

path algorithm with contraction hierarchies.

Note that we treat a road network as a directed graph 𝐺 = (𝑉 , 𝐸) where vertices
represent intersections and edges represent road segments. In the literature on the

traffic assignment problem, edges are also called links. We use these two terms as

synonyms. Each edge (𝑢, v) ∈ 𝐸 has a constant nonnegative cost representing the

travel time between 𝑢 and v under a certain fixed flow pattern.

Mathematical Program. The traffic assignment problem has been formalized

by Beckmann et al. [BMW56] as a mathematical program, known as Beckmann’s
transformation, whose solution is the equilibrium flow pattern we are looking for. It

is a convex minimization program with linear constraints.

Before we formulate the mathematical program known as Beckmann’s transfor-

mation, it is helpful to introduce some notation and terminology. We denote by 𝑃

the set of OD pairs, by 𝐾p the set of simple paths between OD pair p ∈ 𝑃 , and by 𝑡p
the number of trips between p during the period of analysis. Let 𝑓𝑒 be the flow on

link 𝑒 ∈ 𝐸, and 𝑐𝑒 (𝑓𝑒 ) the cost function of 𝑒 . The latter maps the flow on a link into
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a cost. The flow on path 𝑘 is denoted by 𝐹𝑘 . The graph structure of the urban road

network is given by the indicator variable

𝛿𝑘𝑒 :=

{︄
1 if link 𝑒 belongs to path 𝑘 ,

0 otherwise.

The equilibrium flow pattern can be obtained by solving the following convex

minimization program with linear constraints:

min z (𝑓 ) :=
∑︁
𝑒∈𝐸

∫ 𝑓𝑒

0

𝑐𝑒 (𝑥) 𝑑𝑥 (5.1a)

subject to ∑︁
𝑘∈𝐾p

𝑓𝑘 = 𝑡p ∀ p ∈ 𝑃 (5.1b)

𝐹𝑘 ≥ 0 ∀ 𝑘 ∈ 𝐾p , p ∈ 𝑃 (5.1c)

𝑓𝑒 =
∑︁
p∈𝑃

∑︁
𝑘∈𝐾p

𝛿𝑘𝑒 𝐹𝑘 ∀ 𝑒 ∈ 𝐸 (5.1d)

Note that the objective function (5.1a) has no natural interpretation, but is merely

a mathematical construct. The flow conservation constraints (5.1b) guarantee that

all trips are assigned onto the road network. The nonnegativity constraints (5.1c) are

due to physical requirements (there is no negative flow). The graph structure enters

the mathematical program through constraints (5.1d).

Solution Algorithm. As argued in Section 5.1, this chapter builds upon the CFW

algorithm, a variant of the link-based FW algorithm. Starting at an initial solution,

the FW algorithm repeatedly generates a feasible direction of descent, and advances

by an optimal step size along the descent direction. See Figure 5.1 for an illustration.

An important subroutine of the FW algorithm is the all-or-nothing (AON) assignment
procedure, which processes each OD pair in succession and assigns one flow unit to

each link on the shortest path from the origin to the destination. In the simplest case,

shortest paths are computed with Dijkstra’s algorithm.

Recall that FW represents the solution by the link flows 𝑓𝑒 . Let 𝑓
𝑖 = (𝑓 𝑖

1
, . . . , 𝑓 𝑖|𝐸 |)

be the link flows at the beginning of iteration 𝑖 . The initial solution 𝑓 1
is generated

by an AON assignment based on free-flow link costs. In each iteration 𝑖 , the FW

algorithm performs the following steps: (1) Update link costs based on the current

link flows, i.e., set the cost of each link 𝑒 to 𝑐𝑒 (𝑓 𝑖𝑒 ). (2) Perform an AON assignment
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Figure 5.1: Execution of the FW algorithm in two-dimensional space. The dashed

lines indicate contour lines of the convex objective function that is to be minimized,

and the rectangle indicates the feasible region. The solution is represented by the

two variables 𝑥1 and 𝑥2. Starting at the initial feasible solution (0, 0), the algorithm
moves in each iteration closer to the solution, and starts zigzagging in its vicinity.

based on the current link costs, yielding a link flow vector 𝑦𝑖 , and let the descent

direction 𝑑𝑖 be 𝑦𝑖 − 𝑓 𝑖 . (3) Perform a line search in the descent direction, i.e., along

the line segment between 𝑓 𝑖 and 𝑦𝑖 , which determines how far the current solution

must be moved along the direction of descent. (4) Move the current solution along

the descent direction, i.e., set 𝑓 𝑖+1 = 𝑓 𝑖 + 𝜆𝑖𝑑𝑖 , where 𝜆𝑖 is the step size found by the

line search. (5) Check if the convergence criterion is met, and stop or go to step (1).

Note that the line search is nothing more than a one-dimensional minimization

of a convex function, which we implement using recursive bisection [She85]. The

CFW algorithm, which we build upon, improves the second step by choosing as

descent direction a certain convex combination of the FW direction (generated by an

AON assignment based on the current link costs as described above) and the descent

direction from the previous iteration. For further details, we refer the interested

reader to Mitradjieva and Lindberg [ML13].
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Link Cost Function. Due to congestion, the time or cost to travel along a link is

not constant, but increases with the traffic flow on it. The relation between cost

and flow is expressed by link cost functions, which are required to be monotonically

increasing so that the objective function Equation (5.1a) becomes convex [She85].

There is a variety of different link cost functions, such as the BPR function [Bur64],

the Davidson function [Dav66], and the Lohse function [PTV14]. Our benchmark

instances, taken from production systems, use the BPR function, which is defined as

𝑐𝑒 (𝑓𝑒 ) = 𝑐0

𝑒

(︄
1 + 𝛼𝑒

(︃
𝑓𝑒

𝑓 max

𝑒

)︃𝛽𝑒 )︄
, (5.2)

where 𝑐0

𝑒 is the free-flow cost of link 𝑒 , 𝑓 max

𝑒 is the capacity of link 𝑒 , and 𝛼𝑒 and 𝛽𝑒
are model parameters (set to 1 and 2, respectively, for each link 𝑒).

Convergence Criterion. There is a large number of convergence criteria, such

as the change in link flows [She85] and simply the number of iterations [FH95].

However, the most common criterion in both research papers and practice [PERW15,

ML13, SBR06, Dia06, FCF09, Gen14, ZYC11] is the relative gap [BRB04]. Recall that at
equilibrium, each driver takes a shortest path between its endpoints. Before reaching

an equilibrium, the total cost of currently used paths is therefore larger than the total

cost of current shortest paths. Intuitively, the relative gap is the difference between

the total cost of currently used paths and the total cost of current shortest paths.

More precisely, the relative gap after iteration 𝑖 is defined as∑︁
𝑒∈𝐸 𝑓

𝑖
𝑒 · 𝑐𝑒 (𝑓 𝑖𝑒 ) −

∑︁
p∈𝑃 𝑡p · 𝜇p (𝑓 𝑖 )∑︁

𝑒∈𝐸 𝑓
𝑖
𝑒 · 𝑐𝑒 (𝑓 𝑖𝑒 )

, (5.3)

where 𝜇p (𝑓 𝑖 ) is the shortest-path cost between OD pair p based on the link flows 𝑓 𝑖 .

Obviously, the relative gap ranges between 0 and 1. At the user equilibrium, we have∑︁
𝑒∈𝐸 𝑓

𝑖
𝑒 · 𝑐𝑒 (𝑓 𝑖𝑒 ) =

∑︁
p∈𝑃 𝑡p · 𝜇p (𝑓 𝑖 ), and thus the relative gap becomes zero. In our

experiments, we stop the iterative procedure when the relative gap drops below the

threshold of 10
−4
, as recommended by Boyce et al. [BRB04].

Acceleration by Contraction Hierarchies. The shortest-path computations in the

direction-finding step are by far the most time-consuming part of the FW algorithm.

Carrying them out with CHs (instead of Dijkstra’s algorithm) accelerates traffic

assignments by more than an order of magnitude [LS11]. Since the cost of each edge

changes between two iterations, the CH is rebuilt from scratch in each iteration.

Queries do not unpack shortcuts but assign one flow unit to each (shortcut) edge on

the packed path. After computing all paths, the shortcuts are unpacked in top-down

fashion, with cumulated flow units propagated from shortcut to original edges.
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5.3 Traffic Assignment Using Customization
Previous work [LS11] applying speedup techniques to the traffic assignment problem

observed that the performance bottleneck depends on the traffic scenario under

study. For short or off-peak periods, where there are few OD pairs, preprocessing

dominates the total running time. When there are many OD pairs, as for long or peak

periods, queries become the main performance bottleneck. Therefore, it is necessary

to accelerate both preprocessing and query times.

To decrease the preprocessing time, we apply the concept of customization to the

traffic assignment problem. Customizable speedup techniques [DGPW17, DSW16,

EP13] split preprocessing into a metric-independent part, taking only the graph

structure into account, and ametric-dependent part (the customization), incorporating
new edge costs (themetric). Since the graph topology does not change in all iterations
of the traffic assignment procedure and only edge costs change, it suffices to run a

fast customization in each iteration instead of an entire preprocessing.

The two most prominent and versatile customizable speedup techniques are CRP

and CCHs, which yield different tradeoffs between customization and query time.

While CRP achieves slightly smaller customization times, CCHs have somewhat

better query times [DSW16]. We choose to build our traffic assignment procedure

upon CCHs mainly for two reasons. First, as our experiments will show, even on our

benchmark instance having the smallest number of OD pairs the total running time

is dominated by queries. Therefore, it makes sense to trade customization time for

query time. Second, after each query, we have to traverse the computed path to assign

one flow unit to each edge on the path. Both CRP and CCHs would allow to collect

flow units on the packed paths containing shortcuts, with flow values propagated

from shortcut to original edges after computing all paths (in the spirit of [LS11]).

However, the packed paths computed by CCHs usually contain less edges than the

ones computed by CRP, and thus the overhead per query is less when using CCHs.

Hence, we prefer to use CCHs within our traffic assignment procedure.

Again note that CRP and CCHs do not have the fastest known queries for road

networks. However, the preprocessing of techniques such as TNR and HL, which

is much heavier than the lightweight customization of CRP and CCHs, make these

techniques less suited for a dynamic scenario such as traffic assignment (where

the edge costs change quite frequently due to flow shifts). For example, on our

main benchmark instance (a typical morning peak), the CH-based traffic assignment

algorithm by Luxen and Sanders [LS11] takes a significant fraction of the total

time (36.1 out of 90.9 seconds) for preprocessing; see also Section 5.7. TNR and

HL preprocessing take multiple times longer than CH preprocessing [Bas+16], and

therefore TNR- and HL-based traffic assignments would even be slower than the

existing state-of-the-art CH-based traffic assignment.
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Figure 5.2: Triangles in the customizable contraction hierarchy. We say that ⟨𝑢, v, 𝑤⟩
is a lower triangle of (v, 𝑤), and ⟨v, 𝑤,𝑢 ′⟩ is an upper triangle of (v, 𝑤).

Switching from weighted CHs to customizable CHs decreases the total time to

compute an equilibrium flow pattern on our main benchmark instance from 90.9 to

41.5 seconds. However, to achieve running times enabling interactive applications,

we must engineer all aspects of CCHs. In particular, we must accelerate and fully

parallelize customization. Moreover, we introduce a unified query algorithm, and a

centralized search algorithm for batched point-to-point shortest paths. The remainder

of this chapter discusses each optimization in turn.

5.4 Accelerating Customization
CCH customization can be divided into three subphases. First, basic customization
computes costs for all edges in the hierarchy. It is the only subphase required

and enough to ensure that queries are correct. However, after basic customization

some edges in the hierarchy can have suboptimal costs that are not the same as the

shortest-path distances between their endpoints. The second (optional) subphase,

perfect customization, sets the cost of each edge to the distance between its endpoints.

The third (again optional) subphase constructs a standard CH having the smallest

possible number of edges for the given contraction order, by removing each edge

whose cost was improved by the perfect customization algorithm.

The fundamental operation of both basic and perfect customization is enumerating

triangles. A triangle is a set of three pairwise adjacent vertices. Consider a trian-

gle ⟨𝑢, v, 𝑤⟩, where 𝑢 is the lowest-ranked vertex and 𝑤 the highest-ranked vertex

(see Figure 5.2). We call ⟨𝑢, v, 𝑤⟩ a lower triangle of (v, 𝑤), an intermediate triangle
of (𝑢, 𝑤), and an upper triangle of (𝑢, v). To efficiently support enumerating trian-

gles, we store an upward adjacency array 𝐺 ↑ = (𝑉 , 𝐸↑) and a downward adjacency
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array 𝐺 ↓ = (𝑉 , 𝐸↓) of the hierarchy. In the former, each vertex stores its incident

edges leading to neighbors with higher rank. This is the standard CH representation

in the literature [GSSV12, DGNW13, DGW11]. In the latter, each vertex stores its

incident edges leading to neighbors with lower rank.

If the incident edges of each vertex are sorted by neighbor ID, enumerating the

upper triangles of (𝑢, v) can be done by a coordinated sweep over all edges (𝑢,𝑢 ′) ∈ 𝐸↑
and (v, v ′) ∈ 𝐸↑. More precisely, we maintain indices 𝑖𝑢 and 𝑖v , initialized to the

indices of the first edges in 𝐸↑ out of 𝑢 and v , respectively. Let (𝑢,𝑢 ′) be the edge
with index 𝑖𝑢 , and let (v, v ′) be the edge with index 𝑖v . In each iteration, we compare

the vertices 𝑢 ′ and v ′. If these IDs are equal, then we found a new upper triangle,

and increment both 𝑖𝑢 and 𝑖v . If the IDs differ, then we increment either 𝑖𝑢 (if 𝑢 ′ < v ′)
or 𝑖v (if 𝑢

′ > v ′). We stop when either 𝑖𝑢 or 𝑖v points one past the last edge out of 𝑢

or v , respectively. Enumerating intermediate and lower triangles works analogously.

During basic customization, we process the edges in bottom-up fashion, ordered

increasingly by the rank of the lower-ranked endpoint. For each edge (v, 𝑤), we
enumerate all lower triangles ⟨𝑢, v, 𝑤⟩ and set ℓ (v, 𝑤) = min{ℓ (v, 𝑤), ℓ (𝑢, v)+ℓ (𝑢, 𝑤)},
where ℓ (v, 𝑤) denotes the cost of (v, 𝑤).14

14
For simplicity, we assume that the edges have the same cost in both directions. To support different costs

in each direction, our implementation maintains an upward cost ℓ↑ (v, 𝑤) and a downward cost ℓ↓ (v, 𝑤)
for all edges (v, 𝑤) in the hierarchy, as described in [DSW16].

Analogously, during perfect customization,

we process the edges in top-down fashion, ordered decreasingly by the rank of the

lower-ranked endpoint. For each edge (v, 𝑤), we enumerate all intermediate triangles

and all upper triangles, and again try to update the cost of (v, 𝑤). If multiple CPU

cores are available, then all edges departing on the same level can be processed in

parallel (during both basic and perfect customization).

In the following, we propose several optimization techniques that accelerate the

customization subphases described above. We start by carefully reengineering the

single-threaded versions and discuss the multithreaded versions in Section 5.4.2.

5.4.1 Sequential Execution
The crucial observation is that enumerating upper triangles is cheaper than enumer-

ating lower or intermediate triangles. The main reason for this is that the coordinated

sweeps perform fewer iterations, due to the distribution of the vertex degrees in 𝐺 ↑

and 𝐺 ↓. Note that the number of iterations performed by the coordinated sweeps

(without stopping) when enumerating lower triangles during customization is∑︁
(𝑢,v) ∈𝐸

(deg𝐺↓ (𝑢) + deg𝐺↓ (v)) =
∑︁
𝑢∈𝑉
(deg𝐺↑ (𝑢) deg𝐺↓ (𝑢) + deg𝐺↓ (𝑢)2),

where deg𝐺 (v) is the degree of v in 𝐺 . Similarly, the number of iterations performed

by the coordinated sweeps when enumerating upper triangles is∑︁
(𝑢,v) ∈𝐸

(deg𝐺↑ (𝑢) + deg𝐺↑ (v)) =
∑︁
𝑢∈𝑉
(deg𝐺↑ (𝑢) deg𝐺↓ (𝑢) + deg𝐺↑ (𝑢)2).
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Note that

∑︁
v∈𝑉 deg𝐺↑ (v) must be equal to

∑︁
v∈𝑉 deg𝐺↓ (v), since 𝐺 ↑ and 𝐺 ↓ repre-

sent the same hierarchy. However, the values of

∑︁
v∈𝑉 deg𝐺↑ (v)2 and

∑︁
v∈𝑉 deg𝐺↓ (v)2

also depend on the distribution of the degrees in 𝐺 ↑ and 𝐺 ↓, respectively. A uniform

distribution minimizes the sums. We observe that the degrees in 𝐺 ↓ are more widely

dispersed than the ones in 𝐺 ↑, and therefore

∑︁
v∈𝑉 deg𝐺↑ (v)2 <

∑︁
v∈𝑉 deg𝐺↓ (v)2.

Indeed, the coordinated sweeps perform half as many iterations when enumerating

upper triangles instead of lower triangles.

For an intuition of why vertex degrees are more widely dispersed in 𝐺 ↓, consider
the vertices of degree zero. In 𝐺 ↑, a vertex has degree zero if and only if it is in the

highest level. Similarly, in 𝐺 ↓, a vertex has degree zero if and only if it is in the

lowest level. While roughly 40% of all vertices in the hierarchy are in the lowest

level, there can only be a single vertex in the highest level. Since the total degree of

all vertices is fixed, the degree of vertices higher up in the hierarchy must be larger

in 𝐺 ↓, explaining the wider dispersion of vertex degrees.

We can reduce the number of iterations even further. When enumerating the upper

triangles of (𝑢, v), we initialize the index 𝑖𝑢 to point to the edge in 𝐸↑ immediately

following (𝑢, v) (and not to the first edge in 𝐸↑ out of 𝑢). Because the incident

edges of 𝑢 are sorted by neighbor ID, and lower-ranked vertices have lower IDs, the

edges (𝑢,𝑢 ′) ∈ 𝐸↑ preceding (𝑢, v) cannot induce upper triangles of (𝑢, v). Therefore,
we can skip them during the coordinated sweeps. Note that this optimization does

not carry over to enumerating lower triangles, but could also be applied when

enumerating intermediate triangles during customization.

Based on this observation, we propose the following basic customization algo-

rithm. We use the same bottom-up processing order as before. When processing

an edge (v, 𝑤), however, we do not enumerate all lower triangles ⟨𝑢, v, 𝑤⟩ and set

ℓ (v, 𝑤) = min{ℓ (v, 𝑤), ℓ (𝑢, v) + ℓ (𝑢, 𝑤)}, but enumerate all upper triangles ⟨v, 𝑤,𝑢 ′⟩
and set ℓ (𝑤,𝑢 ′) = min{ℓ (𝑤,𝑢 ′), ℓ (v, 𝑤) + ℓ (v, 𝑢 ′)}. Since each triangle is at the same

time a lower, an intermediate and an upper triangle, we ultimately enumerate the

same triangles, even though in a slightly different order. To preserve correctness, the

costs of both (v, 𝑤) and (v, 𝑢 ′) must be final at the time we try to update the cost

of (𝑤,𝑢 ′). This is the case since the cost of (v, 𝑤) can only be updated by an upper

triangle of an edge (𝑢, v), where 𝑢 has lower rank than v . The bottom-up processing

order ensures that each such edge is processed before (v, 𝑤), and therefore the cost

of (v, 𝑤) is final. The same argument applies to the cost of (v, 𝑢 ′), which is enough

to preserve correctness of our basic customization algorithm.

Moreover, we propose the following perfect customization algorithm. We again

keep the same top-down order as before. For each edge (v, 𝑤), we enumerate all

upper triangles ⟨v, 𝑤,𝑢 ′⟩ and set ℓ (v, 𝑤) = min{ℓ (v, 𝑤), ℓ (v, 𝑢 ′) + ℓ (𝑤,𝑢 ′)}, as in the

original algorithm. In addition, we also set ℓ (v, 𝑢 ′) = min{ℓ (v, 𝑢 ′), ℓ (v, 𝑤) + ℓ (𝑤,𝑢 ′)},
which avoids enumerating intermediate triangles explicitly. Note that our variant
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differs from the original variant only in the order in which we consider the upper

and intermediate triangles of the incident edges of each vertex. Correctness follows

immediately from the original proof in [DSW16], since the proof works for any order.

To summarize, both the basic and perfect customization algorithm enumerate only

upper triangles. Therefore, another advantage is that both algorithms do not access

the downward adjacency array 𝐺 ↓, improving cache efficiency. On the European

road network using travel times as the length function, we decrease the sequential

time for basic customization from 10.9 to 5.6 seconds, and for perfect customization

even from 22.1 to 6.5 seconds (see Section 5.7.2).

5.4.2 Parallel Execution
The optimizations discussed above can also be used in the multithreaded versions.

Depending on the approach for parallelization, however, the edge costs have to be

updated atomically, which can be implemented lock-free on the x86 microarchitecture.

Building upon our engineered single-threaded customization algorithms, we propose

two optimizations for the multithreaded versions in this section, starting with an

alternative, more scalable approach for parallelization.

Task-Based Parallelism. The original CCH publication [DSW16] suggests pro-

cessing all edges departing on the same level in parallel. This simple loop-based

parallelism suffers from three drawbacks. First, the edges processed by each thread

are not consecutive in memory, which leads to worse locality and more cache misses.

Second, we require a synchronization step after each level, which has some overhead.

Third, when building upon our engineered customization algorithms, we have to use

atomic operations. We compensate for these drawbacks by proposing an alternative

approach for parallelization based on the separator decomposition of the hierarchy.

The idea is as follows. Since the removal of the top-level separator decomposes

the hierarchy into several subgraphs, each of these components can be handled in

parallel. We propose using task-based parallelism provided by OpenMP [PST17] to

implement this idea. A task is responsible for processing all edges in a subgraph of

the hierarchy. Initially, we generate a task that is responsible for the entire hierarchy.

The execution of a task differs slightly between basic and perfect customization.

We first address basic customization. Consider a task that is responsible for a

subgraph 𝐺 . The removal of the top-level separator of 𝐺 decomposes 𝐺 into several

components 𝐺𝑖 . If the size of 𝐺 is below a given threshold, then we process all edges

in 𝐺 in the order in which they are stored in memory. Since the edges are sorted by

tail ID, and lower-ranked vertices have lower IDs, this is a valid processing order.

If the size of 𝐺 exceeds the threshold, then we generate a child task for each 𝐺𝑖 ,

wait on the completion of all child tasks, and then process the incident edges of
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the separator vertices. We use 𝑛/(𝜏 · 𝑐) as our threshold, where 𝑛 is the size of the

entire customizable contraction hierarchy, 𝑐 is the number of cores available, and 𝜏

is a tuning parameter. Increasing 𝜏 leads to better load balancing but also to larger

tasking and synchronization overhead. We set 𝜏 = 32 in our experiments.

Task-based parallelism is even better suited to parallelizing perfect customization,

since the steps of a task are reversed. First, we process the incident edges of the

separator vertices (in reverse order of the layout in memory), and then we generate

a child task for each 𝐺𝑖 . Therefore, we do not need a single synchronization step.

Contrary to basic customization, perfect customization also does not need atomic

operations, since there are no concurrent modifications to a single cost.

Note that our approach for parallelization is not only a natural fit for the customiza-

tion phase, but can also be used to parallelize other algorithms working on a CCH,

such as the one-to-all PHAST algorithm [DGNW13]. Since PHAST requires only a top-

down sweep (and no bottom-up sweep), it can be implemented synchronization-free,

improving scaling on multi-core machines.

Building the MinimumWeighted CH. The original CCH publication [DSW16]

gives no details (and no running times) of the implementation of the third customiza-

tion subphase, the construction of the minimum weighted CH. This is surprising,

since the third subphase actually takes 47–56 % of the sequential customization time

in our experiments. Therefore, when parallelizing only basic and perfect customiza-

tion, the speedup for the entire customization phase is less than a factor of two. In

the following, we present a parallelization technique for the third subphase.

During perfect customization, we maintain one bit per edge in the hierarchy. All

bits are initially set. Whenever we improve the cost of an edge, we clear its bit.

Maintaining these bits has no measurable performance penalty. The third subphase

then forms the prefix sums of the bits, which gives us the location of each necessary

edge in the minimum weighted CH. This allows us to fill the new adjacency array in

parallel, taking advantage of multiple cores.

Since computing prefix sums in parallel can overload the memory system [Sin10],

we use an approach inspired by [BPZ07]. We precompute and store the location

of every 𝑘 ′-th edge in the customizable contraction hierarchy. To compute the

location of the edge with index 𝑖 , we look up the location of the edge with the largest

precomputed index 𝑗 ≤ 𝑖 , and count the number of necessary edges with an index

between 𝑗 and 𝑖 − 1. Increasing 𝑘 ′ reduces precomputation time, but also leads to

slower location lookups. We use 𝑘 ′ = 4 in our experiments.

For setting up the path-unpacking data structure [GSSV12] of the minimum

weighted CH, we must know the lower triangle that created each necessary shortcut.

At first glance, it is tempting to record this information during basic customization, to
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have it available in the third subphase. However, remember that concurrent modifica-

tions to a single edge can arise in the multi-threaded version of our engineered basic

customization. While we can use atomic operations to modify edge costs, maintaining

unpacking information would require locks, rendering this approach impractical.

One possibility is to switch back to the original basic customization algorithm, where

there are no concurrent modifications. However, this would double the running time.

The fastest approach if multiple cores are available is to stick to our engineered basic

customization algorithm (without recording unpacking information), and explicitly

enumerate lower triangles of each necessary edge (v, 𝑤) during the third subphase.

We do not need to enumerate all lower triangles, though, but can stop at the first

triangle ⟨𝑢, v, 𝑤⟩ such that ℓ (v, 𝑤) = ℓ (𝑢, v) + ℓ (𝑢, 𝑤). Note that we can handle all

edges in parallel, and do not need to obey a certain (bottom-up or top-down) order,

as in the first two subphases of the customization.

5.5 Accelerating Elimination Tree Searches
While Dibbelt et al. [DSW16] observe that the CCH query algorithm based on elim-

ination trees achieves fastest query times for random queries (which tend to be

long-range), it is slower by more than an order of magnitude than the Dijkstra-based

query algorithm for local queries. However, the input of the traffic assignment prob-

lem consists of both local and long-range OD pairs, requiring a query algorithm that

can handle both types of queries well. Therefore, we review and carefully engineer

the elimination tree search in this section. The result is a fast, unified CCH query

algorithm, combining good performance for both local and long-range queries.

Given a source 𝑠 and a target 𝑡 , the original elimination tree search [DSW16]

works in five phases. First, we compute the lowest common ancestor (LCA) 𝑥 of 𝑠

and 𝑡 in the elimination tree 𝑇 rooted at the highest-ranked vertex 𝑟 . This is done

by enumerating the ancestors of 𝑠 and 𝑡 in increasing rank order until a common

ancestor is found. Second, we revisit each vertex v on the 𝑠–𝑥 path in 𝑇 , relaxing all

outgoing upward edges of v . Third, we do the same for each vertex v on the 𝑡–𝑥 path

in 𝑇 , relaxing all incoming downward edges of v . Fourth, we visit each vertex v on
the 𝑥–𝑟 path in 𝑇 , relaxing all outgoing upward and incoming downward edges of v .
Moreover, we check at each such vertex v whether the 𝑠–𝑡 path via v improves the

tentative 𝑠–𝑡 distance. Fifth, we again revisit each vertex on the 𝑠–𝑟 and 𝑡–𝑟 path to

reset its distance labels for the next computation.

Phase Reduction. Our first optimization reduces the number of phases of the

elimination tree search. We refrain from computing the LCA first, and then visiting

each vertex from the source (target) to the LCA again. Instead, while we enumerate
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the ancestors of 𝑠 and 𝑡 in the same fashion as before, we immediately relax their

edges. Moreover, we observe that the resetting phase is unnecessary. After relaxing

the edges of a vertex, its distance labels are never read again. Therefore, we can safely

reset them to∞ right after relaxing the edges, avoiding the fifth phase completely.

Note that we cannot reset parent pointers, since they may be needed afterwards.

However, this is not an issue, because resetting the distance labels suffices to decide

whether a vertex has been visited before during the next query. With this optimization,

each vertex is visited at most once, instead of up to three times as before.

Pruning Rule. The basic elimination tree search does not make use of pruning. Only

when combined with the full (three-subphase) customization, Dibbelt et al. [DSW16]

employ the following basic pruning rule. Due to the removal of superfluous edges, a

vertex may have an ancestor in the elimination tree that is not in its perfect search

space. Such an ancestor will have a distance label of∞when visited during the search.

To accelerate queries, Dibbelt et al. do not relax the edges of a vertex with a distance

label of∞. We observe that a stricter pruning rule is possible. We do not relax edges

of a vertex whose distance label exceeds the current tentative shortest-path distance,

since those edges cannot possibly contribute to a shorter path. Despite its simplicity,

this optimization accelerates the search quite drastically, by a factor of 13 for short-

range queries. Moreover, our pruning rule does not require the full customization,

but can also be combined with the basic customization, without building a weighted

CH having the smallest possible number of edges for the given contraction order.

5.6 Accelerating Batched Shortest Paths
The Frank-Wolfe method requires computing multiple point-to-point shortest paths

in each iteration. The obvious approach is to perform an independent elimination

tree search for each OD-pair. However, we can do better by explicitly adapting CCHs

to compute batched point-to-point shortest paths.

5.6.1 Reordering OD Pairs to Exploit Locality
Previous work processed the OD pairs in no particular order. However, reordering

the OD pairs so that pairs with similar forward and reverse search spaces tend to be

processed in succession improves memory locality and cache efficiency. We call two

search spaces similar if their symmetric difference is small. Note that the size of the

symmetric difference between the search spaces of 𝑢 and v is equal to the distance

between 𝑢 and v in the elimination tree. Hence, we partition the elimination tree

into as few cells with bounded diameter as possible, assign IDs to cells according to
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the order in which they are reached during a DFS [SMDD19] on the elimination tree,

and reorder OD pairs lexicographically by the origin and destination cells.

We use a simple yet optimal greedy algorithm to partition the elimination tree

into as few cells with diameter at most𝑈 as possible. Our algorithm repeatedly cuts

out a subtree (with diameter at most 𝑈 ) and makes it a cell of its own. To do so, it

maintains for each vertex v the height ℎ(v) of the remaining subtree 𝑇v rooted at v ,
initialized to zero, and processes vertices in ascending rank order. To process v , we
examine its children 𝑤𝑖 in order of increasing height of 𝑇𝑤𝑖

. If ℎ(v) + 1 + ℎ(𝑤𝑖 ) ≤ 𝑈 ,

then we set ℎ(v) = 1 + ℎ(𝑤𝑖 ). Otherwise, we cut out 𝑇𝑤𝑖
, making it a cell of its own.

We use𝑈 = 40 in our experiments in Section 5.7.

Theorem 5.1. Our algorithm produces a partition into cells with diameter at most𝑈 .

