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Abstract.  Thermal bridges are weak areas of building envelopes that conduct more heat to the 

outside than surrounding envelope areas. They lead to increased energy consumption and the 

formation of mold. With a neural network approach, we demonstrate a method of automatically 

detecting thermal bridges on building rooftops from panorama drone images of whole city 

districts. To train the neural network, we created a dataset including 917 images and 6895 

annotations. The images in the dataset contain thermal information for detecting thermal bridges 

and a height map for rooftop recognition in addition to regular RGB information. Due to the small 

dataset, our approach currently only has an average recall of 9.4% @IoU:0.5-0.95 (14.4% for large 

objects). Nevertheless, our approach reliably detects structures only on rooftops and not on other 

parts of buildings, without any additional segmentation effort of building parts.  

1. Introduction 

In 2017, building constructions and operations accounted for 36% of global final energy use 

worldwide 

Thermal energy is a particularly relevant component of this: more than a half of current global 

household energy use is for space and water heating (IEA, 2014). In addition to high energy 

standards for new buildings, the energy retrofit of old buildings plays an important role. 

While new construction adds annually 1% or less to the existing building stock, the other 99% 

of buildings already existed in the year prior (Power, 2008).  

To develop energy-saving approaches for existing buildings in cities, strategies on different 

aggregation levels can be considered: at the single building scale, the district scale, and the 

full-city scale. The district scale, the intermediate level between the city and the building 

scale, is coming increasingly into the focus of building science and urban transition planning. 

The main strengths of the district scale for the building energy retrofit are summarized by 

Riechel (2016): Compared to measures for single buildings, measures for whole districts 

provide the possibility of cost digressions and other economies of scale for energy 

improvements. For example, the planning and implementation of retrofit measures such as the 

purchase of retrofit material can be cheaper for a large demand in a small area at the same 

time. Compared to the city scale, the closeness between habitants and building owners 

contributes to neighborhood-dynamics in districts. Informal communication among neighbors 

("neighborhood gossip") or the copying of a building retrofit in the neighborhood by other 

owners can have benefits for implementing energy improvement measures. (Riechel, 2016) 

There are approaches to systematically use the advantages of the district scale to push urban 

transition and the retrofit of buildings. One of the most frequently practical and standardized 

describes a policy plan that intends to improve the energy quality of private and public 

buildings and the energy infrastructure of a whole city district. So far, more than 1,000 EQs 

have been financially supported by the German government (BES, 2020). 
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To identify districts with a high need for energy retrofits and to develop effective measures 

for substantially improving the energy quality of a district, an initial thermal quality analysis 

of existing buildings is necessary. Currently, such analyses on district scale are expensive and 

time consuming (Riechel et al., 2016; Neußer, 2017). Therefore, approaches that allow for 

automatic and simplified analyses are crucial for a higher efficiency of EQs and other retrofit 

planning approaches. 

With the help of unmanned aerial vehicles (UAV, drones), it is possible to collect thermal 

panorama images of many buildings from different angles with relatively little effort and cost 

but with a high resolution. A distinction is made between quantitative and qualitative 

thermography. In quantitative thermography, absolute temperatures are measured as precisely 

as possible. The process is highly dependent on environmental parameters, the infrared 

camera used, and the qualifications of the thermography staff. Qualitative thermography, on 

the other hand, is simpler. It focuses on temperature distributions and differences. Thermal 

bridges in particular can be easily identified in qualitative images. (Volland et al., 2016) 

A thermal bridge is an area of the building envelope that conducts heat easily, thus 

transporting heat from the warmer inside to the colder outside faster than it does through the 

adjacent areas. This is caused by different thermal conductivities of used materials or the 

geometry of constructions. Air leaks can also be subsumed under the term thermal bridge 

(Schmidt and Windhausen, 2018). Thermal bridges cause high energy losses which can make 

up to one third of the transmission heat loss of an entire building. Additionally, they lead to 

the collection of moisture, which in the long term degrades the building fabric or causes 

mould. A thermal bridge can be seen on a thermographic image as an area with an increased 

thermal radiation relative to adjacent areas. (Schild, 2018).  

2. Research approach 

In this study, we analyse how drone-based thermal images can be used for a simple analysis 

of the thermal quality of building envelopes on district scale. To do so, we investigate the 

quality of thermal panorama images obtained by drones and analyse how artificial intelligence 

can help to automatically detect thermal bridges. We focus on thermal bridges on rooftops as 

they are difficult to access with conventional thermography from terrestrial images. 

To motivate our research, we first provide an overview about which publications and studies 

are known to us in the field of automated computer vision approaches to detect thermal 

bridges of buildings. We focus on studies that work with imagery data obtained by non-

stationary recording approaches - especially with drones - suitable for recording images on 

district scale.  

In the main part of our work, we demonstrate a method to automatically detect thermal 

bridges on building rooftops in thermal aerial images using a neural network. We employ 

existing solutions from the domain of object detection to learn to identify the size and location 

of thermal bridges within each image. For this, we create a dataset of drone images with 

annotations of thermal bridges on building rooftops. Each image of the dataset consists of a 

combination of a thermal image, an RGB1 image recorded from the same angle and converted 

to the same format, and height information for each pixel (Hou et al., 2021 - a). We select a 

training dataset for the neural network composed of a subset of the images, and validate our 

results on the remainder of the dataset. 

