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Kurzfassung

Die Art und Weise, wie Gebäude betrieben werden, hat großen Einfluss auf den
Energieverbrauch, und die Bewohner spielen dabei eine wichtige Rolle. Die
Vorhersage der Anwesenheit und des Verhaltens der Bewohner ist jedoch eine
komplexe Aufgabe, die es auch schwierig macht, den Energieverbrauch eines
Gebäudes genau vorherzusagen. Infolgedessen haben Studien eine Lücke zwis-
chen gemessenen und simulierten Daten festgestellt, die zum großen Teil darauf
zurückzuführen ist, wie das Verhalten der Insassen in die Energiesimulation-
ssoftware eingegeben wird. Um einen Beitrag zur Überbrückung dieser Lücke
zu leisten, wird diese Arbeit vorgestellt, mit dem Ziel, einen Algorithmus zur
Vorhersage des Insassenverhaltens in Bezug auf das Öffnen / Schließen von Fen-
stern und die Aktivierung / Deaktivierung vonWechselstrom in Bürogebäuden im
gemischten Modus in großer Höhe zu erstellen tropisches Klima, insbesondere
die Stadt São Carlos, SP, Brasilien.

Die generierten prädiktiven Verhaltensmodelle basierten auf Daten, die in einer
18-monatigen Überwachungskampagne gesammelt wurden. Umweltfaktoren wie
Innen- und Außentemperaturen sowie die relative Luftfeuchtigkeit im Innen- und
Außenbereich sowie die Maßnahmen im Zusammenhang mit den untersuchten
Fenster- und Klimaanlagensteuerungen wurden gemessen. Zwei Arten statis-
tischer Methoden wurden auf den Datensatz angewendet, verallgemeinerte lin-
eare gemischte Modelle und Markov-Kette. Die resultierenden Modelle wurden
in EnergyPlus implementiert, um ihre Genauigkeit bei der Darstellung des In-
sassenverhaltens in Simulationen zu bewerten. Zu Vergleichszwecken wurde auch
ein Szenario mit festen Zeitplänen ausgeführt, das üblicherweise in gemischten
Gebäudesimulationen angewendet wird.
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Kurzfassung

DieModellergebnisse zeigten hoheWahrscheinlichkeiten für dieVerwendung bei-
der Kontrollen bei Ankunft und Abreise, insbesondere für Fenster. Die Innentem-
peratur um 20 oC steht im Zusammenhang mit geringen Verwendungswahrschein-
lichkeiten für beide Kontrollen, während bei Innentemperaturen über 24 oC die
Wahrscheinlichkeit der Verwendung von Wechselstrom zunimmt und das Öffnen
des Fensters abnimmt. In Bezug auf die Außentemperatur sagen die Modelle eine
höhere Verwendung von Fenstern mit den niedrigsten Außentemperaturwerten
und eine höhere Wahrscheinlichkeit einer AC-Aktivierung mit höheren Werten
voraus.

Bei der Implementierung in EnergyPlus zeigten die Simulationsergebnisse, dass
das Modell, das das überwachte Insassenverhalten am besten repräsentierte, das
Markov-Kettenmodell war, das mit synthetischen Daten durch zufällige Über-
stichprobenbeispiele (ROSE) generiert wurde, was auch zeigt, dass die häufig
verwendeten festen Zeitpläne das Insassenverhalten nicht korrekt darstellen in
gemischten Gebäuden. Die gemessenen Daten sowie das Modell mit der besten
Leistung zeigten, dass die Insassen in allen Temperaturbereichen zwischen bei-
den Kontrollen wechseln und sich nur in der Häufigkeit der Verwendung jeder
Kontrolle in jedem Temperaturbereich unterscheiden. Daher wird ein solches
Verhalten mit festen Zeitplänen, die die Verwendung von Kontrollen basierend
auf der Temperatur einschränken, nicht korrekt dargestellt.

