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Abstract—Electric drives often do not have a smooth torque. 

In most cases they are coupled with mechanical systems. These 

tend to have natural frequencies. Therefore, it is advisable to 

eliminate harmonics from the torque pulsation if they are close 

to a natural frequency. One possibility to do this is harmonic 

current injection or HCI for short. However, the question arises, 

how exactly this harmonic current should be. The fact that a 

harmonic in the torque can be influenced by the d and q current 

results in a greater degree of freedom. This paper presents a 

method to investigate all possible solutions. Furthermore, two 

optimization possibilities for the current trajectory are 

presented. The effect of this selection on the maximum torque 

speed curve is shown. It has been found that the method which 

minimizes the induced voltage achieves an up to 8% larger 

range of application in this example. 
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I. INTRODUCTION  

Synchronous AC Machines with permanent magnet 
(PMSM) excitation are widespread. They convince with high 
power/ torque density and high efficiency. Therefore, various 
applications such as household appliances, industrial 
applications, aviation applications, electric and hybrid 
vehicles use PMSMs. As a matter of principle, these machines 
often come along with a non-smooth torque. The torque which 
deviates from the average value is called pulsating torque [1]. 

As large as the variety of different PMSMs is the number 
of causes for torque ripples. Especially the electromagnetic 
design has an influence on the torque ripple. Different rules 
apply for smoother torque for example the selection of stator 
slots and pole pairs [2].Choosing the right winding with high 
fundamental and low harmonics is essential [3]. As well as 
detailed optimization of the geometry such as on the tooth tips 
of the stator or the magnet pole overlapping [2]. 

Although the mechanisms of action are known and taken 
into account in the design of the electric machines, they have 
a non-smooth torque. On the one hand, this is due to the fact 
that there are limits to the implementation of the measures, on 
the other hand, it is also due to the fact that the tradeoff 
between costs and power density must always be found in the 
economy. High power density results in higher saturation 
induced pulsation [4]. Economical winding techniques take 

their toll with poorer fundamental to harmonic ratios or poorer 
magnetic tooth shapes [5]. 

In this paper we investigate the possibility to reduce torque 
pulsations with additional harmonic current injections (HCI) 
to the regular controlling current. Several investigations have 
been done before. In general, this technique modifies the 
current in a way that reduces torque pulsation. Some 
publications reduce all torque ripples within a small band 
around the average torque and use numerical or binary search 
method together with Finite Element Analysis (FEA) to set the 
corresponding current [6]. Other publications focus on the 
(𝑘 − 1)th and/or (𝑘 + 1)th electrical harmonics in the current 
in order to distinguish the 𝑘th electrical harmonic in the torque 
[7][8]. 

The above mentioned publications do not deal with the 
exact choice of harmonics. As it turned out during 
investigations, the assignment between harmonics in the 
current and suppression in the torque is not unique, but leaves 
a certain degree of freedom. The specific damping of a 
harmonic in the torque pulsation can be achieved by different 
current trajectories. This degree of freedom can be used to 
fulfill certain constraints. This paper proposes a method for 
finding a trajectory best suited to a given optimization 
objective. 

II. PULSATING TORQUE 

According to [1] the pulsating torque is defined as the sum 
of cogging torque and ripple torque. The former is generated 
by the interaction of the magnetic flux of the rotor and angular 
changes in the magnetic reluctance of the stator. By definition, 
no stator excitation is involved in the generation of the 
cogging torque. 

The ripple torque is generated by the interaction between 
the magneto motive forces of the stator current and the 
electromagnetic properties of the rotor and can take two 
forms: a) mutual torque and b) reluctance.[1] The pulsations 
harmonics in three phase machines are multiple of 6 [7]. 