                                                 
1 Red, Green, Blue 
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3. Related work 

Non-stationary thermography with the help of cars and drones for the analysis of buildings is 

becoming increasingly important in thermography studies. The advantage of drones compared 

to terrestrial methods is that the entire envelope of buildings (including rooftops) can be 

thermographically assessed. In addition, the influence of facade covering (e.g. by trees or 

 

Publications in the field of automated thermal bridge detection from thermal images obtained 

with non-stationary cameras are from Garrido et al. (2018), Macher et al. (2020), Martinez-de 

Dios and Ollero (2006), and Rakha et al. (2018). To automatically detect thermal bridges 

these publications work with different threshold approaches for temperature differences in the 

images. They record close-up images of single buildings from different angles, but do not 

work with panorama images that cover multiple buidlings. Moreover, they use small datasets 

to validate their approaches and do not focus on entire districts. Garrido et al. (2018) place an 

infrared camera on the roof of a vehicle to record images at an angle of 45°. The proportion of 

unrecognized or incorrectly declared thermal bridges is 32% for a test set of three images. 

Macher et al. (2020) also install their infrared camera on a vehicle and conclude being able to 

reliably detect thermal bridges between floors and under balconies. No quantitative 

information is given on the precision of the used algorithm. Martinez-de Dios and Ollero 

(2006) use a thermal camera placed on a drone helicopter. According to the authors this 

approach is suitable for detecting thermal bridges on windows. The study lacks precise quality 

information for evaluating the results. Rakha et al. (2018) also use a drone with a thermal 

camera to record close-up images of buildings from the air. They state the overall precision of 

their algorithm of about 75%.  

As thermal panorama images contain many different buildings from changing angles and 

infrastructure in between (e.g. trees, trams, cars, streets, street lights) classic threshold 

approaches appear unsuitable for the automatic detection of thermal bridges. This is because 

thermal bridges change in shape from different angles and high temperature differences often 

occur on objects in the image which are not buildings.  For successful thermal bridge 

detection on panorama images deep learning approaches are very promising, as complex 

objects such as buildings, certain building parts on that thermal bridges occur (e.g. rooftops), 

and various thermal bridge types with different shapes can be recognized. 

A recent study by Kim et al. (2021) works with a deep learning approach to detect thermal 

bridges from terrestrial thermographic images. The study uses a method including thermal 

anomaly area clustering, feature extraction, and an artificial-neural-network-based thermal 

bridge detection. The average precision of the detection of thermal bridges is for eight test 

images 89%. However, the images used are close-ups of buildings and cannot be compared to 

panorama images. To the best of our knowledge there is no study that aims to detect thermal 

bridges in an entire district on thermal panorama images using deep learning approaches. 

4. Dataset 

Our dataset of Thermal Bridges on Building Rooftops (TBBR dataset) consists of combined 

RGB and thermal panorama drone images with a height map (Figure 1). The raw images for 

our dataset were recorded with a normal (RGB) and a FLIR-XT2 (thermal) camera on a DJI 

M600 drone. We converted all images to a uniform format of 2400x3200 pixels. They contain 

RGB, thermal, and GPS information as well as flight altitudes (between 60-80m above 

ground). The GPS and flight altitude information were used to reconstruct a 3D model out of 
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Mask R-CNN uses a multi-task loss on every proposed region of interest:  

.  is the categorical cross-entropy loss across  output predictions for  

component classes, plus an additional catch-all class for proposed regions containing only 

background.  is the bounding box regression (mean squared error) over the predict box 

corners.  is the average binary cross entropy across all pixels in the mask. These are 

described in further detail in He et al. (2017). Note that for the experiments reported in this 

work we use a single annotation class (i.e. K=1). 

The dataset images were split into 717 training images and 200 test images corresponding to 

five and one of the city blocks described in the  section above, respectively. Training was 

performed for 30,000 iterations at a batch size of eight, with random weight initialisation (i.e. 

no pre-training). The remaining hyper-parameter configurations were set to the Detectron2 

templates, with only changes the number of ResNet layers (18) and the pixel value means 

(130, 135, 135, 118, 118) and standard deviations (44, 40, 40, 30, 21) for (B, G, R, thermal, 

height) used by Detectron2 to normalise the inputs. These values were calculated from the full 

set of training images. 

6. Results  

To evaluate the performance of our training, we use the Average Recall (AR) metric, defined 

as: 

(7) 

where TP and FN refer to the number of true positive and false negative object predictions, 

respectively. The AR measures the probability of objects in an image being detected. Since 

not every thermal bridge in the dataset is annotated, we do not report any metrics that work 

with false positives (such as Average Precision). These metrics are guaranteed to 

underperform as even correctly predicted thermal bridges will be reported as false positives if 

the corresponding annotation does not exist. 

