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Abstract— Autonomous vehicles face big challenges guar-
anteeing provable safety during driving. One of the major
problems is the uncertainty arising from the perception of
the surrounding environment, especially due to occlusions.
Recent approaches to tackle these uncertainties either minimize
collision risk probabilistically or assume worst-case vehicles
coming out of occluded areas. The former does not provide
any safety guarantees, while the latter tends to produce overly
conservative driving behavior. Human drivers, however, can
reason about possible traffic participants (TPs) in occlusions
with the knowledge about the street, more importantly, with
the continuous observation on the changes of the field of view
when moving forward. In this paper, we present an approach
that imitates this human-like intelligence and can reason about
all the potential TPs in occlusions. By moving forward and
propagating the initial knowledge with new observations, the
approach can refine the possible states of the TPs in occlu-
sions instead of always adopting a worst-case assumption. By
planning w.r.t. the set-based occupancy prediction from the
refined state intervals, the vehicle can drive more efficiently
under occlusions while guaranteeing safety under reasonable
assumptions. The proposed method is evaluated with numerical
experiments showing that all the possible hidden TPs can be
covered by our refined state intervals, and with that achieving
significantly more driving efficiency under occlusions while
being safe.

I. INTRODUCTION

Autonomous driving has received great attention from
many research institutions. However, it demands large effort
in figuring out how to equip autonomous vehicles with
human-like intelligence. In the last years, great progress has
been made in the field of sensors and other onboard hard-
ware. Thanks to the advances in machine learning technol-
ogy, the perception algorithms have improved significantly
in recent years as well [1]. However, due to the physical
limitation, all the sensors have a maximum sensing range.
And more importantly, there will be various surrounding
obstacles that block the sensor’s field-of-view (FoV), and
therefore formulate occlusions, e.g. for the scene shown in
Fig. 1(a). As there might be TPs that have right of way over
us in the occlusions, the ego vehicle should take them into
account, and generate trajectories that can tackle the potential
hidden TPs appropriately.

According to the concept of Responsibility Sensitive
Safety (RSS) [2], the right-of-way should be given but
not taken. Therefore, all the possible states of the TPs in
the occluded right-of-way area should be considered. One
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Fig. 1: Traversing one unsignalized intersection with static occlu-
sion. (a) Ego vehicle (blue solid rectangle) approaches intersection
following its trajectory (blue hollow rectangles). (b) Ego vehicle
slows down because of the over-approximated reachable sets pre-
diction (red polygons) of the possible hidden TPs.

previous work over-approximate the possible TPs’ states in
occlusions by state intervals [3]. As depicted in Fig. 1(b),
when the ego vehicle approaches one intersection with one
obstacle that blocks the FoV of the ego vehicle on the right
arm of the street, [3] assumes that there will be vehicles
coming out from the sensing edge and sensing border with
velocity up to the speed limit at any time. To guarantee
safety, it extends the set-based prediction method [4] to the
state intervals of the possible TPs to provide occupancy
predictions, which are shown by the red polygons. As long
as the trajectory of the ego vehicle does not intersect with
those reachable sets, safety is guaranteed. However, this
assumption can lead to overly conservative driving behavior.

At the position shown in Fig. 1(b), human drivers would
not drive only according to the current, but also past evolu-
tion of the scene. If they came from the position depicted in
Fig. 1(a), where they already had a view on different parts
of the street, they would not reason about TPs coming from
occlusions with up to maximum velocity, but with lower
velocity. Especially, if their FoV can cover the whole street
during the time from Fig. 1(a) to Fig. 1(b), and they keep
track on the border of the street that no new vehicle enters
the occlusion, they can even know that the street is clear,
under the mild assumption that no vehicle in the occlusion
drives backward.

Motivated by that, this paper proposes an algorithm that
can track the occlusions over time, and reason about the
states of the possible hidden TPs. We first initialize over-
approximated state intervals the first time we observe oc-
clusions on the interesting street, as [3] do. By propagating



the initialized state intervals and updating them with new
observations, they will be gradually refined to the real
possible state intervals. With this information, the ego vehicle
can plan a trajectory that is not only provably safe in the
planning horizon, but also significantly more efficient.