A. Model description with troque ripple 

To calculate the effect of HCI on the torque, a model is 
needed which calculates the torque dependent on the rotor 
angle 𝛾r. In [9] the torque is defined as: 



𝑀 =
3

2
𝑝 [(𝜓d +

d

d𝛾r
𝜓q) 𝑖q − (𝜓q −

d

d𝛾r
𝜓d) 𝑖d] + 𝑀stray 

In Equation (1) 𝑀  is the torque, 𝑖d  and 𝑖q  are the direct 

and quadrature current in the rotating rotor frame. 𝜓d and 𝜓q 

holds the current and angle dependent flux linkage. Effects 
like cogging torque and every torque pulsating which is not 
sensed by the winding of the machine is summed up in 𝑀stray 

and therefore also current and angle dependent. An efficient 
and comfortable way of handling angular dependencies and to 
avoid problems with the discretization of 𝛾r is to use Fourier 
series [10]. For example: 

𝜓𝑥(𝛾r) =
𝑎𝑥,0

2
+ ∑ (𝜓𝑥,𝑎,𝑛 cos(𝑛𝜔𝑡) + 𝜓𝑥,𝑏,𝑛 sin(𝑛𝜔𝑡))𝑁

𝑛=1   (2) 

Where 𝑥 is the placeholder for either direct or quadrature 
(d / q) component, 𝜔 is the synchronous electrical frequency 
with 𝜔𝑡 = 𝛾r . Fourier series can also be applied on 𝑀stray . 

Furthermore, from above is known that with ideal smooth 
current 𝑖d and 𝑖q only the fundamental and harmonics of the 

6𝑘th order are present. This means for (2) 𝑛 = 6𝑘 with 𝑘 =
1,2,3, … 

In this paper all physical quantities for the 
parameterization of the model were calculated by FEA. The 
difference between the torque produced by the multiplication 
of the flux linkage and the current and the torque calculated 
with the virtual work principle in the FEA is included in 
𝑀stray. The torque 𝑀stray calculated in this way is average-

free and a possibility to model the cogging torque. In Fig. 1. 
the three torque components are shown. This Figure shows 
that when applying HCI, attention must also be paid to the 
torque component 𝑀stray, which cannot be expressed by the 

flux linkage.  

It is also possible to parametrize this model with flux 
linkage obtained from a measurement [10], [11]. To measure 
and model 𝑀stray special methods are needed [12]. 

B. Torque ripple example 

The PMSM under investigation is designed as a hybrid 
machine for the traction sector. It is produced with a 
distributed windings in star connection and has a maximum 
power of 150 kW. The distribution of the fundamental torque 
and the unwanted 6th harmonic of the pulsating torque is 
depicted in Fig. 2. In addition, the operation point at 

characteristic speed is plotted in red. Up to this point the 
Maximum Torque Per Ampere (MTPA) strategy is applied 
and the harmonic part is limited. The higher the speed, the 
more you have to weaken the field and the more the harmonic 
part grows. This relationship is double disadvantageous, 
because the fundamental torque decreases and therefore the 
𝑀0/𝑀6 ratio gets worse quickly. The same applies to the 
higher harmonics. 

With HCI, the harmonic portion of the torque is to be 
reduced. At the same time, it can be seen in Fig. 2 that HCI 
will be mainly used when field weakening occurs. Therefore, 
a method is necessary which still works near the voltage limit. 

III. HARMONIC CURRENT 

In the following a harmonic current is used to eliminate a 
harmonic torque. However, the presented procedure is not 
limited to this or to this choice of harmonics. 

Because we want to eliminate pulsating torque, which 
occurs at the 6𝑘th order we focus on that. The needed current 
can be described in stator frame orientation as (±6𝑘+1)th or in 
rotor oriented frame as 6𝑘 th harmonic order in direct or 
quadrature direction. When the phase angle of the injected 
torque relative to the pulsating torque is ±𝜋, the pulsating 
torque component will vanish. 