To determine which predicted bounding boxes correspond to correct predictions, the 

Intersection-over-Union (IoU) is measured between the predicted and ground truth boxes as: 

(8) 

For a given IoU threshold, predicted bounding boxes that have an IoU with an annotated 

thermal 

annotated thermal bridges without a prediction satisfying this are considered false negatives. 

Table 1 shows the metric scores for various common variants of the AR metric. An IoU range 

(i.e. IoU=0.5:0.95) indicates the AR is averaged over the given interval. An area of medium 

or large corresponds to objects of area between 322 and 962, and greater than 962 pixels, 

respectively. Max. detections indicates the score given the N highest confidence predictions4. 

We note immediately the comparatively low scores, which we attribute to the low number of 

annotated examples relative to the large image sizes and sparsity/small size of thermal 

bridges. Notably, the network performs better at larger scales, which is likely due to larger 

                                                 
4Although often reported in object detection tasks, we do not report small (less than 322 pixels) thermal bridges 

as the smallest present in our dataset is 552 pixels. 
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thermal bridges being less ambiguous with regards to non-thermal bridge heat spots in an 

image. 

An interesting result, however, is the location of predicted thermal bridges, regardless of their 

accuracy. All predictions are on or overlapping with rooftops, indicating the network has an 

awareness of sensible locations for thermal bridges. We find that this result is consistent 

across all test images. We posit that this is due to the inclusion of the height map as a signal to 

the neural network of where to look for thermal bridges. We plan to perform further ablation 

studies to confirm this. 

Given the dataset was produced by a single fly over of six city blocks, some portions of the 

test dataset images are also present in the training images from different angles. In these 

instances we note that the neural network has overfitted those thermal bridges and predicts 

them with at or near 100% confidence. Nonetheless, the network is able to identify thermal 

bridges unique to the test dataset, albeit with lower confidence and IoU. We expect this to 

improve with the training techniques discussed in the next section. 

Table 1: Bounding box regression metrics on the test images dataset 

Metric Area Max. detections Score 

AR @ IoU=0.50:0.95 All 1 0.052 

AR @ IoU=0.50:0.95 All 10 0.142 

AR @ IoU=0.50:0.95 All 100 0.142 

AR @ IoU=0.50:0.95 Medium 100 0.114 

AR @ IoU=0.50:0.95 Large 100 0.196 

7. Discussion  

The Average Recall achieved is not currently suitable for thermal bridge detection; however it 

does provide a baseline score for prediction with a modern computer vision approach directly 

on the TBBR dataset. This represents a departure from previous approaches which relied on 

complex multi-stage solutions (as in Rakha et al. (2018)) or fine-tuning of clustering and 

feature extraction preprocessing steps (as in Kim et al. (2021)). 

A key limitation in this work is the comparatively small number of images available for 

training. This is due to the time required to manually annotate each image. While we used a 

total of 917 images, common benchmarks often contain hundreds of thousands (e.g. COCO) 

or even tens of millions (e.g. Imagenet) of images.  

We therefore plan to implement a self-supervised pretext task to maximise the use of 

collected images. Specifically, we intend to utilise the work from Hou et al. (2021 - b) to first 

train a neural network to predict thermal images from RGB and use these predicted images, 

along with the real thermal and the height information, as input to the Mask R-CNN network. 

This approach is similar to that of the Split-Brain Autoencoder described by Zhang et al. 

(2017). We hypothesise that the predicted thermal images will be nearly identical to the real 

thermal images, with only the thermal bridges missing5

significantly to learn to locate the appropriate differences between the two. If successful, this 

                                                 
5 The assumption here is that thermal bridges are only visible from the thermal image, which is of course the 

original motivation for including thermal images in this project in the first place. 
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would allow full use of all (non-blurry) drone images captured, not only those on which the 

laborious task of annotation has been performed. 

In order to increase the size of the dataset, it is also possible to use panorama images collected 

from other sources. Since our approach is based on qualitative thermography, the weather 

conditions and temperatures when recording new images do not have to be identical to the 

existing dataset (Volland et al., 2016). However, the temperature contrast of new annotated 

thermal bridges should be high enough to detect, which is the case when there is a difference 

of more than 10°C between indoor and outdoor temperatures. The distances of the drone to 

the buildings can also vary, however thermal images with more than 20m distance to the 

measurement object should be checked in all individual cases for appropriate quality (Fouad 

and Richter, 2012). 

8. Conclusion 

We have reported an overall average recall of 14.2% at IoU:0.5-0.95, and 19.6% at IoU:0.5-

0.95 for large thermal bridges. We demonstrated the ability of the neural network to propose 

predictions in reasonable locations (i.e. rooftops only) which we posited is due to the addition 

of height information to the input images. While this work has shown a promising first result 

in identifying individual thermal bridges from drone images, we believe there is still 

significant potential for improvement to be made using a self-supervised pretext task to 

maximise the information obtain from the entire set of collected images.  

This work focuses on a cost-effective and scalable approach to assess thermal bridges using 

thermographic images from drones. In future, we intend to use financial and environmental 

criteria to estimate which buildings in a district the retrofit of thermal bridges is recommended 

and when buildings should be retrofitted more extensively. 
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