Die verschiedenen angewandten statistischen Methoden erzeugten Modelle mit
unterschiedlichen Anwendungen. Die verallgemeinerten linearen gemischten
Modelle können zur Überprüfung der Verwendung von Steuerelementen in einem
Büro verwendet werden, da deren Einschränkungen bekannt sind und bei der
Analyse der bereitgestellten Ergebnisse berücksichtigt werden. Die Markov-
Kettenmodelle eignen sich besser für die Implementierung in Computersimu-
lationsprogrammen, da sie den Wechsel des gemessenen Insassenverhaltens in
einem Szenario im gemischten Modus erfassen können. Daher können die in
dieser Studie generierten Markov-Kettenmodelle in ähnlichen Büros im gemis-
chten Modus innerhalb desselben Klimas angewendet werden. Es gibt jedoch
immer noch Einschränkungen bei den Modellen, und es ist wichtig, umfangre-
ichere Messkampagnen durchzuführen, damit Daten zu mehr Arten von Insassen
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und Klima gesammelt werden können, sodass umfassendere Modelle erstellt wer-
den können.
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Abstract

The way buildings are operated greatly influence energy consumption, and occu-
pants play a significant role in it. However, the prediction of occupants’ presence
and behavior is a complex task, making it also challenging to accurately predict a
building’s energy consumption. As a consequence, studies have identified a gap
between measured and simulated data, in great part attributed to how occupant
behavior is inputted into energy simulation software. In an effort to contribute
to bridge this gap, this work is presented, with the objective of creating an algo-
rithm to predict occupant behavior, in relation to window opening/closing and AC
activation/deactivation, in mixed-mode office buildings in a high altitude tropical
climate, specifically, the city of São Carlos, SP, Brazil.

The predictive behavioral models generated were based on data collected in an 18-
month monitoring campaign. Environmental factors, such as indoor and outdoor
temperatures, and indoor and outdoor relative humidity were measured, as well
as the actions related to window and air conditioning controls being studied. Two
types of statistical methods were applied to the data set, generalized linear mixed
models andMarkov chain. The resultingmodels were implemented in EnergyPlus
to assess their accuracy in depicting occupant behavior in simulations. A fixed
schedules scenario, commonly applied in mixed-mode buildings simulations, was
also run for comparison purposes.

Models results showed high probabilities of use of both controls upon arrival and
departure, especially for windows. Indoor temperature around 20 oC is related
to low probabilities of use for both controls, whereas with indoor temperatures
above 24 oC the probabilities of AC use increase, and of window opening it
begins to decrease. As for outdoor temperature, the models predict higher use of
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windows with the lowest outdoor temperature values, and higher probability of
AC activation with higher values.

When implemented in EnergyPlus, simulation results showed that the model that
best represented the monitored occupant behavior was the Markov chain model
generated with Synthetic Data By Randomly Over Sampling Examples (ROSE),
also evidencing that the commonly used fixed schedules do not correctly represent
occupant behavior in mixed-mode buildings. Measured data, as well as the best
performing model, showed that occupants alternate between both controls in all
temperatures’ ranges, varying only in the frequency of use of each control within
each temperature range. Therefore, such behavior is not correctly depicted with
fixed schedules that limit the use of controls based on temperature.

The different statistical methods applied generated models that have different
applications. The generalized linear mixed models can be used for verification
of the use of controls in an office, given its limitations are known and accounted
for when analyzing the results provided. The Markov chain models are more
adequate to be implemented in computer simulation programs, as it is able to
capture the alternating nature of the measured occupant behavior within a mixed-
mode scenario. Therefore, the Markov chain models generated in this study can
be applied in similar mixed-mode offices within the same climate. However, there
are still limitations to the models, and it is important to conduct more extensive
measuring campaigns, so data on more types of occupants and climates can be
collected, allowing more comprehensive models to be generated.
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Resumo

A maneira como os edifícios são operados tem grande influência no consumo
energético, e os ocupantes têm um papel importante. No entanto, o compor-
tamento do usuário é de difícil predição, o também torna difícil a predição do
consumo energético de edifícios. Consequentemente, estudos têm identificado
uma discrepância entre os dados medidos e simulados, em grande parte atribuída
a maneira como o comportamento do usuário é inserido em programas de sim-
ulação energética. Para contribuir para a diminuição desta discrepância, este
trabalho é apresentado, com o objetivo de criar um algoritmo para predição do
comportamento do usuário, em relação a operação de janelas e do ar-condicionado
em escritórios de modo-misto em um clima tropical de altitude, especificamente
na cidade de São Carlos, SP, Brasil.