The rest of the paper is organized as follows: Section II
introduces the related work. In Section III we explain our
approach in detail. Then the evaluations are presented in
Section IV. Finally, we conclude this paper and discuss future
work in Section V.

II. RELATED WORK

Previous works try to tackle occlusions in different ways.
One focus is to provide provable safety in scenarios with
occlusions. As mentioned before, [3] always assumes worst-
case situation when encountering occlusions to provide prov-
able safety. The authors also extend the approach towards
RSS by [5] to formalize dangerous situations and proper re-
sponses. The authors of [6] maintain the same assumption as
[3]. However, they choose a more efficient and comfortable
plan at intersections where the probability of hidden TPs
is very low according to the traffic flow data. Safety is still
guaranteed, but if the probability of a hidden vehicle is small,
they prefer one harsh braking instead of 100 unnecessary soft
brakings when crossing an intersection 100 times.

Another direction of research focuses on estimating colli-
sion risk caused by the potential hidden TPs in occlusions,
e.g. [7], [8] and [9]. [7] obtains a comfort plan by utilizing an
optimization-based motion planner to reduce the risk, while
[8] evaluates the driver’s current behavior in terms of risk,
warns the driver in case of critical events. As they regard
risk as soft constraints, safety guarantee is not provided.

Recently, [10] and [11] formulate the planning problem
as Partially Observable Markov Decision Process (POMDP).
They predict the future FoV of the autonomous car over the
whole planning horizon and achieve a human-like driving
behavior when facing occlusions. [12] proposes to learn
a driving policy at unsignalized occluded intersections via
reinforcement learning, which considers the future occlusions
implicitly by maximizing future reward. Other approaches
like [13] and [14] incorporate active exploration to eliminate
future occlusion as much as possible, to actively reduce the
possibility of potential hidden TPs.

However, all of those approaches neglect the historical
information about the occlusions that can be used to reason
about the current hidden TPs.

Our main contributions adressed in this work are:

• By tracking and propagating the scene with new ob-
servations over time, we can refine the state intervals
of the potential TPs in occlusions, instead of assuming
worst-case situation all the time.

• With the refined state intervals that still cover all the
current possible TPs’ states in occlusions, a provably
safe and more efficient driving behavior is achieved.
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Fig. 2: Definition of set and subset. Along the street, the longitudinal
position of the vehicle can be from s1 to s2. The velocity of the
vehicle can be between 0 m

s to vlimit. The state set S is shown with
the transparent blue rectangle. One subset example S is depicted
by the green rectangle.

III. APPROACH
In Section III-A, instead of using the term of state inter-

vals, we introduce our definition of state set and subsets.
We define three operations on the subsets in Section III-
B, in order to predict and update the subsets over time. In
Section III-C, we will explain the whole pipeline of tracking
the subsets with the operations in Section III-B. The resulting
subsets can be used to generate reachable set prediction from
the occlusions for the behavior planning algorithms.

A. Definition of state set and subset

In this paper, we introduce two mild assumptions. Firstly,
the vehicles are assumed to move along the centerline of
the lane, and the lateral offset to the centerline is neglected.
The reason is that, from occlusions, what affects the driving
behavior the most are the longitudinal position and velocity
of the potential vehicles relative to the collision zone, but
their lateral position w.r.t. to the centerline is less of interest.
However, the concept that will be introduced in the following
sections are applicable for considering more dimensions like
lateral position, orientation as well, in order to model more
TPs like pedestrians and cyclists. This could be an interesting
future work that is discussed in Section V. Knowing the
longitudinal position w.r.t. the centerline of the lane, the
global coordinates of the vehicle can be retrieved by utilizing
the High-Definition Map frameworks, e.g. Lanelet2 [15],
which models the geometry of a lane with consecutive
lanelets. The second mild assumption is, no vehicle drives
backward, i.e. with velocity lower than 0 m

s .
Therefore, the state of a vehicle is represented as: the lon-

gitudinal position and the velocity. Fig. 2 shows one example.
The state set of the vehicle is then a two-dimensional space
defined by S = {(s, v)} with s ∈ [s1, s2] and v ∈ [0 m

s , vlimit].
One subset S can be arbitrary part of the set S ∈ S , which
can be represented by S = {(s, v)} with s ∈ [smin, smax] and
v ∈ [vmin, vmax]. Each subset S contains a part of possible
states of vehicles on the lane.