Proof. Since our algorithm only makes subtrees of the elimination tree cells of their

own, all cells are connected. We need to show that a longest path within a cell is of

length at most 𝑈 . Let (𝑠, . . . , 𝑠 ′, v, 𝑡 ′, . . . , 𝑡) be such a path, where v is the maximum-

rank vertex on the path. The 𝑠–𝑠 ′ subpath is not longer thanℎ(𝑠 ′), and the 𝑡 ′–𝑡 subpath
is not longer than ℎ(𝑡 ′). Hence, the 𝑠–𝑡 path is of length at most ℎ(𝑠 ′) + 2 + ℎ(𝑡 ′).
Assume, without loss of generality, that when our algorithm processed v , it examined

child 𝑠 ′ before child 𝑡 ′. Since v and 𝑠 ′ are in the same cell, ℎ(v) was set to at least

1 + ℎ(𝑠 ′) before child 𝑡 ′ was examined. When examining child 𝑡 ′, since v and 𝑡 ′ are
in the same cell, we had ℎ(𝑠 ′) + 2 +ℎ(𝑡 ′) ≤ ℎ(v) + 1 +ℎ(𝑡 ′) ≤ 𝑈 . Hence, the 𝑠–𝑡 path

is not longer than𝑈 , which completes the proof. □

Theorem 5.2. Our greedy algorithm produces an optimal solution, i.e., it finds a
partition of the elimination tree with a minimum number of cells.

Proof. We use induction on the number 𝑘 of cells in an optimal solution. For 𝑘 = 1

the statement is certainly true: if there is no path of length larger than𝑈 , then our

greedy algorithm does not cut out any subtrees.

Now let 𝑘 > 1. We assume as our induction hypothesis that the statement is true

for 𝑘 − 1, and prove it for 𝑘 . Since an optimal solution has at least two cells, the

elimination tree 𝑇 contains a vertex v with 𝑑 children 𝑤𝑖 such that the subtree 𝑇v
rooted at v has diameter larger than𝑈 , and all 𝑇𝑤𝑖

have diameter at most𝑈 . Assume,

without loss of generality, that the children 𝑤𝑖 are ordered by increasing height of𝑇𝑤𝑖
;

see also Figure 5.3. We claim that there is an optimal solution in which 𝑇𝑤𝑑
is a cell

of its own. Since an optimal solution for𝑇 has 𝑘 cells, an optimal solution for𝑇 \𝑇𝑤𝑑

has 𝑘 − 1 cells. When our greedy algorithm processes v , it cuts out 𝑇𝑤𝑑
, making it a

cell of its own. By the induction hypothesis, it produces an optimal solution for the

subproblem 𝑇 \𝑇𝑤𝑑
. This completes the induction step.

It remains to prove that there is an optimal solution in which 𝑇𝑤𝑑
is a cell of its

own. Since𝑇v has diameter larger than𝑈 , there is at least one cut edge (an edge with
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v

𝑤1 𝑤𝑖 𝑤𝑑

𝑇𝑤1

𝑇𝑤𝑖

𝑇𝑤𝑑

· · · · · ·

Figure 5.3: The subtree 𝑇v .

endpoints in different cells) in 𝑇v . Note that 𝑘
′
cut edges partition a tree into 𝑘 ′ + 1

cells. Hence, exchanging a cut edge for another edge does not increase the number of

cells. Now assume that all cut edges in 𝑇v are incident on v . (In the case where there

is one in 𝑇𝑤𝑖
, then we exchange it for {v, 𝑤𝑖 } without creating a cell with diameter

larger than 𝑈 , since 𝑇𝑤𝑖
has diameter at most 𝑈 by assumption.) If {v, 𝑤𝑑 } is a cut

edge, we are done. If not, then we exchange any cut edge for {v, 𝑤𝑑 }, again without

creating a cell with diameter larger than𝑈 , completing the proof. □

5.6.2 Centralized Searches

Instead of processing similar OD pairs in succession, processing them at once in a

single search achieves additional speedup. The idea of bundling together multiple

shortest-path computations was introduced in [HKMS09] and later used in [DGPW17,

DGNW13, DGW11, BD09, Yan10]. However, in each case, centralized searches were

only used for one-to-all and one-to-many queries, and only combined with plain

Dijkstra (and Bellman-Ford in [DGPW17]). Even (R)PHAST [DGNW13, DGW11]

performs the CH searches sequentially, and bundles only the linear sweeps. We

extend the idea to point-to-point queries, and combine it with CH searches, including

appropriate stopping and pruning criteria.

The basic idea of centralized searches is to maintain 𝑘 distance labels for each

vertex 𝑢, laid out consecutively in memory. The 𝑖-th distance label represents the

tentative distance from the 𝑖-th source to 𝑢. Initially, the 𝑖-th distance label of the 𝑖-th

source is set to zero, and all remaining 𝑘𝑛 − 𝑘 distance labels to∞. When relaxing

an edge (𝑢, v), we try to improve all 𝑘 distance labels of v at once. The number

of simultaneous shortest-path computations 𝑘 is a tuning parameter. Increasing 𝑘

allows us to compute more shortest paths at once, however, it also evicts useful data

from caches. Setting 𝑘 = 32 works well for all scenarios we study.
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Dijkstra-based Search. Initially, we insert all 𝑘 sources (targets) into the queue of

the forward (reverse) search. As keys, we can use many different values, for example

the minimum over all 𝑘 entries in a distance label or the minimum over the entries

that were improved by the last edge relaxation. However, a preliminary experiment

showed that using the minimum over all 𝑘 entries clearly dominates the others,

which is consistent with previous observations on related techniques [HKMS09]. We

can stop the forward (reverse) search as soon as its queue is empty or the smallest

queue entry exceeds the maximum over all 𝑘 tentative shortest-path distances. When

using stall-on-demand [GSSV12], we prune the forward (reverse) search at a vertex v
when each of the 𝑘 distance labels of v is suboptimal.

Elimination Tree Search. Computing multiple shortest paths in a single elimina-

tion tree search is more involved, since it uses no queues that can easily be initialized

with multiple sources and targets. Instead, we equip the forward and reverse search

each with a tournament tree (often also called selection tree or loser tree) [Knu98].

Suppose we have 𝑘 sorted sequences that are to be merged into a single output

sequence, as in 𝑘-way mergesort. In order to do so, we have to repeatedly find

the smallest from the leading elements in the 𝑘 sequences. This can be done very

efficiently with the help of a tournament tree.

In our case, the 𝑘 sorted sequences are the paths in the elimination tree 𝑇 from

each source (target) to the root, and the single output sequence is the order in which

we want to process the vertices during the search. More precisely, we initialize the

tournament tree with all 𝑘 sources (targets). Then, we extract a lowest-ranked vertex

from the tournament tree, process it, and insert its parent in 𝑇 into the tournament

tree. We continue with a next-lowest-ranked vertex, until we reach the root of 𝑇 .

Note that in our case, the sequences are implicit, and never stored explicitly.

As soon as two (or more) of the 𝑘 paths in 𝑇 converge at a common vertex, there

are duplicates in the single output sequence. However, we want to process each

vertex at most once. Therefore, whenever two or more paths converge, we block all

but one of them, so that only one continues to move through the tournament tree.

To do so, we insert for each path to be blocked a vertex with infinite rank into the

tournament tree (instead of the next vertex on the path). We know that some paths

converged, when we extract the very same vertex several times in succession.

A clear advantage of the centralized elimination tree search is that it retains the

label-setting property, i.e., each vertex and each edge is processed at most once. In

contrast, the centralized Dijkstra-based search is a label-correcting algorithm. Note

that one centralized elimination tree search is slower than 𝑘 elimination tree searches

by a factor of log𝑘 in O-notation (due to 𝑘-way merging), but outperforms them in

practice as our experiments will show (see Section 5.7).
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5.6.3 Instruction-Level Parallelism
Modern CPUs have special registers and instructions that enable single-instruction

multiple-data (SIMD) computations performing basic operations (e.g., additions,

subtractions, shifts, compares, and data conversions) on multiple data items simulta-

neously [Kus14]. We implemented versions of the centralized searches using SSE

instructions (working with 128-bit registers), and additionally versions using AVX(2)

instructions (manipulating 256-bit registers).

As an example, we describe how an AVX-accelerated edge relaxation (used in

Dijkstra-based and elimination tree searches) works, assuming 𝑘 = 8. Since we use

32-bit distance labels, all 𝑘 labels of a vertex fit in a single 256-bit register. To relax

an edge (𝑢, v), we copy all 𝑘 distance labels of 𝑢 to an AVX register, and broadcast

the edge cost to all elements of another register. Then, we add both registers with a

single instruction, and check with an AVX comparison whether any tentative distance

improves the corresponding distance label of v . If so, then we compute the packed

minimum of the tentative distances and v’s distance labels. In the same fashion, we

implement the other aspects (stopping and pruning criteria).

5.6.4 Core-Level Parallelism
We now consider how to use core-level parallelism to speed up batched shortest

paths. Since the centralized computations are independent from one another, we

assign contiguous subsets of OD pairs to distinct cores. We distribute the OD pairs

to cores in chunks of size 64. This maintains some locality even between centralized

computations. Each core executes a chunk, then requesting another chunk until

no chunk remains. Flow units on the (shortcut) edges are cumulated locally and

aggregated after computing all shortest paths.

As our experiments in Section 5.7.4 will show, we observe almost perfect speedups

for the time spent on shortest-path queries when computing equilibrium flow patterns.

Running on 4 cores, the speedup on our largest benchmark instance is 3.8. With all

16 cores available, we see a speedup of 14.3.

5.7 Experiments
Our publicly available code

15

15 https://github.com/vbuchhold/routing-framework

is written in C++14 (using OpenMP for paralleliza-

tion) and compiled with the GNU compiler 8.2 using optimization level 3. We use

4-heaps [Joh75] as priority queues. To ensure a correct implementation, we make

extensive use of assertions (disabled during measurements), and check results against

reference implementations such as Dijkstra’s algorithm. Our primary benchmark

machine, denoted by M3500, runs openSUSE Leap 15.1 (kernel 4.12.14), and has

https://github.com/vbuchhold/routing-framework
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Table 5.1: Traffic scenarios used for the evaluation of our traffic assignment proce-

dures. We report for each scenario the planning area, the period of analysis, and the

number of OD pairs departing within that period.

scenario planning area analysis period OD pairs

S-morn Stuttgart Region Tue., 7.30–8.30 248 431

S-even Stuttgart Region Tue., 16.30–17.30 280 364

S-day Stuttgart Region a whole Tuesday 3 355 442

S-week Stuttgart Region a whole week 21 248 278

L-peak Greater London a peak hour 468 602

192GiB of DDR4-2666 RAM and two Intel Xeon Gold 6144 CPUs, each of which has

eight cores clocked at 3.50 Ghz and 8× 64 KiB of L1, 8× 1MiB of L2, and 24.75MiB of

shared L3 cache. To ensure comparability of results, we perform some experiments

on a secondary machine, denoted by M2600. It also runs openSUSE Leap 15.1 (ker-

nel 4.12.14), and has 64GiB of DDR3-1600 RAM and two Intel Xeon E5-2670 CPUs,

each of which has eight cores clocked at 2.60Ghz and 8 × 64KiB of L1, 8 × 256KiB

of L2, and 20MiB of shared L3 cache. Unless otherwise mentioned, we conduct the

experiments in this section on our primary machine M3500.

5.7.1 Inputs and Methodology
Our main benchmark instance is the Stuttgart Region [SHP11] in Germany, encom-

passing more than 2.7 million inhabitants. The experiments are run on the largest

strongly connected component consisting of 134 663 vertices and 307 759 edges.

While this instance is significantly smaller than road networks studied before for

evaluating point-to-point queries [Bas+16], it is the largest available to us that pro-

vides real-world capacities and OD pairs, and is still an order of magnitude larger than

the instances collected in [BV08], and the instances considered in a recent overview

of the state-of-the-art in the area of traffic assignment [PERW15]. Moreover, urban

planners are usually interested in assignments on metropolitan areas, not continents.

The instance provides demand data for a whole week. The demand was originally

forecasted using mobiTopp [MKV13, MV15], which was calibrated from a household

travel survey [VRS11] conducted in 2009/2010. The raw data contains about 51.8 mil-

lion trips between 1174 traffic zones, encompassing various modes of transportation

such as pedestrian, bicycle, public transit, and car. For our experiments, we only

consider car trips, and extract four different traffic scenarios, as shown in Table 5.1.

We choose a typical morning peak on a working day (Tuesday), the evening peak

on a Tuesday, a whole Tuesday, and a whole week. While it may be unrealistic to
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compute a traffic assignment for a whole week (as the period of analysis would be

too inhomogeneous), it shows the scalability of our procedures for tens of millions

of OD pairs. We assume the trip endpoints to be uniformly distributed in the traffic

zones, and pick for each trip the origin vertex and the destination vertex uniformly

at random from its origin and destination zone, respectively.

Besides the Stuttgart Region, we also consider an instance representing the Greater

London area, with about 8.2 million inhabitants. We again take the largest strongly

connected component, consisting of 45 158 vertices and 101 897 edges. The region

is divided into 5692 traffic zones 𝑍 , and we are given a fractional demand 𝑡𝑖 𝑗 ∈ R≥0

between each pair (𝑖, 𝑗) of traffic zones 𝑖, 𝑗 ∈ 𝑍 . We generate ⌊∑︁𝑘,ℓ∈𝑍 𝑡𝑘ℓ⌉ OD
pairs, each as follows. First, we draw the origin zone 𝑂 from a discrete distribution

determined by the probability function Pr[𝑂 = 𝑖] = ∑︁
ℓ∈𝑍 𝑡𝑖ℓ/

∑︁
𝑘,ℓ∈𝑍 𝑡𝑘ℓ . Let 𝑖 be the

value of 𝑂 . Second, we draw the destination zone 𝐷𝑖 from a discrete distribution

determined by the probability function Pr[𝐷𝑖 = 𝑗] = 𝑡𝑖 𝑗/
∑︁
ℓ∈𝑍 𝑡𝑖ℓ . Finally, we pick

the origin vertex and the destination vertex uniformly at random from the set of

vertices in the origin and destination zone, respectively.

To ensure comparability of our experimental results, we evaluate our engineered

customization and elimination tree search on the European road network, which

is the standard benchmark instance for point-to-point queries [Bas+16]. It has

18 017 748 vertices and 42 560 275 edges, and was made available by PTV AG for

the 9th DIMACS Implementation Challenge [DGJ09].

The CH preprocessing is borrowed from the open-source library RoutingKit
16

16 https://github.com/RoutingKit/RoutingKit

. We

compute nested dissection orders for CCHs using Inertial Flow [SS15], setting the

balance parameter 𝑏 = 0.3. The reported running times do not include partitioning

time, as it suffices to partition a network only once, and reuse the resulting order for

all traffic assignments on the same network. Partitioning the Stuttgart Region takes

less than two seconds (even on a single core). We always use the full (three-subphase)

customization approach in combination with CCHs.

5.7.2 Customization
Our first experiment compares our customization algorithms to the original ones. For

both implementations, Table 5.2 reports the running time for the different subphases,

using varying number of CPU cores. For the original variant, we give the numbers

reported in [DSW16], which were obtained on the machine M2600. To ensure compa-

rability, we run our algorithms also on M2600. All running times are averages over

1000 executions. Note that while the benchmark machine and instance are exactly

the same, the nested dissection orders differ. We use Inertial Flow [SS15] to compute

the contraction order, whereas the original publication uses KaHIP [SS13]. However,

both partitioners generate comparable orders of the same quality [HS18].

https://github.com/RoutingKit/RoutingKit
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Table 5.2: Customization times on the machine M2600, using varying number of

CPU cores. We report the time to perform the basic customization, run the perfect

customization algorithm, and construct the minimum weighted CH for the given

contraction order. For comparison, we also give the numbers reported in the original

CCH publication [DSW16] (obtained on the same machine). Note that [DSW16] does

not report the time to construct the minimum weighted CH, and only a combined

parallel time for basic and perfect customization.

Stuttgart [ms] Europe [s]

impl cores basic perf cons total basic perf cons total

[DSW16] 1 10.88 22.08 ≈ 9.39 ≈ 42.35

16 5.47 ≈ 9.39 ≈ 14.86

[ours] 1 20.51 20.77 48.64 89.93 5.60 6.48 9.39 21.47

2 23.47 10.68 23.79 57.93 6.13 3.31 4.62 14.07

4 11.39 5.79 11.41 28.59 3.42 1.71 2.50 7.63

8 6.86 3.55 8.01 18.42 1.80 0.92 1.40 4.13

12 5.25 3.05 5.41 13.71 1.31 0.68 1.00 2.99

16 4.91 4.41 4.35 13.66 1.11 0.63 0.80 2.54

The table confirms that enumerating upper triangles is much faster than enumer-

ating lower triangles. Our basic customization algorithm based on upper triangles

is about twice as fast as the original variant based on lower ones, decreasing the

running time from 10.9 to 5.6 seconds. Switching from lower to upper triangles

reduces the number of iterations performed by the coordinated sweeps from 3.9 to

2.0 billion. Our improved initialization decreases the number of iterations further

to 1.3 billion. The speedup for our perfect customization over the original variant is

even higher. The running time is reduced from 22.1 to 6.5 seconds.

As discussed in Section 5.4.1, the decrease in the number of iterations performed

by the coordinated sweeps is due to the distribution of the vertex degrees in 𝐺 ↑

and 𝐺 ↓, which is shown in Figure 5.4. For Europe, we observe that the fraction

of the vertices with a degree between 1 and 8 is 93 % in 𝐺 ↑, but only 53% in 𝐺 ↓.
Simultaneously, the maximum degree in 𝐺 ↑ is 572, whereas it is 2075 in 𝐺 ↓. The
degrees in𝐺 ↓ thus are more widely dispersed, explaining the good performance of

our engineered customization algorithms based on enumerating upper triangles.

As expected, our approach for parallelization based on the separator decomposition

of the customizable contraction hierarchy works better for perfect customization,

which requires neither synchronization steps nor atomic operations. When using

16 cores, perfect customization is faster by a factor of 10.3, while basic customization
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Figure 5.4: Distribution of the vertex degrees in the customizable contraction hierar-

chy representing Stuttgart (left) and Europe (right).

achieves a factor of only 5.0. This makes the approach a promising candidate for

parallelizing the one-to-all PHAST algorithm [DGNW13].

The original CCH publication [DSW16] reports no running times for the third

customization subphase, the construction of the minimum weighted CH. As our

experiments show, this subphase is by far the most expensive one (taking 44 % of the

sequential customization time), which justifies our engineering effort. We conjectured

that the third subphase would be limited by the memory bandwidth, since there is

more I/O than computation. To our own surprise, we achieve a substantial speedup

of 3.8 (11.7) when using 4 (16) cores instead of one.

Due to the lack of data, we need to estimate the total customization time of the

original CCH implementation. Adding the sequential running time of our third

subphase to the basic and perfect customization times reported in [DSW16] yields a

sequential and parallel customization time of 42.27 and 14.78 seconds, respectively.

This represents a limited speedup of 2.9 when using 16 cores. In contrast, using tasking

to parallelize triangle enumeration and prefix sums to parallelize CH construction,

we achieve a speedup of 8.4 when using 16 cores instead of 1. Our single-threaded

version is faster by a factor of 1.9, and our multithreaded version by a factor of 5.9.

As expected, we obtain smaller speedups on the much smaller Stuttgart instance,

since if the amount of work is small, the parallel overhead offsets performance gains.

Compared to CRP, our sequential customization time for Europe is twice as fast,

due to our optimizations. CRP customization takes 11.10 (1.09) seconds [DGPW17]

on 1 core (12 cores), and enables query times of 1670 microseconds [DGPW17].
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Figure 5.5: Performance of our engineered elimination tree search (CCH-tree-fast),

the original CCH query algorithms (CCH-Dij and CCH-tree), and a CH. The input is

the European road network with travel times.

However, our engineered basic CCH customization takes 5.60 (1.31) seconds on 1 core

(12 cores), and enables query times of 218.85 microseconds. To reduce query times

even further (to 88.11 microseconds), we can run the entire CCH customization,

which takes 21.47 (2.99) seconds on one core (twelve cores). Note that both the CRP

and CCH customization times can be further decreased by two related techniques

known asmicrocode [DW13] (for CRP) and triangle preprocessing [DSW16] (for CCHs).

However, both techniques require significantly more space, and we choose not to

use them to keep the space requirement low.

5.7.3 Elimination Tree Search
Next, we evaluate our engineered elimination tree search. As most queries in the

real world tend to be local, we use the established Dijkstra rank methodology [SS05],

which considers local and long-range queries equally. In contrast, random queries

(with the source vertex and the target vertex picked uniformly at random) tend to be

long-range. The Dijkstra rank (with respect to a source vertex 𝑠) of a vertex v is 𝑟 if v is
the 𝑟 -th vertex settled by a Dijkstra search from 𝑠 . We run 1000 point-to-point queries

(without path unpacking) for each Dijkstra rank tested, with 𝑠 picked uniformly at

random. Figure 5.5 compares the performance of our accelerated elimination tree
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Figure 5.6: Performance of our engineered elimination tree search (CCH-tree-fast),

the original CCH query algorithms (CCH-Dij and CCH-tree), and a CH. The input is

the European road network with travel distances.

search (CCH-tree-fast), the original CCH query algorithms (CCH-Dij and CCH-tree),

and the plain CH search on Europe with travel times. Note that CCH-tree is not really

the original search, but already uses our phase reduction optimization. CCH-tree-fast

additionally uses our stricter pruning rule. Moreover, CH applies stall-on-demand,

whereas CCH-Dij does not, since it would slow down queries.

We observe that CCH-tree, while outperforming CCH-Dij on uniform random

queries [DSW16], is actually much slower for most Dijkstra ranks, especially for the

realistic ones. The reason is that the performance of CCH-tree is independent of the

Dijkstra rank, since it always processes each vertex in the search space. However, our

stricter pruning rule makes the algorithm sensitive to the Dijkstra rank, drastically

speeding up short- andmid-range queries (by up to a factor of 13). This speedup is due

to a reduction in the average number of edge relaxations, which decreases from 90 871

to 381 for rank 2
6
, and from 94 721 to 12 387 for rank 2

15
. As a result, CCH-tree-fast

combines the good local-query performance of CCH-Dij with the good global-query

performance of CCH-tree, and is faster than both on mid-range queries. It can be

seen as a unified CCH query algorithm, replacing both original ones. Moreover, for

many (realistic) Dijkstra ranks, it is about as fast as the non-customizable CH search.

When optimizing travel distances (see Figure 5.6), CCH-tree-fast even outperforms

the CH search, which was observed before [GSSV12, DGNW13, DGPW17].
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Note that the decrease in query time for Dijkstra rank 2
24
is due to boundary effects.

Since 2
24

is close to the number of vertices in the graph, the targets for rank 2
24

are close to the boundary of the graph, where search spaces tend to be smaller. For

example, the average size of the CCH search space of the targets tested is 532 for

rank 2
24
, whereas it is between 750 and 871 for all other ranks.

5.7.4 Traffic Assignment
We now evaluate the impact of several optimizations on the performance of the traffic

assignment procedure. As already mentioned, we stop the iterative procedure when

the relative gap drops below the threshold of 10
−4

(as recommended by Boyce et

al. [BRB04]), resulting in 29 iterations for S-morn, 34 iterations for S-even, 39 iterations

for S-day, 29 iterations for S-week, and 20 iterations for L-peak.

Customization and Centralized Searches. Table 5.3 considers the influence

of customization and of the centralized searches on the performance of the traffic

assignment procedure. For now, we use only a single core. The CCH-based procedures

use the engineered elimination tree search.

Switching from weighted to customizable CHs reduces the running time for all

traffic scenarios. As expected, we obtain larger speedups for smaller scenarios (a factor

of 2.2 on S-morn), since preprocessing time dominates more in such scenarios. In

contrast, reordering the OD pairs so that similar OD pairs are processed successively

works better for larger scenarios, improving the running time on S-week by more

than 50%. Again, this is expected, as larger scenarios have more OD pairs between

each origin and destination cell. Moreover, we observe that the CH-based procedure

benefits less from better locality (its running time for S-week improves by only 23 %),

since the Dijkstra-based CH search performs more computational work than the

elimination tree search. (Although the clustering approach described in Section 5.6

is tailored to the elimination tree search, experiments with unbiased clustering

approaches not building upon the elimination tree showed a quite similar difference.)

The impact of computing multiple shortest paths at once without exploiting

instruction-level parallelism is limited. However, when using SIMD instructions,

the centralized searches decrease the running time by up to another factor of 3.2.

Increasing 𝑘 allows us to compute more shortest paths at once, but it also evicts

useful data from caches. Setting 𝑘 = 32 seems to be a good choice. Moreover, we

observe that the centralized elimination searches achieve greater speedups than the

Dijkstra-based CH searches, since they are label-setting.

Combining the optimizations, the traffic assignment procedure based on AVX-

accelerated centralized elimination tree searches with 𝑘 = 32 gives the best overall

performance. It speeds up the state of the art by a factor of about 8 on all of our
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Table 5.3: Impact of the centralized searches on the running time (in seconds) of

the traffic assignment procedure for our scenarios. We evaluate the influence of

using customizable CHs, reordering the OD pairs (sort), computing 𝑘 shortest paths

simultaneously, and using SSE and AVX instructions. The prior state of the art and

our default configuration are highlighted in gray.

algo sort 𝑘 SIMD S-morn S-even S-day S-week L-peak

Dij ◦ 1 – 5 753.22 8 239.57 106 687.46 508 186.68 1 648.98

Bi-Dij ◦ 1 – 2 459.27 3 265.95 44 078.13 202 515.48 907.85

CH ◦ 1 – 90.89 120.83 1 048.10 4 613.35 86.58

CH • 1 – 84.19 111.22 876.70 3 573.20 81.98

CH • 4 – 84.88 107.30 742.18 2 738.59 82.70

CH • 4 SSE 71.72 90.49 537.50 1 944.78 63.80

CH • 8 – 94.27 118.20 781.19 2 823.55 92.11

CH • 8 SSE 71.12 88.06 469.65 1 662.97 60.02

CH • 8 AVX 68.95 85.18 439.50 1 557.99 56.83

CH • 16 AVX 70.31 87.04 424.94 1 440.46 55.48

CH • 32 AVX 73.87 92.16 412.80 1 292.16 54.36

CH • 64 AVX 91.09 113.20 502.56 1 441.68 62.48

CCH ◦ 1 – 41.50 55.02 698.16 3 203.09 49.01

CCH • 1 – 26.98 35.45 372.34 1 552.25 32.23

CCH • 4 – 31.73 42.10 452.73 1 879.35 40.03

CCH • 4 SSE 18.29 23.95 230.18 930.83 20.47

CCH • 8 – 34.39 45.32 472.77 1 954.82 42.69

CCH • 8 SSE 17.45 22.74 211.26 856.81 18.65

CCH • 8 AVX 15.30 19.94 175.72 690.34 15.89

CCH • 16 AVX 14.46 18.68 153.06 585.87 13.52

CCH • 32 AVX 14.12 18.20 132.54 490.67 11.44

CCH • 64 AVX 18.83 24.27 160.51 553.09 13.07

benchmark scenarios. Compared to the Dijkstra-based baseline, this configuration is

between two and three orders of magnitude faster.

Core-Level Parallelism. Table 5.4 shows how the traffic assignment procedure

scales as the number of cores increases. We observe that the time spent on queries

scales very well. With 4 (16) cores, we gain a speedup of 3.8 (14.3) for S-week, and

even our smallest scenario is accelerated by a factor of 3.1 (5.9). In total, our multi-

threaded AVX-accelerated centralized traffic assignment procedure decreases the

running time on our main benchmark instance S-morn from 90.9 to 2.4 seconds.
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Table 5.4: Impact of core-level parallelization on the performance of the traffic assign-

ment procedure. We report for each traffic scenario the time spent on customization

and queries, as well as the total running time of the traffic assignment (all in seconds).

S-morn S-day S-week

algo cores cust qy total cust qy total cust qy total

CH 1 36.1 54.1 90.9 49.5 997.6 1 048.1 36.2 4 576.4 4 613.3

16 36.5 4.0 40.5 50.2 67.7 118.0 36.2 306.0 342.3

CCH 1 1.8 11.8 14.1 2.4 129.3 132.5 1.8 488.3 490.7

2 1.1 6.6 8.0 1.5 69.0 70.9 1.1 253.3 254.7

4 0.6 3.8 4.6 0.8 36.4 37.5 0.6 130.0 130.8

8 0.3 2.5 2.9 0.4 19.3 19.8 0.3 66.2 66.6

12 0.3 2.1 2.4 0.4 13.4 13.9 0.3 44.9 45.2

16 0.4 2.0 2.4 0.4 10.6 11.1 0.3 34.2 34.5

For comparison, we also run the state of the art on multiple cores, parallelizing

the shortest-path computations as described in Section 5.6. We observe that even on

a single core, our AVX-accelerated traffic assignment procedure is more than three

times faster for S-morn than parallelized state of the art. The difference between

both parallelized versions is about an order of magnitude.

Convergence. Next, we evaluate how long our traffic assignment algorithm takes

to achieve convergence. Figure 5.7 shows the relative gap (our convergence criterion)

after each iteration for each scenario. The convergence rate is quite similar for all sce-

narios. We observe that our traffic assignment algorithm enjoys fast convergence in

early iterations, but exhibits slower convergence in later iterations, when the current

solution is in the vicinity of the optimal solution. This is not surprising [PERW15],

since there is a CFW algorithm at the heart of our traffic assignment.

Time per Iteration. Figure 5.8 plots the running time (per phase) that our multi-

threaded traffic assignment spends in each iteration. First, we observe that the

procedure spends the same amount of time in each iteration. Although the inherent

hierarchy of the network is weakened while computing an equilibrium flow pat-

tern [LS11], this is expected, since the performance of both CCH customization and

queries is mostly metric-independent [DSW16]. For our smallest scenario, customiza-

tion takes 15.4 % of the total time. This decreases to 3.8 % for S-day, and to 0.9 % for

our largest scenario. All other work, such as the line search, the edge updates, and

the convergence checks, is negligible. For S-morn, it takes only 2.6 % of the total time.
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Figure 5.8: Time in milliseconds (vertical) spent in each iteration (horizontal) for

the multi-threaded traffic assignment procedure (using all 16 cores). For S-week,

customization and other work are hardly visible, since they take only 0.95 % and

0.17 % of the total running time, respectively.

Visualization. Our benchmark instance representing the Stuttgart Region and the

S-morn flow patterns after one and 28 iterations are shown in Figure 5.9. We see that

the traffic is distributed among more road segments after 28 iterations, since some

motorists use alternative paths to improve their travel time.
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(a) Stuttgart Region. (b) City of Stuttgart.

(c) Flow pattern after one iteration. (d) Flow pattern after 28 iterations.

Figure 5.9: Convergence of the equilibrium flow pattern associated with the traffic

scenario S-morn. The darker the red, the more congested the road segments are.

5.8 Conclusion
We accelerated the computation of equilibrium flow patterns significantly. This

was achieved by revisiting and carefully engineering several algorithms working on

customizable contraction hierarchies. We proposed an improved and fully parallelized

CCH customization phase, a unified CCH query algorithm (replacing both original
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query algorithms), and a centralized elimination tree search for batched point-to-

point queries. All optimizations were extensively evaluated on real-world data used

in production systems. On a metropolitan area encompassing about 2.7 million

inhabitants, we compute the flow pattern for a typical one-hour morning peak (a

quarter million trips) in merely 2.4 seconds, 37 times faster than the state of the art,

and more than three orders of magnitude faster than the Dijkstra-based baseline.

