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Abstract—Smart charging of Electric Vehicles (EVs) reduces
operating cost, allows more sustainable battery usage, and pro-
motes the rise of electric mobility. In addition, bidirectional
charging and improved connectivity enable efficient power grid
support. Today, however, uncoordinated charging, e.g., governed
by users’ habits, is still the norm. Thus, the impact of upcom-
ing smart charging applications is mostly unexplored. We aim
to estimate the expenses inherent with smart charging, e.g., bat-
tery aging costs, and give suggestions for further research. Using
typical onboard sensor data we concisely model and validate an
EV battery. We then integrate the battery model into a realis-
tic smart charging use case and compare it with measurements
of real EV charging. The results show that i) the temperature
dependence of battery aging calls for precise thermal models for
charging power greater than 7 kW, ii) disregarding battery aging
underestimates EVs’ operating cost by approx. 30%, and iii) the
profitability of Vehicle-to-Grid (V2G) services based on bidirec-
tional power flow, e.g., energy arbitrage, depends on battery aging
costs and the electricity price spread.

Index Terms—Electric vehicle charging, artificial neural
network (ANN), vehicle-to-grid, optimization, smart charging,
electric vehicles, energy arbitrage.

NOTATION

• x̂ indicates an estimate of x
• x and x indicate the lower and upper bounds of x
• xn indicates the value of x at time tn
• xd represents a discrete space between x and x for DDP.
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Parameters

enom Nominal available battery capacity (kWh)
HEV Total battery capacity loss, EV application (-)
�t Duration of discrete time interval (min)
VEV Total battery value loss, EV application (e)
ε Electricity price (e kWh−1)
εmean Mean workday electricity price (e(kWh)−1)
η Efficiency of charging process (-)
λ DDP penalty cost (e).

Variables

e Battery energy (kWh)
emax Maximum available battery capacity (kWh)
�E Energy throughput (kWh)
H Battery state of health (-)
�Hcyc Cyclic battery capacity loss (-)
�Hcal Calendar battery capacity loss (-)
Ibat Battery current (A)
J DDP cached total cost (e)
JE Energy cost function (e)
JD Battery degradation cost function (e)
J DDP cost grid (e)
N Number of time intervals (-)
N Set of time intervals (-)
p Gross charging power (kW)
p∗ Optimal charging power trajectory (kW)
P DDP optimal action grid (kW)
Q̇loss Heat flow from internal battery losses (kW)
Ri Battery internal resistance (�)
UOCV Battery open-circuit voltage (V)
Ubat Battery terminal voltage (V)
γ Electricity price spread (-)
θ Battery temperature (◦C)
�	 Battery temperature difference (K)
τ Battery aging time equivalent (s).

Acronyms

ANN Artificial Neural Network
DDP Discrete Dynamic Programming
ECM Equivalent Circuit Model
EV Electric Vehicle
MAE Mean Absolute Error
RMSE Root Mean Squared Error
SC Smart Charging
SOC State of Charge
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TABLE I
COMPARISON OF THE PROPOSED WORK WITH RELATED WORKS ACCORDING TO DISTINCT TECHNICAL FEATURES, SEE SECTION II

SOH State of Health
V2G Vehicle-to-Grid.

I. INTRODUCTION

UNDOUBTEDLY, Electric Vehicles (EVs) are on the rise.
In this context, Smart Charging (SC), i.e., the controlled

and coordinated charging of EVs, helps to minimize EV oper-
ating cost [18] and prolong EV battery life [2]. To further
diminish negative power grid impacts due to EV charging,
Vehicle-to-Grid (V2G), which usually leverages bidirectional
power flow, becomes important [19].1

Adoption of SC concepts, however, strongly depends on
EV user acceptance [20]. Nowadays, EV users typically use
manual charging in which the battery is fully charged at max-
imum available power after plugging in. For SC, EV users
demand similar transparency in terms of operating cost [21].
SC applications usually consist of multi-dimensional decision
problems with various objectives. Instead of simple heuris-
tics whose behavior and effects are easily comprehensible for
the EV user, these problems require model-based optimization
methods for solving [16], [22]. For this purpose, suitable EV
battery models must be developed and validated with real-
world data [23]. Thus, EV operating cost can be correctly
determined and the real-world impact of SC can be explored.

Aiming to fulfill the aforementioned requirements, we first
create a battery model that can be used in production EVs.
The battery model is then integrated into a realistic SC scheme.
Based on validation with real-world data, we draw conclusions
for future work on SC.

This paper is structured as follows: Section II reviews and
discusses related work. All models and their connections are
outlined in Section III. Section IV describes an exemplary
SC use case. Based on this, Section V presents the valida-
tion of the single model components and optimization results.
In Section VI we summarize the major findings and give an
outlook on future work.

II. RELATED WORK

To properly define the scope of the proposed work, we con-
ducted a literature review yielding 30 relevant references. We
classified those based on the following five features (see also
Tab. I):

1Note that in this work we consider V2G as a derivative of SC.