When the target lane is occluded, we can over-approximate
all the possible vehicles’ states in the occlusions by creating
several sets [S1,S2, ...] on each of the occluded sections of
the lane in v-s-space.
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Fig. 3: Grow, split and merge operations for subsets.

B. Operations on subsets

We first define three geometric operations for a subset S:
Grow, split and merge.

1) Grow: After a certain time period t, one subset S
changes its vmin, vmax, smin and smax. As the subset represents
state intervals of a vehicle, the vehicle dynamics should be
followed, i.e. subsets should grow following one acceleration
interval [a, a], with a, a ∈ [amin, amax], where amin and
amax represent the minimum and maximum acceleration of
a vehicle.

After t, the new limits for velocity and longitudinal
position of a subset can be represented by v′min, v′max, s′min
and s′max. One example is shown in Fig. 3. The new limits
are computed following:

v′max =

{
vmax + ta (vmax + ta ≤ vlimit)

vlimit (vmax + ta > vlimit)
(1)

v′min =

{
vmin + ta (vmin + ta ≥ 0)

0 (vmin + ta < 0)
(2)

s′max =

{
smax + vmaxt + 1

2at
2 (vmax + ta ≤ vlimit)

vlimitt− (vlimit−vmax)
2

2a (vmax + ta > vlimit)
(3)

s′min =

{
smin + vmint + 1

2at
2 (vmin + ta ≥ 0)

smin − v2
min
2a (vmin + ta < 0)

(4)

2) Split: One subset can always be replaced by several
subsets if the union of the latter can cover the same intervals
for velocity and longitudinal position as the former. There-
fore, one subset can be split into several subsets by dividing
its velocity interval and the interval of the longitudinal
position. One example is shown in Fig. 3.

3) Merge: The other way around, several subsets can
also be replaced by one subset, if they can cover the same
state intervals. However, as only four characteristic values
vmin, vmax, smin and smax are defined for subsets, they can
only be rectangular in v-s-space. Thus, for merging several
subsets, we over-approximate one subset that picks the
maximum vmax, smax, and minimum vmin, smin of all subsets,
as illustrated in Fig. 3.
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Fig. 4: The pipeline of tracking subsets and planning behaviors
on top of the subsets. Green rectangles represent the subsets. The
red polygon represents the predicted occupancy from the remaining
subsets.

C. Tracking subsets in occlusions

In the entire paper, we assume a simple visibility model,
by assuming a 360° range sensor with a certain viewing range
mounted on top of the vehicle center. The light blue polygon
in Fig. 1 represents the FoV of the ego vehicle.

The goal of this approach is to track possible hidden TPs in
occlusions thereby loosening the worst-case assumption and
using this information for behavior planning. The pipeline
(shown in Fig. 4) is done starting with initializing subsets on
newly observed occlusions. By predicting the subsets with
the operations in Section III-B and updating them with new
observations, they can be tracked in a closed loop. At each
planning step, the updated subsets can be utilized to generate
reachable set predictions for the behavior planning algorithm.
The generic way of generating set-based prediction from
initial state intervals is detailed in [3].

1) Initializing subsets: This step is shown in the upper
left part of Fig. 4. At the time where the ego vehicle
observes an occlusion on the interesting lane, one state set
S = {(s, v)} with s ∈ [s1, s2] and v ∈ [0 m

s , vlimit] can be
initialized in v-s-space. S is able to cover all the possible
states of potential vehicles in the initial occlusions. Then
we select two discretization sizes ∆v and ∆s for velocity
and longitudinal position, and split the initial set S into
subsets, each of which covers one portion of possible states
in occlusions.