A. Effects of HCI on torque 

PMSMs are current controlled, in real application as well 
as in FEAs or in this model. Therefore, we start with the 
definition of a general harmonic current in rotor oriented 
frame: 

 𝑖d(𝑡) = 𝑖d0 + ∑ 𝑖d,𝑛 cos(𝑛𝜔𝑡 + 𝜑d,𝑛)
𝑁𝑛
𝑛  (3) 

 𝑖q(𝑡) = 𝑖q0 + ∑ 𝑖q,𝑛 cos(𝑛𝜔𝑡 + 𝜑q,𝑛)
𝑁𝑛
𝑛  (4) 

In (3) and (4) the operation point of the PMSM is 
controlled with 𝑖d0 and 𝑖q0. The current oscillating around the 

operation point with the frequency 𝑛𝜔, the amplitudes 𝑖d,𝑛 / 

𝑖q,𝑛  and the phases 𝜑d,𝑛  / 𝜑q,𝑛  produces a harmonic torque. 

𝑁𝑛  is the quantity of injected harmonics and 𝜔  is the 
synchronous electrical frequency of the PMSM. As described 
above: 

 𝑛 = 6𝑘      with     𝑘 = 1,2,3, … 

applies. 

If we simplify (1) and neglect the derivation by angle and 
express the flux linkages by their inductivities 𝜓d = 𝑖d𝐿d +
𝜓PM and 𝜓q = 𝑖q𝐿q, we get: 

Fig. 2: Distribution of fundamental torque (left), pulsating torque of order 

6 (right), over current plane with operation point (red) 
Fig. 1: Angle dependent course of the inner torque 𝑀𝑖, torque from 

FEA 𝑀𝐹𝐸𝐴 and 𝑀𝑠𝑡𝑟𝑎𝑦 at marked operation point 



 𝑀 =
3

2
𝑝[𝜓PM𝑖q + (𝐿q − 𝐿d)𝑖q𝑖d] 

This procedure is acceptable in order to investigate the 
basic mechanisms of action. In the actual HCI algorithm, 
described below, we consider both angle and current 
dependencies.  

With only one injected harmonic current in direct and 
quadrature direction (3) and (4) in (7) forms three parts, which 
can be described as following:  

𝑀0 = 
3

2
𝑝[𝜓PM𝑖𝑞0 + 

(8)  
(𝐿d − 𝐿q) (𝑖d0𝑖q0 + 𝑖d𝑛𝑖q𝑛

1

2
cos(𝜑d𝑛

− 𝜑q𝑛))] 

𝑀𝑛 = 3

2
𝑝[𝜓PM𝑖q𝑛 cos(𝑛𝜔𝑡 + 𝜑q𝑛) + (𝐿d − 𝐿q) 

(9) 
 (𝑖d0𝑖q𝑛 cos(𝑛𝜔𝑡 + 𝜑q𝑛)

+ 𝑖q0𝑖d𝑛 cos(𝑛𝜔𝑡 + 𝜑d𝑛))] 

𝑀2𝑛

= 

3

2
𝑝 [(𝐿d − 𝐿q)𝑖d𝑛𝑖q𝑛

1

2
cos (2𝑛𝜔𝑡

+ (𝜑d𝑘 + 𝜑q𝑘))] 
(10) 

From (8) - (10) we can see: 

 In general (if 𝜑d𝑛 ≠ 𝜑q𝑛  and 𝐿d ≠ 𝐿q ) a 

harmonic current results in an addition 
fundamental torque for 𝑖d𝑛 ≠ 0 and 𝑖q𝑛 ≠ 0 

 A harmonic torque with the order of 𝑛  can be 
produced with a harmonic current in quadrature 
direction and if 𝐿d ≠ 𝐿q and 𝑖q0 ≠ 0 also with a 

harmonic current in direct direction. 

 The use of direct and quadrature components 
results in a torque with the double frequency 2𝑛𝜔 

 If there are more than one injected harmonics 
additional terms in 𝑀0  and combinations of 
different harmonics will occur. 

