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Abstract. Segmenting windows and doors on 3D point cloud models allows for heat loss audits
around these areas. Researchers have collected aerial images to reconstruct 3D models for large
districts, but easily accessible training datasets with data acquired on ground level cannot be directly
used for segmentation on 3D models reconstructed by aerial images. Additionally, building a new
dataset is a time-consuming and labour-intensive process. Therefore, we propose a segmentation
approach that uses open source training datasets to segment windows and doors on facade images
rendered from 3D point clouds. The results show that our approach can make full use of open source
datasets to segment windows and doors, and that such trained segmentation models performs
differently for different building styles. In addition, different algorithms result in various degrees of
accuracy and segmentation on windows performs better than on doors.

1. Introduction

Thermography, a non-destructive inspection technology, is used for heat loss energy audits.
However, the most common current data collection approaches only allow individual building
energy audit by deploying handheld infrared thermography cameras to collect thermal
information from building facades. The biggest downside of current data collection approaches
is efficiency. Such approaches also do not consider groups of buildings in large district areas in
which interconnected buildings impact each other’s thermal behaviors, especially, those
connected within the same district heating network. More precisely speaking, if one building
that is located in the middle of a heating network has unfixed heat loss issues, it will force
buildings located downstream in the network to draw more heat to keep warm, resulting in more
energy wasted through the middle-network buildings. Thus, there is a need to investigate novel
methods and frameworks for building heat energy audits for large districts. Driven by the need
of efficient and thorough energy audits for large districts, researchers have been deploying
unmanned aircraft systems (UASs) to improve the data collection process (Hou ef al., 2019).

The benefits of using UASs to collect both thermal (infrared spectrum) and RGB (red-green-
blue visible light) images include the higher data collection speed and availability of a bird’s
eye view, which can improve collection efficiency and comprehensively explore high areas of
building fagades that handheld thermal cameras cannot reach. Thermal and RGB imagery data
collected from UASs allow the reconstruction of 3D point cloud models using photogrammetry
technology. In order to obtain the 3D point cloud models that can integrate both thermal and
RGB information, researchers have deployed different data fusion approaches (Hou et al., 2021;
Shahandashti ef al., 2010).

Distinguishing windows and other heat loss related building fagade elements is an important
step for energy audits. Semantic segmentation using 3D point cloud building models fused with
thermal information allows researchers to detect heat loss from window and door edges and to
monitor thermal bridges and areas of moisture on walls. The first step is to distinguish these
fagade components. However, in available open source image databases, facade images with
their labeled components (the ground truth information) that were taken from the ground cannot
be directly used to train a model to segment facade elements either in drone-based aerial images
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or in point cloud models reconstructed by these aerial images. To manually label newly
captured aerial images and then build a new dataset is a potential option. However, conducting
ground truth coding on these aerial images is both time-consuming and labor-intensive.
Therefore, studies on the use of open source databases obtained from the ground to train
artificial neural network (ANN) models for fagade components segmentation using aerial
images can provide an alternative that does not require the building of a new database.

To reduce labeling time and maintain the benefits of using UAS-based data collection, we
propose a framework to train segmentation models using open source terrestrial image datasets
taken from the ground to predict semantic information on building fagades. In this paper, we
introduce the results of our approach that was tested on two different datasets from Karlsruhe,
Germany, one from a university campus, and the other from a central business district (Mayer
et al., 2021). The research introduced in this paper was designed to answer the following
questions: (1) How does the proposed approach perform on different testing datasets with
different building styles? and (2) How does the segmentation accuracy vary for different
building components? This paper is organized as follows. We introduce and detail our approach
in Section 2. Experiment results are described in Section 3, followed by evaluation and
discussion in Section 4. Finally, we present our conclusions in Section 5.

2. Methodology

The proposed approach consists of the following four steps: (1) reconstructing a 3D point cloud
model with aerial imagery data, (2) rendering 2D images from the 3D model, (3) training a
semantic segmentation ANN model with open source datasets, and (4) predicting segmentation
results on the rendered 2D images. We also designed the evaluation and validation metrics for
the proposed approach.

Note that with the exception of the 3D models that were reconstructed by ContextCapture, a
commercial photogrammetry software kit (Shi and Ergan, 2020; Chen et al., 2020), most of the
algorithms used in this study (e.g. Thermal-RGB data fusion, ANN model training, image
rendering) were implemented using Python. The involved implementing libraries include
Open3D (Zhou et al., 2018), OpenCV (Bradski, 2000), scikit-learn (Pedregosa et al., 2019),
and PyRender (Matl, Mahler and Goldberg, 2017).