For traffic scenarios where the shortest-path computations are still the perfor-

mance bottleneck of the traffic assignment procedure, it would be interesting to

process only a sample of the demand in early iterations and add more and more

OD pairs in subsequent iterations. Since the result of early iterations is only a loose

approximation of the equilibrium flow pattern (because the edge costs still change),

it probably suffices to examine only an approximation (sample) of the demand. We

hope that this speeds up early iterations significantly, without negatively affecting

the convergence of the procedure. In a preliminary experiment, we were not able

to achieve a significant speedup on our benchmark instance S-morn. However, we

are interested to test sampling on benchmark instances that are even an order of

magnitude larger than the one used in this chapter. Moreover, it would be interesting

to study the efficient computation of time-dependent traffic flow profiles, which

relate the traffic flow on an edge to the time of day.
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6 Dynamic Ridesharing

This chapter studies the problem of servicing a set of ride requests by dispatching a set

of shared vehicles, faced by ridesharing companies such as Uber and Lyft. Solving this

problem at a large scale might be crucial in the future for effectively using large fleets

of autonomous vehicles. Since finding a solution for the entire set of requests that

minimizes the total driving time is NP-complete, most practical approaches process

the requests one by one. Each request is inserted into any vehicle’s route such that the

increase in driving time is minimized. Although this variant is solvable in polynomial

time, it still takes considerable time in current implementations, even when inexact

filtering heuristics are used. In this chapter, we present a novel algorithm for finding

best insertions, based on (customizable) contraction hierarchies with local buckets.

Our algorithm finds provably exact solutions, is still 30 times faster than a state-of-the-

art algorithm currently used in industry and academia, and scales much better. When

used within iterative transport simulations, our algorithm decreases the simulation

time for largescale scenarios with many requests from days to hours.

This chapter is based on joint workwith Peter Sanders andDorotheaWagner [BSW21].

6.1 Introduction
Taxi-like transport options such as cabs, minibuses, rickshaws and ridesharing ser-

vices already play a vital role in meeting the transport demand in metropolitan areas.

They may become even more important in the presence of intelligent ridesharing
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software, autonomous vehicles, and the desire to combat traffic jams, accidents, air

pollution, and lack of sufficient parking. With many thousands and eventually mil-

lions of vehicles and riders, this yields fairly complex combinatorial optimization

problems that have to be solved in real time. In order to evaluate the impact of

ridesharing on people, the environment and the economy, we also have to simulate

large realistic scenarios now. This requires processing millions of ride requests again

and again. For example, one of the leading transport simulators [HNA16] performs

hundreds of runs in order to compute realistic activity-travel patterns that describe

how travelers behave under certain assumptions.

Current approaches to solve the ridesharing problem require a huge number of calls

to Dijkstra’s shortest-path algorithm. These are prohibitively expensive for large-

scale transport simulations and they are a limiting factor for real-time dispatching of

large fleets in metropolitan areas. The goal of this chapter is to show how to replace

Dijkstra’s classic algorithm with much faster route planning algorithms.

Ridesharing problems come in awide variety with different assumptions, objectives,

and constraints. To make our work tractable and concrete, we focus on one particular

scenario adopted by a leading group in transport simulation [BMN17, HNA16]. This

scenario mimics a ridesharing service that answers real-time requests for immediate

rides from a given source to a given target. The dispatching algorithm knows the

current routes of a fleet of vehicles, each of which has a certain number of seats. The

algorithm tries all possible ways to insert a ride request into each vehicle’s route.

The objective is to minimize the total operation time of the fleet. There are also

constraints on the maximum wait time and the maximum time when a rider should

reach their target. The best insertion that satisfies all constraints is selected. We

use a network with scalar (time-independent) travel times. However, by building on

customizable contraction hierarchies [DSW16], we can quickly update these costs

according to the current traffic situation every few minutes.

Our novel dispatching algorithm LOUD (for local buckets dispatching) adapts

bucket-based contraction hierarchies [Kno+07] developed for many-to-many shortest

paths to the ridesharing problem. We now briefly outline the main ideas of LOUD.

Contraction hierarchies (CHs) [GSSV12] are a point-to-point route planning tech-

nique that is much faster than Dijkstra’s algorithm (four orders of magnitude on

continental networks). CHs replace systematic exploration of all vertices in the

network with two much smaller search spaces (forward and reverse) in directed

acyclic graphs, in which each edge leads to a “more important” vertex. Customizable

contraction hierarchies (CCHs) [DSW16] are a variant of CHs that can handle updates

to the edge costs quickly (e.g., to support real-time traffic updates).

CHs with buckets (BCHs) [Kno+07] extend standard and customizable CHs to

the many-to-many shortest-path problem by storing CH search spaces in buckets.

More precisely, if v appears in a search space from 𝑠 with distance 𝑥 , then (𝑠, 𝑥) is
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stored in a bucket 𝐵(v) associated with v . For example, assume that we have stored

the forward search spaces of a set 𝑆 of vertices in buckets. Now, we can perform

a many-to-one query (from 𝑆 to a vertex 𝑡 ) by computing the reverse CH search

space from 𝑡 . For each vertex v in the search space with distance 𝑦 to 𝑡 , we scan

the bucket 𝐵(v). For each entry (𝑠, 𝑥) ∈ 𝐵(v), we obtain 𝑥 + 𝑦 as a candidate for the

shortest-path distance from source 𝑠 to target 𝑡 .

Geisberger et al. [Gei+10] adapt BCH to a simple carpooling problem, where drivers

with a fixed source and target can pick up and drop off passengers heading the same

way, as a means of sharing the costs of travel. Their problem, however, is very

simplistic. The authors neglect departure times, vehicles shared with more than one

passenger, and vehicles already on their way.

Our Contribution. We present LOUD, a novel algorithm for the ridesharing prob-

lem outlined above. LOUD maintains the forward and reverse CH search spaces of all

scheduled (but not completed) pickups and dropoffs in buckets. From these buckets,

LOUD can quickly obtain the cost of each possible insertion (i.e., the increase in

operation time that is caused by the insertion).

One of our main contributions is a technique to aggressively prune the buckets, so

that only those entries remain that can possibly contribute to feasible insertions. This

technique decreases the search-space size by a factor of more than 20. Another major

contribution is a filtering technique that restricts the search for the best insertion

to a small set of promising vehicles. We stress that both techniques do not sacrifice

optimality. A contribution that is also applicable to other dispatching algorithms is a

data structure for checking whether an insertion into a vehicle’s route satisfies the

constraints of each rider assigned to the same vehicle. We can do this in constant

time, independent of the number of riders assigned to the vehicle.

We extensively evaluate our LOUD implementation on the state-of-the-art Open

Berlin Scenario [ZKN19] and a second, even larger benchmark instance. The experi-

mental results show that LOUD is 30 times faster than algorithms currently used in

industry and academia. When used in a transport simulator that performs hundreds

of runs, the simulation time decreases from days to hours.

Related Work. Dynamic ridesharing is related to the classic dial-a-ride problem
(DARP) in operations research; see [CL07, Ho+18] for recent overviews. The DARP

literature, however, primarily considers the static variant (where all ride requests are
known in advance), often defines the problem on a complete graph, and frequently

solves only small problem instances (using integer linear programming methods in

many cases). For these reasons, most DARP approaches are unsuitable for modern

largescale ridesharing services in practice.
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Finding a solution for an entire set of ride requests that minimizes the total driving

time is NP-complete by reduction from the traveling salesman problem with time

windows [MZW13, Sav85]. Jung et al. [JJP16] propose a simulated-annealing algo-

rithm for this problem. More scalable approaches insert the requests one by one into

any vehicle’s route while leaving all other vehicle routes unchanged (often using

inexact filtering heuristics to make them practical).

The vehicle dispatching algorithm [BMN17] used by the transport simulation

MATSim [HNA16] works in three phases. Given a ride request, the first phase tries

all possible insertions into each vehicle’s route. For efficiency, all needed detour

times are estimated using geometric distances. The second phase uses Dijkstra’s

algorithm [Dij59] to compute exact detour times for each insertion that is feasible

based on the detour estimates. The last phase evaluates all filtered insertions again

(now using exact detour times) and picks the best insertion among those.

The T-Share algorithm [MZW13] partitions the network into cells using a grid and

precomputes the shortest-path distance between all cell centers. To quickly find a

heuristic set of candidate vehicles, T-Share searches cells close to the request’s source

and target cell. For each candidate vehicle, T-Share tries all possible insertions. Each

insertion is first evaluated using detour estimates based on precomputed distances,

and if it looks feasible, T-Share computes exact (shortest-path) detour times.

Huang et al. [HBJW14] also use grid partitions to find a heuristic set of candi-

date vehicles. They allow to reorder requests that are already assigned to a vehicle.

Shortest-path distances are computed using a very fast point-to-point routing algo-

rithm (hub labeling [ADGW11]) and caching.

A special case of dynamic ridesharing is dynamic carpooling, a problem faced

by carpooling services such as BlaBlaCar. In this case, the vehicle routes are not

determined solely by the passengers. Instead, each driver has a fixed source and

target and can pick up and drop off passengers heading the same way, as a means of

sharing the costs of travel. Moreover, all constraints (such as an upper bound on the

detour time) apply not only to passengers but also to drivers.

Pelzer et al. [Pel+15] partition the network along main roads into cells. For each

vehicle, they maintain the sequence of cells through which the vehicle will pass (its

corridor). A vehicle is a candidate for servicing a given ride request if the pickup is in

the same cell as the vehicle and the dropoff is in the corridor of the vehicle. For each

candidate vehicle, the authors compute exact detour times using Dijkstra’s algorithm.

The carpooling algorithm by Geisberger et al. [Gei+10] is based on the route

planning technique contraction hierarchies (CHs) [GSSV12]. It stores the forward

and reverse CH search space of each vehicle’s source and target, respectively, in

buckets [Kno+07]. Given a ride request, the buckets are used to compute exact detour

times for all vehicles. The studied problem, however, is very simplistic. The authors

neglect departure times and can match neither more than one request with the same
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vehicle nor vehicles that are already on their way. Abraham et al. [Abr+12] solve the

same simplistic problem in a database, with CH search spaces stored in tables.

Herbawi and Weber [HW12] combine an insertion-based algorithm with periodic

reoptimizations using a relatively slow evolutionary algorithm.

There has also been previous work on multi-hop carpooling [DL13, MJ17], where

passengers can transfer from one vehicle to another as part of a single journey. These

algorithms model the problem as a time-expanded graph [PS98], similar to graph-

based techniques for journey planning in public transit networks [SWW00, Bas+10,

DDPW15]. To avoid combinatorial explosion, however, they need to discretize both

space and time. That is, they do not support door-to-door transport and departures,

arrivals and transfers can only happen at interval endpoints. Despite these limitations,

the matching algorithms are relatively slow, even on medium-sized instances.

Outline. This chapter is organized as follows. Section 6.2 provides a precise defi-

nition of the basic problem we solve. Section 6.3 describes LOUD in detail, includ-

ing extensions to meet additional requirements of real-world production systems.

Section 6.4 presents an extensive experimental evaluation on various benchmark

instances, which includes a comparison to related work. Section 6.5 concludes with

final remarks. Crucial building blocks LOUD builds on were described in Chapter 2.

6.2 Problem Statement
This section defines the basic problem we consider in this chapter. Potential exten-

sions of the basic problem will be discussed in Section 6.3.5.

We treat a road network as a directed graph 𝐺 = (𝑉 , 𝐸) where vertices represent
intersections and edges represent road segments. Each edge (v, 𝑤) ∈ 𝐸 has a non-

negative length ℓ (v, 𝑤) representing the travel time between v and 𝑤. Note that we
denote by dist (v, 𝑤) the shortest-path distance (i.e., travel time) from v to 𝑤.
We are given a set of vehicles. Each vehicle 𝜈 = (𝑙i, 𝑐, 𝑡min

serv, 𝑡
max
serv ) has an initial

location 𝑙i, a seating capacity 𝑐 , and a service interval [𝑡min
serv, 𝑡

max
serv ). For each vehi-

cle 𝜈, we maintain its route 𝑅(𝜈) = ⟨𝑠0, . . . , 𝑠𝑘⟩, which is a sequence of stops 𝑠 at

locations 𝑙 (𝑠) ∈ 𝑉 that are already scheduled for the vehicle. At each stop, the vehicle

picks up and/or drops off one or more riders. Independent of the number of riders

boarding and alighting, each stop takes time 𝑡stop. Each vehicle’s route is continuously

updated according to the current situation. More precisely, if a vehicle 𝜈 is currently

making a stop, then 𝑠0 is the current stop. If a vehicle 𝜈 is currently driving, then 𝑠0

is the previous stop (i.e., the vehicle’s current location 𝑙c (𝜈) is somewhere between 𝑠0

and 𝑠1). Idle vehicles prolong their last stop. Abusing notation, we sometimes use

stops as vertices. For example, dist (𝑠, 𝑠 ′) is a shorthand for dist (𝑙 (𝑠), 𝑙 (𝑠 ′)).
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We consider a scenario in which a dispatching server receives ride requests and

immediately matches them to vehicles. Each request 𝑟 = (p, 𝑑, 𝑡min
dep ) has a pickup

spot p ∈ 𝑉 , a dropoff spot 𝑑 ∈ 𝑉 , and an earliest departure time 𝑡min
dep . We do not allow

pre-booking, i.e., each ride request is submitted, received and matched at 𝑡min
dep . This is

by far the most common scenario, adopted by the leading ridehailing services Uber

and Lyft and also by related work [BMN17, MZW13, HBJW14, JJP16]. The goal is to

insert each request into any vehicle’s route such that the vehicle’s detour 𝛿 (i.e., the

increase in operation time) is minimized. Formally, an insertion can be described by

a quadruple (𝜈, 𝑟, 𝑖, 𝑗) indicating that vehicle 𝜈 picks up request 𝑟 immediately after

stop 𝑠𝑖 (𝜈) and drops off 𝑟 immediately after stop 𝑠 𝑗 (𝜈). Besides capacity and service

time constraints, the insertion is subject to two additional constraints.

(1) The wait time for each request 𝑟 ′ already matched to the vehicle must not

exceed a certain threshold, i.e., after the insertion the vehicle must still pick up

request 𝑟 ′ no later than 𝑡max
dep (𝑟

′) = 𝑡min
dep (𝑟

′) + 𝑡max
wait , where 𝑡

max
wait is a parameter.

(2) The trip time for each request 𝑟 ′ already matched to the vehicle must not exceed

a certain threshold, i.e., after the insertion the vehicle must still drop off 𝑟 ′ no
later than 𝑡max

arr (𝑟 ′) = 𝑡min
dep (𝑟

′) + 𝑡max
trip (𝑟

′) = 𝑡min
dep (𝑟

′) + 𝛼 · dist (p (𝑟 ′), 𝑑 (𝑟 ′)) + 𝛽 ,
where 𝛼 and 𝛽 are model parameters as well.

For each request already matched to the vehicle, (1) and (2) are hard constraints,

i.e., they must always be satisfied. If any wait or trip time constraint is violated, the

insertion is feasible only if it leads to no additional delay for any already matched

request. For the request 𝑟 to be inserted, (1) and (2) are soft constraints, i.e., they may

be violated. However, the violation of the wait time constraint and the violation of

the trip time constraint are added to the objective value. More precisely, the objective

value 𝑓 (𝜄) of an insertion 𝜄 is formally given by

𝑓 (𝜄) = 𝛿 + 𝛾wait ·max{𝑡dep (p (𝑟 )) − 𝑡max
dep (𝑟 ), 0}

+ 𝛾trip ·max{𝑡arr (𝑑 (𝑟 )) − 𝑡max
arr (𝑟 ), 0},

(6.1)

where 𝑡dep (p (𝑟 )) is the scheduled departure time at the pickup spot, 𝑡arr (𝑑 (𝑟 )) is the
scheduled arrival time at the dropoff spot, and 𝛾wait and 𝛾trip are parameters.

Whenever a request is received, the goal is to find the insertion 𝜄 into any route

that minimizes 𝑓 (𝜄). If there is no feasible insertion, the request is rejected. However,

since the wait and trip time constraint are soft for the request to be inserted, a request

is rejected only if all vehicles go out of service before the request can be served. With

unbounded service intervals (which are particularly feasible for driverless vehicles),

no requests are rejected, and each rider is serviced.
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6.3 Our Approach
We begin with a high-level description of LOUD, our new algorithm for dispatching

a fleet of shared (potentially autonomous) vehicles. Let 𝑟 = (p, 𝑑, 𝑡min
dep ) be the ride

request to be inserted and let 𝜈 be a vehicle with route 𝑅(𝜈) = ⟨𝑠0, . . . , 𝑠𝑘⟩. We will

ignore some special cases for now but will discuss them later. In particular, we defer

insertions (𝜈, 𝑟, 𝑖, 𝑗) with 𝑖 = 0 or 𝑗 = 𝑘 to Section 6.3.3.

To find the best insertion for request 𝑟 , we consider a superset 𝐶 of the vehicles 𝜈

that allow at least one feasible insertion (𝜈, 𝑟, 𝑖, 𝑗) with 𝑖 ≠ 𝑘 . For each vehicle 𝜈 ∈ 𝐶 ,
we look at all insertions (𝜈, 𝑟, 𝑖, 𝑗) with 0 < 𝑖 ≤ 𝑗 < 𝑘 . For each such insertion,

we check whether the hard constraints are satisfied and compute the insertion cost

according to Equation (6.1), i.e., the vehicle’s detour plus the violations of the soft

constraints. When the algorithm stops, we return the best feasible insertion seen.

To obtain the cost of an insertion (𝜈, 𝑟, 𝑖, 𝑗) we generally need the distance dist (𝑠𝑖 , p)
from stop 𝑠𝑖 to the pickup spot p , the distance dist (p, 𝑠𝑖+1) from p to stop 𝑠𝑖+1, the dis-
tance dist (𝑠 𝑗 , 𝑑) from stop 𝑠 𝑗 to the dropoff spot 𝑑 , and finally the distance dist (𝑑, 𝑠 𝑗+1)
from 𝑑 to stop 𝑠 𝑗+1. We propose using BCHs to compute these distances. For each

vertex ℎ, we maintain a source bucket 𝐵s (ℎ) and a target bucket 𝐵t (ℎ), both initially

empty. Whenever we insert a stop 𝑠 into a vehicle’s route, we run a forward (reverse)

CH search from 𝑠 and insert, for each vertexℎ settled by the search, an entry (𝑠, 𝑑𝑠 (ℎ))
into 𝐵s (ℎ) (𝐵t (ℎ)). When we receive the ride request 𝑟 , we run two forward BCH

searches (from p and from 𝑑) that scan the target buckets, and two reverse BCH

searches (from p and from 𝑑) that scan the source buckets. This gives us the distances

we need to compute the costs of all candidate insertions.

We are now ready to introduce one of the main ideas of LOUD. We observe that

the leeway 𝜆 between each pair of consecutive stops we have to insert new stops is

bounded, due to the hard constraints for the requests already matched to a vehicle.

That is, we are not allowed to take arbitrarily long detours between two consecutive

stops on a vehicle’s route. See Figure 6.1 for an illustration. Each additional stop 𝑠 we

may insert between stops 𝑠𝑖 and 𝑠𝑖+1 has to lie inside a shortest-path ellipse, defined as
the set of vertices v with dist (𝑠𝑖 , v) + dist (v, 𝑠𝑖+1) ≤ 𝜆 (i.e., 𝑠𝑖 and 𝑠𝑖+1 are the foci of
the ellipse). Naturally, the entire shortest path from 𝑠𝑖 via 𝑠 to 𝑠𝑖+1 has to lie inside the
ellipse. Hence, when computing source bucket entries from 𝑠𝑖 , we need to insert an

entry (𝑠𝑖 , 𝑑𝑠𝑖 (ℎ)) into 𝐵s (ℎ) only if ℎ lies inside the ellipse around 𝑠𝑖 and 𝑠𝑖+1. Target
bucket entries can be pruned analogously. We call this elliptic pruning and it is

surprisingly effective, as our experiments in Section 6.4 will show.

Elliptic pruning has multiple advantages. First, it accelerates the BCH searches,

since these searches now scan smaller buckets. Second, it speeds up the removal of

bucket entries that refer to completed stops. Note that whenever a vehicle completes

a stop, the buckets are updated accordingly. The biggest advantage, however, is that
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𝑑

Figure 6.1: A vehicle’s route consisting of four stops and the bucket entries induced

by them. The stops are shown as circles and the leeway between two consecutive

stops is shown as an ellipse. Source bucket entries are shown as edges with square-

shaped heads and target bucket entries are shown as edges with diamond-shaped tails.

Green, lilac and blue bucket entries are pruned by the respective ellipse. Consider a

request 𝑟 = (p, 𝑑, 𝑡min
dep ) where p is to be inserted immediately after the first stop 𝑠0

and 𝑑 immediately before the last stop 𝑠3. Note that the shortest paths from 𝑠0 to 𝑠1

via p and from 𝑠2 to 𝑠3 via 𝑑 lie entirely inside the respective ellipse.

elliptic pruning enables us to obtain a small superset 𝐶 of the vehicles 𝜈 that allow

at least one feasible insertion (𝜈, 𝑟, 𝑖, 𝑗) with 𝑖 ≠ 𝑘 . Besides a stop identifier and a

distance label, we store in each bucket entry the identifier of the vehicle to which the

stop belongs. During the BCH searches, we insert all vehicle identifiers seen into 𝐶 .

Without elliptic pruning, the source and target bucket of the highest-ranked vertex

in the hierarchy would contain an entry for each stop on each vehicle’s route, and

thus 𝐶 would contain each vehicle, allowing no filtering at all.

The following sections work out the details of LOUD. Section 6.3.1 discusses how to

check whether an insertion is feasible (i.e., satisfies the hard constraints) in constant

time. Section 6.3.2 shows which bucket entries are necessary and sufficient to find

the needed distances, and presents an algorithm that can efficiently check this elliptic

pruning criterion. Section 6.3.3 discusses the special case of insertions (𝜈, 𝑟, 𝑖, 𝑗)
with 𝑖 = 0 or 𝑗 = 𝑘 . Section 6.3.4 assembles the basic LOUD algorithm from the

building blocks introduced in the preceding sections. Section 6.3.5 discusses additional

requirements of real-world production systems such as retrieving complete path

descriptions for an insertion, incorporating real-time traffic information into the

dispatching server and other potential objective functions.
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6.3.1 Maintaining Feasibility
Consider a vehicle’s route ⟨𝑠0, . . . , 𝑠𝑘⟩ and a request 𝑟 = (p, 𝑑, 𝑡min

dep ). We need a

subroutine that checks whether the service time constraint and the wait and trip time

constraints for each request assigned to the vehicle are still satisfied when inserting

pickup p immediately after 𝑠𝑖 and dropoff 𝑑 immediately after 𝑠 𝑗 , 𝑖 ≤ 𝑗 . Since

this operation is frequently used within LOUD (and even more frequently within

competitors such as MATSim), it should be as fast as possible. This section shows

how to check all constraints in constant time, independent of the number of stops

and the number of requests assigned to the vehicle. Note that current approaches

such as MATSim and T-Share take time linear in the length of the route.

For each stop 𝑠 on each route, wemaintain the departure time 𝑡min
dep (𝑠) at stop 𝑠 when

no further stops are inserted into the route. Moreover, we maintain the latest arrival

time 𝑡max
arr (𝑠) at stop 𝑠 so that all following pickups and dropoffs are on time. When we

add a request 𝑟 ′ = (p ′, 𝑑 ′, 𝑡min′
dep ), yielding a route ⟨𝑠

′
0
, . . . , 𝑠 ′

𝑖′ = p ′, . . . , 𝑠 ′
𝑗 ′ = 𝑑

′, . . . , 𝑠 ′
𝑘′⟩,

we loop over all 𝑠 ′ℓ , 𝑖
′ ≤ ℓ ≤ 𝑘 ′, in forward order and set

𝑡min
dep (𝑠

′
ℓ ) = 𝑡min

dep (𝑠
′
ℓ−1
) + dist (𝑠 ′ℓ−1

, 𝑠 ′ℓ ) + 𝑡stop.

Furthermore, we set 𝑡max
arr (𝑠 ′𝑖′) = 𝑡max

dep (𝑟
′) − 𝑡stop as well as 𝑡max

arr (𝑠 ′𝑗 ′) = 𝑡max
arr (𝑟 ′). We

propagate these wait and trip constraints to all preceding stops on the route by

looping over all 𝑠 ′ℓ , 0 < ℓ ≤ 𝑗 ′, in reverse order and setting

𝑡max
arr (𝑠 ′ℓ ) = min{𝑡max

arr (𝑠 ′ℓ ), 𝑡max
arr (𝑠 ′ℓ+1) − dist (𝑠 ′ℓ , 𝑠 ′ℓ+1) − 𝑡stop}.

The 𝑡min
dep and 𝑡max

arr values allow us to check all service, wait and trip time constraints

on a route in constant time. We are given a vehicle 𝜈 with route ⟨𝑠0, . . . , 𝑠𝑘⟩, a
request (p, 𝑑, 𝑡min

dep ), where p is to be inserted immediately after 𝑠𝑖 and 𝑑 immediately

after 𝑠 𝑗 , and the distances dist (𝑠𝑖 , p), dist (p, 𝑠𝑖+1), dist (𝑠 𝑗 , 𝑑), and dist (𝑑, 𝑠 𝑗+1). We first

compute the pickup detour time 𝛿p = dist (𝑠𝑖 , p) + 𝑡stop + dist (p, 𝑠𝑖+1) − dist (𝑠𝑖 , 𝑠𝑖+1)
and the dropoff detour time 𝛿d = dist (𝑠 𝑗 , 𝑑) + 𝑡stop + dist (𝑑, 𝑠 𝑗+1) − dist (𝑠 𝑗 , 𝑠 𝑗+1). Note
that there is no need to store dist (𝑠𝑖 , 𝑠𝑖+1) and dist (𝑠 𝑗 , 𝑠 𝑗+1) explicitly, as they can be

obtained from the 𝑡min
dep values. An insertion satisfies all time constraints if and only if

𝑡min
dep (𝑠𝑖+1) − 𝑡stop + 𝛿p ≤ 𝑡

max
arr (𝑠𝑖+1) and

𝑡min
dep (𝑠 𝑗+1) − 𝑡stop + 𝛿p + 𝛿d ≤ 𝑡

max
arr (𝑠 𝑗+1) and

𝑡min
dep (𝑠𝑘 ) + 𝛿p + 𝛿d ≤ 𝑡

max
serv (𝜈).

An implementation needs to treat several special cases. For example, p or 𝑑 can

coincide with an existing stop, p or 𝑑 can be inserted after 𝑠𝑘 , or 𝑑 can be inserted
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immediately after p . All these cases are straightforward to implement and we do not

discuss them here. The correctness of our approach follows directly from Theorem 6.1.

Lemma 6.1. All pickups and dropoffs at each stop 𝑠 𝑗 , 𝑗 ≥ 𝑖 , on a vehicle’s route are on
time if and only if the vehicle arrives at 𝑠𝑖 no later than 𝑡max

arr (𝑠𝑖 ).

Proof. Let 𝑡 be the arrival time at 𝑠𝑖 . We claim that all pickups and dropoffs at each

subsequent stop 𝑠 𝑗 are on time if 𝑡 ≤ 𝑡max
arr (𝑠𝑖 ). Assume otherwise, that is, there exists

a request 𝑟 with either p (𝑟 ) = 𝑠 𝑗 and 𝑡max
dep (𝑟 ) < 𝑡 + 𝑡stop +

∑︁𝑗−1

𝑘=𝑖
(dist (𝑠𝑘 , 𝑠𝑘+1) + 𝑡stop)

or 𝑑 (𝑟 ) = 𝑠 𝑗 and 𝑡max
arr (𝑟 ) < 𝑡 +

∑︁𝑗−1

𝑘=𝑖
(dist (𝑠𝑘 , 𝑠𝑘+1) + 𝑡stop). In the former case, we have

𝑡max
arr (𝑠𝑖 ) ≤ 𝑡max

dep (𝑟 ) − 𝑡stop −
𝑗−1∑︁
𝑘=𝑖

(dist (𝑠𝑘 , 𝑠𝑘+1) + 𝑡stop) < 𝑡,

where the first inequality follows from the construction of 𝑡max
arr (𝑠𝑖 ) and the second

inequality is the assumption. This contradicts 𝑡 ≤ 𝑡max
arr (𝑠𝑖 ). In the latter case, we have

𝑡max
arr (𝑠𝑖 ) ≤ 𝑡max

arr (𝑟 ) −
𝑗−1∑︁
𝑘=𝑖

(dist (𝑠𝑘 , 𝑠𝑘+1) + 𝑡stop) < 𝑡,

where the first inequality follows from the construction of 𝑡max
arr (𝑠𝑖 ) and the second

inequality is the assumption. Again, this contradicts that 𝑡 ≤ 𝑡max
arr (𝑠𝑖 ).

It remains to prove the “only if” part. Assume conversely that all pickups and

dropoffs at each subsequent stop 𝑠 𝑗 are on time. By construction of the 𝑡max
arr values,

there is a ride request 𝑟 with either 𝑡max
arr (𝑠𝑖 ) = 𝑡max

dep (𝑟 )−𝑡stop−
∑︁𝑗−1

𝑘=𝑖
(dist (𝑠𝑘 , 𝑠𝑘+1)+𝑡stop)

or 𝑡max
arr (𝑠𝑖 ) = 𝑡max

arr (𝑟 ) −
∑︁𝑗−1

𝑘=𝑖
(dist (𝑠𝑘 , 𝑠𝑘+1) + 𝑡stop). In both cases, we have 𝑡max

arr (𝑠𝑖 ) ≥ 𝑡
by assumption, which completes the proof. □

Capacity Constraints. Besides service, wait and trip time constraints, we have

to handle capacity constraints. To this end, we maintain, for each stop 𝑠 ∈ 𝑅 on

each vehicle route 𝑅, the occupancy 𝑜 (𝑠) (the number of occupied seats) when the

vehicle departs from 𝑠 . Whenever we insert a request 𝑟 ′ = (p ′, 𝑑 ′, 𝑡min′
dep ), yielding a

route ⟨𝑠 ′
0
, . . . , 𝑠 ′

𝑖′ = p ′, . . . , 𝑠 ′
𝑗 ′ = 𝑑

′, . . . , 𝑠 ′
𝑘′−1
⟩, we update the occupancies as follows.

We first set 𝑜 (𝑠 ′
𝑖′) = 𝑜 (𝑠 ′𝑖′−1

) (if 𝑠 ′
𝑖′ was not present before the insertion of 𝑟 ′) and then

𝑜 (𝑠 ′
𝑗 ′) = 𝑜 (𝑠 ′𝑗 ′−1

) (if 𝑠 ′
𝑗 ′ was not present before). Then, we loop over all 𝑠 ′ℓ , 𝑖

′ ≤ ℓ < 𝑗 ′,
and increment 𝑜 (𝑠 ′ℓ ). We use the 𝑜 values in Section 6.3.4.

Implementation Details. We maintain one dynamic value array per stop attribute

(such as the stop location 𝑙 , the earliest departure time 𝑡min
dep , and the latest arrival
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time 𝑡max
arr ), which stores the attribute’s value for all stops on all routes. The values for

stops on the same route are stored consecutively in memory, in the order in which

the stops appear on the route. In addition, all value arrays share a single index array,
which stores the starting point and ending point of each route’s value block.

When we remove a stop from a route, we move the resulting hole in the value

arrays to the end of the route’s value block, and decrement the block’s ending point

in the index array. Consider an insertion of a stop into a route. If the element

immediately after the route’s value block is a hole, we insert the new stop’s value

into the value block and move the values after the insertion point one position to

the right. Analogously, if the element before the value block is a hole, we move the

values before the insertion point one position to the left. Otherwise, we move the

entire value block to the end of the value arrays, and additionally insert a number

of holes after the value block (the number is a constant fraction of the block size).