A) Diffusion of SC applications strongly depends on EV
user acceptance. This requires adequate representa-
tion of EV operating cost, and/or inclusion of user
comfort [20].

B) Battery aging is a crucial factor for SC economics that
may not be neglected [6]–[8], [24]. In addition, EV users
desire transparent EV operating cost, including costs
inherent in battery aging [21].

C) SC applications usually consist of multi-dimensional
and multi-objective decision problems that require
advanced techniques for solving, e.g., model-based
optimization [16], [22] or model-free reinforcement
learning [9].

D) The battery temperature is an important factor for effi-
ciency and battery aging [19], [25]. Therefore, a thermal
battery model suitable for application with typical EVs
sensor data is required.

E) The complexity of SC use cases, e.g., several stakehold-
ers and financial value streams, calls for real-world data
for both modeling and validation [23].

Out of the 30 references we further analyzed [1]–[17], as
these possess at least two of the aforementioned features; a
representative excerpt is given in the following.

Already in 2011 Lunz et al. [14] applied a genetic
optimization algorithm to bidirectional charging of plug-in
hybrid EVs. Considering dynamic energy tariffs and battery
aging costs, EVs’ operating cost was reduced compared with
uncoordinated charging. However, a detailed battery model,
e.g., including a thermal model, was not implemented.

Brinkel et al. [15] conducted a study on grid reinforce-
ment with respect to limits of low voltage grid trans-
formers and CO2 emissions. The cost for EV charging
was reduced by 13.2%. For the study, however, several
EVs were aggregated and a simplified battery model was
implemented.

Das et al. [16] set up an optimization-based SC scheme in
a micro grid. The authors aimed to minimize energy costs,
battery aging, and CO2 emissions, while maximizing grid
utilization. To adequately combine the perspectives of all
stakeholders, the authors concluded that a multi-objective deci-
sion process is required. Although a 28.1% reduction of battery
aging was reported for some cases, the applied battery model
neither considered calendar aging nor the battery’s thermal
behavior.

Li et al. [2] used particle swarm optimization to design
a SC scheme targeting minimal battery aging and grid load
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fluctuations. To quantify battery aging, a novel rain-flow
cycle counting algorithm was used. The approach, however,
inadequately represents the EV user perspective, as both vari-
able electricity tariffs and monetary battery aging costs were
neglected.

In [17], Petit et al. set up a SC application using an
empirical battery aging model that considers electro-thermal
influences. The case study for validation, however, was based
on a heuristic that neglects important factors from an EV user
perspective, e.g., energy and battery aging costs.

To the best of the authors’ knowledge, none of the related
works found in the literature considers all five features as indi-
cated in Tab. I. Hence, we summarize the contributions of this
paper as follows:
• We use data of real-world charging events to design and

validate a vehicle-specific battery model; this comprises
the battery’s electrical, thermal, and aging behavior. All
models can be operated with inputs from typical onboard
sensors in production EVs.

• This battery model is integrated in an optimization-based
SC scheme. We then use Discrete Dynamic Programming
(DDP) as a robust solving method. For validation, we
utilize data from real-world charging events and historical
electricity market prices.

• To support future work on SC, we derive application-
dependent suggestions on i) the necessity of thermal
battery models, ii) the significance of battery aging costs,
and iii) suitable electricity tariffs for profitable V2G
applications.

III. MODELS OF A SMART CHARGING SCHEME

First, we introduce the notation for a charging event starting
at arrival time t0 and ending at departure time tN .2 The time
horizon [t0, tN] is divided into N time intervals of duration �t
and N + 1 states. Accordingly, we define the set of intervals

N = [0, N − 1] ⊂ N. (1)

Each time interval n ∈ N starts at time tn and ends at time
tn+1. Each battery state at tn ∈ [t0, tN] is characterized by the
battery energy en, normalized as State of Charge (SOC), and
the battery temperature θn. The charging power pn is assumed
to remain constant throughout a single time interval n.3

To represent the battery’s charging behavior, we implement
an electrical, thermal, and aging model, see Fig. 1(a).4 We
refer to the combination of these three models as the battery
model. The prospective use of this battery model in production
EVs limits the model inputs to typical onboard sensor data.
Further, an optimization scheme as shown in Fig. 1(b) serves to
calculate an optimal charging power trajectory p∗ for a single
charging event.

2The term “charging event” refers to the entire time window between arrival
and departure of an EV at a charging station.

3Note that pn represents the gross charging power consumed from the
charging station without conversion losses.

4These models can be vehicle-, vehicle-type-, or battery-specific, thus lim-
iting a generic reuse. General initialization followed by incremental adaption,
however, is conceivable.