In summary, a harmonic current of order 𝑛 contributes a 
certain part to the fundamental torque and generates a 
harmonic torque of equal and double order. 𝑀𝑛 is described 
by (9) and contains four unknown variables: 𝑖d,𝑛 , 𝑖q,𝑛 , 𝜑d,𝑛 

and  𝜑q,𝑛 . With (3) and (4) these four unknown variables 

describe a current oscillation around an operating point. This 
oscillation can be understood as a trajectory, which generally 
describes an ellipse, if only one harmonic torque is injected. 
With several harmonics this ellipse becomes a Lissajous 
curve. 

B. Transformation to ellipse representation 

All possible current trajectories can be described 
mathematically as ellipses. In this way the direction and the 
bulge of the ellipse can be described separately. Therefore (3) 
and (4) are represented as: 

[
𝑖d

𝑖q
] = [

𝑖d0

𝑖q0
] + [

cos[𝛾] − sin[𝛾]

sin[𝛾] cos[𝛾]
] ⋅ [

𝑖𝑛

√1+𝛼2
cos(𝑛𝜔𝑡 + 𝜑c)

𝑖𝑛𝛼

√1+𝛼2
sin(𝑛𝜔𝑡 + 𝜑c)

] (11) 

For the sake of simplicity, the following will only deal 
with one harmonic. In (11) 𝛾 forms a rotational matrix with 
the trigonometrical functions which describes the direction of 

the ellipse. 𝛼 describes the bulge of the ellipse, 𝑖𝑛  describes 
the amplitude of the oscillation. The starting point of the 
ellipse or the offset to the rotor axis is expressed with the 
common phase 𝜑c. 

Fig. 3 clarifies the function of 𝛾 and the term “direction”. 

Exemplary shown are three values for 𝛾 = [0,
𝜋

2
,

3𝜋

4
] . The 

current trajectory oscillates with no bulge around a fictitious 
operation point of 𝑖d0 = −100 A  and 𝑖q0 = 100 A  with an 

amplitude of 𝑖𝑛 = 10 A . The angle 𝛾  rotates the direction 
starting from the d-axis mathematically positive and is defined 
for 𝛾 ∈ [0, 𝜋]. 

Fig. 4 shows the function 𝛼 and explains the term “bulge”. 
Exemplary shown are three values for 𝛼 = [0, 0.5, 1]. The 

current trajectory oscillates in direction 𝛾 =
3𝜋

4
 around the 

same operation point. With 𝛼 = 0 the ellipse is only a line and 
becomes a perfect circle with 𝛼 = 1 , therefore 𝛼 ∈ [0,1] 
applies. 

The common phase 𝜑c is explained in Fig. 5. It does not 

change the trajectory, but shifts its starting point. On the right 

side of Fig. 5 this phase offset can be well observed. 

Fig. 3: Direction of ellipse display in 𝑑𝑞-plane around operation point 

(left) and angle dependent course (right) 

Fig. 4: Bulge of ellipse display in dq-plane around operation point 

(left) and angle dependent course (right) 

Fig. 5: Common phase of ellipse display in dq-plane around operation 

point (left) and angle dependent course (right) 



C.  Constant harmonic current amplitude 

The defined variable direction 𝛾 and bulge 𝛼 opened up a 
plane that can map all possible trajectories of the harmonic 
current. To make the influence of these two variables visible, 
the amplitude 𝑖𝑛 = 10 A, the operation point 𝑖d0 = −100 A, 
𝑖q0 = 100 A, the common phase 𝜑c = 0, the harmonic order 

𝑛 = 6  and the speed 𝑛rpm = 6000 rpm  are kept constant. 