2) Predicting subsets: After one time step, the ego vehicle
moves to a slightly different position, and can therefore see
different parts of the lane. Meanwhile, all the initialized
subsets also change their characteristic values vmin, vmax,
smin and smax. The prediction step is explained in Fig. 5.
The initialized subsets in the upper left part of Fig. 4 is
again illustrated in the upper left of Fig. 5. Each subset
has an initial size of ∆v and ∆s. As mentioned before,
all the subsets should grow according to an acceleration
interval [amin, amax] that corresponds to the acceleration limits



s

v 

vlimit

0

Grow

s

v 

vlimit

0

s

v 
Split

∆�

∆�

∆�

∆�

s

v 

∆�

∆� Merge

A
BB

A

N

M

0

Fig. 5: Predicting subsets.

of the vehicles. As each subset has different characteristic
values, they won’t grow with the same speed and scalar. For
instance, the subsets A and B in Fig. 5 will have different
size according to (1) to (4) after growing. Large overlapping
areas exist between each subset, and the union of them will
not be a rectangle anymore as the upper right part of Fig. 5
depicts. The reason for this distorted shape is that the subsets
in the upper part will move to the left faster than the subsets
in the bottom, because they have an overall higher velocity.

Now after growing, the number of the subsets maintains,
but they have different sizes, overlap with each other, and
are highly disordered. We apply the split operation for all the
subsets again with the discretization size of ∆v and ∆s. For
example, A and B will then be split into four subsets each. By
that, the total number of subsets will explode exponentially.
In order to avoid memory issue and keep computational
pressure low, we limit the number of subsets by merging
the subsets after splitting.

Although the union of all the split subsets will not be
rectangular anymore, its outer contour can form a rectangle,
as the left bottom part of Fig. 5 shows. We discretize the
rectangular space again with ∆v and ∆s, which formulates
M×N grids in v-s-space. Those split subsets will be merged
into one, if their centers lie into the same grid, e.g. the two
blue subsets in Fig. 5 will be merged into one, because their
centers lie into the same grid formed by the dashed black
lines. In the end, we obtain another set of subsets with a
maximum number of M×N, each of which has a maximum
size of 2∆v× 2∆s, as shown in the upper right part of Fig.
4.

3) Updating subsets: As the ego vehicle already has a
new FoV after one time step, the predicted subsets should be
updated accordingly. We update subsets by either removing
or keeping them. One subset will be removed, once any
longitudinal position between its smin and smax is seen. As
we choose ∆s much smaller than the length of a real vehicle,
and the size of the subsets is controlled by the split-operation
in prediction step, it is guaranteed that all the vehicles whose
states covered by a subset can be seen, once any longitudinal
position of a subset is visible. The updating step is depicted
by the bottom right part of Fig. 4.

The new subsets after updating can be used either for
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Fig. 6: Losing track on borders of occluded lane sections

planning the ego vehicle’s behavior or for collision warning
systems that assess the possible risk from occlusions.

D. Losing track on borders of occluded lane sections

Until now, we only considered the case where both ends
of the occluded section of the lane are under our monitoring.
Thus, we can make sure that no new vehicles from outside
enter the occluded lane section, and the subsets that were ini-
tialized and tracked always build the limits for the potential
hidden vehicles’ states, as depicted by the green rectangles
in the left figure of Fig. 6.

However, when one end of the occluded section extends
beyond the FoV of the vehicle, as shown in the right figure
of Fig. 6, the subsets alone can not cover all the possible
states anymore. To overcome this problem, it is assumed
that new subsets with velocity interval of [0 m

s , vlimit] will
enter the occlusion from the connecting point between the
occluded section and the outer area, as soon as the connection
is formed. The new subsets will be predicted and updated the
same way as the existing subsets.

IV. EVALUATION

The evaluation will be done in two parts. Firstly, the
coverage of the subsets will be evaluated, and the ability
that the subsets cover all the possible states in occlusions will
be proved. Secondly, a proof-of-concept planning algorithm
is implemented to present the better driving efficiency over
baseline with our tracked subsets while providing the same
safety as baseline.

In all the evaluations, the following parameters are used:
vlimit = 13 m

s , ∆v = 1 m
s , ∆s = 0.2m, amax = 3 m

s2 and
amin = −4 m

s2 . With this parameter setup and a simple Python-
implementation, the tracking of one occluded lane-segment
takes less than 30 milliseconds for each step on a laptop cpu
(intel CORE i7 8th Gen).