A. Electrical Model

The energy level of the EV battery—and thus the SOC—
changes with surrounding influences, especially the charging
power pn. An electrical battery model, see Fig. 1(a), helps to
calculate the battery energy trajectory. For this purpose, the
energy throughput of the battery

�En = en+1 − en,∀n ∈ N , (2)

is estimated for a given time interval n, battery temperature
θn, battery energy en, battery’s terminal voltage Ubat,n, and
charging power pn.

We abstract the EV battery with an Equivalent Circuit
Model (ECM) consisting of a voltage source UOCV serially
connected with the internal resistance Ri, see Fig. 2.5 Due
to the low dynamics of EV charging, more complex models,
e.g., resistor-capacitor-pairs or electro-chemical models, are
not required [26].

Both UOCV,n and Ri,n depend on the battery temperature
θn and the battery energy en; we assume their values to be
constant throughout a single time interval n. We obtain Ri
from a look-up table and use the measured terminal voltage
Ubat,n to obtain the open-circuit voltage of the battery

UOCV,n = Ubat,n − Ri,n · Ibat,n, (3)

with the battery current Ibat > 0 during charging, Ubat > UOCV
for charging and Ubat < UOCV for discharging. Substituting
the terminal voltage with

Ubat,n = pn

Ibat,n
, (4)

and solving (3), we obtain the battery current 6

Ibat,n =
−UOCV,n +

√
U2

OCV,n + 4Ri,n · pn

2Ri,n
. (5)

The OHMic [27] losses within the battery amount to

Q̇loss,n = Ri,n · I2
bat,n. (6)

Given the charging power pn, we obtain the energy throughput

�En = �t · (pn − Q̇loss,n
)
. (7)

Note that Q̇loss,n > 0 occurs both while charging and discharg-
ing. Hence, it decreases |�En| during charging and increases
|�En| during discharging.

B. Thermal Model

Both the internal battery parameters and battery aging
depend on the battery temperature. Therefore, a thermal bat-
tery model, as shown in Fig. 1(a), estimates the change in
battery temperature

�	n = θn+1 − θn, (8)

5This model represents dedicated power electronics, hence it is vehicle-
specific.

6Despite two possible solutions only the greater one is physically feasible.
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Fig. 1. Layout of used models for smart charging application; battery model (Sections III-A, III-B, III-C) (a); optimization scheme (Section III-D) (b).

Fig. 2. Equivalent circuit model of an EV battery for low-dynamic operation
with internal resistance Ri and voltage source UOCV.

for a given time interval n, battery temperature θn, battery
energy en, and charging power pn.7 As the thermal behavior
of EV batteries follows complex, non-linear processes, e.g.,
electro-chemical heat sources or sinks, we use a data-driven
modeling approach.

First, we explore time series data from real charging events
of batteries installed and operated in EVs; we discretize this
data with �t = 5 min to obtain single training samples for
each time step. Based on the SPEARMAN [28] correlation coef-
ficient, we screen out irrelevant features. We then perform
mean and variance normalization to ensure a proper model
training. The available training data underrepresents discharg-
ing, i.e., pn < 0. However, as experiments with the installed
battery show similar Ri,n for charging and discharging, we
consider it acceptable to use absolute values for pn and Ibat,n.

For the machine learning models, we compare a linear
regression model and different Artificial Neural Network
(ANN) models (multi layer perceptron with sigmoid activa-
tion function, learning rate of 0.001). As the optimal ANN
model architecture (number of hidden layers, number of neu-
rons per hidden layer) may vary for different input features,
we use grid-search [29] to obtain the best performing model
architecture. Applying a five-fold cross validation, we select
the features

{
pn, Q̇loss,n,�En, θn

}
, (9)

to estimate �	n. Note that we engineer the additional fea-
ture Q̇loss,n calculated in (6) based on domain knowledge.
Hence, we uncover hidden relations for the machine learn-
ing algorithm (gray-box approach). We implement all models
in Python [30] using SciKit-Learn [29] for linear regression
and Keras [31] for ANNs.

7Due to heat exchange with surrounding components, thermal battery
models are mostly vehicle-type-specific.

C. Battery Aging Model

Irreversible physical and electro-chemical degradation
processes (battery aging) cause the EV’s usable driving range
and monetary value to decrease. To quantify battery aging, the
State of Health (SOH)

H = emax

enom
≤ 1, (10)

indicates the maximum available storage capacity emax com-
pared with the nominal storage capacity enom. Calculating the
evolution of emax requires a battery aging model as described
in the following.8

Charging and discharging causes the battery’s anode and
cathode to decay (cyclic aging). Among other processes, a loss
of active lithium material occurs due to mechanical stress, see
also [33]; For the battery cells used in this study, the cyclic
aging increment

�Hcyc,n = βA · |�En|βB , (11)

only depends on the absolute energy throughput �En.
Additionally, high battery temperature and SOC cause

degradation of both active and inactive battery components,
see also [33]. Hence, the battery capacity fades over time,
regardless of the energy throughput (calendar aging). For the
battery cells used in this work, we describe the calendar aging
increment

�Hcal,n = 1− H0 + βC exp

(
βD

273+ θn
+ βEen

)

· (�t + τn)
βF , (12)

based on ARRHENIUS [34] curves. Here, H0 is the SOH at
the beginning of the charging event.9 Furthermore,

τn =
⎛
⎝ H0 − 1

βC exp
(

βD
273+θn

+ βEen

)
⎞
⎠

1/βF

, (13)

represents the equivalent battery age for each time interval
n ∈ N as a function of H0.