Os modelos preditivos gerados foram baseados em coleta de dados de uma cam-
panha de monitoramento com duração de 18 meses. Fatores ambientais, como
temperaturas internas e externas, e umidade relativa interna e externa, forammedi-
das, assim como as ações relacionadas às janelas e ao ar-condicionado, chamados
também de controles.

Dois métodos estatísticos foram aplicados aos dados coletados, modelos mistos
lineares generalizados e cadeia markoviana. Os modelos resultantes foram im-
plementados no EnergyPlus para avaliar a precisão dos mesmos em reproduzir
o comportamento do usuário em simulações. Um cenário com os dados fixos
sobre o comportamento do usuário, ou schedules fixos, comumente utilizados em
simulações de edifícios de modo-misto, também foi simulado para propósito de
comparação.

xiii



Resumo

Os resultados dos modelos mostraram altas probabilidades de uso de ambos
os controles no momento da chegada e saída, especialmente as janelas. Com a
temperatura interna aproximadamente a 20 oC, observou-se baixas probabilidades
de uso de ambos os controles, ao passo que com temperaturas internas acima de
24 oC, as observou-se um aumento na probabilidades de uso do ar-condicionado
e uma diminuição do uso das janelas. Quanto à temperatura externa, os modelos
predizem um maior uso de janelas com temperaturas externas mais baixas, e
maior probabilidade de uso do ar-condicionado com valores mais altos.

Quando osmodelos foram implementados noEnergyPlus, os resultadosmostraram
que o modelo que melhor representou o comportamento do usuário monitorado
foi o modelo gerado com cadeia markoviana utilizando dados sintéticos com
amostragem aleatória (Synthetic Data By Randomly Over Sampling Examples
(ROSE)), também evidenciando que schedule fixos comumente utilizados não
representam corretamente o comportamento do usuário em edifícios de modo-
misto. Os dados medidos, assim como o modelo com melhores resultados,
mostraram que os usuários alternam entre o uso dos controles em todas as faixas
de temperatura, variando apenas a frequência com que operam cada controle
em cada faixa de temperatura. Assim, tal comportamento não é retratado com
schedules fixos que limitam o uso dos controles com base nas temperaturas.

Os diferentes modelos estatísticos aplicados geraram modelos que apresentam
aplicações diferentes. Os modelos mistos lineares generalizados têm uma melhor
aplicação nos estágios iniciais de projeto, para uma verificação rápida do uso dos
controles em um escritório, dado que suas limitações são sabidas e levadas em
consideração quando analisando os resultados. Os modelos de cadeia markoviana
são mais adequados para serem implementados em programas de simulação com-
putacional, pois são capazes de capturar a alternação entre os controles conforme
observado no comportamento medido em ambientes de modo-misto.

Assim, os modelos de cadeia markoviana gerados neste estudo podem ser aplica-
dos em escritórios de modo-misto similares inseridos em um mesmo clima. No
entanto, ainda há limitações aos modelos, e é importante conduzir campanhas de
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medição mais extensas, para que dados sobre mais tipos de usuários possam ser
coletados, permitindo que modelos mais completos sejam gerados.
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1 Introduction