A. Coverage of the subsets

In order to evaluate the coverage of the subsets, we
initialize 1000 vehicles with random initial velocities and
longitudinal positions in occlusions, at the same time we
initialize our subsets in occlusion and start the tracking
pipeline, as shown in the first row of Fig. 7. The randomly
generated vehicles are assumed to move along the center of
the lane. At each simulation step, they select one random
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Fig. 7: Three scenarios where occlusions are tracked with subsets. The figures in the first row are the initial scenes, with the initial
occluded lane sections represented by the red solid polygons. In the v-s-graphs on the right side, the hollow red polygons are the unions
of the subsets. The black points represent the states of the remaining vehicles over time. The positive s-directions of the graphs are shown
by the black arrows. (a) Ego vehicle (blue) approaches an unsignalized intersection. (b)(c) Ego vehicle (blue) and another vehicle (black)
drive on a street with three lanes.

acceleration value between amin and amax. The sampled ve-
hicles will be removed as soon as they expose themselves to
the ego vehicle’s FoV. The states of the remaining vehicles in
occlusions are shown by the black points, and the unions of
the updated subsets are depicted by the red hollow polygons.

In Fig. 7(a), the ego vehicle approaches an unsignalized
intersection. As it moves forward, the occlusion is pushed
to the right side. Meanwhile, the number of the initialized
hidden vehicles is decreasing, especially the ones with high
velocities. At the same time, the high-speed part of the
subsets is removed as well and the union of them tends to
converge to fit the outer contour of the black points. In Fig.
7(b), the ego vehicle with 10 m

s and another vehicle with 5 m
s

drive on a street with three lanes. Similar to the scenario
in Fig. 7(a), the high-speed part of the subsets and the
sampled vehicles are reducing as the ego vehicle gains more
information about the occlusion. In Fig. 7(c), on the same
three-lane street, the ego vehicle drives with 5 m

s and the black
vehicle drives with 10 m

s . This time, the low-speed part of
the subsets and the sampled vehicles are gradually removed.
Otherwise, they can not hide behind the black vehicle that
passes the ego vehicle with a higher velocity.

In all three scenarios, by tracking the subsets over time,
they are able to cover the possible remaining vehicles that are
simulated to move randomly. However, a gap at one edge of
the subsets’ union can be observed, as all the v-s-graphs in
Fig. 7 show. One reason is that the sampled vehicles are
moving with random acceleration, so the probability that
they always move in an extreme way is low. Thus, they can
not keep the subsets filled perfectly. The second reason is
that, during our merge-step, a small over-approximation is

introduced as well, which propagates forward and forms a
larger gap over time. However, the merge-step is necessary
for limit the number of subsets, and even with this small
over-approximation, we can refine the state intervals in oc-
clusions greatly compared to algorithms that always assume
worst-case scenarios.

B. Planning with subsets for gaining efficiency

In this evaluation, the goal is to present that with the
subsets that are tracked, a more efficient driving behavior can
be achieved while reaching the same safety as in baseline.

The baseline algorithm that we compare to is from [3], i.e.
vehicles are always possible to appear at the critical sensing
edges of the occlusions with velocity interval of [0 m

s , vlimit].
In baseline, they account for reachable set prediction from
their state intervals for ensuring safety. The same prediction
can be employed to the subsets as well, as they are just
special state intervals.

Although this approach can be applied to all types of
occlusion, the evaluation focuses more on the scenarios
where there is only a sliver of occlusion, e.g. caused by
vegetation, poles or vehicles, rather than corners of walls
where half the view is occluded. In the latter case, because
only one end of the occlusion is tracked, the state interval
obtained by our approach will be the same as the worst-case
approach, as the new observation cannot really bring more
information about velocities of the TPs in occlusion.

As for the proof-of-concept planner, the ego vehicle
is assumed to move longitudinally along the ego lane.
At each planning step, the planner selects one acceler-
ation value from a set of acceleration candidates A =
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Fig. 8: Comparison between our approach and baseline with a proof-of-concept behavior planner. In both scenarios, the FoVs of the ego
vehicle (blue) are occluded by the black obstacles. The first row shows the scenes where the subsets are initialized in the occlusions
(black circles) at 0.5 seconds. The solid red polygons represent the set-based prediction from the potential vehicles in the worst case, and
the solid green polygons represent the set-based prediction from the remaining subsets in tracked occlusions.