8Note that this model represents battery-specific aging characteristics that
may differ for different types of battery cells; the proposed framework allows
to accordingly replace the aging model, e.g., with models as in [32].

9H0 serves as a reference for all time steps of one charging event, as
calendar aging occurs on larger time scales (years) than charging (hours).
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Both model characteristics and parameters are estimated
from extensive cell tests at varying conditions, e.g., bat-
tery energy and temperature. Hence, the detailed parameters
βA..F depend on battery (cell) type and are confidential.
Prospectively, an implicit representation, e.g., via machine
learning approaches as in [35] is conceivable.

D. Optimization Scheme

Calculating a charging event’s power trajectory requires
appropriate algorithms, e.g., optimization-based SC schedul-
ing schemes. We therefore modify the vehicle- and battery-
independent optimization scheme from [16] to be

min
p∈RN

∑
∀n∈N

JE,n(pn, εn)+ JD,n(θn, en, H0) (14a)

subject to p ≤ p ≤ p, p ∈ R
N, (14b)

e ≤ e ≤ e, e ∈ R
N+1, (14c)

e0 = e0 = e0, (14d)

eN = eN = eN, (14e)

θ ≤ θ ≤ θ , θ ∈ R
N+1, (14f)

θ0 = θ0 = θ0, (14g)

en+1 = en +�E(en, θn, pn), ∀n ∈ N , (14h)

θn+1 = θn +�	(en, pn), ∀n ∈ N . (14i)

Figure 1(b) shows the interaction of the optimization scheme
and the proposed battery model. The components (14a)-(14i)
and the solving method are described in the following.

1) Cost Functions: The optimization objective (14a) is to
minimize the sum of energy costs JE,n and aging costs JD,n

over all time intervals n ∈ N .
To consider the costs for charging electric energy, we define

the energy cost function

JE,n =
{

J+E,n, ∀pn ≥ 0,

J−E,n, ∀pn < 0,
(15)

with the energy expenses J+E,n = pn · �t · εn, and the energy
rewards J−E,n = pn · �t · εn. For pn ≥ 0, the EV battery is
charged at the electricity price εn. With pn < 0, εn corresponds
to the price of selling energy back to the grid; εn is given and
assumed to be deterministic.

Battery aging also contributes to the total operating cost,
as the EV’s monetary value depends on the maximum
usable battery capacity emax. Based on �Hcyc,n and �Hcal,n
(Section III-C) we define the battery aging costs

JD,n = �Hcyc,n · VEV

HEV︸ ︷︷ ︸
Jcyc

D,n

+�Hcal,n · VEV

HEV︸ ︷︷ ︸
Jcal

D,n

, (16)

with the cyclic aging costs Jcyc
D,n and the calendar aging costs

Jcal
D,n.10 Here, VEV denotes the battery value loss due to the

capacity loss HEV during the battery’s automotive application
(first life). In particular, VEV is the difference between the
battery’s production price and its residual value in a second

10Given the non-linearity in (11) and (12), (16) also introduces non-linearity
to (14).

life market. Note that (16) only accounts for aging caused
throughout the charging event. To include battery aging for
trips in between charging events in future work, a superor-
dinate scheme as in [36] could determine the optimal target
energy eN .

2) Decision Variable: To obtain the optimal charging power
trajectory, we define the decision variable

p = (p0, p1, . . . , pN−1)
	 ∈ R

N, (17)

with the charging power pn in all time intervals n ∈ N .
Evaluating (14b) component-wise represents the power lim-
itations with the upper bounds p and lower bounds p. We
assume these bounds to be constant throughout a single charg-
ing event. Both p and p are known at the time of computation
and predefined, e.g., by grid load constraints, charging stations,
or EV power electronics.

3) State Variables: To compute the SOC of the battery, we
define the state variable

e = (e0, e1, e2, . . . , eN)	 ∈ R
N+1, (18)

representing the battery energy trajectory throughout a charg-
ing event. Reading (14c) component-wise reveals the energy
limitations e and e that are constant and known at the time of
computation. Their values are determined by physical restric-
tions, i.e., battery capacity, and/or EV user preferences, e.g., a
minimum SOC.11 We specify e0 as the battery energy at the
beginning of the charging event in (14d). The desired battery
energy at departure eN is determined by the user in (14e);
prospectively, a previous calculation of eN as in [36] can also
be used.