Over the past 15 years there has been an increase in energy use and also in the
studies analyzing energy use in buildings. The need for more sustainable solutions
has become a global concern and the analysis of energy use has been one of the
focuses of such discussions [42, 80, 144]. An increase in energy consumption
has occurred due to the constant technological development and shown itself in
alterations in the use pattern in a global context. Such consumption has presented
an impact on the urban and global contexts, resulting in a raise in green house
gas emissions (GHG), global warming and a decrease in natural resources [60].
As foreseen, one of the consequences are climate changes, which have become
a threat. Several international agreements, such as the Kyoto Protocol have
taken place in an effort to remedy the situation [37]. However, climate changes
have already occurred, resulting in higher temperatures, leading to an intensified
use of air conditioning in buildings [15]. The building sector is continuously
growing, consequently increasing the levels of energy globally consumed [66].
Within this sector, office and retail buildings, composing the commercial sector,
display the highest electricity consumption and CO2 emissions [100]. In Brazil,
office buildings contribute to 17.4% of the energy consumed [14], with similar
consumption rates seen in the UK and the US in previous years, with 17% and
18%, respectively [13]. Nevertheless, this same sector presents great potential to
reduce its contribution climate changes, since it presents great opportunities of
energy savings [11].
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1 Introduction

It is agreed around the world that air-conditioning in buildings represent a signif-
icant contribution to energy consumption. In Brazil, the use of air-conditioning
constitutes approximately 50% of office buildings’ electric energy consump-
tion [36], and the way air conditioning is operated in buildings can have high
impacts on their energy consumption, given that the same building can present
very divergent energy uses depending on how it is operated by occupants [31,146].
However, there are strategies that can be implemented to decrease energy con-
sumption, one of which is mixed-mode ventilation (MMV). MMV is a combi-
nation of natural ventilation and a mechanical ventilation system, which can be
activated when solely using natural ventilation is not enough to maintain the envi-
ronment comfortable. In this system, natural ventilation is used when the external
conditions are favorable, thus activating the mechanical system when the opposite
situation occurs [38].

The mixed-mode, or hybrid ventilation strategy, shows great potential to motivate
a greater use of natural ventilation over air-conditioning with the goal of reducing
energy consumption. However, even though passive strategies, such as natural
ventilation (NV) reduce the needs for energy use, they increase the levels of
uncertainty by reinforcing the central role of occupants, as they become the
essential elements in control of the building and its environment [52]. With
the growing public concern regarding climate change, more attention has been
drawn towards energy consumption in buildings [33, 69], and predicting energy
demand has gained significant relevance in designing and constructing buildings,
from the early design stages to post occupancy [37]. Such is the need for the
decrease of energy consumption that regulatory conditions have been established
for all European countries, in an effort to decrease the energy required for heating,
cooling, ventilation and lighting [37].

One of the ways to verify the impact of different design solutions and buildings’
properties in energy use is to conduct simulations. There are several different
simulation techniques, and their application in building performance simulation
and building environmental design have been increasing [135]. They can also
be used as a tool to comply to the established norms and standards, as a way to
verify if adequate consumption levels are being reached. Computer simulation
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is an important and useful tool to predict energy consumption in buildings based
on design information. However, several studies [24, 46, 118, 130, 135, 146] have
shown that there is a discrepancy between the real and predicted data regarding
energy consumption in buildings. Studies have demonstrated that the real energy
consumed in buildings can be up to three times greater than the predicted val-
ues [24,46]. This suggests a performance gap, which can be attributed to, among
other factors, such as weather files [43] or building construction materials [25], a
disregard of occupant behavior in the simulation process. [85] conducted five dif-
ferent studies to show that buildings do not perform as predicted even when using
very accurate simulations, and concluded that occupant behavior and preferences
are significant contributors to the identified gap. [48] estimated the influence of
occupant behavior in heating and cooling energy in a simulation run, showing a
high variability in energy demand resulting from the effect of occupant behavior
within the studied building. [118] identified occupant behavior as possibly the
most overlooked parameter, and that it might not be properly considered as an
integral part of the energy design, thus resulting in discrepancies in the data.