2.1 Photogrammetry and 3D Point Cloud Model Reconstruction

There are many approaches to detecting defects in building envelops, such as fan pressurization
(blower door test), ultrasound (tone test), and thermography. Thermography, as a non-
destructive technique, is considered the most useful method because it can detect thermal values
in envelops allowing for heat loss and moisture detection. However, current thermography
methods mostly focus on handheld data collection (Dino ef al., 2020; Yang, Su and Lin, 2018),
which is not recommended for an energy audit for a group of buildings in a large district. As
such, researchers have mounted thermal and RGB cameras on UASs for more efficient large
district data collection.

As shown in Figure 1, the data acquisition system used in this study included the drone (DJI
M600), camera (FLIR Duo Pro R), control modules, and other equipment. The DJI M600 is a
state-of-the-art aerial platform designed for industrial data collection. The FLIR Duo Pro R
camera has both photographic and thermal lenses integrated into a single package that enables
simultaneous RGB and thermal image data collection. Additionally, the control system allows
to remotely operate the drones and the FLIR camera to collect data with the desired flight
altitude and camera angles.
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(1) Gimbal - Connection to DJI M600; (2) Gimbal - Frame for Camera; (3) FLIR DUO Pro R — Visible
Lens Barrel; (4) FLIR DUO Pro R — IR Lens Barrel; (5) FLIR DUO Pro R — Electric Wires; (6) FLIR DUO Pro
R — Integration Cable; (7) FLIR DUO Pro R — GPS Antenna Cable; (8) FLIR DUO Pro R — USB Cable.

Figure 1: Cameras Setup for the Unmanned Aircraft System

After both RGB and thermal images with designed image overlapping rates were collected with
the drone, images were used to reconstruct 3D point cloud models over the survey areas using
the photogrammetry technique. We collected over 10,000 images for both campus and city
areas. There were over 12 buildings included for these two areas. Photogrammetry is the
technology for 3D modeling of physical objects such as buildings, infrastructures, and their
environment through the process of measuring and interpreting overlapped images. There are
many well-established photogrammetry commercial software tools. We chose to use
ContextCapture since this software provides an application programming interface (API) that
support further extended developments, such as extracting parameters of image-orientation
estimations to indicate the relative relationships between images and reconstructed 3D models
(Fischer, Dosovitskiy and Brox, 2015; Verykokou ef al., 2018).

Photogrammetric modeling reconstructed by aerial images can support the investigation of
groups of buildings in large districts. As shown in Figure 2 (a), a 3D point cloud model of some
residential buildings was reconstructed by a series of aerial RGB images. To audit the heat-
related defects of these residential buildings, researchers can also reconstruct a 3D thermal
model. Many current approaches directly use thermal images to build thermal-mapping models.
We choose to use high-resolution RGB images to reconstruct a 3D RGB model and then project
corresponding thermal information onto the RGB model to create a thermal point cloud model
(Hou et al., 2021), as the FLIR camera can simultaneously take thermal and RGB images from
the same angle and at the same altitude. Additionally, image-orientation estimations provided
by ContextCapture support the data fusion process. Figure 2 (b) represents a 3D thermal model
of a group of residential buildings created based on the RGB model in Figure 2 (a). In Figure 2
(b), the dark purple color represents a lower thermal value and a lighter yellow color represents
a higher value. Another example is a group of 3D models on a campus shown in Figure 2 (c)
and (d).
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(b) Reconstructed Thermal Models in City Areas

ek * i j'[ -
(c) Reconstructed RGB Models on a Campus (d) Reconstructed Thermal Models on a Campus

Figure 2: 3D point clouds reconstructed by overlapped images

2.2 Rendering 2D Images from a Reconstructed 3D model

After the development of the 3D point cloud model as described in Section 2.1, the next step
focus on how to use the model to audit heat loss. At this step it is important to recognize/classify
door and windows elements in the model because those are the most relevant elements when
auditing building facade heat loss. Therefore, in this step, we developed a process to render 2D
images from the reconstructed 3D models.

We created a virtual camera in the 3D model, which was essential for rendering images that we
needed to investigate. In our study, we used the perspective projection, and the default camera
position was at the origin and facing the negative Z-axis. To move the camera from its origin
position to a position from which the facade image can be rendered, we defined a 4x4 matrix
that contains rotation and transformation information, as shown in Eq. (1).