For the battery temperature we similarly define the state
variable

θ = (θ0, θ1, θ2, . . . , θN)	 ∈ R
N+1. (19)

The temperature limits θ and θ in (14f) restrict θ to be
within a safe operating window given by the battery man-
agement system. Both θ and θ are constant and known at
the time of computation. Additionally, the battery temper-
ature θ0 at the beginning of the charging event is given
in (14g).

4) Battery Dynamics: To represent the evolution of the bat-
tery energy en we formulate (14h). Specifically, the electrical
model in Section III-A is used to calculate en+1 for each time
interval n ∈ N (see also Fig. 1(b)). In a similar manner, (14i)
describes the battery’s thermal behavior based on the thermal
model in Section III-B.

5) Method of Solving: As the non-linear models
in (14h)-(14i) increase the complexity of (14), we use
DDP [37] for solving; see the detailed solving Algorithms 1–3.
First, Algorithm 1 initializes the cost grid J, spanned by
e, θ and time intervals n ∈ N . Then, Algorithm 2 runs
backwards (n = N..0,∀n ∈ N ) to update J for all possible
ei ∈ ed and θj ∈ θd. Similarly, all corresponding optimal
actions P are determined (backward induction). To avoid
infeasible trajectories, a penalty value λ is assigned to

11Note that the use of an electrical model (Section III-A) in (14h) implicitly
respects the battery’s voltage constraints.
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Algorithm 1: Initialization of DDP Backward Induction
Algorithm (see Algorithm 2), acc. [37]

Input: N, e0, eN, θ0, e, e, θ, θ, p, p, λ

# discretize state and action:

1: ed ← range(start: e, stop: e, step: 0.8 kWh)

2: θd ← range(start: θ, stop: θ, step: 1 K)

3: pd ← range(start: p, stop: p, step: 1 kW)

# initialize cost grid and action grid (penalty value λ = 1000e):

4: J← zeros(N,length(ed),length(θd))

5: J[0, :, :],J[N, :, :]← λ, λ

6: J[0,argmin(|ed − e0|),argmin(|θd − θ0|)]← 0
7: J[N,argmin(|ed − eN |), :]← 0
8: P← zeros(N,length(ed),length(θd))

Output: J,P, ed, θd, pd

Algorithm 2: DDP Backward Induction Algorithm to
Create Cost Grid J and Corresponding Optimal Actions
P, acc. [37]

Input: N,J,P, ed, θd, pd, e, e, θ, θ, p, p, ε, λ

1: for n← N − 1 to 0 :
2: for all ei ∈ ed :
3: for all θj ∈ θd :

# initialize cached total cost:

4: J← ones(length(pd)) · λ
5: for all pk ∈ pd :

# validate charging power constraints (14b):

6: if p(ei, θj) ≤ pk ≤ p(ei, θj) :
# calculate state transitions (Sec. III-A, III-B):

7: en+1 ← ei +�E(ei, θj, pk)

8: θn+1 ← θj +�	(pk, Q̇loss(ei, θj, pk),

�E(ei, θj, pk), θj)

# validate state constraints (14c) and (14f):

9: if e ≤ en+1 ≤ e and θ ≤ θn+1 ≤ θ :
# calculate transition costs (15) and (16):

10: JE ← JE(pk, εn)

11: JD ← VEV
HEV

(�Hcal(ei, θj, H0)+
�Hcyc(|�E(ei, θj, pk)|))

# calculate and cache total cost:

12: J[k]← JE+JD+J[argmin(|ed−
en+1|),argmin(|θd − θn+1|)]

# assign minimum cached cost and corresponding action:

13: J[n, i, j]← min(J)

14: P[n, i, j]← pd[argmin(J)]
Output: J,P

the according value in J, if a constraint (14b)-(14i) is
violated. Finally, Algorithm 3 integrates forward in time
(n = 0..N,∀n ∈ N ), starting from the initial values e0
and θ0. For each n ∈ N , the cost-optimal action is taken
from P based on the current state en and θn. This yields
the globally optimal charging power trajectory p∗ (forward
integration) [37].

IV. CASE STUDY

From ten real-world EVs equipped with cloud-connected
data loggers, we obtain measured time series data of 279

Algorithm 3: DDP Forward Integration Algorithm to Find
the Optimal Charging Power Trajectory p∗, acc. [37]

Input: N,J,P, e0, θ0, ed, θd, ε

# find starting point in the cost grid:

1: i, j← argmin(J[0, :, ; ])
# initialize output and assign corresponding action:

2: p∗ ← zeros(N)

3: p∗[0]←P[0, i, j]
# initialize costs:

4: JE, JD ← 0, 0
# start forward integration loop:

5: for n← 0 to N − 1 :
# calculate state transitions (see Sec. III-A and III-B):

6: en+1 ← en +�E(en, θn, p∗[n])
7: θn+1 ← θn +�	(p∗[n], Q̇loss(en, θn, p∗[n]),

�E(en, θn, p∗[n]), θn)