The method is applied to a fictitious linear machine with 𝐿d =
0.00057 H , 𝐿q = 0.0019 H ,  𝜓PM = 0.0973 Vs , 𝑅 = 0 Ω , 

 𝑝 = 4 

To be able to calculate the resulting voltage the model 
from section III.A is extended by the corresponding equations 
[10]: 

 𝑢d = 𝑅𝑖d +
d

d𝑡
𝜓d − 𝜔𝜓q (12) 

 𝑢q = 𝑅𝑖q +
d

d𝑡
𝜓q + 𝜔𝜓d (13) 

 𝑢s = √𝑢d
2 + 𝑢q

2  (14) 

In (12) and (13) the flux linkage is expressed as described 
in (2) or in the linear case using the inductances. 

In Fig. 6 the results of all possible trajectories described as 
ellipse (11) are shown. The first contour plot illustrates the 

influence of HCI on 𝑀0. For 0 ≤ 𝛾 <
𝜋

2
 the injected current is 

mainly in the direct direction and fundamental torque is 

minimally reduced. For 
𝜋

2
< 𝛾 ≤ 𝜋  the injected current is 

mainly in the quadrature direction and fundamental torque is 

minimally increased. For 𝛾 =
𝜋

2
 only the quadrature direction 

is injected and 𝑀0  is not changed. Overall the influence is 
negligible for this example. 

The second contour plot in Fig. 6 illustrates the resulting 
6th harmonic torque. In accordance with the MTPA strategy a 
maximum harmonic torque per harmonic current can be 
found. In this example, this point falls within the range in 
which 𝑀12 is maximum. 

The maximum space vector voltage 𝑢s for one electrical 
period according to (14) is shown in the 4th plot. Unlike in the 
other plots the maximum voltage shows no symmetry to the 
y-axis and a minimum can be found for 𝛼 < 0. It is worth 
mentioning that this minimum does not coincide with the 
minimum in 𝑀6. This leads to the conclusion that it is possible 
to find a trajectory with a specific harmonic torque at a 
minimum voltage. To do so, a 𝛾𝛼 -plane with constant 
harmonic torque is necessary. 

D. Constant harmonic torque 

In the case of a linear PMSM one can calculate the 
resulting 𝑀𝑛  with (9). For PMSMs with nonlinearities and 
angular dependencies the proposed method finds for every 
trajectory expressed with given 𝛾  and 𝛼  the corresponding 
amplitude 𝑖𝑛  and common phase 𝜑c  resulting in the desired 
harmonic torque. Simplified, the torque from (9) can be 
expressed as: 

 𝑀𝑛
∗ = 𝑚𝑛

∗ cos(𝑛𝜔𝑡 + 𝜑𝑛
∗ ) (15) 

In (15) the target amplitude of the nth harmonic torque is 
𝑚𝑛

∗  which oscillates with the frequency 𝑛𝜔 and a target phase 
shift of 𝜑𝑛

∗ . In general, this can be any value, but in the 
following the values from Fig. 2 (right) but with reversed 

phase are used. By this way the harmonic torque with 𝑛 = 6 
is eliminated.  

Since we are confronted with a non-linear machine, 𝑖𝑛 and 
𝜑c are found in an iterative calculation. This contains guessing 
an initial value for 𝑖𝑛,0  and 𝜑c,0 , calculate the torque 

according to (1) and improve the initial value for the next 
iteration according to: 

 𝑖𝑛,ℎ+1 =
𝑚𝑛,ℎ

𝑚𝑛,ℎ
∗ 𝑖𝑛,ℎ (16) 

 𝜑𝑐,ℎ+1 =
𝜑𝑛,ℎ

𝜑𝑛,ℎ
∗ 𝜑𝑐,ℎ (17) 

In (16) and (17) 𝑚𝑛,ℎ  and 𝜑𝑛,ℎ are the torque amplitude 

and phase of harmonic order 𝑛, in this example 𝑛 = 6, of the 
current iteration ℎ. In case of a non-linear machine 𝑀𝑛 can not 
be calculated with (9). It is calculated as time / angle series 

Fig. 6: Example of a 𝛾𝛼-plane showing 𝑀0, 𝑀6, 𝑀12, max{𝑢s}, max{𝑖s} 

(from top to bottom) for every possible trajectory with constant current 

amplitude 



with (1) and (2) and afterwards analyzed with a FFT to obtain 
the nth harmonic. 