Then, there is a hole after the block, and we proceed as described above.

6.3.2 Elliptic Pruning
We use BCHs to obtain the shortest-path distances needed to compute insertion costs,

but carefully prune the source and target buckets. Let 𝑠 and 𝑠 ′ be two consecutive

stops on a vehicle’s route and let v be a new pickup or dropoff spot. The leeway 𝜆(𝑠, 𝑠 ′)
we have to insert v between 𝑠 and 𝑠 ′ is bounded by 𝑡max

arr (𝑠 ′) − 𝑡min
dep (𝑠) − 𝑡stop. More

precisely, inserting a new pickup or dropoff at v between 𝑠 and 𝑠 ′ is feasible only
if dist (𝑠, v) + dist (v, 𝑠 ′) ≤ 𝜆(𝑠, 𝑠 ′). Therefore, we only need to find shortest paths

from all 𝑠 to v such that dist (𝑠, v) + dist (v, 𝑠 ′) ≤ 𝜆(𝑠, 𝑠 ′). We now show which bucket

entries are necessary and sufficient for the reverse BCH search from v to find the

needed distances. The case of the forward BCH search from v is symmetric.

Theorem 6.2. Let 𝑠 and 𝑠 ′ be two consecutive stops on a vehicle’s route with leeway 𝜆
between them. Consider the following two propositions:

(1) For each vertex ℎ ∈ 𝑉 , there is an entry (𝑠, 𝑑𝑠 (ℎ)) in the source bucket 𝐵s (ℎ) if
(a) ℎ is the highest-ranked vertex on all shortest 𝑠–ℎ paths and

(b) 𝑑𝑠 (ℎ) + dist (ℎ, 𝑠 ′) ≤ 𝜆.

(2) A reverse BCH search from v finds a shortest 𝑠–v path for each vertex v ∈ 𝑉 with
dist (𝑠, v) + dist (v, 𝑠 ′) ≤ 𝜆.

Then (1) is a necessary and sufficient condition for (2).

Proof. Assume that (1) holds and let v be a vertex with dist (𝑠, v) + dist (v, 𝑠 ′) ≤ 𝜆
(see Figure 6.2 for an illustration). We say that a path 𝑃 is higher than a path 𝑄 if
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Figure 6.2: A possible pickup or dropoff at vertex v inserted between the consecutive

stops 𝑠 and 𝑠 ′. The contraction order of the vertices is given by their y-coordinates.

max𝑤∈𝑃 𝜋−1 (𝑤) > max𝑤∈𝑄 𝜋−1 (𝑤), where 𝜋−1 (𝑤) is the rank of 𝑤. Let ℎ be the

highest-ranked vertex on a highest of the shortest 𝑠–v paths. By construction, there

is a shortest 𝑠–ℎ path 𝑃 containing only upward edges and a shortest ℎ–v path 𝑄

containing only downward edges, and hence 𝑃 ·𝑄 is an up-down path. We have

𝑑𝑠 (ℎ) + dist (ℎ, 𝑠 ′) = dist (𝑠, ℎ) + dist (ℎ, 𝑠 ′) ≤ dist (𝑠, v) + dist (v, 𝑠 ′) ≤ 𝜆,

where the equality follows from the fact that 𝑃 contains only upward edges, the first

inequality comes from the triangle inequality dist (ℎ, 𝑠 ′) ≤ dist (ℎ, v) + dist (v, 𝑠 ′), and
the second inequality uses the definition of v . Then (𝑠, 𝑑𝑠 (ℎ)) ∈ 𝐵s (ℎ) by (1), and a

reverse BCH search from v finds the shortest 𝑠–v path 𝑃 ·𝑄 .
Assume conversely that (2) holds and let ℎ be a vertex such that ℎ is the highest-

ranked vertex on all shortest 𝑠–ℎ paths and 𝑑𝑠 (ℎ) + dist (ℎ, 𝑠 ′) ≤ 𝜆. By construction,

there is a shortest 𝑠–ℎ path 𝑃 containing only upward edges. We have

dist (𝑠, ℎ) + dist (ℎ, 𝑠 ′) = 𝑑𝑠 (ℎ) + dist (ℎ, 𝑠 ′) ≤ 𝜆,

where the equality follows from the fact that 𝑃 contains only upward edges and the

inequality uses the definition of ℎ. Then, by proposition (2), a reverse BCH search

from ℎ finds a shortest 𝑠–ℎ path, i.e., there is a shortest 𝑠–ℎ path 𝑃 ′ that is an up-down

path with highest-ranked vertex ℎ′ and (𝑠, 𝑑𝑠 (ℎ′)) ∈ 𝐵s (ℎ′). We have

𝜋−1 (ℎ) ≤ 𝜋−1 (ℎ′) ≤ 𝜋−1 (ℎ),

where the first inequality uses the fact that ℎ′ is the highest-ranked vertex on 𝑃 ′ and
the second inequality follows from ℎ being the highest-ranked vertex on all shortest

𝑠–ℎ paths. Thus ℎ′ = ℎ and (𝑠, 𝑑𝑠 (ℎ)) ∈ 𝐵s (ℎ), which completes the proof. □
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Bucket Entry Generation. To exploit Theorem 6.2 in practice, we need an algo-

rithm that can efficiently check the conditions (a) and (b). Recall that with standard

BCHs, we generate source bucket entries (𝑠, 𝑑𝑠 (ℎ)) by running a forward CH search

from 𝑠 and inserting, for each vertex ℎ settled, an entry (𝑠, 𝑑𝑠 (ℎ)) into 𝐵s (ℎ) (the
case of target bucket entries is symmetric). To check condition (b), we need the

distance dist (ℎ, 𝑠 ′) for each vertex ℎ in the search space of the forward search. We

propose the following approach for obtaining these distances.

We run a topological forward CH search from 𝑠 , i.e., we process vertices in topo-

logical order rather than in increasing order of distance. We prune the search at any

vertex with a distance label greater than 𝜆(𝑠, 𝑠 ′) but do not apply stall-on-demand.

The search stops when the priority queue becomes empty. Afterwards, we run a

standard reverse CH search from 𝑠 ′. We apply stall-on-demand and stop as soon as

the minimum key in its priority queue exceeds 𝜆(𝑠, 𝑠 ′). Finally, we need to propagate

the labels of the reverse search down into the search space of the forward search.

We push each vertex settled during the forward search onto a stack. After the

reverse search has terminated, we repeatedly pop a vertex 𝑢 from the stack. For each

upward edge (𝑢,𝑢 ′) going out of 𝑢, we set 𝑑𝑠′ (𝑢) = min{𝑑𝑠′ (𝑢), ℓ (𝑢,𝑢 ′) + 𝑑𝑠′ (𝑢 ′)}.
We claim that when the stack becomes empty, we have 𝑑𝑠′ (ℎ) = dist (ℎ, 𝑠 ′) for each
vertex ℎ in the search space of the forward search with 𝑑𝑠 (ℎ) + dist (ℎ, 𝑠 ′) ≤ 𝜆(𝑠, 𝑠 ′),
and thus can efficiently check condition (b).

Lemma 6.3. When the algorithm terminates, we have 𝑑𝑠′ (ℎ) = dist (ℎ, 𝑠 ′) for each
vertex ℎ in the search space of the forward search with 𝑑𝑠 (ℎ) + dist (ℎ, 𝑠 ′) ≤ 𝜆(𝑠, 𝑠 ′).

Proof. Consider one such ℎ in particular and let 𝑤 be the highest-ranked vertex on

a shortest ℎ–𝑠 ′ path (see Figure 6.2). The reverse CH search is guaranteed to find a

shortest 𝑤–𝑠 ′ path and to set 𝑑𝑠′ (𝑤) to its correct value (as shown by [GSSV12]). All

we need to show is that the propagation phase finds a shortest ℎ–𝑤 path.

By construction, there is a shortest ℎ–𝑤 path 𝑅 containing only upward edges.

Since ℎ is by definition in the search space of the forward search, 𝑅 contains only

upward edges, and the distance label of each vertex on 𝑅 is by definition at most

𝜆(𝑠, 𝑠 ′), all vertices on 𝑅 are pushed onto the stack. Since the forward search settles

vertices in topological order, the stack contains the vertices in the same order in

which they appear on 𝑅. Hence, the propagation phase relaxes the edges on 𝑅 in

reverse order and thus finds the ℎ–𝑤 path 𝑅. □

It remains to check condition (a). Consider a vertex ℎ in the search space of the

forward search and let 𝑃 be a shortest of the 𝑠–ℎ paths that contain only upward

edges. Condition (a) is violated if and only if there is an up-down 𝑠–ℎ path 𝑃 ′ with at

least one downward edge and ℓ (𝑃 ′) ≤ ℓ (𝑃); see Figure 6.2 for an illustration. We try

to find such witnesses during the propagation phase.
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When we pop ℎ from the stack, we additionally look at all downward edges (ℎ′′, ℎ)
coming into ℎ and compute 𝜇 = min(ℎ′′,ℎ) 𝑑𝑠 (ℎ′′) + ℓ (ℎ′′, ℎ). If 𝜇 ≤ 𝑑𝑠 (ℎ), we found
a witness, condition (a) is violated, and thus we do not insert an entry into 𝐵s (ℎ).
Either way, we set 𝑑𝑠 (ℎ) = min{𝑑𝑠 (ℎ), 𝜇}. Note that we find a witness if and only if all
vertices on it are contained in the search space of the forward search. Therefore, we

do not necessarily discover all violations of condition (a). However, we observed that

undiscovered violations are quite rare. More importantly, undiscovered violations

may yield superfluous entries but do not affect the correctness of the BCH searches.

Bucket Entry Removal. Whenever a vehicle completes a stop, we have to remove

the bucket entries referring to this stop. In the following, we show how to efficiently

remove the source bucket entries that refer to a stop 𝑠 . The case of target bucket

entries is handled in a symmetrical fashion.

We initialize both a set 𝑅 of reached vertices and a queue 𝑄 with the location 𝑙 (𝑠)
of 𝑠 . While 𝑄 is not empty, we extract a vertex v from the queue and scan its source

bucket 𝐵s (v). When we find an entry (𝑠, 𝑑𝑠 (v)) referring to 𝑠 , we remove (𝑠, 𝑑𝑠 (v))
from 𝐵s (v), stop the bucket scan, look at each upward edge (v, 𝑤) that leaves v , and
finally insert 𝑤 into both 𝑅 and 𝑄 if 𝑤 ∉ 𝑅.

The algorithm finds an entry (𝑠, 𝑑𝑠 (𝑤)) ∈ 𝐵s (𝑤) if and only if there is an 𝑠–𝑤

path 𝑃 such that 𝑃 contains only upward edges and (𝑠, 𝑑𝑠 (v)) ∈ 𝐵s (v) for each vertex v
on 𝑃 . There would always be such a path 𝑃 if we were able to guarantee to discover

all violations of condition (a). Since we cannot, we explicitly ensure that there is

always such a path 𝑃 . Whenever we insert an entry into a source bucket 𝐵s (𝑤), we
also insert a corresponding entry into 𝐵s (parent (𝑤)), where parent (𝑤) is the parent
pointer of 𝑤 computed by the forward search. Our experiments will show that this

almost never inserts additional bucket entries.

Implementation Details. Bucket entries must identify the stop they refer to. There-

fore, we maintain an initially empty list of free stop IDs. Whenever we insert a stop

into a vehicle’s route, we take an ID from the list and assign it to the new stop. If the

list is empty, we set the ID of the new stop to the maximum stop ID assigned so far

plus one. Whenever we remove a stop from a route, we insert its ID into the list of

free stop IDs. Bucket entries are stored and maintained in a way similar to how we

handle stop attribute values (see Section 6.3.1).

6.3.3 Shortest-Path Searches for Special Cases
We use BCHs to obtain most of the shortest-path distances needed to compute

insertion costs. However, three special cases have to be treated separately. We

discuss each of them in detail in this section.
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From Vehicles to Pickup. Consider an insertion (𝜈, 𝑟, 𝑖, 𝑗) with 𝑅(𝜈) = ⟨𝑠0, . . . , 𝑠𝑘⟩
and 0 = 𝑖 < 𝑘 . Here, the new pickup is inserted before the next scheduled stop on a

vehicle’s route. In this case, the vehicle is immediately diverted to the new pickup.

To compute the cost of the insertion, we need the distance dist (𝑙c (𝜈), p (𝑟 )) from the

current location 𝑙c (𝜈) of the vehicle 𝜈 to the pickup spot p (𝑟 ). Our BCH searches do

not find shortest paths from the vehicle’s current location. Since the current location

changes continuously, we cannot precompute bucket entries for it. However, the

BCH searches provide us with a lower bound on the actual pickup detour.

The time from 𝑠0 to 𝑠1 via p (𝑟 ) is dist (𝑠0, 𝑙c (𝜈)) + dist (𝑙c (𝜈), p (𝑟 )) + dist (p (𝑟 ), 𝑠1).
The inequality dist (𝑠0, p (𝑟 )) ≤ dist (𝑠0, 𝑙c (𝜈)) + dist (𝑙c (𝜈), p (𝑟 )) then yields a lower

bound of dist (𝑠0, p (𝑟 )) + dist (p (𝑟 ), 𝑠1) on the travel time from 𝑠0 to 𝑠1 via p (𝑟 ). Since
we have source bucket entries for 𝑠0 and target bucket entries for 𝑠1, this lower bound

can be obtained from the BCH searches. We can then compute lower bounds on the

pickup detour and finally on the cost of the insertion. Only in the rare case that the

latter lower bound is better than the best insertion seen so far, we have to compute

the exact shortest-path distance dist (𝑙c (𝜈), p (𝑟 )) by running a standard CH query. As

our experiments will show, we typically only need a single CH query per request.

FromLast Stops to Pickup. Consider an insertion (𝜈, 𝑟, 𝑖, 𝑗) with𝑅(𝜈) = ⟨𝑠0, . . . , 𝑠𝑘⟩
and 𝑖 = 𝑘 . Here, the new pickup is inserted after the last stop on a vehicle’s route.

Observe that this case also covers currently idle vehicles. To compute the cost of such

insertions, we need the shortest-path distance dist (𝑠𝑘 , p (𝑟 )) from the last stop 𝑠𝑘 to

the pickup spot p (𝑟 ). However, our BCH searches do not find shortest paths from

the last stop. The reason is that we do not generate source bucket entries for the last

stop, since we cannot apply elliptic pruning in this case (the leeway is unbounded).

Instead, we defer all insertions (𝜈, 𝑟, 𝑖, 𝑗) with 𝑅(𝜈) = ⟨𝑠0, . . . , 𝑠𝑘⟩ and 𝑖 = 𝑘 . After
having tried all candidate insertions (𝜈′, 𝑟 , 𝑖 ′, 𝑗 ′) with 𝑅(𝜈′) = ⟨𝑠 ′

0
, . . . , 𝑠 ′

𝑘′⟩ and 𝑗
′ ≠ 𝑘 ′,

we perform a reverse Dijkstra search from p (𝑟 ). Whenever we settle the last stop of a

vehicle 𝜈 with 𝑅(𝜈) = ⟨𝑠0, . . . , 𝑠𝑘⟩, we check whether the insertion (𝜈, 𝑟, 𝑘, 𝑘) improves

the currently best insertion. Note that the detour (i.e., the increase in operation time)

for each such insertion is 𝛿 = dist (𝑠𝑘 , p (𝑟 )) + 𝑡stop + dist (p (𝑟 ), 𝑑 (𝑟 )) + 𝑡stop, and thus

its cost is at least 𝛿 . Therefore, we can stop the search when the sum of the minimum

key 𝜅 in its priority queue and 𝑡stop + dist (p (𝑟 ), 𝑑 (𝑟 )) + 𝑡stop is at least as large as the
cost of the best insertion found so far. We can do even better by taking into account

lower bounds on the violations of the wait and trip time constraint. More precisely,

we can stop the search as soon as the sum

𝜅 + 𝑡stop + dist (p (𝑟 ), 𝑑 (𝑟 )) + 𝑡stop
+ 𝛾wait ·max{𝜅 + 𝑡stop − 𝑡max

wait, 0}
+ 𝛾trip ·max{𝜅 + 𝑡stop + dist (p (𝑟 ), 𝑑 (𝑟 )) − 𝑡max

trip (𝑟 ), 0}
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is at least as large as the cost of the currently best insertion. Stopping the Dijkstra

search early makes it practical and fast enough for real-time applications.

From Last Stops to Dropoff. Lastly, consider a candidate insertion (𝜈, 𝑟, 𝑖, 𝑗) with
𝑅(𝜈) = ⟨𝑠0, . . . , 𝑠𝑘⟩ and 𝑖 < 𝑗 = 𝑘 . Here, the new pickup is inserted before and the

new dropoff is inserted after the last stop on a vehicle’s route. To compute the cost of

that insertion, we need the shortest-path distance dist (𝑠𝑘 , 𝑑 (𝑟 )) from the last stop 𝑠𝑘
to the dropoff spot 𝑑 (𝑟 ). As discussed before, our BCH searches do not find shortest

paths from the last stop (we do not generate source bucket entries for the last stop).

We treat this special case similarly to the previous one.

After running a reverse Dijkstra search from p (𝑟 ), we also run one from 𝑑 (𝑟 ).
Whenever we settle the last stop of a vehicle 𝜈 with 𝑅(𝜈) = ⟨𝑠0, . . . , 𝑠𝑘⟩, we check
whether any insertion (𝜈, 𝑟, 𝑖, 𝑘) with 𝑖 < 𝑘 improves the best insertion seen so far.

Since the cost of each such insertion is at least dist (𝑠𝑘 , 𝑑 (𝑟 )) + 𝑡stop, we can stop the

search when the sum of the minimum key 𝜅 in its priority queue and 𝑡stop is at least

as large as the cost of the currently best insertion. Again, we can do better by taking

into account a lower bound on the violation of the request’s trip time constraint.

Then, we can stop the search as soon as the sum

𝜅 + 𝑡stop + 𝛾trip ·max{𝑡stop + 𝜅 − 𝑡max
trip (𝑟 ), 0}

is as large as the cost of the best insertion found so far.

6.3.4 Putting Everything Together
In this section we assemble the basic LOUD algorithm from the building blocks

introduced in the preceding sections. Given a ride request 𝑟 = (p, 𝑑, 𝑡min
dep ), the

algorithm inserts it into any vehicle’s route such that the vehicle’s detour plus the

violations of the soft constraints (if any) is minimized. A request is resolved in four

phases, and we explain each in turn in this section. In addition, Algorithm 6.1 gives

high-level pseudocode for each of the phases.

Computing Shortest-Path Distances. We start by computing the shortest-path

distance from the pickup p to the dropoff 𝑑 with a standard CH query. From this

distance, we compute the latest time 𝑡max
dep (𝑟 ) when 𝑟 should be picked up as well as

the latest time 𝑡max
arr (𝑟 ) when 𝑟 should be dropped off. Next, we compute all shortest-

path distances that we need to calculate the costs of all ordinary insertions, i.e.,

insertions (𝜈, 𝑟, 𝑖, 𝑗) with 0 < 𝑖 ≤ 𝑗 < |𝑅(𝜈) | − 1. We do this by running two forward

BCH searches (from p and 𝑑) that scan the target buckets, and two reverse BCH

searches (from p and 𝑑) that scan the source buckets.
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Algorithm 6.1: Routine for resolving a received ride request 𝑟 = (p, 𝑑, 𝑡min
dep ).

1 run a CH query from pickup p to dropoff 𝑑 Computing Shortest-Path Distances
2 𝑡max

dep (𝑟 ) ← 𝑡min
dep (𝑟 ) + 𝑡

max
wait

3 𝑡max
arr (𝑟 ) ← 𝑡min

dep (𝑟 ) + 𝛼 · dist (p, 𝑑) + 𝛽
4 run forward and reverse BCH searches from pickup spot p and dropoff spot 𝑑

5 let 𝜄̂ = (𝜈̂, 𝑟 , 𝑖, 𝑗̂) ← ⊥ be the best insertion found so far Trying Ordinary Insertions
6 foreach vehicle 𝜈 ∈ 𝐶 do
7 let ⟨𝑠0, . . . , 𝑠𝑘 ⟩ be the route of vehicle 𝜈
8 for 𝑖 ← 1 to 𝑘 − 1 do
9 if 𝑜 (𝑠𝑖 ) = 𝑐 (𝜈) then continue

10 try to improve 𝜄̂ with insertion (𝜈, 𝑟, 𝑖, 𝑖)
11 for 𝑗 ← 𝑖 + 1 to 𝑘 − 1 do
12 if 𝑜 (𝑠 𝑗 ) = 𝑐 (𝜈) then
13 if 𝑙 (𝑠 𝑗 ) = 𝑑 then try to improve 𝜄̂ with insertion (𝜈, 𝑟, 𝑖, 𝑗)
14 break

15 try to improve 𝜄̂ with insertion (𝜈, 𝑟, 𝑖, 𝑗)

16 foreach vehicle 𝜈 ∈ 𝐶 do Trying Special-Case Insertions
17 try to improve 𝜄̂ with any insertion (𝜈, 𝑟, 0, 𝑗) with 0 ≤ 𝑗 < |𝑅(𝜈) | − 1

18 search for insertions better than 𝜄̂ that insert the pickup at the end of a route

19 search for insertions better than 𝜄̂ that insert the dropoff at the end of a route

20 if no feasible insertion has been found then return ⊥
21 let ⟨𝑠0, . . . , 𝑠𝑘 ⟩ be the route of vehicle 𝜈̂ Updating Preprocessed Data
22 ⟨𝑠 ′

0
, . . . , 𝑠 ′

𝑖′ = p, . . . , 𝑠 ′
𝑗 ′ = 𝑑, . . . , 𝑠

′
𝑘′
⟩ ← perform insertion 𝜄̂

23 if vehicle 𝜈̂ is diverted while driving from 𝑠0 to 𝑠1 then
24 remove source bucket entries for stop 𝑠 ′

0

25 𝑙 (𝑠 ′
0
) ← 𝑙c (𝜈̂)

26 𝑡min
dep (𝑠

′
0
) ← current point in time

27 generate source bucket entries for stop 𝑠 ′
0

28 if the pickup is not inserted at an existing stop then
29 generate source and target bucket entries for stop 𝑠 ′

𝑖′

30 if the dropoff is not inserted at an existing stop then
31 generate target bucket entries for stop 𝑠 ′

𝑗 ′

32 if the dropoff is inserted before the last stop then
33 generate source bucket entries for stop 𝑠 ′

𝑗 ′

34 else
35 generate source bucket entries for stop 𝑠𝑘

36 return 𝜄̂
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TryingOrdinary Insertions. Next, we try all ordinary insertions. To do so, we look

at the set 𝐶 of vehicles that have been seen while scanning the buckets (recall that

we store in each bucket entry the identifier of the vehicle to which the entry belongs).

Note that vehicles that are not contained in 𝐶 allow no feasible ordinary insertions,

and thus we do not have to consider them during this phase of the algorithm.

For each vehicle 𝜈 ∈ 𝐶 , we enumerate all possible ordinary insertions that satisfy

the capacity constraints, using the occupancy values 𝑜 (·) computed in Section 6.3.1.

Let ⟨𝑠0, . . . , 𝑠𝑘⟩ be the route of 𝜈. We loop over all pickup insertion points 𝑖 , 0 < 𝑖 < 𝑘 ,

in increasing order. If the number 𝑜 (𝑠𝑖 ) of occupied seats when 𝜈 departs from 𝑠𝑖
is equal to the capacity 𝑐 (𝜈) of 𝜈, then all insertions (𝜈, 𝑟, 𝑖, ·) are infeasible, and

we continue with the next pickup insertion point. Otherwise, we loop over all

dropoff insertion points 𝑗 , 𝑖 ≤ 𝑗 < 𝑘 , in increasing order. If 𝑜 (𝑠 𝑗 ) < 𝑐 (𝜈), then the

insertion (𝜈, 𝑟, 𝑖, 𝑗) satisfies the capacity constraints. Otherwise, all insertions (𝜈, 𝑟, 𝑖, ℓ)
with ℓ > 𝑗 are infeasible, and we continue with the next pickup insertion point. The

insertion with ℓ = 𝑗 satisfies the constraints only if 𝑑 coincides with 𝑠 𝑗 .

For each insertion 𝜄 satisfying the capacity constraints, we check whether the

remaining hard constraints are also satisfied and compute the insertion cost according

to Equation (6.1). This can be done in constant time as discussed in Section 6.3.1.

Finally, if 𝜄 improves the best insertion 𝜄̂ found so far, we update 𝜄̂ accordingly.

Trying Special-Case Insertions. Next, we try all possible special-case insertions,

i.e., insertions whose cost depends on some shortest-path distances not computed by

the BCH searches. First, we try all insertions (𝜈, 𝑟, 0, 𝑗) with 0 ≤ 𝑗 < |𝑅(𝜈) | − 1. Such

insertions insert the pickup before the next scheduled stop on a vehicle’s route. Since

vehicles 𝜈′ ∉ 𝐶 allow no feasible insertions (𝜈′, 𝑟 , 0, 𝑗) with 0 ≤ 𝑗 < |𝑅(𝜈′) | − 1, it

suffices to look at each vehicle 𝜈 ∈ 𝐶 . Let ⟨𝑠0, . . . , 𝑠𝑘⟩ be the route of 𝜈. If 𝑜 (𝑠0) = 𝑐 (𝜈),
then 𝜈 is currently fully occupied, and thus we cannot pick up another request before

the next scheduled stop. If 𝑜 (𝑠0) < 𝑐 (𝜈), then we loop over all dropoff insertion

points 𝑗 , 0 ≤ 𝑗 < 𝑘 , terminating the loop when 𝑜 (𝑠 𝑗 ) = 𝑐 (𝜈). For each 𝑗 , we handle
the insertion (𝜈, 𝑟, 0, 𝑗) as described in Section 6.3.3.

Second, we search for insertions better than 𝜄̂ that insert both the pickup and the

dropoff after the last stop on a vehicle’s route. We do this by performing a reverse

Dijkstra search from p , as discussed in Section 6.3.3. Finally, we search for insertions

better than 𝜄̂ that insert only the dropoff after the last stop on a vehicle’s route. To do

that, we run a reverse Dijkstra search from 𝑑 , as described also in Section 6.3.3.

Updating Preprocessed Data. If we have found a feasible insertion, we need to

update the preprocessed data in order to be ready to resolve the next ride request.

We start by actually performing the best insertion 𝜄̂ = (𝜈̂, 𝑟 , 𝑖, 𝑗̂) into the current
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route ⟨𝑠0, . . . , 𝑠𝑘⟩ of 𝜈̂. Let ⟨𝑠 ′0, . . . , 𝑠 ′𝑖′ = p, . . . , 𝑠 ′
𝑗 ′ = 𝑑, . . . , 𝑠

′
𝑘′⟩ be the route of 𝜈̂ after

the insertion. The 𝑡min
dep , 𝑡

max
arr , and 𝑜 values can be updated in linear time.

If 𝜈̂ is diverted while driving from 𝑠0 to 𝑠1, we update the start 𝑠
′
0
of its current

leg and recompute the source bucket entries for 𝑠 ′
0
. (Note that there are no target

bucket entries for 𝑠 ′
0
because it is the first stop on the route.) First, we remove the

current source bucket entries for 𝑠 ′
0
. Then, we update the location of 𝑠 ′

0
to the current

location of 𝜈̂, and the departure time at 𝑠 ′
0
to the current point in time. Finally, we

generate new source bucket entries for stop 𝑠 ′
0
.

Moreover, we generate source and target bucket entries for the stop 𝑠 ′
𝑖′ at which

the pickup is made unless the pickup is inserted at an existing stop. Likewise, we

generate target bucket entries for the stop 𝑠 ′
𝑗 ′ at which the dropoff is made unless the

dropoff is inserted at an existing stop. If the dropoff is inserted before the last stop,

we also generate source bucket entries for 𝑠 ′
𝑗 ′ . Otherwise, we generate source bucket

entries for the stop 𝑠𝑘 that was at the very end of the route before the insertion.

(Whenever a vehicle reaches the next stop on its route, we remove the target bucket

entries for this stop, and the source bucket entries for the preceding stop.)

It remains to update one more data structure. For each vertex v , we maintain a list

of vehicles that terminate at v , i.e., whose currently last stop is made at v . Whenever

the reverse Dijkstra searches from the pickup p and the dropoff 𝑑 settle a vertex v ,
they retrieve the last stops at v with these lists. Therefore, we remove 𝜈̂ from the list

of vehicles terminating at 𝑙 (𝑠𝑘 ), and we insert 𝜈̂ into the list of vehicles terminating

at 𝑙 (𝑠 ′
𝑘′). Note that this step is omitted in Algorithm 6.1.

6.3.5 Extensions

This section shows how LOUD can be extended to meet additional requirements of

real-world production systems. We explain each extension in turn, but they can be

combined in an actual implementation. Our implementation supports all of them.

Edge-Based Stops. Up to now, we have assumed that stops are made at vertices

(i.e., intersections). In real-world applications, however, stops are made anywhere

along edges (i.e., road segments). Fortunately, LOUD can be easily extended to work

with edge-based stops, following the approach proposed by Delling et al. [DGPW17].

Consider a stop 𝑠 along an edge 𝑒 = (v, 𝑤) with a real-valued offset 𝑜 ∈ [0, 1]. To
run a forward search (whether it is a Dijkstra, CH, or BCH search) from 𝑠 , we start

from the head vertex 𝑤 and initialize the distance label 𝑑𝑤 (𝑤) to (1 − 𝑜) · ℓ (𝑒) rather
than zero. Likewise, to run a reverse Dijkstra, CH, or BCH search from 𝑠 , we start

from the tail vertex v and initialize the distance label 𝑑v (v) to 𝑜 · ℓ (𝑒). The special
case where source and target are located on the same edge is treated explicitly.
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Path Retrieval. In real-world applications, one is often interested not only in

the best insertion (𝜈, 𝑟, 𝑖, 𝑗) but also in the descriptions of the paths from stop 𝑠𝑖 to

the pickup spot p (𝑟 ), from p (𝑟 ) to stop 𝑠𝑖+1, from stop 𝑠 𝑗 to the dropoff spot 𝑑 (𝑟 ),
and from 𝑑 (𝑟 ) to stop 𝑠 𝑗+1. By maintaining a parent pointer for each vertex, the

Dijkstra searches can retrieve complete path descriptions, and the CH searches can

retrieve descriptions potentially containing shortcuts. The latter can be unpacked

into complete descriptions in time linear in the length of the unpacked path [GSSV12].

Now, consider a path ⟨𝑠, . . . , ℎ, . . . , 𝑠 ′⟩ found by a forward BCH search. The case of

a reverse BCH search is handled in a symmetrical fashion. Letℎ be the highest-ranked

vertex on the path. Since the 𝑠–ℎ path is found by a forward CH search, its description

can be retrieved as discussed above. The ℎ–𝑠 ′ path, however, is hidden behind the

target bucket entry (𝑠 ′, 𝑑𝑠′ (ℎ)) ∈ 𝐵t (ℎ). Therefore, it remains to retrieve the path

description that corresponds to a target bucket entry.

When we generate target bucket entries for 𝑠 ′, we could explicitly store the search

space of 𝑠 ′ as a rooted tree 𝑇𝑠′ . To retrieve the description of the ℎ–𝑠 ′ path, we would
traverse the path in 𝑇𝑠′ from ℎ to 𝑠 ′. Note, however, that to find a best insertion, we

need no parent information. That is, 𝑇𝑠′ is only needed when we insert a new stop

immediately before 𝑠 ′, which may never be the case. Since it seems wasteful to build

a tree that may never be used, we instead retrieve the path description corresponding

to a target bucket entry (𝑠 ′, 𝑑𝑠′ (ℎ)) by running a reverse CH search (from 𝑠 ′ to ℎ).