Occupants adapt within their environment in order to achieve comfort in ways that
are convenient to them, and not necessarily energy conserving [93, 105]. They
may act in unexpected ways to respond to a crisis of discomfort, and such actions
are contrary to the static assumptions designers tend to make when portraying
such parameter in simulations. Therefore, occupant behavior can be considered
one of the variables that generates great amounts of uncertainties in simulation
results [26]. Occupant behavior is a variable known to have a significant impact
on how buildings are operated, thus influencing their energy consumption [56,95,
101, 132, 136, 139, 141, 147]. Occupants can affect the indoor environment, and
as a result, energy consumption as well, depending on how they behave in the
environment and on how they interact with the building and the controls available
to them, such as windows, ventilation systems and shading devices [4]. Energy
savings from occupant behavior presents great potential, and can constitute from
5% to 30% of savings in commercial buildings [61]. Nonetheless, even though it
is a variable with great savings potential, it is also one with many uncertainties,
due to occupants’ personal experiences and preferences. Occupants’ behaviors
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and feelings are complex and very difficult to predict [134], therefore making it a
challenging task to accurately predict a building’s performance [59].

Several studies have addressed the issue of occupant behavior within different
types of buildings and with emphasis on different influential parameters [23, 50,
102, 108, 118,131].

However, even with efforts being made to diminish the gap between predicted
and actual data, and to better understand occupant’s actions, there is still a need
to develop research studies to contribute to a wider range of knowledge in the
field [27]. Not having enough models to depict a variety of behaviors in different
buildings types and climates, such as mixed-mode buildings in a high-altitude
tropical climate, presents a difficulty to computer simulation users, who have
little or no information on how to model such behavior to acquire precise results.

In addition, there is no guide on how to simulate or even design mixed-mode
buildings specifically [116], making it difficult to simulate this scenario in com-
putational programs, which can often lead to non reliable results. Even though the
number of researches on the topic has been growing over the past years, one of the
gaps that remain is related to the use of the controls when operated by occupants
and not a system [36]. This is specially relevant to the Brazilian reality, where,
as stated by [36], “a significant portion of the older office building stock has had
air conditioning retrofitted into a basic, naturally ventilated design, rendering it
mixed-mode ventilation". The authors also state that few field research studies
have been conducted in these environments, and that in Brazil, buildings rely on
artificial mechanisms for cooling all year long, dispensing the need for heating.

Considering this context and the identified gaps, this research proposes the study
of occupant behavior inmixed-mode office buildings related to the opening/closing
ofwindows and the activation/deactivation of the air conditioning in the city of São
Carlos, SP, Brazil. The study focuses on buildings displaying operable windows
and individual air conditioning (AC) units in the offices, all of which the occupants
are free to operate at any given time. These buildings do not have automation
systems, nor any temperature indication of any kind to inform occupants of the
indoor environment conditions, except when selecting the AC set point. This
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work intended to create an algorithm to be implemented in computer simulation
programs, to provide more accurate input data for simulations of mixed-mode
office buildings related to energy use, once there is a discrepancy between the
real and simulated data referring to occupant behavior [94]. To this date, there
are no other works presenting behavioral models to be implemented in building
performance simulation programs in Brazil, especially for the climate and type of
building in question. [27] identified that there are several contributions in the field
from North America, Europe, and China, and well established collaborations
between groups from these locations. However, the authors also identify that
there are very few contributions from Latin America, specifically from Brazil,
highlighting the relevance of such studies.

1.1 Objectives

The main objective of this work was to create an algorithm to predict window
opening/closing and air conditioning activation/deactivation in mixed-mode of-
fice buildings specific to a high-altitude tropical climate, and to implement it in
simulation programs to provide more precise input data on occupant behavior.

The specific objectives to be achieved as the research progressed are presented
with respective research questions specific to each objective:

• To identify the main driving factors that lead to window opening and AC
activation based on the analysis of the measured data.

– Is there a seasonal effect to the way occupants operate the studied
controls?
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– What indoor and outdoor temperature values show higher frequency
of window opening?