Fig. 7 and Fig. 8 show an example of the iterative process 
(right) for the above mentioned operating point. After each 
iteration the figures show the resulting harmonic torque 𝑀6,ℎ 

or 𝑀6,ℎ + 𝑀12,ℎ in relation to 𝑀6,ℎ=0. Within 3 or 4 steps the 

appropriate current could be found and the resulting harmonic 
was eliminated good enough for the termination criterion. The 
proposed method works for every desired trajectory (left). In 
contrast to Fig. 7, Fig. 8 shows that this method also works for 
several harmonics simultaneously. 

The proposed method uses the model described with (1) 
and (2), but it could also be adopted to be used directly with a 
FEA model of the PMSM. This might result in more exact 
results but also in longer simulation times. If only a trajectory 
at one operating point is of interest this may still be practical. 
However, if the entire 𝛾𝛼-plane is to be searched for a possible 
optima and for all operating points, the simulation time 
increases rapidly. 

Nevertheless, the model can only be used if it is a good 
approximation of the actual physics. The resulting voltages 
from the three current trajectories are shown in Fig. 9. (top) 
normalized with 𝑢s without HCI. The solid line represents the 
stator voltage calculated with the model (2) and (12) - (14). 
The counterpart in crosses is calculated with FEA. The voltage 
is applied according to the rotor angle. If in the following the 
maximum voltage is mentioned, the maximum voltage 
according to the rotor angle is meant. Because of the 60 degree 

symmetry of the PMSM 𝛾r ∈ [0,
𝜋

3
] applies. The color coding 

corresponds to that shown in Fig. 7. The corresponding torque 
is normalized with 𝑀6  without HCI and shown in the 
frequency range in Fig. 9. (bottom). In addition to the 

proposed HCI trajectories the original torque refFEM  is 
shown. The following conclusions can be drawn from this 
illustration:  

 The voltage and torque model fits very well to the 
FEA. The error is less than 4 percent in this 
example. 

 The information on torque and voltage obtained 
with the model can also be reproduced in the 
FEA. 

 This means that it is possible to search for the 
voltage optimum in the 𝛾𝛼-plane with the model. 
Considering the many possibilities to be 
investigated, this results in a speed advantage. 

Using this method, the 𝛾𝛼-plane can now be set up. 𝛾 and 
𝛼 are discretized in 52 and 51 values. For every combination 
of 𝛼  and 𝛾  the proposed HCI algorithm and voltage 
calculations are carried out. It should be noted that, compared 
to Fig. 6, all trajectories in 𝛾𝛼-plane now eliminate the 6th 
harmonic in torque. The resulting maximum voltage, 
normalized with 𝑢s  without HCI, and the used harmonic 
current, normalized with the current amplitude of the 
operation point, is shown in Fig. 10. 

At first glance, the white areas stand out. Here there are 
only solutions which are sorted out because of too high 
harmonic current demand. The requested trajectory is 
tangential to the torque contour line from Fig. 2 (left) and a lot 
of current is needed to have an effect on the torque. It is 
obvious that this area is operation point dependent. 

The point of minimum voltage (marked in Fig. 10 with 
red cross) lies within the permitted range. A point with 
minimum current amplitude can also be detected (not 
marked). In general, these points do not coincide and must be 
found for every operation point.  

IV. HCI FOR VARIABLE SPEED APPLICATIONS 

The described procedure can be repeated for any point in 
the dq-plane. Instead of simulating 52 times 51 points in the 
𝛾𝛼-plane for each operating point, an optimizer is used here. 
The procedure is as follows: for each operating point in the 
dq-plane an optimum is searched for in the 𝛾𝛼-plane. 