Handling Traffic. Today’s ridesharing services have to be able to quickly update

the routing graph whenever new traffic information is available. On large-scale road

networks, however, CH preprocessing is not fast enough to incorporate a continuous

stream of traffic information. Hence, we propose combining LOUD with customizable
contraction hierarchies (CCHs) [DSW16], a CH variant that can incorporate new

metrics in few seconds. As a customizable contraction hierarchy is a contraction

hierarchy, LOUD can be used as is with CCHs, without further modifications.

We can do better by replacing the Dijkstra-based CH searches with elimination

tree searches, a query algorithm tailored to CCHs. Elimination tree searches tend to

be faster than Dijkstra-based searches for point-to-point queries, however, they have

one drawback. Since they do not process vertices in increasing order of distance, it is

not clear how to terminate them early. This is an issue because the Dijkstra-based CH

searches during bucket entry generation have a tight stopping criterion. However,

we observe that we can turn stopping criteria for Dijkstra-based CH searches into

pruning criteria for elimination tree searches.

During bucket entry generation, the Dijkstra-based CH searches stop as soon as

they settle a vertex whose distance label exceeds the leeway. We cannot stop an

elimination tree search at such a vertex v . However, we can prune the search at v ,



Experiments Section 6.4

111

i.e., we do not relax edges out of v . As shown in Chapter 5, the edge relaxations

are the time-consuming part, whereas the time spent on tree traversal is negligible.

Therefore, the pruning criteria are almost as effective as the stopping criteria.

Note that elimination tree searches even simplify bucket entry generation. In

Section 6.3.2, we have introduced special topological CH searches, which process the

vertices in the CH search space in topological order. Since elimination tree searches

process vertices in ascending rank order, and the rank order is a topological order,

each standard elimination tree search is already a topological search.

There is, however, a potential pitfall associated with customization. Recall that to

remove bucket entries for a stop 𝑠 , we essentially simulate a CH search from 𝑠 to find

the buckets that contain entries referring to 𝑠 . This requires that the topology of the

hierarchy does not change between generation and removal of the bucket entries

for 𝑠 . Fortunately, CCHs compute a metric-independent contraction order during a

preprocessing step, i.e., customization does not affect the order. Thus, when using

basic CCH customization [DSW16], the topology does not change, and we can safely

update the edge costs between bucket entry generation and removal.

For smaller search spaces, we can apply a more sophisticated customization algo-

rithm (perfect customization [DSW16]). This additionally removes superfluous edges

from the customizable contraction hierarchy. Therefore, although the contraction

order remains the same, the topology of the customizable contraction hierarchy may

change. Hence, when using perfect customization, we have to clear and rebuild the

source and target buckets after each customization step.

Other Objective Functions. Our precise objective function is taken from the

popular transport simulation MATSim [HNA16, BMN17], and can be parameterized

as discussed in Section 6.2. We stress, however, that LOUD is not restricted to this

objective function but can work with other functions as well. Note that elliptic

pruning (and therefore bucket entry generation) does not depend on the objective

function, only on the hard constraints for requests already matched to a vehicle.

Hence, it will perform similarly for any objective function. The only ingredients

that depend on the actual objective function are the stopping criteria for the reverse

Dijkstra searches from the received pickup and dropoff spot, respectively.

6.4 Experiments
This section presents a thorough experimental evaluation of LOUD on the state-of-

the-art Open Berlin Scenario [ZKN19] and a second, even larger benchmark instance,

including a comparison to related work. We also integrate LOUD into a transport

simulation software, and evaluate it within this software.
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6.4.1 Experimental Setup
Our source code is written in C++17 and compiled with the GNU compiler 9.3 using

optimization level 3. We use 4-heaps [Joh75] as priority queues. To ensure a correct

implementation, we make extensive use of assertions (disabled during measurements).

Our benchmark machine runs openSUSE Leap 15.2 (kernel 5.3.18), and has 192GiB of

DDR4-2666 RAM and two Intel Xeon Gold 6144 CPUs, each with eight cores clocked

at 3.50GHz and 8 × 64 KiB of L1, 8 × 1MiB of L2, and 24.75MiB of shared L3 cache.

Note that we consider only single-core implementations.

Inputs. Our main benchmark instances are taken from the recent Open Berlin

Scenario [ZKN19], a publicly available transport simulation scenario for the Berlin

metropolitan area implemented in MATSim [HNA16]. The transport simulation

MATSim works in iterations, with each iteration simulating the movement of the

given population (including departure time, route, mode and destination choice) and

outputting each inhabitant’s 24-hour travel pattern. Over the course of iterations,

the activity-travel patterns become more and more realistic.

To obtain a set of realistic requests, we build on the Open Berlin Scenario 5.5 with

demand-responsive transport (DRT). By default, only a few trips use DRT. Therefore,

we change three parameters. We halve the DRT fare per kilometer from 35 to 18 cents,

halve the minimum DRT fare per trip from 2 to 1 euro, and double the daily cost per

private car from 5.30 to 10.60 euros. This primarily replaces car trips by DRT trips.

The Open Berlin Scenario has been published in two versions. The 1% scenario

simulates 1 % of all adults living in Berlin and Brandenburg, while the 10 % scenario

simulates 10 % of them. For our benchmark instance Berlin-1pct, we take all DRT
requests from the 500th iteration of the 1 % scenario (500 is the number of iterations

recommended for realistic travel patterns). For our instance Berlin-10pct, we take
all DRT requests from the 250th iteration of the 10% scenario (since one iteration

takes more than four hours, performing 500 is not feasible). Both instances take the

network from the Open Berlin Scenario, which builds on OpenStreetMap.

To evaluate LOUD on even larger instances, we build two additional instances

that comprise the Rhine-Ruhr area, the largest metropolitan area in Germany. The

construction is guided by the Open Berlin Scenario. We start by taking the network

from OpenStreetMap. Besides all roads in the city of Berlin, the Open Berlin Scenario

includes all main roads in Brandenburg (the state that surrounds Berlin). For our

Rhine-Ruhr instances, we therefore take all roads in the Rhine-Ruhr metropolitan

area (as defined by the Landesentwicklungsplan NRW from 1995) and all main roads

in the surrounding state of North Rhine-Westphalia.

As for the Open Berlin Scenario, we build a sparser instance Ruhr-1pct and a denser
instance Ruhr-10pct. Since the population in the Rhine-Ruhr area is roughly three
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Table 6.1: Key figures of our benchmark instances.

input |𝑉 | |𝐸 | veh req

Berlin-1pct 73 689 159 039 1 000 16 569

Berlin-10pct 73 689 159 039 10 000 149 185

Ruhr-1pct 394 049 840 587 3 000 49 707

Ruhr-10pct 394 049 840 587 30 000 447 555

times larger than in the Berlin area, we scale the numbers of vehicles and requests for

Berlin-1pct (Berlin-10pct) by a factor of three to obtain the numbers for Ruhr-1pct

(Ruhr-10pct). The initial vehicle locations are uniformly distributed in the Rhine-Ruhr

area (no vehicle starts in the surroundings). As the population density correlates

with the density of the graph, vehicles tend to start in densely populated areas.

We choose the pickup and dropoff spot for a request as follows. First, we choose

the pickup spot uniformly at random from the Rhine-Ruhr area. Next, we draw the

trip duration from a geometric distribution with probability parameter p = 1/(𝜇 + 1).
Finally, we run Dijkstra’s algorithm from the pickup spot until we settle a vertex

whose distance label is greater than or equal to the trip duration drawn before and
that vertex is contained in the Rhine-Ruhr area. The expected trip duration 𝜇 is set

to the average trip duration on the corresponding Berlin instance (12 minutes on

Berlin-1pct and 11 minutes on Berlin-10pct).

The earliest departure time for a request is drawn according to the distribution of

the earliest departure times on the Berlin instances. More precisely, we group the

departure times on the Berlin instances into five-minute bins 𝑏𝑖 . To choose the time

for a request on the Rhine-Ruhr instances, we first draw a bin 𝐵 from the discrete

distribution determined by the probability function Pr[𝐵 = 𝑏𝑖 ] = |𝑏𝑖 |/
∑︁
𝑏 𝑗
|𝑏 𝑗 |, and

then choose the departure time uniformly at random from the interval corresponding

to 𝐵. Key figures of the Berlin and Rhine-Ruhr instances are shown in Table 6.1.

Methodology. We implemented a discrete-event simulation that simulates a given

set of vehicles servicing a given set of requests. The simulation maintains each

vehicle’s current state (out of service, idling, driving, or stopping) and an addressable

priority queue of pending events. Each event happens at some scheduled point in

time and may generate a new event in the future. We repeatedly extract the next

event from the queue and process it. The transport simulation stops as soon as the

event queue becomes empty (i.e., all events are processed).

For each ride request 𝑟 in the input, we process a request receipt event at 𝑡min
dep (𝑟 ).

To do so, we match request 𝑟 to some vehicle 𝜈. If 𝜈 is currently idling, we set its
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state to driving and insert a vehicle arrival event at 𝑡now + dist (𝑙c (𝜈), p (𝑟 )) into the
queue, where 𝑡now is the current point in time. If vehicle 𝜈 is currently driving and

𝑟 is inserted before the next scheduled stop, we update the scheduled time of 𝜈’s

existing vehicle arrival event to 𝑡now + dist (𝑙c (𝜈), p (𝑟 )).
For each vehicle 𝜈 in the input, we process a vehicle startup event at 𝑡min

serv (𝜈) and a

vehicle shutdown event at 𝑡max
serv (𝜈). To process the former, we check whether there

are already any requests matched to 𝜈. If so, we set 𝜈’s state to driving and insert

a vehicle arrival event into the queue. Otherwise, we set the state to idling and

generate no new event. To process the vehicle shutdown event, we set 𝜈’s state to out

of service and notify the dispatching algorithm about the vehicle shutdown. Note

that all request receipt, vehicle startup and vehicle shutdown events are known in

advance and form the initial content of the event queue.

Whenever a vehicle 𝜈 reaches a stop, we process a vehicle arrival event. To do so,

we set 𝜈’s state to stopping and add a vehicle departure event at 𝑡now + 𝑡stop to the

queue. Moreover, we notify the dispatching algorithm about the vehicle arrival so

that 𝜈’s route (and preprocessed data) can be updated. Finally, whenever a vehicle 𝜈

is ready to depart from a stop, we process a vehicle departure event. To do so, we

check whether there are currently any ride requests matched to 𝜈. If so, we set its

state to driving and insert a vehicle arrival event into the queue. Otherwise, we set

the state to idling and generate no new event.

Parameters. We take the default model parameters from MATSim. The stop

time 𝑡stop is set to 1 min, the maximum wait time 𝑡max
wait to 5 min, the maximum trip

time model parameters 𝛼 and 𝛽 to 1.7 and 2 min, the wait time violation weight 𝛾wait
to 1, and finally the trip time violation weight 𝛾trip to 10.

CH preprocessing is taken from the open-source library RoutingKit
17

17 https://github.com/RoutingKit/RoutingKit

. We use the

partitioning algorithm Inertial Flow [SS15] to compute a CCH order, with the balance

parameter 𝑏 set to 0.3. CH preprocessing and CCH order computation take less than

one second each on the Berlin network. On the Rhine-Ruhr network, the former

takes 4 seconds and the latter takes 6 seconds. For smaller search spaces, we apply

the more sophisticated perfect CCH customization algorithm [DSW16].

6.4.2 Elliptic Pruning
We start by evaluating the effectiveness and efficiency of elliptic pruning. Table 6.2

shows the reduction in search-space size achieved by conditions (a) and (b) from

Theorem 6.2. The average unpruned CH search space contains roughly 210 vertices

on the Berlin instances and 240 vertices on the Ruhr instances. Only 25% of them

satisfy condition (a), and even less than 10% satisfy condition (b). When combined,

they decrease the average search-space size (and thus the number of bucket entries)

https://github.com/RoutingKit/RoutingKit
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Table 6.2: Bucket entry generation on various benchmark instances with standard

and customizable CHs. We report the total number of vertices v in the search space

of a newly inserted stop 𝑠 with neighboring stop 𝑠 ′. We also report those that are the

highest-ranked vertex on all shortest paths between 𝑠 and v (i.e., satisfy condition (a)),

those that lie inside the shortest-path ellipse around 𝑠 and 𝑠 ′ (i.e., satisfy condition (b)),
and those that satisfy both conditions. Moreover, we report the number of bucket

entries inserted, the running time for the search from the new stop, the search from

its neighbor, the propagation of distance labels, and the total running time.

# vertices in search space # running time [µs]

input CH total highest ellipse both entries stop neigh prop total

Berlin std 210.37 54.54 16.90 9.87 9.87 4.33 3.61 2.24 10.17

1pct cust 186.63 136.63 15.50 12.49 12.50 2.66 2.85 2.21 7.72

Berlin std 210.64 54.66 14.05 8.72 8.73 4.03 3.35 1.99 9.37

10pct cust 186.76 136.35 13.20 10.84 10.84 2.49 2.66 1.95 7.10

Ruhr std 241.09 54.38 15.67 8.70 8.71 3.73 3.35 2.32 9.40

1pct cust 228.91 165.20 13.67 11.42 11.42 3.00 3.22 3.05 9.26

Ruhr std 241.58 54.46 14.25 8.43 8.43 3.46 3.11 2.09 8.66

10pct cust 228.91 165.26 12.88 10.90 10.90 2.77 2.95 2.53 8.25

by a factor of more than 20. With CCHs, condition (a) prunes significantly less

vertices. However, as condition (b) still prunes more than 90% of the vertices, the

number of bucket entries is about the same as with standard CHs. Moreover, recall

that, whenever we insert an entry into a bucket 𝐵(v), we also insert a corresponding

entry into 𝐵(parent (v)), in order to simplify bucket entry removal. We observe that

this almost never inserts additional bucket entries. The time to generate (source or

target) bucket entries for a new stop is divided roughly equally between the search

from the new stop, the search from its neighbor, and the propagation of the distance

labels of the latter search into the search space of the former search.

Table 6.3 shows the performance of BCH searches and bucket entry removal. Due

to elliptic pruning, BCH searches scan relatively few bucket entries, and are therefore

very fast. On Berlin-1pct, a BCH search takes merely 15 microseconds. On Berlin-

10pct, where we have 10 times more vehicles and 9 times more ride requests, the

running time doubles with standard CHs, and triples with CCHs. On Ruhr-10pct, our

largest and densest instance, a BCH search takes 65 microseconds with standard CHs

and twice as much with CCHs. Since we need four BCH searches per ride request,

this makes at most half a millisecond, fast enough for interactive applications. Taking

merely a few microseconds, the time spent on bucket entry removal is negligible.
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Table 6.3: Time (in microseconds) for BCH searches and bucket entry removal on

various benchmark instances with standard and customizable CHs. We also report

the number of vertices and bucket entries visited during a BCH search and while

removing bucket entries referring to a completed stop.

BCH searches bucket entry removal

input CH # vertices # entries time # vertices # entries time

Berlin std 62.87 564.16 14.94 25.72 149.54 1.21

1pct cust 186.65 1 331.91 16.24 46.16 293.23 1.68

Berlin std 62.94 3 994.05 35.55 23.57 905.88 1.73

10pct cust 186.66 9 149.83 52.88 42.22 1 764.32 2.61

Ruhr std 65.80 1 191.24 19.84 19.62 140.86 1.85

1pct cust 229.15 4 031.66 33.09 41.06 446.38 2.93

Ruhr std 65.85 7 953.42 65.80 18.61 820.10 2.67

10pct cust 229.18 25 475.08 833.56 38.38 8 540.68 8.90

6.4.3 Resolving Ride Requests
We next evaluate the performance of the matching algorithm. Table 6.4 reports

the time for each of its phases. Recall that LOUD tries only ordinary insertions

into vehicles that have been seen during the BCH searches. We observe that this

(exact) filter works very well, with less than 5 % of the vehicles passing through in all

cases. Consequently, it takes only a few microseconds to try all ordinary insertions.

Note that the search for special-case insertions that insert the pickup before and the

dropoff after the last stop on a vehicle’s route takes up the largest fraction of the

total time (60 % on Berlin-10pct, 80 % on the sparser Berlin-1pct, and even almost

95 % on Ruhr-1pct). Interestingly, the total time on Berlin is always between 600 and

700 microseconds, although it is divided differently between the phases depending

on the sparsity of the vehicles and ride requests. On the Rhine-Ruhr benchmark

instances, we observe that the running times are around 3 milliseconds.

Table 6.5 reports detailed statistics about the special-case treatments within LOUD.

Recall that LOUD discards as many insertions before the next scheduled stop as

possible using cheap lower bounds on the pickup detour, in order to avoid costly extra

CH queries. We observe that these lower bounds work very well. On average, we only

need a single extra CH query per ride request on Berlin, and roughly two extra queries

on the Rhine-Ruhr instances. Note that the number of insertions tried can be smaller

than the number of last stops visited, because we try an insertion (𝜈, 𝑟, 𝑖, |𝑅(𝜈) | − 1)
with 𝑖 < |𝑅(𝜈) | − 1 only if 𝜈 ∈ 𝐶 and 𝜈 does not arrive fully occupied at its last stop.
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Table 6.4: Performance of resolving ride requests on various benchmark instances

with standard and customizable CHs. We report the time to compute the shortest

direct path from the pickup to the dropoff spot, the time for the BCH searches, the

time to try all ordinary candidate insertions, the time to treat the special cases (pickup

before the next stop, pickup after the last stop, and dropoff after the last stop), the

time to update the preprocessed data (including bucket entry generation), and the

total running time. All running times are given in microseconds. In addition, we

report the size of the superset 𝐶 of promising candidate vehicles.

ordinary special insertions

insertions pickup pickup dropoff

input CH direct BCH |𝐶 | time at beg at end at end upd total

Berlin std 11.0 60.8 48 1.7 9.8 9.6 555.7 45.0 693.6

1pct cust 8.4 66.0 48 1.7 8.8 9.7 562.3 35.1 692.0

Berlin std 10.7 143.3 277 20.9 21.9 5.4 379.8 42.1 624.0

10pct cust 8.0 213.9 280 20.8 20.8 5.2 369.8 33.5 672.0

Ruhr std 11.0 80.6 118 4.9 25.2 34.3 3 308.3 42.7 3 506.9

1pct cust 10.0 134.0 117 5.2 28.4 34.9 3 376.7 41.9 3 631.1

Ruhr std 10.2 264.8 666 50.7 70.8 12.8 1 977.5 40.8 2 427.5

10pct cust 9.0 536.1 661 51.4 74.0 12.4 2 019.3 39.9 2 742.0

6.4.4 Comparison to Related Work

Comparing running times is often difficult, due to different machines, benchmark

instances, and programming skills. In addition, objectives and constraints in dynamic

ridesharing come in a wide variety. For a fair comparison, we carefully reimplemented

one competitor and run it on the same machine and instances. We choose the

dispatching algorithm in MATSim for various reasons.

First, MATSim uses exactly the same problem formulation. Second, since MATSim

is actually used in industry and academia, the comparison of LOUD to MATSim is of

particular practical relevance. Third, since the code of MATSim is publicly available,

there are no unclear implementation details. Fourth, the running times reported

by the algorithms mentioned in Section 6.1 are roughly similar. On a benchmark

instance comparable to Berlin-10pct, the algorithm by Huang et al. [HBJW14] takes

between 10 and 100 milliseconds to process a ride request. For their simulated-

annealing algorithm, Jung et al. [JJP16] report running times of 174–257 milliseconds

per request (on a much smaller instance). Unfortunately, T-Share [MZW13] does



Chapter 6 Dynamic Ridesharing

118

Table 6.5: Detailed statistics about the special-case treatments on various benchmark

instances with standard and customizable CHs. For each special-case treatment, we

report the number of insertions tried and the running time (in microseconds). For

handling pickups before the next stop, we additionally report the number of CH

queries needed per ride request. For handling pickups and dropoffs after the last stop,

we additionally report the number of last stops visited during the reverse Dijkstra

searches from the pickup and dropoff spot, respectively.

pickup at beginning pickup at end dropoff at end

input CH insert qy time stop insert time stop insert time

Berlin std 69.7 0.80 9.8 1.5 1.5 9.6 120.9 18.1 555.7

1pct cust 70.4 0.79 8.8 1.5 1.5 9.7 120.9 17.9 562.3

Berlin std 582.9 0.80 21.9 3.9 3.9 5.4 731.0 100.9 379.8

10pct cust 585.6 0.80 20.8 3.9 3.9 5.2 731.0 99.4 369.8

Ruhr std 184.4 1.76 25.2 1.7 1.7 34.3 302.1 26.3 3 308.3

1pct cust 183.5 1.76 28.4 1.7 1.7 34.9 302.1 25.9 3 376.7

Ruhr std 1 329.6 2.57 70.8 2.4 2.4 12.8 1 795.8 111.3 1 977.5

10pct cust 1 317.2 2.59 74.0 2.4 2.4 12.4 1 795.8 109.2 2 019.3

not report any absolute running times. Our MATSim reimplementation takes 14

and 18 milliseconds per request on Berlin-1pct and Berlin-10pct, respectively; see

Table 6.6 for details. Note that this is 15 times faster than the official MATSim code.

Table 6.7 compares LOUD to the dispatching algorithm in MATSim. Besides a

reimplementation of the original heuristic algorithm (MATSim-h), we also consider an

exact variant (MATSim-e). Recall that the filtering phase tries all possible insertions

into each vehicle’s route, where all needed detours are estimated using geometric

distances. The travel time between any two vertices is given by (𝜎dist · 𝜇)/(𝜎spd · vveh),
where 𝜇 is the straight-line distance, vveh is the estimated vehicle speed, and 𝜎dist
and 𝜎spd are parameters. MATSim-h (in accordance with the official code) sets

the parameters (vveh, 𝜎dist, 𝜎spd) to (30 km/h, 1.3, 1.5). MATSim-e sets vveh to the

maximum travel speed that occurs in the network, and both 𝜎dist and 𝜎spd to 1.

We observe that LOUD is 30 times (20 times) faster than MATSim-h on Berlin-10pct

(Berlin-1pct). On Ruhr-10pct, we even see a speedup of around 45. Since MATSim-e

and both LOUD variants are exact algorithms, all three make the same matching

decisions, and thus obtain the same solution quality. Interestingly, note that although

MATSim-h does not find the best insertion for each individual ride request, it obtains

slightly better wait times in total on Berlin-10pct.
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Table 6.6: Performance of resolving ride requests on various benchmark instances

with the heuristic MATSim algorithm and its exact variant. We report the time for

the filtering phase, the search to the pickup, the search from the pickup, the search to

the dropoff, the search from the dropoff, the evaluation phase, and the total running

time. All running times are given in milliseconds. Moreover, we report the number of

insertions tried during the filtering phase, as well as the number of filtered insertions.

geometric filtering Dijkstra searches eval

input var tried filtered time to p fr p to 𝑑 fr 𝑑 time total

Berlin heu 1 811 101 0.26 3.5 3.5 3.6 2.9 0.01 13.75

1pct ex 1 811 1 354 0.30 5.0 4.7 4.6 4.6 0.05 19.29

Berlin heu 18 006 386 2.26 4.0 4.1 4.1 3.7 0.03 18.18

10pct ex 18 009 12 708 3.24 5.1 4.8 4.7 4.8 0.43 23.07

Ruhr heu 5 706 53 1.23 14.4 17.8 19.5 9.2 0.01 62.16

1pct ex 5 859 3 366 1.45 50.7 50.1 49.5 49.3 0.38 201.49

Ruhr heu 50 620 126 10.63 20.4 27.1 31.8 18.3 0.04 108.14

10pct ex 52 474 32 374 14.53 50.5 52.2 50.5 51.7 3.69 223.05

On Ruhr-10pct, MATSim-h achieves both better wait and ride times than the three

exact algorithms. Note, however, that the vehicles operate less efficiently. That is,

MATSim-h utilizes the fleet under the given constraints worse than the three others.

Therefore, MATSim-h actually obtains a worse solution quality on Ruhr-10pct.

6.4.5 Integrating LOUD into the MATSim Software Package

MATSim is a full-fledged software package for transport simulations that is currently

used in industry and academia. It offers support for a wide variety of transportation

types, including driving, walking, transit, cycling, and ridesharing. In the previous

section, we reimplemented the algorithm used by MATSim to dispatch shared taxi-

like vehicles and compared it to our LOUD algorithm. In this section, we go the other

way around and integrate our LOUD implementation into the MATSim software.

MATSim simulates the movement of each inhabitant (also called agent) in the study
area. For each agent, MATSim maintains a set of alternative day plans, which consist

of a sequence of activities at different locations and trips between these locations.

Trips can use driving, walking, transit, cycling, ridesharing systems, and more. For

each trip, a day plan contains the full route that the agent will take. Moreover, a score
is associated with each day plan that represents the plan’s fitness or attractiveness.



Chapter 6 Dynamic Ridesharing

120

Table 6.7: Comparison of LOUD to the heuristic MATSim algorithm (and its exact

variant). We report the average running time per request and statistics about the

solution quality. For requests, we report the average and 95th percentile of the wait

times, and the average ride and trip time. For vehicles, we report the average time

spent driving empty (i.e., without riders), spent driving occupied, spent picking up

or dropping off riders, and the average operation time.

request statistics [m:s] vehicle statistics [h:m]

time wait ride trip emp occ stop op

input algorithm [ms] avg 95 %

Berlin MATSim-h 13.8 4:11 8:21 14:11 18:22 0:35 3:19 0:33 4:27

1pct MATSim-e 19.3 4:12 8:20 14:11 18:23 0:36 3:19 0:33 4:28

LOUD-CH 0.7 4:12 8:20 14:11 18:23 0:36 3:19 0:33 4:28

LOUD-CCH 0.7 4:12 8:20 14:11 18:23 0:36 3:19 0:33 4:28

Berlin MATSim-h 18.2 3:45 8:21 14:52 18:36 0:14 2:31 0:29 3:14

10pct MATSim-e 23.1 3:47 8:13 14:51 18:38 0:13 2:31 0:29 3:13

LOUD-CH 0.6 3:47 8:13 14:51 18:38 0:13 2:31 0:29 3:13

LOUD-CCH 0.7 3:47 8:13 14:51 18:38 0:13 2:31 0:29 3:13

Ruhr MATSim-h 62.2 5:57 12:35 13:05 19:02 1:09 3:23 0:33 5:05

1pct MATSim-e 201.5 5:54 12:22 13:52 19:46 1:04 3:19 0:33 4:56

LOUD-CH 3.5 5:54 12:22 13:52 19:46 1:04 3:19 0:33 4:56

LOUD-CCH 3.6 5:54 12:22 13:52 19:46 1:04 3:19 0:33 4:56

Ruhr MATSim-h 108.1 3:36 8:17 13:12 16:49 0:24 2:41 0:30 3:35

10pct MATSim-e 223.1 3:43 8:43 13:54 17:38 0:22 2:34 0:30 3:25

LOUD-CH 2.4 3:43 8:43 13:54 17:38 0:22 2:34 0:30 3:25

LOUD-CCH 2.8 3:43 8:43 13:54 17:38 0:22 2:34 0:30 3:25

The goal of MATSim is to predict the movement of a population, i.e., to generate

realistic day plans. To do so, MATSim operates in iterations. Each iteration consists

of the three phases replanning, mobsim (for mobility simulation), and scoring. At

the beginning of each iteration, each agent selects one of its day plans based on

their scores. A certain fraction of the agents is allowed to modify their selected day

plan, for example by changing the time or location of an activity or the route or

mode of a trip. During the mobsim, the agents move along the routes determined

by their day plan. At the end of each iteration, each agent associates a score with

their day plan based on how well the plan worked. MATSim stops when the scores

have converged. The final day plans then realistically predict the movement of the

population. Typically, the scores need several hundred iterations to converge.
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We are mainly interested in the mobsim, which moves the agents along their

routes as follows. The mobsim associates a FIFO queue with each edge in the road

network. Moreover, each edge has a free-flow travel time, a flow capacity, and a

storage capacity. During the mobsim, the agents move from queue to queue along

their routes. In each time step, the mobsim repeatedly moves the agent at the head

of each queue to the tail of the next queue as long as three conditions hold. First, the

agent has spent at least the free-flow travel time in the queue. Second, the number of

agents removed from the queue in the current time step is below the flow capacity.

Third, the number of agents in the next queue is below the storage capacity.

In addition to moving agents from queue to queue along preplanned routes de-

termined by day plans, the mobsim also processes dynamic ride requests. For each

request in a time step, the mobsim computes the best insertion and modifies the

planned route of the selected vehicle accordingly. The shared vehicles themselves

move through the queues along their route as any other agent.

MATSim is written in the Java programming language. Its functionality is orga-

nized into modules called contributions. Support for ridesharing systems is provided

by the drt contribution. At its heart is a component called DefaultDrtOptimizer,

which is invoked whenever a ride request is received. It picks a vehicle and modi-

fies its route accordingly or rejects the request. To make LOUD accessible within

MATSim, we implement a LoudDrtOptimizer that resembles the functionality of the

DefaultDrtOptimizer, but uses LOUD rather than the built-in dispatching algorithm.

We do not reimplement LOUD in Java. Instead, the LoudDrtOptimizer accesses

our native LOUD implementation through the Java Native Interface (JNI). The native

code takes the pickup and dropoff spot and the earliest departure time and returns the

best insertion, including the full paths to the pickup, from the pickup, to the dropoff,

and from the dropoff. Note that the vehicle routes are maintained twice. The native

code needs the routes for the matching decisions and maintains them as discussed in

Section 6.3.1. The Java code needs the routes to move the shared vehicles through

the queues. To keep implementation complexity low, we reuse the existing Java code

for maintaining and modifying the routes in Java.

Table 6.8 compares the running time and solution quality of themobsimwhen using

the built-in dispatching algorithm, our reimplementations of the built-in algorithm,

and our LOUD implementations. We consider each instance without and with traffic.