Right, Right, Right, 0

Upx Upy Up, 0 Eq. (1)
Forward, Forward, Forward, 0 4
Ty T, T, 1

First, we defined the Forward vector. To set a camera position, the computer must know an
initial point, which we refer to as the From point. To know the camera’s orientation, the
computer must also know the point at which the camera looks. We refer to as the To point. As
shown in Figure 3 (a), as an example, the From point is (-5.0, 5.0, 5.0), and the To point is (0.0,
0.0, 0.0), and thus we define the Forward vector as Forward = normalize (From — To).
Next, we define the Temporary vector, which does not have to be precise. The typical value
is (0, 0, 1). Thus, the Right vector is perpendicular to the space that Forward and
Temporary create. Finally, Cartesian coordinates are defined by three mutually perpendicular
vectors, and thus we can calculate the Up vector based on the Forward and Right vectors.
Note that Forward, Right, and Up vectors are mutually perpendicular, and they are all
normalized unit vectors. Therefore, a rendered image by our current camera settings can be
shown in Figure 3 (b). Additionally, we need to define the transformation vector T, which is
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T = From — Origin. Since the Origin is (0, 0, 0), vector T is the coordinate of the From
point.

Tem p(}l‘fl ry
Up

Forward

From(-5.0, 5.0, 5.0)

Right

To (0.0, (L0, 0.0)

(a) The Camera Aiming at a Point (b) The Image Can Be Rendered by Such Settings
Figure 3: The Local Coordinate System of the Camera Aiming at a Point

As we have defined the 4x4 rotation and transformation matrix, we can render facade images
by the given pairs of From and To points. After we selected the From points on streets and
the To points inside of buildings, the fagade images can be then rendered.

2.3 Training a Semantic Segmentation ANN Model

In this step, we used an open source database to train a segmentation ANN model based on
different algorithms. This open source dataset is annotated into eight classes (e.g. Loft, Top,
Wall, window, Shop, Door, and Balcony), which is available from the studies of Mathias, et al.,
2016 and Simon et al., 2011 and can be freely downloaded from the webpage of Ecole Centrale
Paris Facades Database (Teboul, 2008). The data contains 400 images for training and 100
images for testing. The images of facades are taken from different cities including Paris,
Barcelona, and San Francisco, among others.

Many state-of-the-art ANN algorithms exist to train the segmentation models, including
DeepLab, MaskRCNN, and Generative Adversarial Networks (GAN) (Goodfellow et al., 2014).
Among these algorithms, GAN can learn density distributions of imagery datasets and explore
their internal representations (Hou, et al., 2021). Additionally, as the detailed architecture of a
GAN shows in Figure 4, the main difference between the GAN and other ANNSs is that the
GAN has two separated networks including a generator network and discriminator network;
therefore, the GAN architecture is more flexible than other neural network approaches. The
function of the discriminator network is to decide if the generated samples are similar to the
ground truth samples, and the differences are calculated by the loss function. Further, the
backpropagation improves the parameters in generator and discriminator networks based on the
loss function. After several epochs, the samples generated by the generator network evolve
from random noise to predicted results, and then the model is trained for use in testing datasets.
As previously discussed, the GAN architecture is flexible. Thus, it is easy for us to replace the
network architecture. We choose to use two different network architectures to build the
generator network including “Resnet+9 blocks” and “Unet256”.
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Figure 4: The Detailed Architecture of a GAN
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2.4 Segmentation Results and Evaluation of the Proposed Approach

As rendering the fagade images and building the semantic segmentation ANN model, we were
able to use the trained model to evaluate the segmentation results of the rendered images. We
applied trained ANN models (both “Resnet+9 blocks” and “Unet256 versions) on two datasets,
including the campus and city areas as shown in Figure 2. As for the evaluation metrics, we
chose two evaluation criteria to analyze the performance of the proposed method: (1) an
accuracy analysis of the segmentation performance on the open source datasets, and (2) a
performance analysis on the rendered images.

We applied four methods to evaluate the segmentation performance on images, including (1)
precision, (2) recall, (3) Jaccard/intersection-over-union (IOU), and (4) the dice coefficient /F1-
score, as shown in Egs. (2-5). In these equations, TP (true positive) represents the area of
overlap between the predicted segmentation and the ground truth in the images. FP (false
positive) represents the areas that belong to the correct class but that the algorithms cannot
recognize, and FN (false negative) represents the areas that do not belong to the correct class,
but that the algorithms incorrectly recognize them do. Using TP, FP and FN, we can calculate
the evaluation metrics. Precision, also known as positive predictive value, is the fraction of the
correctly classified area among the actual result area in the ground truth images. Recall, also
called sensitivity, is the fraction of the correctly classified pixel area among the predicted result
area in the predicted images. Next, IOU, is the fraction of the correctly classified pixel area
among the union areas of the actual result areas and predicted result areas. Last, F1 is a harmonic
mean that combines precision and recall score.