# calculate costs with (15) and (16):8: JE ← JE + JE(pn, εn)

9: JD ← JD + VEV
HEV

(�Hcal(en, θn, H0))+
�Hcyc(|�E(en, θn, p∗[n])|)

# find nearest discrete state and assign corresponding action:

10: p∗[n+ 1]←P[n+ 1,argmin(|ed − en+1|),
argmin(|θd − θn+1|)]

Output: p∗, JE, JD

unidirectional charging events covering a full year [38]; we
discretize this data with �t = 5 min. In each interval,
we calculate �E and �	 with the battery models from
Sections III-A and III-B, and using the mean charging
power, battery temperature and energy. Then, we determine
the Root Mean Squared Error (RMSE) of actual and esti-
mated �E and �	 for each time interval (local error).
Furthermore, we quantify the error propagation when repeat-
edly applying the battery models (i.e., estimate �E and �	

based on estimations of previous time interval); we therefore
calculate the Mean Absolute Error (MAE) of actual and
estimated eN and θN at the end of each charging event (global
error).

To evaluate the optimization scheme (Section III-D), we
select 45 real charging events that have sufficient duration
(tN − t0 ≥ 2 h) and set the parameters:
[

p = −50 kW e = 8 kWh θ = −25 ◦C HEV = 20 %
p = 50 kW enom = e = 80 kWh θ = 60 ◦C VEV = 6080e

]

In addition, the conditions of each charging event determine
the values of e0 = e0 (battery energy at arrival), eN = eN

(battery energy at departure), and θ0 = θ0 (battery temperature
at arrival). After solving (14) (see Section III-D5), we compare
the operating cost in three modes:
• Mode I: No optimization, calculate energy and aging

costs for measured energy and temperature profile.
• Mode II: Optimize for energy costs only, calculate aging

costs afterward.
• Mode III: Optimize for both energy and aging costs.

We use historic hourly electricity market prices of 2018 for
εn [39]. To attain a representative price level for private cus-
tomers, we supplement typical fees (0.188 e/kWh) and taxes
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Fig. 3. Characteristic retail electricity price profiles ε for workdays and
weekends supplemented by 0.188 e/kWh fees and 19% taxes [39].

TABLE II
LOCAL AND GLOBAL ERROR OF ELECTRICAL AND THERMAL

BATTERY MODELS (SECTIONS III-A, III-B)

(19%). Then, we average the price curves over all work-
days and weekends to level out price peaks due to electricity
over- or underproduction. We thus obtain two characteristic
hourly price tables for ε, see Fig. 3, to evaluate the average
profitability of SC.

Note that the duration of each charging event represents
deterministic EV user behavior; future work will also consider
stochastic influences. Furthermore, p∗ is calculated once at
the beginning of each charging event; prospectively, an ongo-
ing charging event may be adapted to dynamic changes, i.e.,
departure time, target energy eN , or electricity tariff, via a user
interface with a system as in [40].

V. RESULTS

A. Validation of the Battery Model

Table II presents the validation results of the battery model
(Sections III-A, III-B).

1) Validation of the Electrical Model: The electrical model
(Section III-A) yields an RMSE of 0.35% SOC for single time
intervals (local error, see Section IV). Hence, the model esti-
mations �Ê mostly match the actual values �E (Fig. 4). The
model accuracy is improved, as both UOCV,n and Ri,n are cho-
sen from a look-up table for each time interval n depending on
en and θn. Furthermore, high-dynamic changes of the battery
energy are leveled out, as they occur on smaller time scales
than the chosen �t = 5 min [26]. When charging the battery
to emax, the battery management system corrects the character-
istic SOC curve towards the end of the charging event; hence,
a few outliers occur, e.g., with �E ∼= 0.

At the end of all charging events, the mean SOC deviation
EN − ÊN is 2.37% SOC (global error, see Tab. II). This equals
an acceptable driving range deviation of approx. 7.6 km, as
EV user’s daily driven distance (mostly below 50 km) is well

Fig. 4. Local error of electrical battery model (Section III-A), estimates per
time interval �t = 5 min; the red line indicates ideal model behavior.

Fig. 5. Local error of best-performing data-driven thermal model (ANN,
2 hidden layers, 10 neurons each, Section III-B), estimates per time interval
�t = 5 min; the red line indicates ideal model behavior.

within the battery range of 400 km [21]. We thus consider
the accuracy of the electrical model as sufficient and deem
�t = 5 min and the ECM to be suitable for our case study.

2) Validation of the Thermal Model: To benchmark the
thermal battery model (Section III-B), we assume constant bat-
tery temperature, i.e., θn = θ0,∀n ∈ N and �	̂n = 0.0,∀n ∈
N . In comparison with real charging events, assuming constant
battery temperature yields an RMSE of 0.72 K for single time
intervals (local error, see Section IV) and an MAE of 7.57 K
at the end of a charging event (global error), see Tab. II.