Note that in this experiment, we make matching decisions based on free-flow travel

times. That is, all computed insertions and paths are optimal with respect to the

free-flow metric. Without traffic (◦), all agents move at free-flow speed through the

queues. We achieve this by multiplying the flow capacities and storage capacities by

100, which essentially makes traffic congestion impossible, since the flow and storage

capacities are never reached. With traffic (•), the agents may get stuck in traffic jams,

leading to delays in the arrival of some agents.
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Table 6.8: Running time and solution quality of the MATSim mobsim when using the

built-in dispatching algorithm, our reimplementations of the built-in algorithm, and

our LOUD implementations. We consider various benchmark instances, each without

traffic (vehicles travel at free-flow speed) and with traffic (travel speeds depend on

how many vehicles are on a road segment). For requests, we report the average and

95th percentile of the wait times, and the average ride and trip time. For vehicles, we

report the average distance driven empty, occupied, and in total.

request stats [m:s] vehicle stats [km]

time wait ride trip emp occ tot

input traf algorithm [h:m] avg 95 %

Berlin ◦ built-in 0:59 4:15 8:44 14:44 19:00 11.9 91.9 104

1pct MATSim-h 0:07 4:16 8:35 14:32 18:48 12.2 91.8 104

MATSim-e 0:08 4:17 8:34 14:32 18:50 12.3 91.7 104

LOUD-CH 0:03 4:16 8:35 14:33 18:49 12.1 91.5 104

LOUD-CCH 0:03 4:17 8:36 14:32 18:49 12.3 91.8 104

Berlin • built-in 0:56 5:48 14:08 19:05 24:53 13.0 92.1 105

1pct MATSim-h 0:07 5:50 13:50 18:52 24:42 13.9 92.6 106

MATSim-e 0:09 5:53 14:14 18:50 24:42 14.1 92.3 106

LOUD-CH 0:03 5:58 14:35 18:45 24:43 13.9 92.4 106

LOUD-CCH 0:03 5:51 14:10 18:43 24:33 13.8 92.3 106

Berlin ◦ built-in 12:41 3:53 8:53 16:30 20:24 3.8 64.8 69

10pct MATSim-h 1:10 3:59 8:50 15:50 19:49 4.5 66.6 71

MATSim-e 1:25 4:01 8:42 15:49 19:50 4.3 66.5 71

LOUD-CH 0:29 4:02 8:46 15:50 19:52 4.4 66.5 71

LOUD-CCH 0:29 4:02 8:47 15:46 19:48 4.4 66.5 71

Berlin • built-in 12:57 4:34 10:42 19:28 24:02 4.2 65.4 70

10pct MATSim-h 1:13 5:01 11:15 19:34 24:35 5.1 67.6 73

MATSim-e 1:27 5:11 11:21 19:37 24:48 5.1 67.5 73

LOUD-CH 0:32 5:18 11:35 19:43 25:01 5.1 67.7 73

LOUD-CCH 0:32 5:18 11:30 19:37 24:55 5.2 67.5 73

MATSim reports the running time for each phase (replanning, mobsim, scoring)

of an iteration separately. However, it does not further subdivide the time of the

mobsim. Therefore, the running time reported in Table 6.8 includes not only the time

for the matching decisions but also the effort to maintain the vehicle routes in Java

and to move the agents of all transportation types through the queues. That is, we

cannot expect to see the speedups reported in the previous section in this experiment.
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On Berlin-1pct, we decrease the total running time of the mobsim from around

one hour to only three minutes. Given that we replaced only the dispatcher for

the ridesharing system (and reuse any other code as is), this is a considerable im-

provement. Likewise, the running time on Berlin-10pct is significantly reduced from

13 hours to half an hour, again by replacing only the dispatching algorithm. When

using our LOUD implementation within MATSim, the matching decisions are no

longer the performance bottleneck of the mobsim.

We observe that the three mobsim variants based on MATSim-e, LOUD-CH and

LOUD-CCH obtain slightly different request and vehicle statistics. This may be

surprising because all three are exact algorithms and thus should make the same

matching decisions. The reason for the divergence is that shortest paths generally

are not unique. Even when MATSim-e, LOUD-CH and LOUD-CCH obtain the same

insertion, they can still return different paths to and from the pickup and dropoff

spot. The actual paths, however, can affect all subsequent ride requests, since the

detour to service a request depends on the current locations of the vehicles, which in

turn depend on the actual paths of the vehicles.

We do not run into such trouble in our discrete-event simulation, since we essen-

tially teleport the vehicles from stop to stop rather than moving them along their

routes. When the location of a vehicle currently driving from stop 𝑠 to stop 𝑠 ′ is
needed, we run a CH search from 𝑠 to 𝑠 ′, retrieve the actual path, and traverse the

path (starting at the departure time at 𝑠) until we reach the current point in time.

Since we use the same method to retrieve the current location for all three algorithms,

the matching decisions do not diverge, and the solution quality is the same.

6.5 Conclusion
We presented LOUD, a novel algorithm for large-scale dynamic ridesharing. Unlike

most competitors, we do not require a huge number of calls to Dijkstra’s algorithm,

but adapt a modern route planning technique developed for the many-to-many

problem (bucket-based contraction hierarchies). Our experiments on the Open Berlin

Scenario with 10 000 vehicles and more than 100 000 ride requests show that LOUD

answers a request in less than a millisecond, which is 30 times faster than current

algorithms. This gives plenty of leeway for interactive applications on cities even

larger than Berlin. For transport simulations, LOUD is even more important. Since

simulators process each request hundreds of times, running time is an even bigger

issue than in interactive applications, and requests cannot be answered “fast enough”.

Since the special-case treatments take up the largest fraction of the running time,

it would be interesting to eliminate the two remaining (local) Dijkstra searches. A

possible approach would be to maintain additional buckets that store the unpruned
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forward CH search spaces of the ends of the current vehicle routes. Note that we

cannot apply elliptic pruning because the leeway is unbounded. Instead, we can keep

the buckets sorted (e.g., using search trees), which allows us to stop a bucket scan

when we visit an entry that cannot possibly yield an insertion better than the best

one so far encountered in any previous phase.

Parallelization could also be a key to better performance. Most likely, this would

be a combination of fine-grained parallelism and parallelization over several requests.

Independent of the internals of LOUD, the main issue here is that a change caused

by an earlier request can affect all subsequent requests. Therefore, it would be

interesting to investigate how independent requests can be identified or alternatively

how dependencies can be detected and repaired. One could also study to what extent

certain dependencies can be ignored without severely affecting solution quality.

Finally, it would be interesting to increase the solution space. For example, one

could allow requests already matched to a vehicle to be reordered or moved to a

different vehicle. Another interesting project are variable pickup and dropoff spots,

where riders agree to walk a short distance to a location where it is more efficient

to pick them up or drop them off (e.g., on main roads rather than in traffic-calmed

areas). We believe that the techniques developed for LOUD might be key ingredients

for such generalized systems that promise higher overall solution quality.
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7 Turn Costs and Restrictions

So far, we have ignored turn restrictions and turn costs. There are two common

ways to represent turn costs and restrictions. The edge-based model expands the

network so that road segments become vertices and allowed turns become edges. The

compact model keeps intersections as vertices, but associates a turn table with each

vertex. Although CCHs can be used as is on the edge-based model, the performance

of preprocessing and customization is severely affected. While the expanded network

is only three times larger, both preprocessing and customization time increase by

up to an order of magnitude. In this chapter, we carefully engineer customizable

contraction hierarchies to exploit different properties of the expanded graph. We

reduce the increase in customization time from up to an order of magnitude to a factor

of about 3. The increase in preprocessing time is reduced even further. Moreover, we

present a CCH variant that works on the compact model, and show that it performs

worse than the variant on the edge-based model. Surprisingly, the variant on the

edge-based model even uses less space than the one on the compact model, although

the compact model was developed to keep the space requirement low.

This chapter is based on joint work with Dorothea Wagner, Tim Zeitz and Michael

Zündorf [BWZZ20].

7.1 Introduction
Motivated by computing driving directions, the last two decades have seen intense

research on speedup techniques [Bas+16] for Dijkstra’s algorithm [Dij59], which rely
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on a slow preprocessing phase to enable fast queries. Almost all previous experimental

studies (e.g., [GH05, HKMS09, Lau09, DSW16, Gut04, ADGW11, ALS13, BFSS07])

are restricted to the simplified model, where vertices represent intersections, edges

represent road segments, and turn costs are ignored. While it has beenwidely believed

that turn costs and restrictions are easy to incorporate, Delling et al. [DGPW17] show

that most algorithms have a significant performance penalty. For long-range queries,

one may argue that turn costs are negligible. When analyzing intracity traffic (as in

Chapter 5) or dispatching vehicles operating within a particular city (as in Chapter 6),

however, taking turn costs into account is of utmost importance.

A fairly recent development in the area of route planning are customizable speedup

techniques, which split preprocessing into a slow metric-independent part, taking

only the network structure into account, and a fast metric-dependent part (the

customization), incorporating edge costs (the metric). Customizable route planning

(CRP) [DGPW17] and customizable contraction hierarchies (CCHs) [DSW16] are

the most prominent among them, and are both used in commercial and research

software. While CRP was developed with turn costs in mind, CCHs were not. In this

chapter, we incorporate turn costs and restrictions into CCHs.

Related Work. Turns can be encoded into the network structure by expanding

the network so that road segments become vertices and allowed turns become

edges [Cal61, Win02]. This is known as the edge-based model [Bas+16]. While

any speedup technique can work on an expanded network, some are more robust

than others [DGPW17]. We are aware of two algorithms that have been tailored

to handle turn costs and restrictions. First, Geisberger and Vetter [GV11] present a

turn-aware version of (non-customizable) contraction hierarchies (CHs) [GSSV12].

Second, Delling et al. [DGPW11] develop CRPwith turns in mind. Both independently

proposed a different turn representation. The compact model keeps intersection as

vertices, but associates a turn table with each vertex.

Our Contribution. The contribution of this chapter is twofold. First, we propose

several optimizations that accelerate CCHs on the edge-based model by exploiting

properties of the expanded network. We reduce the increase in customization time

from up to an order of magnitude to a factor of about three (which is reasonable

since the expanded network is three times larger than the original network, which

ignores turn costs). The increase in preprocessing time is reduced even further.

Second, we introduce a CCH variant that works on the compact model, and discuss

various issues we found. An extensive experimental evaluation shows that the edge-

based variant significantly outperforms the compact variant. Surprisingly, the variant

on the edge-based model even uses less space than the one on the compact model.
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Outline. Section 7.2 formally defines the problem we solve and has background

information. Section 7.3 presents optimizations that accelerate CCHs on the edge-

based model. Section 7.4 introduces a CCH variant that works on the compact model.

Section 7.5 presents an extensive experimental evaluation and comparison of both

variants. Section 7.6 concludes with final remarks.

7.2 Preliminaries
We are given a directed graph 𝐺 = (𝑉 , 𝐸) where vertices represent intersections and
edges represent roads. A cost function ℓ : 𝐸 → R≥0 assigns an arbitrary cost to each

edge. We are also given two functions 𝑟 : 𝐸 × 𝐸 → {0, 1} and 𝑐 : 𝐸 × 𝐸 → R≥0 ∪ {∞}.
If 𝑟 (𝑒, 𝑓 ) = 0, the head of 𝑒 is the tail of 𝑓 and the turn from 𝑒 to 𝑓 is allowed. The cost

of the turn is given by 𝑐 (𝑒, 𝑓 ). Note that 𝑟 and 𝑐 have to be consistent, i.e., 𝑟 (𝑒, 𝑓 ) = 1

implies 𝑐 (𝑒, 𝑓 ) = ∞. Since 𝑟 depends on the network topology, it is part of the

input to the preprocessing phase. The turn cost function 𝑐 is part of the input to the

customization since it depends on the traffic situation and personal preferences.

A path 𝑃 from a point along an edge 𝑒0 to a point along an edge 𝑒𝑘 is a triple

that consists of a sequence of edges ⟨𝑒0, . . . , 𝑒𝑘⟩ with 𝑟 (𝑒𝑖 , 𝑒𝑖+1) = 0, a real-valued

offset 𝑜0 ∈ [0, 1] on the source edge 𝑒0, and a real-valued offset 𝑜𝑘 ∈ [0, 1] on the

target edge 𝑒𝑘 . The cost of a path is the sum of the costs of its constituent edges and

turns, i.e., ℓ (𝑃) = (1 − 𝑜0) · ℓ (𝑒0) +
∑︁𝑘
𝑖=1
(𝑐 (𝑒𝑖−1, 𝑒𝑖 ) + ℓ (𝑒𝑖 )) − (1 − 𝑜𝑘 ) · ℓ (𝑒𝑘 ). Given

a source edge 𝑒𝑠 with offset 𝑜𝑠 and a target edge 𝑒𝑡 with offset 𝑜𝑡 , the problem we

consider is computing a shortest path from the start point along 𝑒𝑠 to the end point

along 𝑒𝑡 . For simplicity, we assume that 𝑜𝑠 = 1 and 𝑜𝑡 = 1 in the rest of this chapter.

In the following, we discuss both common ways to represent turn costs and

restrictions. After that, we describe tailored implementations of Dijkstra and CHs

that operate on compact graphs. The standard versions of Dijkstra, CHs, and CCHs,

which operate on simplified or edge-based graphs, were discussed in Chapter 2.

7.2.1 Turn Representation
The simplified model ignores turn costs and restrictions; see Figure 7.1 (left). To

actually incorporate them, there are two common ways. We explain each in turn.

Edge-based Model. The edge-based model [Cal61, Win02] expands the network so

that road segments become vertices and allowed turns become edges; see Figure 7.1

(middle) for an example. More precisely, the edge-based graph 𝐺𝑒 = (𝑉𝑒 , 𝐸𝑒 ) is
obtained from 𝐺 as follows. The vertices of 𝐺𝑒 are the edges of 𝐺 , i.e, 𝑉𝑒 = 𝐸. The

edges of 𝐺𝑒 are the allowed turns of 𝐺 , i.e., 𝐸𝑒 = {(𝑒, 𝑓 ) : 𝑒, 𝑓 ∈ 𝐸, 𝑟 (𝑒, 𝑓 ) = 0}. The



Chapter 7 Turn Costs and Restrictions

128

Figure 7.1: Turn representations (from left to right): the simplified model, the edge-

based model, and the compact model.

cost of an edge (𝑒, 𝑓 ) ∈ 𝐸𝑒 is defined as ℓ𝑒 (𝑒, 𝑓 ) = 𝑐 (𝑒, 𝑓 ) + ℓ (𝑓 ). The main advantage

of the edge-based model is that most route planning algorithms can be used as is on

it, without further modifications to the algorithm.

Compact Model. The compact model [GV11, DGPW17] keeps intersections as

vertices, but associates a p ×𝑞 turn table 𝑇v with each vertex v , where p and 𝑞 are the

numbers of incoming and outgoing edges, respectively. The entry 𝑇v (𝑖, 𝑗) represents
the cost of the turn from the 𝑖-th incoming edge 𝑒 to the 𝑗-th outgoing edge 𝑓 , i.e.,

𝑇v (𝑖, 𝑗) = 𝑐 (𝑒, 𝑓 ). For each edge (v, 𝑤), its tail corresponds to an exit point at v and its
head corresponds to an entry point at 𝑤. Note that the entry points in the compact

model translate directly to the vertices in the edge-based model; see Figure 7.1 (right)

for an example. We denote by v |𝑖 the 𝑖-th exit (or entry) point at v and by (v |𝑖, 𝑤 | 𝑗) the
edge whose tail corresponds to the 𝑖-th exit point at v and whose head corresponds to
the 𝑗-th entry point at 𝑤. The main advantage of the compact model is its low space

overhead since turn tables can be shared among vertices (the number of distinct turn

tables for continental instances such as the road network of Western Europe used in

our experiments is in the thousands rather than millions [DGPW17]).

7.2.2 Dijkstra’s Algorithm on the Compact Model
Recall that on standard graphs, Dijkstra’s algorithm computes shortest-path distances

from a source vertex to all other vertices by scanning them in increasing order of

distance. On compact graphs, we must work on entry points instead of vertices.

That is, we maintain a distance label 𝑑 (v |𝑖) for each entry point v |𝑖 and a queue 𝑄 of

unsettled entry points. Initially, 𝑑 (𝑠 |𝑖) = 0 for the entry point 𝑠 |𝑖 corresponding to
the head of the source edge, 𝑑 (v | 𝑗) = ∞ for all other entry points v | 𝑗 , and 𝑄 = {𝑠 |𝑖}.
To settle an entry point v |𝑖 , we set 𝑑 (𝑤 |𝑘) = min{𝑑 (𝑤 |𝑘), 𝑑 (v |𝑖) +𝑇v (𝑖, 𝑗) + ℓ (𝑒)} for
each outgoing edge 𝑒 = (v | 𝑗, 𝑤 |𝑘). Each entry point is settled at most once, however,

each vertex can be visited multiple times. Note that Dijkstra’s algorithm on the

compact model essentially simulates the execution on the edge-based model.
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Figure 7.2: Vertex contraction on the compact model. Original edges are shown in

black, turn edges are shown in green, and shortcut edges are shown in blue. Each

original edge and each right-, left- and U-turn movement has cost 1. Each through

movement has cost 10. Left: A subgraph before contraction. Middle: Contracting

vertex v ′ creates a self-loop at v (cost 3). Right: Contracting v creates a shortcut edge
between 𝑢 and 𝑤 (cost 7), resulting in two parallel edges between them.

7.2.3 Contraction Hierarchies on the Compact Model

Recall from the previous section that we must maintain and compute distance labels

for entry points (rather than vertices) in the compact model. Therefore, when con-

tracting a vertex v , we need to preserve the distances between all entry points in

the remaining graph (without v). In general, we cannot avoid self-loops and parallel

edges. See Figure 7.2 for an example. Contracting vertex v ′ creates a self-loop at

vertex v , because the through movement from v’s left entry point to its right exit

point is costlier than the path via v ′. Analogously, contracting v results in two parallel
edges between vertices 𝑢 and 𝑤. When entering 𝑢 from the west and leaving 𝑤 to

the east, the shortest path is via v . In contrast, when entering 𝑢 from the north and

leaving 𝑤 to the north, it is better to traverse the edge between 𝑢 and 𝑤.

Self-loops make the computation of shortcuts more complicated. Each shortcut is

no longer a concatenation of exactly two edges, but can also include one or more

self-loops at the middle vertex. For example, in Figure 7.2, the shortcut between 𝑢

and 𝑤 includes the self-loop at v . Therefore, Geisberger and Vetter [GV11] use the

witness search (the local Dijkstra) not only to decide whether a shortcut is necessary

but also to compute the cost of the shortcut.

More precisely, to contract a vertex v , they run a witness search for each exit

point 𝑢 |𝑖 such that there is at least one incoming edge (𝑢 |𝑖, v). Initially, the authors
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set 𝑑 (v ′ | 𝑗) = ℓ (𝑒) for each edge 𝑒 = (𝑢 |𝑖, v ′ | 𝑗). Moreover, each entry point v ′ | 𝑗 is
inserted into the queue. The witness search stops when each entry point 𝑤 |𝑙 such
that there is at least one edge (v, 𝑤 |𝑙) has been settled. A shortcut 𝑠 = (𝑢 |𝑖, 𝑤 |𝑙) is
only added if it is built from an edge (𝑢 |𝑖, v), zero or more self-loops at v , and an

edge (v, 𝑤 |𝑙). The shortcut has cost ℓ (𝑠) = 𝑑 (𝑤 |𝑙).
The query phase runs a bidirectional version of the turn-aware Dijkstra described

above, but does not relax edges leading to lower-ranked vertices. Note that the

stall-on-demand optimization can also be applied in the compact model, as discussed

in more detail by Geisberger and Vetter [GV11].

7.3 CCHs on the Edge-Based Model
Although customizable contraction hierarchies can be used without further mod-

ifications on the edge-based model, both preprocessing and customization have a

significant performance penalty. In this section, we present several acceleration tech-

niques that exploit properties of edge-based graphs. We describe each optimization

in turn, but they can be combined in an actual implementation.

Contraction Order. The most straightforward approach to compute a vertex order

for an edge-based graph is to pass the edge-based graph to a standard CCH ordering

algorithm. We call a contraction order obtained in this way an edge-based order. Un-
fortunately, as our experiments will show, ordering takes over an order of magnitude

longer on edge-based graphs (although they are only three times larger).

For better performance, we exploit the fact that the vertices of an edge-based

graph 𝐺𝑒 are the edges of the corresponding input graph 𝐺 . More precisely, instead

of computing a vertex order for𝐺𝑒 , we obtain an edge order for𝐺 . To do so, we use a

standard CCH ordering algorithm as a black box to compute a vertex order for 𝐺 (as

usual) and order the edges of 𝐺 by the rank of their tail. The order of edges with the

same tail is arbitrary. Note that if a set 𝑋 ⊆ 𝑉 separates the sets 𝐴 ⊆ 𝑉 and 𝐵 ⊆ 𝑉
in 𝐺 , then the set {(v, 𝑤) ∈ 𝑉𝑒 : v ∈ 𝑋 } separates the sets {(v, 𝑤) ∈ 𝑉𝑒 : v ∈ 𝐴}
and {(v, 𝑤) ∈ 𝑉𝑒 : v ∈ 𝐵} in 𝐺𝑒 . We call a contraction order obtained in this way

a vertex-based order. While vertex-based orders can be computed much faster than

edge-based orders, they are of rather poor quality.

A closer look at vertex-based orders shows that their computation is needlessly

complicated. The idea behind all CCH ordering algorithms is as follows. First, they

compute a cut in the input graph. Second, this cut is transformed into a vertex separa-

tor (e.g., by picking the endpoints of the cut edges on the source or sink side [HS18]).

Third, the ordering algorithms assign the highest ranks to the separator vertices,

remove them from the graph, and recurse on the resulting connected components.
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When computing vertex-based orders, each cut is first transformed into a vertex

separator and then back into an edge set. We can do better by omitting the two

transformations. More precisely, we propose to compute an edge order on the input

graph as follows: Compute a cut in the input graph, assign the highest ranks to the

cut edges, remove them from the input graph, and recurse on the resulting connected

components. As discussed before, an edge order on the input graph is equivalent

to a vertex order on the edge-based graph. We call an order obtained in this way a

cut-based order. As our experiments will show, cut-based orders can be computed as

fast as vertex-based orders and are as good as edge-based orders.

Infinite Shortcuts. CCH preprocessing views the input graph as an undirected

graph. Directions are only taken into account in the customization phase (and during

queries), which associates two costs (upward and downward) with each edge. Note

that a one-way road segment can be modeled by setting the cost of the reverse

direction (i.e., the forbidden direction) to∞.
Due to this workflow, CCHs can contain shortcuts to which customization always

assigns a cost of infinity, independent of the input metric. Note that customization

associates a finite cost with a shortcut (v, 𝑤) if and only if there is a path from v to 𝑤
in the input graph with all intermediate vertices ranked lower than v and 𝑤. If there

is no such path, the shortcut (v, 𝑤) is always assigned infinite cost. See Figure 7.3 for
an example. We call such edges infinite shortcuts.
Infinite shortcuts are necessary neither in the customization phase nor during

queries. Therefore, we can remove them from the CCH during metric-independent

preprocessing. We do so by simulating a customization phase where each edge in

the input graph is assigned a cost of zero. Each edge in the CCH that has infinite

cost after the simulated customization is removed. Since CCHs store a directed edge

and its reversal as a single undirected edge, we can remove an edge {v, 𝑤} only if

both (v, 𝑤) and (𝑤, v) are infinite shortcuts. Note that the reason to remove infinite

shortcuts is that we want to reduce the number of triangles in the CCH, since the

customization time is essentially linear in the number of triangles.

Standard (vertex-based) graphs are almost bidirected, since one-way road segments

are in the minority. Therefore, most edges in vertex-based CCHs have finite cost

in both directions, and infinite shortcuts are rare. In contrast, edge-based graphs

contain much more edges for which the reversal is not present. Hence, edge-based

CCHs contain much more infinite shortcuts. For this reason, this optimization is

worth the effort only in the presence of turns.

Directed Hierarchies. Removing each undirected edge {v, 𝑤} with (v, 𝑤) and
(𝑤, v) being infinite shortcuts slightly reduces the number of triangles and thus
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Figure 7.3: An example of a CCH with infinite shortcuts. Left: The input graph with

arbitrary edge costs 𝑐1, . . . , 𝑐5. Right: The corresponding CCH after preprocessing

and customization. Independent of the metric (the actual values of 𝑐1, . . . , 𝑐5), the

shortcuts (𝑢, 𝑤) and (𝑤,𝑢) have infinite cost, as there is neither a𝑢–𝑤 nor a𝑤–𝑢 path

in the input graph with all intermediate vertices ranked lower than 𝑢.

the customization time. However, for most infinite shortcuts (v, 𝑤), the reverse

edge (𝑤, v) has finite cost. We therefore propose to store edge-based CCHs as

directed graphs rather than undirected graphs. This allows us to remove upward

and downward infinite shortcuts independent of each other. When processing a

pair {v, 𝑤} of adjacent vertices during the customization phase, we now enumerate

the triangles for (v, 𝑤) and (𝑤, v) separately. Note that in this way, no enumerated

triangle contains an infinite shortcut, and thus no triangle is provably unnecessary.

Reordering Separator Vertices. Recall that a cut-based order is obtained by com-

puting a cut 𝑋 ⊆ 𝐸 in the input graph 𝐺 = (𝑉 , 𝐸) that separates 𝐺 into a source

side 𝐴 ⊆ 𝑉 and a sink side 𝐵 ⊆ 𝑉 , assigning the highest ranks to the cut edges,

removing them from 𝐺 , and recursing on the resulting connected components. The

order of the cut edges is arbitrary. By choosing it carefully, we significantly increase

the number of infinite shortcuts and thus reduce the number of triangles and the

customization time (which is essentially linear in the number of triangles).

To obtain an order of the cut edges, we partition 𝑋 into two blocks 𝑋1 and 𝑋2. The

former contains all cut edges that go from the source side to the sink side of the cut,

i.e., 𝑋1 = {(𝑎, 𝑏) ∈ 𝑋 : 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵}. The latter contains all cut edges that go from

the sink side to the source side, i.e., 𝑋2 = {(𝑏, 𝑎) ∈ 𝑋 : 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵}. Assume that

|𝑋1 | ≥ |𝑋2 |. We propose to rank all edges in 𝑋1 lower than any edge in 𝑋2.
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Figure 7.4: Increasing the number of infinite shortcuts in customizable contraction

hierarchies. Left: A cut 𝑋 that separates the input graph into two components 𝐺 [𝐴]
and 𝐺 [𝐵]. Middle: An arbitrary contraction order on the separator vertices in the

edge-based graph that correspond to the cut edges in the input graph. Generally,

we obtain a complete graph on the separator vertices whose edges have finite cost

each. Right: A contraction order in which all separator vertices corresponding to

rightward cut edges occur before the separator vertex corresponding to the leftward

cut edge. All shortcuts between rightward separator vertices (shown in red) must

have infinite cost, since there is no path in the input graph from the right to the left

component with all edges ranked no higher than (𝑤, z ).

The advantage of this order is that all edges in the hierarchy that connect vertices

in 𝑋1 are infinite shortcuts and thus can be removed. Let (𝑢, 𝑥) and (v, 𝑦) be vertices
in 𝑋1 (see Figure 7.4 for an illustration). A shortcut from (𝑢, 𝑥) to (v, 𝑦) represents a
path in 𝐺 that starts on the edge (𝑢, 𝑥) and ends on the edge (v, 𝑦). If the shortcut is
not an infinite shortcut, then there is a path ⟨𝑢, 𝑥, . . . , 𝑏, 𝑎, . . . , v, 𝑦⟩ in 𝐺 with 𝑎 ∈ 𝐴,
𝑏 ∈ 𝐵, and all intermediate edges ranked lower than (𝑢, 𝑥) and (v, 𝑦). However, since
we have (𝑏, 𝑎) ∈ 𝑋2, (𝑏, 𝑎) is ranked higher than both (𝑢, 𝑥) and (v, 𝑦), and thus such
a path does not exist. Therefore, all edges that connect vertices in 𝑋1 will be removed.

7.4 CCHs on the Compact Model
Recall that all CCH phases do not work on the original directed graph 𝐺 = (𝑉 , 𝐸),
but on the corresponding bidirected graph 𝐺 ′ = (𝑉 , 𝐸 ′) obtained from 𝐺 by adding

all edges {(𝑤, v) : (v, 𝑤) ∈ 𝐸, (𝑤, v) ∉ 𝐸}. The cost of each edge in 𝐸 ′ \ 𝐸 is ∞,
and thus the distance between any two vertices is the same in 𝐺 and 𝐺 ′. Since
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most graph-theoretical results for undirected graphs carry over to bidirected graphs,

customizable contraction hierarchies can use algorithmic tools for undirected graphs.

In particular, CCH preprocessing exploits quotient graphs and CCH queries exploit

elimination trees, which are both concepts for undirected graphs.

The compact model, however, is inherently directed. We cannot make a compact

graph bidirected, since this would add edges that exit vertices at entry points and

enter them at exit points. Therefore, in the compact model, all CCH phases have

to work on the original (not necessarily bidirected) graph. This has undesirable

consequences. First, we cannot use the efficient CCH preprocessing algorithm based

on quotient graphs. Second, we have to use Dijkstra-based queries, since the faster

elimination tree queries are also not applicable.

There is one additional issue. Recall that in the compact model, we generally

cannot avoid self-loops and multiple parallel edges and that each shortcut is no

longer built from exactly two edges, but can also include one or more self-loops at

the middle vertex. Standard CHs (on the compact model) deal with this by using the

witness searches to determine shortcut costs.

During CCH customization, however, there is no notion of graph searches at all.

We enumerate triangles and perform one basic operation for each triangle: adding up

the costs of two edges to update the cost of the third edge. Hence, to determine the

cost of a shortcut 𝑠 containing self-loops, we must insert phantom shortcuts. These
shortcuts are used during customization to incrementally compute the cost of 𝑠 by

repeatedly combining two of its constituent edges.

Preprocessing. Given a nested dissection order on the vertices, we contract them

in this order. Whenever contracting a vertex v , we have to add a shortcut between

each exit point 𝑢 |𝑖 with 𝑢 ≠ v and (𝑢 |𝑖, v) ∈ 𝐸 and each entry point 𝑤 |𝑙 with 𝑤 ≠ v
and (v, 𝑤 |𝑙) ∈ 𝐸. In addition, as already mentioned, we must add phantom shortcuts,

so that the customization phase is able to compute the costs of shortcuts that are

built from more than two edges incrementally.

Our approach is as follows. In order to contract a vertex v , we pick an order on

the turns at v and contract them in this order. Consider a turn ( 𝑗, 𝑘) at v . For each
edge (𝑢 |𝑖, v | 𝑗) entering v at entry point 𝑗 and each edge (v |𝑘, 𝑤 |𝑙) leaving v at exit
point 𝑘 , we add a shortcut (𝑢 |𝑖, 𝑤 |𝑙). Note that these shortcuts are concatenations of
two edges, and thus their costs can be customized by enumerating triangles. If 𝑢 = v
or 𝑤 = v , then the shortcut is a phantom shortcut.

Note that this approach adds shortcuts that are not necessary. A shortcut (𝑢 |𝑖, 𝑤 |𝑙)
is completely superfluous if 𝑢 = v and all turns entering exit point 𝑖 are already

contracted, or 𝑤 = v and all turns leaving entry point 𝑙 are already contracted. To

decide whether a shortcut is necessary, we maintain the number 𝑡 (·) of uncontracted
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Figure 7.5: Creation of phantom shortcuts. We are about to contract the vertex

in the center. Its lower-ranked neighbors (light-colored) are already contracted.

Original edges are shown in black, turn edges are shown in green, and shortcut edges

are shown in blue. Left: The vertex to be contracted and its neighbors before the

contraction. The order on the turns is given by the numbers. Right: The shortcuts

added while contracting the turns. Phantom shortcuts are drawn dotted.

turns that enter or leave each exit or entry point of v , respectively. Whenever we

contract a turn ( 𝑗, 𝑘), we decrement both 𝑡 ( 𝑗) and 𝑡 (𝑘). A shortcut (𝑢 |𝑖, 𝑤 |𝑙) is only
inserted if 𝑢 ≠ v or 𝑡 (𝑖) ≠ 0, and 𝑤 ≠ v or 𝑡 (𝑙) ≠ 0. See Figure 7.5 for an illustration.

Different turn orders can lead to slightly different numbers of phantom shortcuts.

We thus tested some orders on various instances, however, the impact on the perfor-

mance of all phases was limited. Therefore, any turn order that is easy to implement

can be picked, in particular, the order in which the turns are stored in memory.

Customization. We recontract each turn, this time determining shortcut costs.