Fig. 7: Iterative HCI using the above mentioned PMSM for three different 

trajectories (left: 𝑣1: {𝛾 =
𝜋

2
, 𝛼 = 0} , 𝑣1: {𝛾 = 3

𝜋

4
, 𝛼 = 0.1} , 𝑣1: {𝛾 =

𝜋, 𝛼 = 0.25}), they have in common that the desired 6th harmonic in torque 

is eliminated (right) 

Fig. 8: Iterative HCI using the above mentioned PMSM for three 

different trajectories (left: 𝑣1: {𝛾 =
𝜋

2
, 𝛼 = 0} , 𝑣1: {𝛾 = 3

𝜋

4
, 𝛼 =

0.1} , 𝑣1: {𝛾 = 𝜋, 𝛼 = 0.25}), they have in common that the desired 6th 

+ 12th harmonic in torque is eliminated (right) 

Fig. 9: Comparison in induced voltages (top) between model and FEM 

for the three current trajectories found in Fig. 8 and the resulting FEM 

torque (bottom) for the same currents 



A. HCI in dq-plane 

To find the optimal HCI trajectories the proposed method 
is now applied to the entire dq -plane with two different 
optimization objectives:  

 A: find 𝛼(d, q), 𝛾(d, q) for which min{𝑢s(𝑡)} 

 B: find 𝛼(d, q), 𝛾(d, q) for which min{𝑖𝑛=6(𝑡)} 

Objective A searches for the 𝛼 and 𝛾 for each operating 
point in the dq-plane which minimizes the maximum induced 
voltage 𝑢s within an electrical period. Objective B searches 
for the 𝛼 and 𝛾 for each operating point in the dq-plane which 
minimizes the harmonic current amplitude 𝑖𝑛=6  within an 
electrical period. 

The results gained in this way are saved. Four matrices can 
be saved for each optimization objectives. These four result 
matrices consist of 𝜶(d, q) ,  𝜸(d, q) ,  𝒊𝒏(d, q) ,  𝝋𝐜(d, q) . 
Since different angles are stored here, it may be more practical 
to convert these four matrices for later transfer to a controller 
or postprocessor. Another possibility to express a 
trigonometric function is to express it as sine and cosine 
function similar to (2). The results stored in this way are then 
continuously in the dq-plane. 

For 𝑅 = 0  the result matrices are valid for all speeds, 
because in (12) and (13) the time derivative can be modified 
to:  

 
d

d𝑡
=

d

d𝑡

d𝛾

d𝑡

d𝑡

d𝛾
= 𝜔 ⋅

d

d𝛾
  (18) 

This means that both terms contain 𝜔 and can be excluded. 
The change in flux linkage per angle is the same at any speed, 
if eddy currents and iron losses are neglected. Therefore, the 
speed of rotation has no influence on the location of the found 
minimum expressed in 𝛼 and 𝛾. 

B. HCI in M/n-plane 

There are now two different rules A and B how to execute 
HCI in the dq -plane. In order to calculate the maximum 
torque over the whole speed range a further optimization 

calculation is necessary. This time the objective function is to 
maximize the torque under certain constraints and HCI rules. 
The usual constraints are that a certain maximum current 
𝑖s,max  and a certain maximum voltage 𝑢s,max  must not be 

exceeded. The reference curve 𝑀(𝑛) does not use HCI and is 
called 0. Two additional 𝑀(𝑛) curves are calculated using 
HCI strategy A and HCI strategy B. 

The currents for which the torque becomes maximum and 
fulfill the mentioned conditions for increasing speed are 
shown in Fig. 11. This shows that the curves with HCI must 
reduce the maximum current earlier and further due to the 
voltage limit. Moreover, it can be seen that method A 
performs better than method B on the limit curve. This effect 
is also clearly visible in Figure 12.  