TP

Precision = PR Eq. (2)
Recall = —"— Eq. 3)
I0U = ——— Eq. (4)
Fl= ——— Eq. (5)

3. Experiment

Thermography inspection needs a special experimental condition in which the temperature
difference between the indoors and outdoors should be at least 10 °C (18 °F) (FLIR Systems,
2011). To meet this requirement, inspections need to be conducted in a hot summer or a cold

566



winter. However, the sun radiation can cause an inaccurate facade temperature measurement
and further impact the cooling energy loss audits. Therefore, thermography inspection on hot
days is usually conducted in early morning or late afternoon to avoid sun radiation. However,
it is still difficult to guarantee the needed temperature differences during such inspection times
in the summer. Considering these facts, we conducted a heat loss inspection on a college
campus and in a city area during a cold winter in Karlsruhe, Germany. In collecting data for
our experiments, room temperatures were higher (the average temperature was 17 °C (63 °F)
for indoor spaces when the research was conducted), and the outside ambient temperatures were
lower (the outdoor temperature was -5 °C (23°F) in the early morning).

The open source dataset in which the cameras were set on the ground is annotated into 8 classes.
However, we only focused on two categories (doors and windows) related to the heat loss audits
for this study. As shown in Figure 5, Figure 5 (a) and (e) are two examples in the open source
datasets, (b) and (f) are ground truths for these two examples, (¢) and (g) are segmentation
results for these two examples, and (d) and (h) are segmentation results using another algorithm.
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Figure 5: Building the segmentation models

For next step, we used the two segmentation models built using “Resnet” and “Unet” to predict
rendered images from the 3D point cloud models. Figure 6 (a) is an example of buildings in a
city area, and Figure 6 (b) is another example for the campus buildings. A virtual camera was
set in the 3D model, and a facade image with its ground truth were rendered.
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(a) Example One: an RGB Image (b) Example Two: Ground Truth

Figure 6: Segmentation on Rendered Images

4. Results and Discussion

Based on the Egs. (2-5), we conducted accuracy analysis of the segmentation performance for
the open source datasets and performance analysis for the rendered images, as shown in Figure
7. We also used the segmentation model trained by open source datasets to predict the
segmentation on rendered images, and the accuracy analyses are also shown in Figure 7.
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Figure 7: Segmentation Performance Analysis

We also plotted a Precision-Recall curve (PRC) as shown in Figure 8. The blue color represents
“Resnet+9blocks” GAN algorithm, and red represents “Unet256” GAN algorithm. As the
yellow lines shown in figure (a), the ideal test should have a PRC that passes through the upper
right corner representing the 100% precision and 100% recall. In general, the closer the blue or
red area is to the yellow lines, the better the performance.

There were some important findings from the results. First, as the results in Figure 7 show,
“Resnet+9blocks” outperformed “Unet256” in all cases except predicting door class in rendered
images from the campus datasets. Second, in general, predicting window class was more
accurate than predicting door class. The blue areas are always on top of the red areas in Figure
8. This is potentially because of the unbalanced datasets. In every image in the datasets, there
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were more pixels belonging to window class than pixels belonging to door class. A solution
needs to be found for this unbalanced dataset issue in future studies. Third, in general, our
proposed approach performed better in city datasets than in campus datasets, potentially
because the building styles in the open source are closer to the styles in city datasets.

(a) Cun?e for Window Ciass . - . (ej Cur\-/-e for Windbw Class
(Open Source Datasets) (c) Curve for Window Class (City) (Campus)

(b) Curve for Door Class (Open

Source Datasets) (d) Curve for Door Class (City) () Curve for Door Class (Campus)

Figure 8: Precision-Recall Curve

5. Conclusion and Outlook

Our results show that a 3D point cloud model can be created using aerial images and that
rendered facade images for segmentation can be successfully generated by a virtual camera in
the model. As the results show, the segmentation accuracy decreases from the evaluation of the
segmentation performance on the open source datasets to the evaluation of the rendered images.
Particularly, the performance decreases more when using the “Unet256” algorithm. Second, the
accuracy of segmenting windows is higher than segmenting doors. Finally, the results show that
the accuracy of semantic segmentation is higher when the approach is conducted on buildings
in a city than in a university campus. In the future, there is a need to consider the unbalanced
dataset issue related to the higher incidence of windows objects when compared to door objects
on existing databases. Additionally, there are two options for improving the segmentation
performances; one is by improving the quality of the rendered images, and the other one is by
improving the segmentation algorithms.
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