Since we have the CCH topology in place, all we need to do to recontract a turn is to

enumerate all triangles spanned by this turn and perform one minimum operation

for each triangle. Consider a turn ( 𝑗, 𝑘) at a vertex v and a triangle consisting of

three edges (𝑢 |𝑖, v | 𝑗), (v |𝑘, 𝑤 |𝑙) and (𝑢 |𝑖, 𝑤 |𝑙); see Figure 7.6 for an illustration of the

triangle. We call (𝑢 |𝑖, 𝑤 |𝑙) the shortcut edge and the other the supporting edges of the
triangle. Also, we say that the turn spans the triangle.
We recontract the vertices in the given nested dissection order, and within each

vertex, we recontract the turns in the same order as during preprocessing. If we

pick the order in which the turns are stored in memory, we do not have to store

the turn order for each vertex explicitly. For each turn at a vertex v , we enumerate



Chapter 7 Turn Costs and Restrictions

136

𝑢

𝑤

𝑗

𝑘

v
𝑖

𝑙

Figure 7.6: A triangle spanned by the turn ( 𝑗, 𝑘) at v . Note that (𝑢 |𝑖, 𝑤 |𝑙) is the
shortcut edge, and (𝑢 |𝑖, v | 𝑗) and (v |𝑘, 𝑤 |𝑙) are the supporting edges of the triangle.

the triangles spanned by the turn where v is the lowest-ranked vertex, and for each

triangle, we add the costs of the two supporting edges and the turn between them,

and update the cost of the shortcut edge if needed.

We now show how to efficiently enumerate all triangles spanned by a turn ( 𝑗, 𝑘)
where the shortcut edge does not point downwards. The other case is symmetric.

We maintain a |𝑉 | × Δ array𝑊 , where Δ is the maximum indegree of the original

graph. All values in the array are initialized to ∞. First, we loop over all non-

downward edges 𝑒2 = (v |𝑘, 𝑤 |𝑙) leaving v at 𝑘 and set𝑊 [𝑤, 𝑙] = 𝑇v ( 𝑗, 𝑘) + ℓ (𝑒2).
Then, we loop through all non-upward edges 𝑒1 = (𝑢 |𝑖, v | 𝑗) entering v at 𝑗 . For each
such 𝑒1, we loop through all non-downward edges 𝑒 = (𝑢 |𝑖, 𝑤 ′ |𝑙 ′) leaving 𝑢 at 𝑖 . If

ℓ (𝑒1) +𝑊 [𝑤 ′, 𝑙 ′] < ℓ (𝑒), then we set ℓ (𝑒) = ℓ (𝑒1) +𝑊 [𝑤 ′, 𝑙 ′]. Finally, we loop over

all edges 𝑒2 again and reset𝑊 [𝑤, 𝑙] to∞ for the next enumeration.

Interestingly, a nonturn version of this customization algorithm outperforms the

original customization by Dibbelt et al. [DSW16] by a factor of four, and is twice as

fast as the engineered customization introduced in Chapter 5. The drawback, on the

other hand, is the increase in space consumption.

Queries. Dijkstra-based queries work as in standard CHs on the compact model,

however, they do not need to follow phantom shortcuts. Elimination tree queries are

not applicable, as elimination trees are defined only for undirected graphs.

7.5 Experiments
In this section, we present our experimental evaluation. Our benchmark machine

runs openSUSE Leap 15.1 (kernel 4.12.14), and has 192GiB of DDR4-2666 RAM and

two Intel Xeon Gold 6144 CPUs, each of which has eight cores clocked at 3.5 GHz and

8 × 64 KiB of L1, 8 × 1MiB of L2, and 24.75MiB of shared L3 cache. Hyper-threading

was disabled and parallel experiments use 16 threads. Our code is written in C++ and
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Table 7.1: Road networks used for the evaluation our algorithms. The turns column

contains the number of allowed turns. It corresponds to the number of edges in the

edge-based model. The number of vertices in the edge-based model is equal to the

number of edges in the original graph.

Source Vertices Edges Turns Turn

[·10
3
] [·10

3
] [·10

3
] data

Chicago TNTP 13.0 39.0 135.3 100 s U-Turns

London PTV 37.0 85.5 137.2 Costs, Restrictions

Stuttgart PTV 109.5 252.1 394.2 Costs, Restrictions

Europe DIMACS 17 350.0 39 936.5 106 371.3 100 s U-Turns

compiled with GCC 8.2.1 using optimization level 3.

We implement our algorithms on top of the existing open-source libraries. For

CCH, we use the implementation from RoutingKit
18

18 https://github.com/RoutingKit/RoutingKit

. We extend it by implementing

customization for directed hierarchies and the removal of infinite edges. For the

computation of contraction orders, we use InertialFlowCutter
19

19 https://github.com/kit-algo/InertialFlowCutter

[GHUW19] and im-

plement the computation of cut-based orders and the reordering of separator vertices.

We publish our extensions to these projects as pull requests on GitHub
20

20 https://github.com/RoutingKit/RoutingKit/pull/77

21

21 https://github.com/kit-algo/InertialFlowCutter/pull/6

. RoutingKit

includes an implementation of Inertial Flow [SS15] for the computation of contrac-

tion orders. We perform experiments with both Inertial Flow and InertialFlowCutter.

As Inertial Flow is outperformed by InertialFlowCutter, our evaluation focuses on

contraction orders obtained by InertialFlowCutter.

Inputs and Methodology. We perform experiments on several graphs with syn-

thetic and real turn cost data. See Table 7.1 for an overview. We use three city-sized

instances of the road networks of Chicago [Res], London and Stuttgart. The Lon-

don and Stuttgart instances were provided by PTV
22

22 https://ptvgroup.com

with real turn restrictions

and cost data. Our biggest benchmark instance is a graph of the road network of

Western Europe made publicly available for the Ninth DIMACS implementation

Challenge [DGJ09] with synthetic turn costs. To generate synthetic turn costs, we

assign a travel time of 100 s to all U-turns. This number does not model a realistic

time but a heavy penalty. All other turns are free. This model has been suggested

in [DGPW17] and found to approximate real-world turn cost effects on the routing

sufficiently well.

We perform experiments on the biggest strongly connected component of edge-

based model representation of each graph and the induced subgraph on the original

graph. Preprocessing running times are averages over 10 runs, customization running

https://github.com/RoutingKit/RoutingKit
https://github.com/kit-algo/InertialFlowCutter
https://github.com/RoutingKit/RoutingKit/pull/77
https://github.com/kit-algo/InertialFlowCutter/pull/6
https://ptvgroup.com
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Table 7.2: Performance results for different contraction orders on each graph. We

report the number of edges in the augmented graph and running times for preprocess-

ing, customization, and queries. Orig. denotes the baseline on the nonturn/compact

graph. The other three orders are for the edge-based model. Deri. indicates the de-
rived order, Edge the order computed on the expanded graph, Cut the order obtained
by ordering edges in the original graph.

CCH Edges Prepro. Custom. Query

[·10
3
] [s] [ms] [𝜇s]

C
h
i
c
a
g
o

Orig. 118 0.2 6 18

Deri. 1 439 0.2 155 150

Edge 819 1.1 50 60

Cut 852 0.2 51 57

L
o
n
d
o
n

Orig. 182 0.3 7 20

Deri. 1 199 0.3 85 111

Edge 767 1.1 37 52

Cut 840 0.3 40 51

S
t
u
t
t
g
a
r
t Orig. 362 0.5 11 16

Deri. 2 145 0.6 94 79

Edge 1 607 2.4 58 41

Cut 1 680 0.9 60 37

E
u
r
o
p
e

Orig. 53 521 182.3 2 349 187

Deri. 414 615 202.1 29 787 1 561

Edge 311 213 2 321.1 14 787 524

Cut 331 794 256.3 14 751 577

times averages over 100 runs. We utilize parallelization only for the preprocessing.

All other phases are run sequentially. For the queries, we perform 1 000 000 point-to-

point queries where both source and target are edges drawn uniformly at random. In

the edge-based model, these edges correspond to vertices, which we select as source

and target. For the original and compact graph, we use the heads of these edges.

Edge-Based Model. We evaluate the impact of different contraction orders on the

performance of the different phases and the size of the augmented graph. Preprocess-

ing includes both computing the order and the contraction but is dominated by the

ordering. Table 7.2 depicts the results. Incorporating turns has a significant impact

on the running time of all phases of CCH. The number of edges in the hierarchy

grows at least by a factor of four to up to more than an order of magnitude. The
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Table 7.3: Performance impact of different optimizations on each graph. We report

the number of triangles enumerated during the customization as well as customization

and query running times. All configurations use a cut-based contraction order.

Directed hierarchies imply the removal of infinite shortcuts and reordering separator

vertices builds on both directed hierarchies and the removal of infinite shortcuts.

Triangles Custom. Query

[·10
6
] [ms] [𝜇s]

C
h
i
c
a
g
o

None 21.6 51 57

Infinity 19.6 48 56

Directed 13.3 28 41

Reorder 8.2 20 31

L
o
n
d
o
n

None 12.9 40 51

Infinity 11.0 36 51

Directed 7.7 23 40

Reorder 4.8 18 30

S
t
u
t
t
g
a
r
t None 11.4 60 37

Infinity 8.5 53 37

Directed 6.2 36 30

Reorder 4.4 32 22

E
u
r
o
p
e

None 3 955.7 14 751 577

Infinity 3 413.6 13 942 582

Directed 2 319.7 9 590 407

Reorder 1 514.2 8 180 306

derived order performs the worst on all instances. On Chicago, the customization

slows down by a factor of 25. On the other instances, the slowdown is about an order

of magnitude. The slowdown for queries is not as strong but still significant (by a

factor of 5 to 8). Only the preprocessing stays comparatively fast as it is dominated

by the order computation, which can run on the unmodified original graph. We

conclude that this approach is not feasible.

With the edge-based order, we achieve a better order at the cost of additional

preprocessing time. The slowdown compared to a nonturn CCH is reduced to a factor

of five for the customization phase, for queries to 2.5 to 3. However, preprocessing

takes up to an order of magnitude longer. Orders computed by Inertial Flow are

generally worse than InertialFlowCutter orders (the customization is a factor 1.3

to 1.5 slower) and on graphs of the edge-based model this difference becomes even

more pronounced (factor 1.3 to 2.8). Consequentially, we focus on InertialFlowCutter

orders.



Chapter 7 Turn Costs and Restrictions

140

Cut orders achieve the best trade-off between the running times of the different

phases. Customization and query performance is roughly the same as with an edge-

based order. The preprocessing slowdown is well below a factor of two for all graphs.

InertialFlowCutter has certain optimizations which find optimal vertex orders for

certain subclasses of graphs. We did not implement these optimizations for cut-based

orders. We expect that implementing them would close the gap in quality between

edge-based and cut-based orders.

In Table 7.3, we report performance results depending on the additional optimiza-

tions applied. All configurations use cut-based orders. We also report the number

of triangles enumerated during the customization as the triangle enumeration dom-

inates the customization running time. The impact of the optimizations is similar

across all instances. All optimizations combined roughly achieve a speedup of two

on both customization and queries. Removing undirected infinite shortcuts alone

yields only small improvements. Combining this with directed hierarchies and re-

moving all directed infinite shortcuts has a much bigger impact. This impact can

be further amplified by reordering separator vertices, which produces even more

infinite shortcuts. Note that the work per triangle is different for directed hierarchies.

For undirected hierarchies, each triangle will be enumerated once and both directed

triangles will be relaxed at once. For directed hierarchies, however, both directions

will be enumerated separately. Thus, for undirected hierarchies, the number of re-

laxation operations is twice the number of enumerated triangles and the reduction

achieved by directed hierarchies even greater. It is noteworthy that even though our

optimizations primarily aim for the customization running time, we also achieve

a significant speedup for query running times. The removal of infinite edges also

reduces the number of edges in the query search space.

Compact Model. We also evaluate the performance of CCH with the compact

model. The implementation is considerable more complex than our optimizations

for the edge-based model and sadly does not deliver competitive performance. As

we cannot use the efficient quotient graph based contraction routine, preprocessing

slows down by an order of magnitude as previously observed in [DSW16]. For the

Europe instance, the augmented graphs in the compact model and in the edge-based

model contain a similar number of edges. The number of triangles, however, increases

by a factor of 43. This leads to a slowdown of the customization by a factor of 34.

Queries are even worse. The running time increases by a factor of 53. The reason

for this slowdown are vertices with high degrees (several thousand edges) in high-

level separators. This happens because we get shortcuts between almost all pairs

of entry and exit nodes of separator vertices. When an entry node is popped from

the queue, all outgoing edges of that vertex are relaxed. This leads to a tremendous
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Table 7.4: Performance of Dijkstra, CH, CRP and CCH in the compact model, in the

edge-based model as is and with our optimizations (Edge-based*) on Europe with

and without turns. Preprocessing was executed in parallel, customization and query

sequentially. For CH and CRP we list unscaled results as reported in [DGPW17].

No turns Turns

Prepro. Custom. Queries Repr. Prepro. Custom. Queries

[s] [s] [ms] [s] [s] [ms]

Dij - - 1 061.52

Edge-based - - 2 674.72

Compact - - 12 699.32

CH 109 - 0.11

Edge-based 1 392 - 0.19

Compact 1 753 - 2.27

CRP 654 10.55 1.65 Compact 654 11.12 1.67

CCH 182 2.35 0.19

Edge-based 2 321 14.79 0.52

Edge-based* 256 8.18 0.31

Compact 2 542 281.56 16.51

amount of edge relaxations and the observed slowdown. On Stuttgart and London,

the slowdowns are around factor 20.

Comparison with Related Work. Table 7.4 summarizes our results and depicts

them in comparison to running times achieved by competing approaches as reported

in [DGPW17]. The experiments were performed on the publicly available Europe

instance which is the only instance also considered in related work. Our experi-

ments were conducted on a newer machine. Thus, the absolute numbers are not

perfectly comparable. Using the comparison methodology from [Bas+16], the num-

bers from [DGPW17] should be scaled down by a factor of 0.79. We observe that

incorporating turns has a strong impact on all algorithms except CRP. Dijkstra be-

comes at least 2.5 times slower. CH queries remain comparatively fast (at least on the

edge-based model), but preprocessing slows down by more than an order of magni-

tude. The CRP nonturn variant is realized as free turns in the compact model which

explains why incorporating turns leaves the performance unaffected. While CCH

achieves faster running times than CRP in all phases on nonturn graphs, without our

modifications, it is outperformed by CRP on graphs with turns. However, when using

cut-based orders and all optimizations, CCH again outperforms CRP. CCH with the

compact model is outperformed by the optimized edge-based variant in all phases.

Note that both the CRP and CCH customization times can be further decreased
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through parallelization and by two related techniques known as microcode [DW13]

(for CRP) and triangle preprocessing [DSW16] (for CCH). However, both techniques

require significantly more space, and we choose not to use them to keep the space

requirement low.

7.6 Conclusion
We incorporated turn costs and restrictions into customizable contraction hierarchies.

We presented several straightforward yet effective optimizations that bring prepro-

cessing and customization times on the expanded graph close to those achieved on

the simplified graph. Preprocessing now takes similar time on the simplified and

expanded graph, and customization on the expanded graph is only roughly three

times slower (down from up to an order of magnitude, e.g., on Chicago).

Adapting customizable contraction hierarchies to the compact model was much

harder. We observed that CCHs and the compact model do not match well. CCHs rely

heavily on concepts for undirected graphs, whereas the compact model is inherently

directed. Moreover, shortcuts built from more than two edges are an issue for

CCH customization, where there is no notion of graph searches. Consequently, our

experiments showed that the CCH implementation tailored to expanded graphs

significantly outperforms the one for compact graphs.

Note that our study focused on the basic CCH customization. In principle, our

optimizations for the edge-based model can also be combined with the perfect cus-
tomization and perfect witness searches [DSW16], whose goal is to remove all super-

fluous edges in the hierarchy. However, when the hierarchy passed to the perfect

customization algorithm is not chordal, we can no longer guarantee that the perfect

witness searches remove all superfluous edges. It would be interesting to study how

well perfect witness searches perform in practice when infinite shortcuts are removed

during the metric-independent preprocessing.
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8

Partitioning Evolving
Road Networks

The first preprocessing step in many algorithms for route planning is to partition

the road network into roughly balanced cells. While the road network of the world

is fairly stable on the macroscopic level, small changes are quite frequent, as can

be seen with OpenStreetMap. Since current road network partitioners are highly

sensitive to small changes, partitioning consecutive network snapshots from scratch

often yields quite different partitions. This is a problem, since real-world applications

often require the partition to stay roughly the same over time, and that updates are

restricted to local areas where the network has changed. In this chapter, we present

an algorithm to partition an evolving road network that updates the partition of

a previous snapshot without recomputing the whole partition from scratch. Our

thorough experimental evaluation on continental road networks shows that our

algorithm significantly increases the similarity of consecutive partitions, with limited

impact on the partition quality. As a side effect, our algorithm is an order of magnitude

faster than partitioning from scratch when the changes are small.

This chapter is based on joint work with Daniel Delling, Dennis Schieferdecker and

Michael Wegner [BDSW20].

8.1 Introduction
Graph partitioning is an important subroutine in many applications such as parallel

processing, image processing, VLSI design, and route planning. Although being
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Figure 8.1: Snapshots of the North American road network in OpenStreetMap, one

from 2018-08-08 (left) and one from 2018-09-08 (right). We partitioned both snapshots

from scratch with the same partitioning algorithm, the same parameters, and the

same random seed. Note that, although only 0.36 % of the vertices were added and

only 0.21 % were removed between the snapshots, the western half of the North

American continent is cut completely differently.

NP-hard in general, there are now many efficient algorithms that perform well on

real-world problems (see [Bul+16] for a recent overview). In particular, the road

network of the world can be partitioned with high quality on a single multi-core

machine in a few hours [DGRW11, SS15, DGPW17].

At first sight it seems that the road network of the world does not change too often.

While this is true on the macroscopic level, we observe that small changes are quite

frequent. For example, there are several million changes to OpenStreetMap each
day. Therefore, partition-based map applications need to update and repartition the

road network at regular (daily, weekly, monthly) intervals. The most straightforward

approach is to partition each network snapshot from scratch. We observe, however,

that consecutive partitions are often quite different. See Figure 8.1 for an example.

This is a problem for multiple reasons. Modern map applications support not only

point-to-point queries but also many other types of queries, such as finding closest

points of interest and computing alternate routes. While the partition has limited

impact on the result of point-to-point queries (or no impact when shortest paths are

unique), its impact on other types of queries can be huge. We give one example.

The partition-based routing method customizable route planning (CRP) [DGPW17]

partitions the network into several roughly balanced cells and precomputes shortcuts
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between each pair of boundary vertices in the same cell. The cost of a shortcut

corresponds to the shortest path between its endpoints within the cell. Point-to-point

queries run a modification of bidirectional search that uses the shortcuts to skip over

cells that contain neither the source nor the target. The query stops when the search

frontiers meet. As long as the shortest path in the network does not change (and is

unique), the result of the query stays the same, even when the partition does change.

A common approach to find alternate routes is to compute a set of single-via paths
(concatenations of two shortest paths 𝑠–v and v–𝑡 ), which are then ranked [ADGW13].

To compute alternate routes within the CRP framework, we do not stop the query

when the search frontiers meet, but advance them a little further. Each (boundary)

vertex that has been scanned by both searches is a candidate via vertex. When the

partition changes, the candidate via vertices can change, and thus the alternate route

returned to the user. Since spurious results may undermine the user’s confidence in

the entire system, the partition should stay roughly the same over time.

Another drawback of partitioning each snapshot from scratch, besides high sen-

sitivity to small changes, is running time. Recomputing the whole partition from

scratch seems like a waste of CPU time, unnecessarily increasing data build times.

Our Contribution. We introduce an algorithm to partition an evolving road net-

work whose goal it is to keep the partition roughly the same over time. Our algorithm

updates the partition of a previous snapshot without recomputing the whole partition

from scratch. More precisely, we first assign each new vertex to an existing cell and

then repair and reoptimize cells that have become infeasible. We experimentally

evaluate our algorithms on continental road networks from OpenStreetMap, with

snapshots at different intervals. The experiments show that the similarity of consec-

utive partitions increases significantly, with limited impact on the partition quality

(measured by the number of cut edges). Moreover, when the changes are relatively

small, we see a speedup of an order of magnitude over partitioning from scratch.

Related Work. Motivated by several important applications, the graph partition-

ing problem has received considerable attention recently; see e.g. [Bul+16] for an

overview. To partition road networks, early work [HKMS09, BD09, Bau+10] used

general-purpose partitioners like Scotch [PR96], METIS [KK98], or Party [MS04].

However, one can compute partitions of significantly better quality when using

special-purpose partitioners tailored to road networks.

The first such partitioning algorithm is PUNCH [DGRW11]. It introduces and

exploits the concept of natural cuts, which are natural or man-made obstacles, such as

rivers, mountains, and highways. At its heart is the filtering phase, which finds natural
cuts by local maximum-flow computations and contracts all edges not contained in
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any natural cut. The assembly phase heuristically combines the resulting fragments
to build a partition. Buffoon [SS12] incorporates the filtering phase of PUNCH into

the general-purpose partitioning algorithm KaHIP [SS13].

An alternative approach to the filtering phase of PUNCH is Inertial Flow [SS15],

which recursively bisects the network until the fragments are sufficiently small. To

bisect the network, it exploits the geometric embedding of the network.

Like Inertial Flow, the FlowCutter algorithm [HS18] recursively bisects the network.

For each bisection, it computes a Pareto set of nondominating cuts with respect to

the cut size and balance, and picks a cut among those with a good tradeoff between

cut size and balance. The recent InertialFlowCutter algorithm [GHUW19] is a variant

of FlowCutter that uses geometric information, based on ideas from Inertial Flow. It

is about 6 times faster than FlowCutter while preserving the partition quality.

There has also been previous work on the graph repartitioning problem, although

not in the context of road networks, but scientific computing applications. Various

problems in solid and structural mechanics [ZTF14] and fluid dynamics [ZTN14] can

be described by partial differential equations (PDEs). Such PDEs can be solved by the

finite-difference or finite-element method [Zho93], which discretize the domain of

the PDE by a mesh. The function value at each discretization point (i.e., vertex in the

mesh) is approximately computed from the values at its neighboring vertices. Using

an iterative scheme, new approximate values are determined by the values at the

neighboring vertices from the previous iteration. Since finite-element meshes can

become very large, they are partitioned into well-separated, roughly balanced cells

and distributed over multiple processing elements [Bul+16].

During the solution process, the mesh is refined in regions where large errors exist

and coarsened in well-behaved regions. To maintain load balance, the mesh is peri-

odically repartitioned. Besides the cut size (which correlates with the communication
volume), the similarity between the old and new partition (which correlates with the

migration volume) is an important optimization criterion for this application [Bul+16].

One approach are scratch-remap repartitioners [PSS95, SS94, OB98, SKK01]. These

first partition the new mesh using a state-of-the-art partitioner and then compute

a migration-minimal mapping between the old and new partition. Since the new

partition is produced from scratch, its cut size is small. However, the migration

volume is often very high, since this criterion is considered only in the second phase.

Another approach are diffusion-based repartitioners [WCE97, SKK97, SKK01].

These are inspired by the physical process of diffusion, i.e., vertices move from a cell

of higher to one of lower vertex concentration. While this results in a good migration

volume, the number of cut edges is often large.

The unified repartitioning algorithm [SKK00] optimizes both criteria directly

by combining the above-mentioned approaches. Following the multilevel graph

partitioning approach, it iteratively contracts the new mesh using a variant of the
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heavy-edge matching algorithm [KK98], which matches two vertices only if they are

in the same cell in the old partition. Next, the contracted mesh is partitioned twice

using a scratch-remap and diffusion-based algorithm, respectively, and the partition

with the better tradeoff between number of cut edges and migration volume is picked.

Finally, the mesh is iteratively uncontracted, using an improvement heuristic in each

iteration to optimize the mesh partition locally.

A rather simple approach [HLD96, Wal09] is to introduce a zero-weight vertex

for each cell in the old partition, which is not allowed to change its cell during

repartitioning. This vertex is connected to each other vertex v in its cell by an edge

whose weight represents the migration cost for v .
The problem we address is similar to the mesh repartitioning problem in that we

optimize both the cut size and similarity. Note, however, that the old and new mesh

are nested in the sense that new vertices result from splitting or merging vertices in

the old mesh. Hence, there is a natural assignment of all vertices in the new mesh

to cells in the old partition [WB95]. In fact, most work [PSS95, SS94, SKK97, OB98,

SKK01] considers a mesh with fixed topology, where adaptive mesh refinements are

handled as vertex weight increases. In contrast, we allow vertices to be freely inserted

into and removed from the network. For example, a newly constructed bridge that

connects two previously disconnected cells has no natural assignment to any cell.

Moreover, in the mesh repartitioning problem, the number of cells is fixed (it is equal

to the number of processing elements), while we allow the number of cells to change.

Outline. This chapter is organized as follows. Section 8.2 provides a precise defini-

tion of the problem we solve, and briefly reviews current road network partitioners.

Section 8.3 describes our approach to partition an evolving road network in de-

tail. Section 8.4 presents an extensive experimental evaluation on continental road

networks. Section 8.5 concludes with final remarks.

8.2 Preliminaries
We consider undirected graphs 𝐺 = (𝑉 , 𝐸) where each vertex v ∈ 𝑉 has a positive

size 𝑠 (v) and each edge {𝑢, v} ∈ 𝐸 has a positive weight 𝑤(𝑢, v). Our focus is on road

networks, where vertices represent intersections and edges represent road segments.

Partitioning algorithms often use edge contractions. To contract an edge {𝑢, v}, we
replace its endpoints by a single vertex 𝑤 of size 𝑠 (𝑤) = 𝑠 (𝑢) + 𝑠 (v) and relink all

edges incident on 𝑢 or v to the new vertex 𝑤. Multiple parallel edges are combined

(adding up their weights) and self-loops are removed.

A partition of𝑉 is a set 𝑃 = {𝐶1, . . . ,𝐶𝑘 } of cells𝐶𝑖 ⊆ 𝑉 with the property that each

vertex is contained in exactly one cell, i.e.,𝐶𝑖 ∩𝐶 𝑗 = ∅ for 𝑖 ≠ 𝑗 and𝑉 = 𝐶1 ∪ · · · ∪𝐶𝑘 .
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A multilevel partition of 𝑉 is a sequence P = ⟨𝑃1, . . . , 𝑃𝐿⟩ of partitions 𝑃𝑙 , where 𝑙
denotes the level of the partition. For ease of notation, we set 𝑃0 = {{v} : v ∈ 𝑉 }
and 𝑃𝐿+1 = {𝑉 }. Since we use nested multilevel partitions, for each cell 𝐶𝑙𝑖 , there is a

cell 𝐶𝑙
′
𝑗 with 𝐶

𝑙
𝑖 ⊆ 𝐶𝑙

′
𝑗 on all levels above; 𝐶𝑙𝑖 is called a subcell of each 𝐶𝑙

′
𝑗 . We denote

by 𝑐𝑙 (v) the cell that contains v on level 𝑙 . A boundary or cut edge on level 𝑙 is an

edge {𝑢, v} with 𝑐𝑙 (𝑢) ≠ 𝑐𝑙 (v). Its endpoints are boundary vertices on level 𝑙 . We

denote by 𝐵𝑙 the set of boundary vertices on level 𝑙 .

8.2.1 Problem Statement
We are given two graphs 𝐺 = (𝑉 , 𝐸) and 𝐺̄ = (𝑉 , 𝐸̄), where 𝑉 is obtained from 𝑉 by

inserting some vertices 𝑉 + with 𝑉 + ∩𝑉 = ∅ and removing some vertices 𝑉 − ⊆ 𝑉 .
Analogously, 𝐸̄ is obtained from 𝐸 by inserting some edges 𝐸+ with 𝐸+ ∩ 𝐸 = ∅ and
removing some edges 𝐸− ⊆ 𝐸. Hence, 𝑉 = (𝑉 \ 𝑉 −) ∪ 𝑉 + and 𝐸̄ = (𝐸 \ 𝐸−) ∪ 𝐸+.
We call 𝐺 the old graph and 𝐺̄ the new graph. In addition, we are given an 𝐿-level

partition P of 𝐺 with maximum cell sizes 𝑈 1, . . . ,𝑈 𝐿
. The problem we consider is

computing an 𝐿-level partition P¯ of 𝐺̄ such that for each level 𝑙 , 1 ≤ 𝑙 ≤ 𝐿, the size
of each cell is bounded by𝑈 𝑙 , the number of cut edges in the partition is minimized,

and the similarity between 𝑃𝑙 and 𝑃
𝑙
is maximized.

It remains to formalize our notion of similarity. For real-world route planning

systems following the partition-based overlay approach [SWW00, SWZ02, HSW08,

DGPW17], it is often desirable to keep the overlay topology fairly stable, as discussed

in the introduction in Section 8.1. Therefore, we define the similarity between two

partitions 𝑃𝑙 and 𝑃
𝑙
as the fraction of boundary vertices that are boundary vertices

of both 𝑃𝑙 and 𝑃
𝑙
, i.e., 𝑆𝑙 = |𝐵𝑙 ∩ 𝐵̄𝑙 |/|𝐵𝑙 ∪ 𝐵̄𝑙 |.

8.2.2 PUNCH
PUNCH [DGRW11] is a partitioning algorithm tailored to road networks. It has been

applied [DGPW17, DGNW13] to various partition-based shortest-path techniques,

including CRP [DGPW17], Arc Flags [HKMS09, Lau09], and CHASE [Bau+10]. Given

a graph𝐺 and a maximum cell size𝑈 , PUNCH splits the graph into cells of maximum

size 𝑈 while minimizing the cut size. It works in two phases. At its heart is the

filtering phase, which finds natural cuts (natural or man-made obstacles, such as rivers

and railway tracks) and contracts all edges not contained in any natural cut. The

assembly phase heuristically combines the resulting fragments to build a partition.

Filtering Phase. The natural-cut heuristic is executed in iterations. In each iteration,
it picks a center 𝑐 at random and builds a breath-first search (BFS) [SMDD19] tree 𝑇
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rooted at 𝑐 until the total size of the vertices visited during the reaches 𝛼𝑈 , where 𝛼

is a parameter in (0, 1]. The neighbors v ∉ 𝑇 of the vertices in 𝑇 form the ring of 𝑐 .

Moreover, the vertices visited by the BFS before the total size reached 𝛼𝑈 /𝑓 form
the core of 𝑐 , where 𝑓 > 1 is a second parameter. Then, the natural-cut heuristic

temporarily contracts the core and the ring into a single source and sink vertex,

respectively, determines a maximum flow between the source and the sink, finds a

corresponding minimum cut, and marks all edges in this cut. The procedure stops

when each vertex has been contained in at least one core.

To increase the number of marked edges, the iterative procedure is repeated C times.

Afterwards, the natural-cut heuristic contracts all unmarked edges. The vertices

in the resulting graph are called fragments. Note that each fragment represents a

subgraph of𝐺 that was never cut and that each two adjacent fragments are separated

by a natural cut. Typical parameter values are 𝛼 = 1, 𝑓 = 10, and C = 2.

Assembly Phase. PUNCH runs a greedy algorithm to compute an initial partition

of 𝐺 from the fragment graph. It repeatedly contracts two adjacent vertices in the

fragment graph until no contraction is possible without violating the upper bound𝑈 .

The two vertices to be contracted next are picked based on a randomized score
function [DGRW11]. Intuitively, the algorithm prefers small vertices that are tightly

connected. The output of the greedy algorithm is a contracted graph 𝐻 , where each
vertex represents a cell in the partition of 𝐺 .