The maximum torque over speed for HCI strategy A and 
B is illustrated in Figure 12. As a reminder, strategy A is 
optimized for the lowest possible induced voltage and strategy 
B is optimized for the lowest possible current harmonic. To 
emphasize the difference, the resulting torque profile is 
normalized with the maximum torque curve without HCI. 
Also the speed is normalized with the speed at the corner to 
the field weakening area. 

Overall, the achievable torque with HCI is lower, with a 
few exceptions. The HCI strategies hardly differ up to one 
speed. From the speed at which we reach the voltage limit, 
HCI strategy A performs significantly better. The torque 
advantage is up to 8 %. 

In the speed range from 0 to 1 the maximum current 
amplitude limits the torque. Compared to a control strategy 
not utilizing HCI, HCI requires a higher current amplitude, 
therefore the maximum torque is lower. This means that 2 % 
of the possible torque is invested in a smoother torque.  

Above the speed of 1 the voltage is the limiting factor. 
Here strategy A benefits from the fact that the current 
trajectories were selected which also eliminate the 6th torque 
harmonic, but also minimize the induced voltage. Up to a 
speed of 2, strategy A even comes close to the original 
maximum torque, or exceeds it in part. This is because when 
calculating the maximum voltage, the harmonics in the 
induced voltage are taken into account. Both the harmonics 
from the flux linkage and from the injected current. So if 
strategy A exceeds the original torque, the injected current 
attenuates a harmonic in the induced voltage and the 
normalized torque becomes > 1. 

Fig. 10: Resulting maximum voltage (top) and used harmonic current 

amplitude (bottom) for all possible current trajectories in 𝛾𝛼-plane 
which eliminate the 6th torque harmonic at the operation point shown 

in Fig. 2, the combination with the lowest induced voltage is marked 

(red) 

Fig. 11: Torque map over 𝑖d and 𝑖q with maximum values for 

increasing speed for no HCI 0 and the HCI strategies A and B 



At speeds above 2 this effect is masked by the high 
induced voltage of the current harmonic and both strategy A 
and B lose torque. Nevertheless, strategy A performs up to 8% 
better. 

As an overall strategy, one can proceed as follows. To 
minimize ohmic losses, use HCI strategy B for the largest 
range in the torque speed map. Above the maximum 
characteristic curve of B, HCI strategy A is used. Above this 
maximum characteristic curve, no HCI can be used with 
regard to current and voltage limits. 

V. CONCLUSION 

In this paper a model for the torque pulsation in PMSM 

was presented. It was shown how an injected harmonic in the 

d- and q- current modifies the torque. A novel 𝛾𝛼-plane was 

introduced to model any current trajectory. A method is 

proposed to find a current which minimizes a harmonic in the 

torque for each possibility in the 𝛾𝛼-plane. From all solutions 

two are selected. The first strategy is to choose the trajectory 

that minimizes the current demand 𝑖𝑛 , the second one is 

minimizing the induced voltage 𝑢s. This method was applied 

to all operating points and all speeds. In a comparison of the 

two strategies it could be shown that the applicability of HCI 

on the maximum torque / speed characteristic benefits from 

the second strategy. The range in the torque / speed map to 

which HCI can be applied is thus increased. All model-based 

findings were validated by means of FEA calculations. 

Considerations not yet addressed are the influence of the 

current trajectories on the iron losses. These could lead to 

further optimization objectives. Although it was mentioned 

how the identified solution matrices can be stored, an 

implementation in a controller still needs to be investigated. 

In particular, the required high frequencies, in measurement 

data acquisition, processing and conversion must be 

considered more thoroughly. This and a validation by 

measurements will be part of future research. 
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Fig. 12: Maximum torque profile over speed for HCI strategy A and B, 

here the torque is normalized to the torque curve without HCI, the speed is 

also normalized to the characteristic speed 