As this result emphasizes the need for appropriate modeling,
we test different data-driven thermal models and hyperpa-
rameters, see Section III-B. A linear regression model also
misrepresents the battery’s thermal behavior (see Tab. II), e.g.,
due to hidden electro-chemical processes.

More advanced ANN models, however, can capture the
apparent non-linearity.12 Using a distinct test data set, the
ANN thermal model yields an RMSE of 0.29 K for single
time intervals (local error), see Fig. 5. The MAE at the end
of a charging event is 1.96 K (global error), see Tab. II. For
our case study we deem this accuracy as sufficient (see also
Section V-C). Yet, the input features of the data-driven thermal
model seem to lack further influences on the battery’s thermal
behavior. The input features could therefore be enhanced, e.g.,

12For the sake of brevity we only report the best-performing ANN model
(two hidden layers, ten neurons each, sigmoid activation function).
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Fig. 6. Normalized operating cost and its components of 45 real charg-
ing events; Mode I (no optimization), Mode II (energy costs optimization),
Mode III (energy and aging costs optimization).

by internal cell temperatures or ambient conditions (tempera-
ture, sun radiation, wind). Note that typical EV onboard data,
however, does not yet provide this information.

B. Operating Cost Evaluation

Figure 6 shows the operating cost components for all
three modes described in Section IV normalized against the
operating cost of Mode I.

On average, Mode III yields a 7.8% lower operating cost
compared with Mode I; similar results can be found in the
literature, e.g., 5.4% in [8] and 13.2% with simplifications
in [15]. Although p < 0 in (14b), i.e., discharging the EV
battery is possible, no energy rewards J−E can be observed
in Mode III. This implies that J−E does not compensate for
round-trip energy losses (charging and discharging) and aging
costs.

Disregarding battery aging underestimates the total operat-
ing cost in Mode I by 30.1% on average; in [6] an under-
estimation of up to 52% is reported. This becomes apparent
when applying Mode II: the optimization scheme utilizes price
differences throughout the charging events to generate energy
rewards. Thus, the energy costs (15) decrease by 13.3% com-
pared with Mode I. Calculating the battery aging costs (16)
afterward, however, yields a 55.8% higher total operating cost.
Repeatedly charging and discharging the battery increases the
battery temperature θ and causes the calendar aging costs Jcal

D
to rise in Mode II. Trippe et al. [6] report an even more dras-
tic result for this setup: 8% electricity costs reduction, but
a threefold increase of battery aging costs. Hence, we con-
clude that especially for charging with the allocation of V2G
services–in this case energy arbitrage–battery aging must not
be neglected.

C. Effects of Thermal Modeling

Including advanced thermal models, e.g., ANNs, increases
the problem complexity and the computational effort to
solve the resulting optimization problem. Therefore, we ana-
lyze the necessity of a thermal battery model as described in

Fig. 7. Charging power profiles over time for constant battery temperature
(red) and data-driven thermal model (blue, see also Section III-B).

Section III-B. In Mode III, assuming constant battery tem-
perature, i.e., �	n = 0.0,∀n ∈ N , would underestimate the
operating cost by 0.55% compared to a data-driven thermal
model. Applying Mode II, however, the operating cost would
be underestimated by 3.44%.

Besides the errors in estimating the operating cost, the pres-
ence of a thermal model also influences the decision made by
the optimization scheme, i.e., the charging power trajectory p∗.
Figure 7 shows exemplary power profiles for i) assuming con-
stant battery temperature and ii) using a data-driven thermal
model.

For |p| > 7 kW, the mean difference of charging power
is 3.11 kW, when comparing the constant battery tempera-
ture assumption with the data-driven thermal model. However,
for |p| ≤ 7 kW the mean deviation of charging power only
amounts to 0.75 kW.

Although the operating cost only show minor deviations, the
charging power profiles change significantly. In particular, the
relevance of the battery temperature rises with the (absolute)
charging power. Hence, we suggest to use advanced thermal
models, e.g., as in Section III-B for |p| > 7 kW. For |p| ≤
7 kW, assuming constant battery temperature suffices.

D. Effects of Battery Prices

Due to EV market growth and battery technology improve-
ments battery production prices will likely decrease within
the next decade [41]–[43].13 In anticipation of SC for EV
fleets, we compare EV operating cost of real charging events
(see Section IV) with future battery prices for 2025 (VEV =
4470e) and 2030 (VEV = 2770e) taken from [41].14 This
directly affects (16), i.e., the aging costs JD could on average
decrease by 26.5% in 2025 and by 54.4% in 2030 compared
with 2020 battery prices (VEV = 6080e). Regarding the total
operating cost, however, the decrease would only amount to
6.8% in 2025, or 15.9% in 2030, respectively. This reduction
of battery aging costs is not sufficient for energy arbitrage to
become profitable from a user’s point of view. A conceivable

13Also advances in battery technology, i.e., reduced battery aging, would
have similar effects as decreasing battery production prices.