– What indoor and outdoor temperature values show higher frequency
of AC activation?

– Is there a difference in the use of the studied controls as the day
progresses?

– Does the building envelope and office layout influence the way occu-
pants operate the studied controls?

• To apply statistical methods to develop behavioral models that represent the
measured data well.

– What statistical methods can be applied to the type of data collected?

– What are the limitations and advantages of the applied statistical
methods?

– Are the models able to capture the measured behavior, thus accurately
predicting the most likely action to be taken given the environmental
variables being considered?

• To implement and test the developed models in a computer simulation
program and assess their representation of the measured data.

– Are behavioral models more representative of occupant behavior than
the deterministic or fixed schedules commonly used in building per-
formance simulations?

– Do the developed behavioral models represent the measured data well
in computer simulations?

– Is it possible to use the developed behavioral models to predict energy
use more accurately?
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– Is it possible to use the developed behavioral models to simulate
different types of occupants?

1.2 Thesis Structure

This thesis was structured in order to achieve the proposed objectives as described
in the previous section. Figure 1.1 illustrates the general organization of the work.

Chapter 2 Literature

Presents the current knowledge of the main themes addressed in this work, thus
divided into four main parts, namely; occupant behavior, mixed-mode ventilation,
computer simulation and statistical methods. This chapter also counts with a
final section, where the above-mentioned themes are combined and presented as
relevant studies within the same field.

Chapter 3 Method

This chapter describes the method developed and applied to achieve the proposed
objectives. The Initial Stages section describes the development of the theoretical
model, followed by the definition of the unit of analysis, population and scope.
The Model Creation section is subdivided into four main parts, describing the
monitoring campaign and model creation, with the application of statistical meth-
ods. Furthermore, it describes the validation procedure and the simulation tests
performed.

Chapter 4 Results and Chapter 5 Discussion

Chapter 4 presents the results and validation for all the models created, as well
as the results of all models’ combinations simulated in EnergyPlus. Chapter 5
presents a discussion of the models and simulation tests results based on the
literature.

Chapter 6 Conclusions
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Lastly, chapter 6 presents the findings in a summarized manner, discussing the
limitations of the work and proposing further studies that can improve the work
presented here.
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Figure 1.1: Thesis Structure
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This chapter presents the main themes studied in this research, such as occupant
behavior, energy use, mixed-mode ventilation, computer simulation and statistical
methods applied to data sets to create stochastic models portraying occupant
behavior. This chapter also counts with a section that describes studies developed
applying similar methodologies.

2.1 Occupant Behavior

In a general sense, occupant behavior can be defined as the interactions with a
building’s systems in an effort to control the indoor environment for indoor air
quality, health and comfort, be it thermal, visual and/or acoustic [37]. Occupant
behavior is among the six most influencing factors of a building’s performance,
along with climate, building envelope, equipment operation and maintenance,
and indoor environment conditions [149]. There are prerequisites, established by
buildings’ occupants, so they are able to adjust and adapt systems and components
according to their preferences. Such requisites involve improving air quality,
by ventilating and eliminating odor and pollution, visual or lighting quality, by
controlling glare, reflections and the amount of illuminance, acoustical conditions,
by avoiding noise, and aesthetics, as well as improving thermal comfort in the
indoor environment [16].
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As stated by [93], "if there is a change that causes discomfort, people will act
in ways to regain their comfort". The term ‘alliesthesia’ is the combination of
the words ‘changed’ (allios) and ‘sensation’ (aisthesis) [22], and can be used
to describe that an external stimulus can be understood as pleasant or unpleas-
ant, depending on the signals sent from the body. It is human nature to search
for pleasant conditions and avoid unpleasant ones. However, because of peo-
ple’s different backgrounds and preferences, also their physical, physiological and
psychological differences, and several other influential external drivers such as
economic and regulatory, for example, they do not perceive and respond in the
same manner [16, 119].