The initial partition is then improved by an iterative local search. In each iteration, it
picks two adjacent cells 𝑅, 𝑆 at random from𝐻 . Let𝐻𝑅𝑆 be the subgraph of𝐻 induced

by 𝑅, 𝑆 , and their neighbors in 𝐻 and let 𝐺 ′
𝑅𝑆

be obtained from 𝐻𝑅𝑆 by unpacking 𝑅

and 𝑆 into their constituent fragments (the neighbors remain contracted). Then, the

greedy algorithm is run on𝐺 ′
𝑅𝑆
, outputting a contracted graph𝐻 ′

𝑅𝑆
. If𝐻 ′

𝑅𝑆
represents

a better partition (i.e, one with a smaller cut size) than 𝐻𝑅𝑆 , we replace 𝐻𝑅𝑆 by 𝐻
′
𝑅𝑆

in

the current solution 𝐻 . The local search stops when each pair of adjacent cells in 𝐻

has been considered 𝜑 times in succession without improving the current solution.

Since both the greedy algorithm and the local search are randomized, PUNCH

uses a multistart heuristic, which runs the greedy algorithm followed by the local

search multiple times on the fragment graph. After𝑀 candidate solutions have been

generated, the best solution seen so far is returned. Alternatively, the candidate

solutions generated by the multistart heuristic can be combined using an evolutionary
algorithm [DGRW11]. Typical parameter values are 𝜑 = 16 and𝑀 = 9.

8.2.3 Inertial Flow
Inertial Flow [SS15] is a partitioner tailored to road networks that exploits their

geometric embedding. It has been applied [DSS18, SN20] to the partition-based
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Figure 8.2: Schematic view of our repartitioning approach.

shortest-path algorithms CRP [DGPW17] and CCH [DSW16]. Its core algorithm

bisects a graph 𝐺 = (𝑉 , 𝐸) with an embedding 𝜎 : 𝑉 → R2
into two balanced parts

as follows: (1) Pick a line ℓ with direction 𝑑 ∈ R2
. (2) Project each point 𝜎 (v), v ∈ 𝑉 ,

orthogonally onto ℓ . (3) Sort the vertices by their occurrence on ℓ . (4) Determine a

maximum flow between the first ⌊𝑏 |𝑉 |⌋ vertices and the last ⌊𝑏 |𝑉 |⌋ vertices. (5) Find
a corresponding minimum cut. A typical parameter value is 𝑏 = 0.25.

To find a partition of 𝐺 with maximum cell size 𝑈 , the Inertial Flow algorithm

recursively bisects 𝐺 until the resulting parts have a size of at most 𝑈 . For each

bisection, Inertial Flow runs the core algorithm multiple times with parameter 𝑑 set

to (0, 1), (1, 0), (1, 1), and (−1, 1), and picks the smallest cut among those.

Inertial Flow computes partitions of reasonable quality. To improve the quality,

Inertial Flow can be used to produce a partition with at most𝑈 /𝑓 vertices per cell,
where 𝑓 > 1 is an additional parameter. Contracting the edges within each cell yields

a fragment graph. The fragments can then be combined as in the assembly phase of

PUNCH. A typical parameter value is 𝑓 = 32.

8.3 Our Approach
This section discusses our approach to repartition road networks. Instead of parti-

tioning the new graph from scratch, we start from the given partition, incorporate

the vertices 𝑉 +, and repair and reoptimize the partition (see Figure 8.2). We assume

there are stable identifiers associated with the vertices in both graphs that allow us

to map vertices in the old and new graph to each other. Both OpenStreetMap and

the proprietary data we are aware of provide such identifiers in the form of 64-bit

integers. In case there are no stable identifiers available, we can heuristically map

the vertices using, for example, their coordinates.

Our approach starts by mapping the partition P of the old graph 𝐺 to the new
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graph 𝐺̄ . More precisely, each vertex v ∈ 𝑉 ∩𝑉 inherits its cell identifiers from P , i.e.,

we set 𝑐𝑙 (v) = 𝑐𝑙 (v) for all levels 𝑙 . The vertices 𝑉 + are not assigned to a cell on any

level. After a quick preprocessing step (Section 8.3.1), we consider each cell 𝐶̄
𝑙
𝑖 in the

partition in descending level order, starting with the single cell on level 𝐿 + 1, which

contains the entire new graph. Each cell 𝐶̄
𝑙
𝑖 , which induces the subgraph 𝐺̄

[︂
𝐶̄
𝑙
𝑖

]︂
of 𝐺̄ ,

is processed in two phases. The first phase assigns each vertex v ∈ 𝑉 + to an existing

cell on level 𝑙 − 1 (Section 8.3.2). The second phase repairs cells that have become

infeasible and reoptimizes the partition (Section 8.3.3).

We handle cells on the same level in parallel if multiple CPU cores are available.

Moreover, if there is no change within a cell, we skip its subcells on all levels below.

8.3.1 Detecting Tiny Components
For several reasons (including data errors), there can be distinct components consist-

ing of only a few vertices in the old graph that are connected to their neighborhood

in the new graph. For example, consider a newly constructed road. In the old graph,

it could still be under construction and not connected to the main network, and

therefore a distinct component of its own. A partition could assign this component

and its neighborhood to different cells, since there are no cut edges between them.

However, connecting the new road to the main network leads to cut edges that are

often unsuitably chosen. Hence, before the first cell assignment phase, we reset all cell

identifiers for each vertex that belongs to a tiny component in the old but not in the

new graph. We want such vertices to inherit the cell identifiers of their neighborhood

rather than keeping their old identifiers. Formally, a tiny component is a connected

component with a size that is below a given threshold. In our experiments, we define

tiny components as those that contain at most 25 vertices.

8.3.2 Cell Assignment

Executing the first phase on cell 𝐶̄
𝑙
𝑖 assigns each vertex v ∈ 𝑉 + ∩ 𝐶̄𝑙𝑖 to a level-(𝑙 − 1)

cell based on the cells of its neighbors. This phase resembles the label propagation

algorithm [RAK07] for clustering networks. Each vertex is assigned to the cell to

which the majority of its neighbors belong, with ties broken uniformly at random.

We perform this process iteratively, where at every step, one vertex updates its cell.

Note that the first assignment of a vertex is not necessarily final. Therefore, the

process continues until no vertex v ∈ 𝑉 + ∩ 𝐶̄𝑙𝑖 changes its cell anymore. Convergence

is guaranteed since we move a vertex v from𝐶𝑖 to𝐶 𝑗 only if 𝑁𝐶 𝑗
(v) is strictly greater

than 𝑁𝐶𝑖
(v), where 𝑁𝐶 (v) is the number of neighbors in cell 𝐶 . Hence, with every

move, the sum

∑︁
v 𝑁𝑐 (v) (v) increases by 2(𝑁𝐶 𝑗

(v) − 𝑁𝐶𝑖
(v)) ≥ 2 (note that 𝑁𝑐 (𝑢) (𝑢)
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changes not only for 𝑢 = v but also for each neighbor 𝑢 of v in 𝐶𝑖 ∪𝐶 𝑗 , causing the
factor of 2). As the sum cannot exceed

∑︁
v deg(v), the process eventually stops.

To implement this approach efficiently, we keep track of the next vertex to assign

with a min-heap, initialized with all new vertices adjacent to at least one old vertex.

Every time we assign a vertex to a different cell, we insert its neighbors in 𝑉 + into
the min-heap. The priority of a vertex v is given by key(v) = 𝑁⊥ (v) +𝑁2 (v) −𝑁1 (v),
where 𝑁𝑖 (v) is the number of neighbors in the 𝑖-th most common neighboring cell

(ties broken uniformly at random), and 𝑁⊥ (v) is the number of as-yet-unassigned

neighbors. The intuition here is that all assignments are both final and unambiguous

as long as we only extract vertices v with key(v) < 0. This is easy to verify by

induction on the number of delete-min operations. When key(v) = 0, the assignment

is not unambiguous but still final. Therefore, the choice of priorities ensures that we

start with as many final assignments as possible, and thus reduces the number of

cell corrections and the time to converge. Note that vertices unreachable from any

vertex v ∈ (𝑉 \𝑉 −) ∩ 𝐶̄𝑙𝑖 remain unassigned after this phase. These vertices will be

assigned to cells during the second phase that repairs and reoptimizes the partition.

To process the cell on level 𝐿 + 1, we must run cell assignment on the full input

graph. For each cell 𝐶 on all levels below, cell assignment must be run on 𝐺̄ [𝐶]. For
efficiency, we create a temporary copy of 𝐺̄ [𝐶] and run cell assignment on it. This

simplifies cell assignment, allows us to use sequential local IDs, and improves locality.

8.3.3 Repair and Reoptimization

After the cell assignment phase, the partition of 𝐺̄

[︂
𝐶̄
𝑙
𝑖

]︂
is not necessarily feasible.

First, theremay be oversized cells, i.e., cells containingmore than𝑈 𝑙−1
vertices. Second,

vertices unreachable from any vertex v ∈ (𝑉 \𝑉 −) ∩ 𝐶̄𝑙𝑖 have not been assigned to a

cell yet. In the second phase, we repair both issues and reoptimize the partition.

Let 𝐾 be a graph whose vertices correspond to the cells in the partition. Note that

each as-yet-unassigned vertex in 𝐺̄

[︂
𝐶̄
𝑙
𝑖

]︂
forms a cell of its own. The size of each

vertex in𝐾 is the number of vertices in the corresponding cell. There is an edge {𝑅, 𝑆}
in 𝐾 if there is an edge {𝑢, v} in 𝐺̄

[︂
𝐶̄
𝑙
𝑖

]︂
with 𝑢 ∈ 𝑅 and v ∈ 𝑆 . Its weight is the total

weight of the corresponding edges in 𝐺̄

[︂
𝐶̄
𝑙
𝑖

]︂
.

Let 𝐾 ′ be a graph obtained from 𝐾 by unpacking some of the cells (we will discuss

cell unpacking in Section 8.3.4). In the following, we compute a partition of 𝐾 ′, which

can easily be transformed into a partition of 𝐺̄

[︂
𝐶̄
𝑙
𝑖

]︂
. Note that to obtain a feasible

partition, we must unpack at least each oversized cell. To increase the similarity

between P and P¯ , we can relax our definition of oversized cells, allowing cells to
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Figure 8.3: Unpacking an oversized cell during the reoptimization phase of our

graph repartitioning algorithm. Left: The simple variant unpacks only the oversized

cell. Middle: Neighbor unpacking also unpacks all neighboring cells. Right: Partial

unpacking unpacks the neighboring cells partially.

contain at most 𝑔𝑙−1𝑈 𝑙−1
vertices, where 𝑔𝑙−1 ≥ 1 is the growth factor on level 𝑙 − 1.

To find an initial feasible partition of𝐾 ′, we run the greedy algorithm from PUNCH

on 𝐾 ′, yielding a contracted graph 𝐻 . This partition is then reoptimized by running a

variant of the local search from PUNCHon𝐻 . That is, we repeatedly pick two adjacent

cells 𝑅, 𝑆 at random from 𝐻 , run the greedy algorithm on the subgraph of 𝐻 induced

by 𝑅, 𝑆 , and their neighbors in 𝐻 , and update the current solution 𝐻 accordingly.

However, while PUNCH unpacks 𝑅 and 𝑆 into their constituent fragments, we unpack

them into the corresponding vertices in 𝐾 ′. Since both the greedy algorithm and

the local search are randomized, we run them𝑀 times on 𝐾 ′ with different random

seeds and return the partition with the smallest cut size.

We handle cells on a level 𝑙 ≤ 𝐿 in parallel. On such levels, we run a sequential

version of the local search. On level 𝐿 + 1 (where there is only a single cell), we

parallelize the local search by trying multiple pairs of adjacent vertices concurrently.

8.3.4 Cell Unpacking

We considered three variants of cell unpacking, inspired by PUNCH, which differ in

howmuch they unpack. See Figure 8.3. The simplest variant replaces the single vertex

in 𝐾 representing an oversized level-𝑙 cell 𝐶̄
𝑙
𝑖 with one vertex for each level-(𝑙 − 𝑑)

subcell 𝐶𝑙−𝑑𝑗 with 𝐶𝑙−𝑑𝑗 ∩ 𝐶̄𝑙𝑖 ≠ ∅ (where 𝑑 ≥ 1 denotes the descent step) and one

vertex for each vertex v ∈ 𝑉 + that has been assigned to 𝐶̄
𝑙
𝑖 during the first phase (cell

assignment). The size of these vertices is the number of vertices in the new graph

that they represent (possibly one). We call this variant simple unpacking.
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The second variant, neighbor unpacking, gives the second phase more degrees of

freedom to reoptimize the partition. Besides unpacking oversized cells, this variant

also unpacks all cells that have a common boundary with an oversized cell.

The third variant, which we call partial unpacking, unpacks each oversized level-𝑙

cell 𝐶̄
𝑙
𝑖 fully and each level-𝑙 cell 𝐶̄

𝑙
𝑗 that has a common boundary with 𝐶̄

𝑙
𝑖 partially.

More precisely, we replace the single vertex in 𝐾 representing 𝐶̄
𝑙
𝑗 with one vertex for

each level-(𝑙 − 𝑑) subcell 𝐶𝑙−𝑑
𝑘

with 𝐶𝑙−𝑑
𝑘
∩ 𝐶̄𝑙𝑗 ≠ ∅ that directly borders on 𝐶̄

𝑙
𝑖 , one

vertex for each vertex v ∈ 𝑉 + that has been assigned to 𝐶̄
𝑙
𝑗 during the first phase, and

one vertex representing the remaining level-(𝑙 − 𝑑) subcells of 𝐶̄𝑙𝑗 . Again, the size of
each vertex is the number of vertices in the new graph represented by the vertex.

8.4 Experiments

8.4.1 Implementation and System

Both the partitioning and repartitioning algorithms are implemented in C++11 and

were compiled with GCC 4.8.5 on a system running CentOS 7.7. For parsing the

instances we use the RoutingKit library [DSW16]. The machine has 2 NUMA nodes,

each equipped with a 10 core/20 threads Intel Xeon CPU E5-2640 v4 clocked at

2.40GHz with 2.5 MiB L2 and 25 MiB L3 cache. It has 192 GiB of DDR4-2400 RAM.

8.4.2 Instances

We evaluate and compare our algorithm with the full partitioning algorithm (𝐹𝑃 ) on

road networks extracted from OpenStreetMap. Our 𝐹𝑃 algorithm uses Inertial Flow

to find a starting solution and an assembly phase similar to the one from PUNCH to

optimize it. OpenStreetMap’s contributors edit the map regularly which enables us

to test our repartitioning algorithm on snapshots taken at different dates of the same

cutout. We test our algorithms on the Australia, North America and Europe instances

available from GeoFabrik. Evaluation is performed between snapshots that are one

year (1/1/2018 - 1/1/2019) and one month apart (10/1/2019 - 11/1/2019). Shorter time

periods (e.g. a week) differ less and thus repartitioning performs at least as good as it

does on monthly and yearly instances. More detailed information on the instances

can be found in Table 8.1. For the remainder of this section, we reference the graph

pairs of the time frames by an𝑀 and a 𝑌 suffix for the monthly and yearly instances

respectively (e.g. 𝑁𝑜𝑟𝑡ℎ𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑌 for the North America graph pair on 1/1/2018 and

1/1/2019).
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Table 8.1: Instances and their properties. Absolute numbers in millions, relative

numbers and vertex churn (𝑉𝐶) in percent. 𝑉𝐶 is defined as the ratio of
|𝑉 +∪𝑉 − |
|𝑉 | .

1/1/2018 1/1/2019 10/1/2019 11/1/2019

Input |𝑉18 | |𝐸18 | |𝑉19 |
|𝑉18 |

|𝐸19 |
|𝐸18 | 𝑉𝐶𝑌 |𝑉10 | |𝐸10 | |𝑉11 |

|𝑉10 |
|𝐸11 |
|𝐸10 | 𝑉𝐶𝑀

Aus 1.23 2.85 7.83 6.63 11.33 1.41 3.18 0.45 0.41 0.62

NA 24.90 61.38 1.27 0.98 6.84 26.05 63.94 0.28 0.28 0.99

Eur 30.55 71.46 3.44 3.05 7.12 32.69 76.00 0.54 0.52 1.00

8.4.3 Parameters
Algorithms. We start with a comparison of our repartitioning algorithm variants

𝑆𝑈 (simple unpacking), 𝑁𝑈 (neighbor unpacking) and 𝑃𝑈 (partial unpacking) on

the 𝐴𝑢𝑠𝑡𝑟𝑎𝑙𝑖𝑎𝑌 instance with a cell growth of 0% and a descent step 𝑑 = 1 (cf.

Section 8.3.3) in Table 8.2. Using a larger𝑑 does not result in better quality or similarity

based on our experiments. Simple unpacking and partial unpacking perform almost

identically, both increasing the overall cut size by 2% compared to the result of the

full partitioning algorithm. In our experiments we found that 𝑃𝑈 often has slightly

worse similarity on the two lowest levels and identical similarity on the higher

levels compared to 𝑁𝑈 while runtimes are comparable. The neighbor unpacking

approach considers even more cells than 𝑃𝑈 for distributing unassigned vertices

which results in smaller cuts at the cost of a reduced similarity and higher runtimes.

Other instances produce similar results. Based on this evaluation, we focus on the

simple unpacking approach a descent step 𝑑 = 1 as it produces partitions of good

quality and similarity with reasonable runtimes. In the remainder of this section,

we use 𝑅𝑃 to denote our repartitioning algorithm using simple unpacking and 𝐹𝑃 to

denote the full partitioning (from scratch) algorithm. The level-dependent parameters

for both algorithms can be found in Table 8.3. We use the default parameters for our

𝐹𝑃 algorithm, whereas we reduce 𝜙𝑅𝑃 and𝑀𝑅𝑃 on the higher levels. Running more

local searches and producing more candidates on these levels reduces similarity since

the searches optimize cut size, not similarity and it increases the runtime.

Cell Growth. When new vertices are added to the graph, some cells have to be

split in order to hold the size constraint on the cell size. However, most often these

additional vertices do not affect the boundary of a cell but are contained in it. So

instead of splitting cells, increasing the cut size and decreasing similarity, it is better

to allow some cell growth in order to improve similarity. We evaluate the effect of

cell growth on 𝐴𝑢𝑠𝑡𝑟𝑎𝑙𝑖𝑎𝑌 and 𝐴𝑢𝑠𝑡𝑟𝑎𝑙𝑖𝑎𝑀 in Table 8.4. As expected, the similarity
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Table 8.2: Algorithm quality and performance on 𝐴𝑢𝑠𝑡𝑟𝑎𝑙𝑖𝑎𝑌 . Best values in bold.

Algorithm CutSize [%] 𝑆1
[%] 𝑆2

[%] 𝑆3
[%] 𝑆4

[%] 𝑆5
[%] Runtime [s]

𝑆𝑈 2.00 79.53 71.18 65.15 57.19 49.78 58.57

𝑁𝑈 0.40 68.05 63.57 58.25 50.64 22.11 98.06

𝑃𝑈 2.00 79.53 71.18 65.15 57.19 49.78 58.35

Table 8.3: Common partitioning parameters per level of 𝐹𝑃 and 𝑅𝑃 .

Level 𝑈 𝑓 𝜑𝐹𝑃 𝜑𝑅𝑃 𝑀𝐹𝑃 𝑀𝑅𝑃

1 25 16 9 9 3 3

2 200 16 9 9 3 3

3 1600 32 16 9 4 3

4 12800 32 16 9 4 3

5 102400 32 32 9 6 3

6 819200 32 32 9 6 3

7 6553600 32 32 9 16 3

increases on all levels with higher cell growth at the cost of a more imbalanced

partition - some cells utilizing all the allowed growth. The similarity change is most

pronounced on the highest level, on the lowest level the change is less than 2%. There

are now oversized cells that exceed the maximum cell size on each level. In the table

we report the ratio of the total number of oversized cells over the total number of cells

over all levels. The runtime of 𝑅𝑃 decreases with higher cell growth because the local

optimizer has less work to do. While the imbalance introduced for the 𝐴𝑢𝑠𝑡𝑟𝑎𝑙𝑖𝑎𝑀
instance is always below 2%, it is significantly higher for 𝐴𝑢𝑠𝑡𝑟𝑎𝑙𝑖𝑎𝑌 which is due to

the fact that the latter instance has much more churn in both vertices and edges

8.4.4 Comparison with Full Partitioning

Quality and Performance over Time. The more a graph churns over time, the

harder it gets to keep the partition stable which is reflected in increased runtimes of

our algorithm. Figures 8.4 and 8.5 show the effect of increased churn on the quality

and runtime on monthly North America snapshots from 02/01/2018 to 12/01/2018

with 01/01/2018 used as the baseline partition that we want to keep stable. Vertex

churn starts at 0.7% for 02/01/2018 and increases strictly monotonously to 6.1% for

12/01/2018. We report the similarity 𝑆1
, the total relative amount of oversized cells

(over all levels) and the total runtime of 𝑅𝑃 with cell growth parameters 0%, 5% and
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Table 8.4: Impact of allowing cell growth when running 𝑅𝑃 on 𝐴𝑢𝑠𝑡𝑟𝑎𝑙𝑖𝑎𝑌 and

𝐴𝑢𝑠𝑡𝑟𝑎𝑙𝑖𝑎𝑀 .

Oversized Cells [%] 𝑆𝐿 [%] Runtime [s]

Cell Growth [%] Year Month Year Month Year Month

0 0.00 0.00 49.78 77.00 58.57 2.26

1 0.86 0.66 37.24 97.60 63.17 2.05

5 13.25 1.24 61.62 97.60 39.16 1.89

10 19.72 1.70 75.86 94.14 20.39 1.82
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Figure 8.4: Similarity and runtime comparison of 𝑅𝑃 and 𝐹𝑃 for different cell growths

on the monthly North America graphs between 02/01/2018 and 12/01/2018 with

01/01/2018 as the baseline partition to be kept stable.

10%. For comparison, we include the 𝐹𝑃 algorithm with a cell growth of 0%. For 𝐹𝑃 ,

cell growth means increasing the maximum cell size 𝑈 on each level. Higher cell

growths for 𝐹𝑃 do not change the runtime significantly and lead to worse similarity as

𝐹𝑃 optimizes cut size and not similarity, so we exclude them in the figure. Similarity

on higher levels follows the same trend as the similarity on level one, just slightly

lower as is the case in our other experiments. A cell growth of 10% results in the best

similarity values but there is never more than 1% difference between the different cell

growth configurations. In contrast, the similarity of 𝐹𝑃 is much worse as 𝐹𝑃 does not

optimize this measure. In terms of the partition quality, we compare cut size increases

over the partition obtained by 𝐹𝑃 with the same amount of cell growth and notice
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Figure 8.5: Oversized cells, cut size increase of 𝑅𝑃 for difference cell growths

and graph churn on the monthly North America graphs between 02/01/2018 and

12/01/2018 with 01/01/2018 as the baseline partition to be kept stable. Cut size is

compared to 𝐹𝑃 with the same cell growth.

that the cut size increases by roughly 1%, 3% and 6% for the respective cell growths

and does not significantly increase with more churn. This can be explained by the

fact that our algorithm mainly optimizes similarity to the input partition whereas

allowing 𝐹𝑃 a higher imbalance can lead to different (smaller) cuts. As expected,

the ratio of all oversized cells compared to the number of cells increases for a cell

growth greater than 0% but stays within reasonable limits for the purpose of road

network partitioning. The runtime of 𝑅𝑃 with 0% cell growth is comparable to the

higher cell growths for the first month but increases sharply starting with the third

month. Allowing cell growths of 5% and 10% yield similar running times up to month

6. Starting with month 7, however, 𝑅𝑃 with cell growth 5% has a significantly higher

runtime, while the vertex/edge churn does not have any significant increase during

these months. A possible explanation might be the merging of small connected

components with bigger ones. In this case, a larger cell growth often allows to assign

all vertices of the previously connected component to the now neighboring cell,

improving the runtime and retaining the similarity.

Quality and Performance on Monthly Instances. Based on the results of our

monthly 𝑅𝑃 evaluation over the course of a year in the previous paragraph, we select

a cell growth of 5% for the comparison with 𝐹𝑃 on the monthly instances. For 𝐹𝑃 ,

we use a cell growth of 0% for comparing similarity for best 𝐹𝑃 results and a cell

growth of 5% for a fair comparison of cut sizes. The result of that evaluation can be

found in Table 8.5. The similarity to the previous partition is always higher than
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Table 8.5: Comparison of 𝑅𝑃 and 𝐹𝑃 , both with 5% cell growth, on the monthly

instances.

CutSize [%] 𝑆1
[%] 𝑆𝐿 [%] Runtime [s]

Instance 𝑅𝑃 𝑅𝑃 𝐹𝑃 𝑅𝑃 𝐹𝑃 𝑅𝑃 𝐹𝑃

𝐴𝑢𝑠𝑡𝑟𝑎𝑙𝑖𝑎𝑀 3.09 98.87 64.57 97.60 39.27 2.01 24.27

𝑁𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑀 3.11 98.64 64.01 87.16 31.07 144.26 1390.57

𝐸𝑢𝑟𝑜p𝑒𝑀 3.24 98.35 62.70 94.70 50.73 197.90 1851.13

Table 8.6: Comparison of 𝑅𝑃 and 𝐹𝑃 , both with 20% cell growth, on the yearly

instances.

CutSize [%] 𝑆1
[%] 𝑆𝐿 [%] Runtime [s]

Instance 𝑅𝑃 𝑅𝑃 𝐹𝑃 𝑅𝑃 𝐹𝑃 𝑅𝑃 𝐹𝑃

𝐴𝑢𝑠𝑡𝑟𝑎𝑙𝑖𝑎𝑌 10.91 85.16 49.60 75.49 23.33 3.50 22.08

𝑁𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑌 13.14 91.04 54.55 62.46 32.53 356.81 1459.72

𝐸𝑢𝑟𝑜p𝑒𝑌 12.83 90.41 52.98 73.64 46.03 251.47 1880.93

98% on the lowest level compared to about 67% for 𝐹𝑃 . 𝑅𝑃 is able to maintain high

similarity values on higher levels as well. The cut size is no more than about 3%

higher compared to 𝐹𝑃 and the runtime is up to a factor of 12 lower.

Quality and Performance on Yearly Instances. We also include quality and

performance figures for the yearly instances where we select a cell growth of 20%

to maximize similarity. For 𝐹𝑃 , we chose the same testing methodology as in the

monthly comparison in terms of cell growth. While our algorithm is able to maintain

good similarity values of 85% or higher on the lowest level, similarity decreases more

drastically compared to the monthly instances. The 𝐹𝑃 algorithm only achieves up to

54% similarity on the lowest level and higher levels even worse. In terms of cut size,

it shows the limitations of trying to keep a partition stable for a full year with good

similarity as our algorithm produces cuts that are overall up to 14% higher compared

to 𝐹𝑃 .

8.5 Conclusion
We presented an algorithm to compute multilevel partitions of an evolving road

network. Our focus was on keeping the partition roughly the same over time. Com-
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pared to partitioning from scratch, our algorithm increases the fraction of unchanged

boundary vertices on monthly snapshots from 65% to 99% at the finest level, and

from 30–50 % to 87–98 % at the coarsest level. With an increase in the cut size by 3 %,

the impact on the partition quality is limited. As a side effect, our algorithm is an

order of magnitude faster when the changes are small.

Our algorithm works well for moderate changes to areas that already existed in the

previous snapshot. However, large areas newly added require special attention. The

simplest way is to resort to partitioning from scratch when the graph changes too

much. Alternatively, it would be interesting to stick to our repartitioning approach,

but preprocess newly added areas as follows. Note that new areas have not yet been

searched for natural cuts. Therefore, we first compute a fragment graph for each

newly added area using a filtering algorithm such as the natural-cut heuristic, Inertial

Flow, or FlowCutter. Then, we replace in the current snapshot the subgraph induced

by each new area with its fragment graph. Finally, the repartitioning algorithm is

run on the modified snapshot. Moreover, another interesting project is the study of

other important classes of evolving networks.
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9 Conclusion

Motivated by the issues caused by advancing urbanization (such as traffic jams,

accidents, air pollution, and a lack of sufficient parking space), we designed practical

algorithms for various problems in the field of urban mobility. Our three main

subject areas were the computation of mobility flows, traffic assignment, and dynamic

ridesharing. To ensure that our algorithms are easy to implement and have good

performance in practice, we employed the algorithm engineeringmethodology, which

complements classic algorithm theory by thorough experimental studies.

We started by studying the efficient computation of mobility flows according to the

radiation model. While the radiation model has received significant attention since it

was proposed in 2012, a straightforward application to continental networks at the

microscopic level is prohibitively expensive. Therefore, we designed a total of four

implementations, where each version improves considerably on the previous one with

respect to either solution quality or running time. Our CCH-based implementation

called CRAD, which gives the best trade-off between solution quality and running

time, is orders of magnitude faster than a straightforward implementation of the

radiation model. Moreover, a special case of CRAD can be used to find nearest

neighbors in road networks. This yielded the first nearest-neighbor algorithm within

the CCH framework that supports interactive online queries.

The second main subject area was traffic assignment. While the efficient com-

putation of equilibrium flow patterns has been studied for over 60 years, their use

for intelligent real-time traffic management has been prevented by relatively slow

running times. To make their computation fast enough for interactive applications,

we combined the prototypical link-based traffic assignment algorithm with customiz-
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able contraction hierarchies. Moreover, we engineered all aspects of CCHs. Our

optimizations accelerate the customization algorithms and both single and batched

point-to-point shortest-path queries. They are not restricted to the traffic assignment

scenario but significantly speed up CCHs generally.

Ridesharing services such as Uber and Lyft formed the third main subject area. We

presented LOUD, a novel framework for dynamic ridesharing based on customizable

contraction hierarchies. LOUD is not only 30 times faster than existing algorithms

for dynamic ridesharing but also finds a provably optimal insertion for a given ride

request. This does not imply that the insertion is optimal from a global point of view,

however, finding optimal insertions for the entire set of ride requests is NP-complete.

We also integrated LOUD into a widely used transport simulation software package.

This underlined the viability and speed of LOUD.

Since CCHs are at the heart of the algorithms from our three main subject areas,

and turn restrictions and turn costs are particularly important for inner-city routes,

we also studied how to incorporate turn costs and restrictions into CCHs efficiently.

We observed a significant performance penalty when running CCHs on edge-based

graphs, which encode turn costs and restrictions into the network structure. There-

fore, we presented multiple optimizations that exploit the properties of edge-based

graphs to accelerate preprocessing and customization on them.

We concluded by designing an algorithm to partition an evolving road network,

which is a subroutine in many shortest-path techniques. We observed that network

data changes surprisingly frequently in practice and that partitioning consecutive

network snapshots from scratch often yields quite different partitions. Since this can

be a problem for real-world applications, we presented an approach that updates

the partition of a previous snapshot without recomputing the whole partition from

scratch. Our experiments showed that this significantly increases the similarity of

consecutive partitions, while decreasing the running time by an order of magnitude.

Future research directions in each of our subject areas were already discussed

in the corresponding chapters. In summary, it would probably be most interesting

to extend the frameworks for traffic assignment and dynamic ridesharing to more

complex scenarios. As for traffic assignment, it would be interesting to study the

efficient computation of time-dependent traffic flow profiles. With respect to dynamic

ridesharing, an interesting next project would be to allow requests already matched

to a vehicle to be reordered or moved to a different vehicle. Finally, it would be

interesting to integrate demand-responsive ridesharing with schedule-based public

transit, or even with a full multimodal scenario.
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