{−4 m
s2 ,−3.9 m

s2 , . . . , 3
m
s2 }, and generates a trajectory that

follows this constant acceleration. The planning horizon is
chosen to be 3.5s and the planning frequency is 25Hz. Those
acceleration candidates, which end up with trajectories that
intersect with the occupancy prediction of the state intervals
in baseline or the subsets in our approach, are removed from
A in the first place. From those remaining safe accelerations,
the one which produces the lowest cost according to (5) will
be the final decision.

Cost(a) = w1a
2 + w2(1− k

a

amax
− v

vd
)2 (5)

where a is the acceleration candidate and v is the current
velocity. w1, w2, and k are parameters that should be tuned
according to how the users balance utility and comfort. vd =
10 m

s represents the desired velocity of ego vehicle.
The comparison is done in two scenarios: 1. Merging

into main street from one branch road with static occlusion
(Fig. 8(a)). 2. Traversing an unsignalized intersection with
dynamic occlusion caused by a moving vehicle (Fig. 8(b)).
In both scenarios, the ego vehicle approaches with 10 m

s .
In the first scenario, the ego vehicle decelerates because

of the potential vehicles in occlusions and their occupancy
predictions. However, with our approach, the subsets shrink
as the ego vehicle steps forward (shown in the v-s-graphs
of Fig. 8(a)), such that their occupancy predictions (shown
by the green solid polygons in Fig. 8) are shorter compared
to the ones from the baseline. It can be seen that as the
ego vehicle moves, the subsets converge to an area that

covers only the low-speed region. The human drivers would
reason about the same after a period of observation because
the vehicles should have exposed themselves already after
a while if they would drive fast. In about 3.5 seconds, the
subsets are almost eliminated and the ego vehicle is free to
go. The acceleration and velocity profiles of the baseline and
our approach are shown in the bottom graphs. In the second
scenario, we have a dynamic occlusion, which is caused by
a slow-moving vehicle on the right arm of the street (shown
in black color). In this case, the subsets are eliminated even
faster (in about 2.5 seconds).

In both scenarios, our approach needs less deleceration and
achieves overall higher velocity while providing the same
safety guarantee as the baseline.

V. CONCLUSION AND FUTURE WORK

We motivate our work with the purpose of reasoning
about the bounds of possible TPs’ states in occlusions in a
systematic way, considering the useful historical information,
instead of always assuming worst-case events or only esti-
mating risk probabilistically according to the current scene.
For this purpose, we introduce the state set and subsets, and
a pipeline for tracking the subsets. To present the potential
of our approach, it is first shown that all the possible states
in occlusions can be covered by the subsets. By tracking of
occluded areas we achieve a significantly less conservative
driving behavior, while still guaranteeing safety under the
minimal set of assumptions. This has been shown with a



proof-of-concept planner in two scenarios with occlusions
from static and dynamic obstacles.

In our approach, we only make assumptions about the
vehicles having maximum and minimum accelerations and
driving only forwards. Therefore, any type of TPs that
fulfills these assumptions can be covered by the subsets.
To further refine our approach, the assumption that the TPs
only move along the lane with zero lateral offsets can be
lifted, by integrating more dimensions to our subsets, e.g.
lateral offset to the centerline and orientation, which makes
the subsets propagate in three or four-dimensional space, the
same tracking pipeline applies though.

Furthermore, after integrating those more dimensions into
the subsets, it is also interesting to apply this approach in
real traffic data in order to validate that all the TPs that exist
in occlusion of the ego vehicle are really covered and tracked
by the subsets. If any of them behaves beyond the capability
of the subsets, analysing their behaviors is also benefitial for
corner case evaluation as they exceed the preset parameter
range for sure.

Finally, we would like to incorporate our approach with
the FoV polygons that is generated by real range sensors,
and evaluate the performance under real conditions.
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