14To highlight the influence of decreasing battery prices, we assume 2018
electricity prices as the cost calculation’s underlying future prices and use a
setup as in Section IV.
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Fig. 8. Electricity price profiles with different spread γ [39].

Fig. 9. SOC profiles over time for price profiles with different electricity
spread factors γ , see Fig. 8.

setup for power suppliers to incentivize EV owners to partici-
pate in V2G services could be a flat compensation for battery
aging costs per charging event.

E. Influence of Electricity Tariff

Using today’s dynamic electricity tariffs (e.g., aWATTar15),
V2G services such as energy arbitrage may be unprofitable
(see Fig. 6). The reason could be insufficient price varia-
tions over time to compensate aging costs. To investigate, we
quantify the spread of a charging event’s price profile ε as

γ = max {ε} −min {ε}
εmean

, (20)

with the mean workday price εmean = 0.286e kWh as a ref-
erence. To evaluate the sensitivity of the optimization scheme
to γ , we use an exemplary eight-hour charging event from
60% SOC to 100% SOC. Then, three price profiles with dif-
ferent γ are tested (Fig. 8). We first use a regular workday
profile with γ = 0.054 (blue). Second, we analyze a real-world
case from 2021 with slight electricity underproduction in
the morning and overproduction in the afternoon (γ = 0.418,
red).16 Considering the rise of renewable energy sources in the
future, such cases could occur more often [44]. Grid opera-
tors may then use EV batteries as power reserve to compensate
drastic grid imbalances. Thus, a third, stretched profile of the
real-world case with γ = 0.5 is used (green).

15https://www.awattar.de/
16German day-ahead prices (05/05/2021), fees and taxes added [39].

Figure 9 shows the resulting SOC profiles. For γ = 0.054
(blue), no discharging of the battery takes place. Instead,
charging is delayed to reduce battery aging. In contrast,
the SOC profile of the real-world case (Fig. 9, red) with
γ = 0.418 shows discharging of the battery at the beginning,
when ε is high. The battery is then maintained at a level of
approx. 41% SOC and charged later, when ε is low. In this
way, both energy costs are lowered (via energy arbitrage) and
battery aging is reduced (by decreasing the charging event’s
mean SOC).

To guide future work on grid-supporting V2G services, we
estimate a characteristic threshold for γ , see also [4], [45]. We
assume discharging the battery in one time interval and charg-
ing in the second one with equal (absolute) power |p| ≤ 7 kW.
The characteristic threshold

γ ∗ = JE · (1− η)+ 2JD

εmean
, (21)

then represents the critical price spread above which V2G
rewards fully compensate for battery aging and conversion
losses. With θ = 21 ◦C and a round-trip energy efficiency
η = 0.997, we obtain γ ∗ = 0.431. Thus, for this setting, V2G
potential is fully utilized if the price spread is above 43.1 %
relative to εmean = 0.286e kWh−1. The green SOC profile
in Fig. 9 with γ = 0.5 confirms this result. At the beginning,
the battery is fully discharged to 10% SOC, i.e., the lower
SOC bound, see (14c). After idling for approx. 3 h, the bat-
tery is charged to the target SOC of 100%. Accordingly, V2G
is unprofitable for price profiles as in Fig. 3, where γ = 0.107
(workday) and γ = 0.075 (weekend) is significantly below γ ∗.

Note that γ ∗ also depends on other quantities, e.g., a charg-
ing event’s SOC and time range, whose influences need to be
investigated in future work. The specific value of γ ∗ may thus
not apply directly to other cases. Rather, a qualitative result
can be concluded. Influencing EV charging processes exter-
nally (e.g., as grid operator) requires an adapted price policy.
Instead of averaged price profiles (e.g., Fig. 8, blue), the fluc-
tuations of the electricity market, such as extensive price peaks
(Fig. 8, red), need to be passed to the EV customer.

VI. CONCLUSION

In the present work, we analyzed the influence of bat-
tery aging on Smart Charging (SC) of Electric Vehicles
(EVs). We modeled the EV battery using onboard sensor data
and set up an optimization-based SC use case. Evaluating
the concept with real-world EV data revealed the need for
advanced thermal models when charging power exceeds 7 kW.
We found that exploiting time and energy flexibility of EV
charging reduces operating cost by 7.8%. Furthermore, dis-
regarding battery aging underestimates EVs’ operating cost
up to 30%. Battery aging costs thus hinders many Vehicle-
to-Grid (V2G) services based on bidirectional power flow
from being profitable. To overcome this would require a vast
decrease of battery production prices or adapted electricity tar-
iffs that directly represent market fluctuations. Future work
will examine stochastic influences on SC. These comprise
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EV user behavior, random V2G service allocation, integra-
tion of renewable energy sources, and dynamic constraints of
transformers and charging stations.
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