Occupants play a very significant role in a building’s energy performance, as
they are present, move around and interact with the building and its systems to
better fit their purposes and comfort needs, resulting on an impact in energy
consumption [63]. As there is a growing concern for sustainability and low
energy buildings using passive strategies, such as natural ventilation, the role of
occupants in a building is reinforced, as they become the most important elements
controlling their environment [52]. There is great diversity in occupants’ actions,
and the main objective in studying occupant behavior is to determine the triggers
of their actions [62].

Occupants present the individual aspect that is related to personal experiences,
preferences and expectations, altering the way each person uses the available con-
trols, which affects the total energy consumption in a building. Their active use of
energy, as in the way they interact with control systems and their available build-
ing elements to reach their desired levels of thermal comfort, have a significant
impact on the total amount of energy consumed [37]. Such interactions happen
in different ways; window opening and closing, lighting, shading devices, HVAC
(Heating, Ventilation and Air-Conditioning) systems, hot water and appliances
(Figure 2.1).

[62] identified actions and inactions that occupants may take to regain thermal
comfort. Actions can be adjusting the level of clothing, drinking a hot or cold
beverage, opening a window or adjusting the thermostat. As for inactions, it could
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Figure 2.1: Occupants’ types of activities affecting building energy consumption [37]

be, for example, moving to a different location and tolerating some degree of
discomfort. Different actions and inactions can be taken by different occupants
in response to the same kind of situations, thus impacting in very different ways
how energy is consumed in the same environment. Therefore, it is critical to
understand the relationship between the building and its occupants’ activities,
lifestyle and behavior.

In an effort to better portray occupants and their impact on the built environment,
researchers have categorized occupants into different groups according to their
energy use. [39] created the groups active, medium and passive, regarding occu-
pants and their energy use. The active occupants are the ones that change the
heating/cooling set point, whereas the passive occupant does nothing, related to
operating available controls, and continues to tolerate some degree of discomfort.
Other categorizations, such as the one made by [62], described with more accu-
racy people’s actions, classifying them as; “energy frugal”, “energy indifferent”
and “energy profligate”. Using another method, which classified behavioral fac-
tors in residential buildings, [32] categorized occupants into three levels referring
to their complexity, that is; simple, intermediate and complex. Each level was
developed for a different application; the simple level was for statistical analysis,
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the intermediate, with more parameters, for case studies, and the complex one
was meant for detailed simulations. This division, using occupants’ behavior to
create profiles, could contribute to more accurate assumptions when performing
energy analysis. Nonetheless, there is still a need to perform large scale field
studies to gather comprehensive data to create such profiles.

Occupant behavior is a contributing variable to the uncertainty of building per-
formance, and it can significantly affect building energy consumption. According
to [59], it is the leading source of uncertainty in predicting energy use in buildings.

The International Energy Agency (IEA), lists occupant behavior, among other fac-
tors such as climate and building envelope, as one of the driving forces of energy
use in buildings [65]. [120] defines occupant behavior as “a human being’s uncon-
scious and conscious actions to control the physical parameters of the surrounding
built environment based on the comparison of the perceived environment to the
sum of past experiences.” Some of these actions can be interactions with windows,
lights, blinds, thermostats, air conditioning and plug-in appliances.

Based on the definition above, it is possible to state that occupant behavior is
difficult to predict because it can be influenced by a number of factors, be them
external to the occupant, such as air temperature and wind speed, or internal
or individual, such as personal background and preferences, as well as building
properties, which can be perceived as ownership or the availability of heating
devices, for example [45].

Traditionally, occupant behavior has been connected to indoor and outdoor ther-
mal conditions, leading to interactions with building control systems, which are
only one aspect of occupant behavior. Human behavior, when in the field of social
sciences, can be set in relation to causes that are called “internal or individual
factors”, which in addition to external factors, influence occupant behavior with
a variety of perceptions and actions in complex ways [120].
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2.1.1 Parameters Influencing Occupant Behavior

Energy consumption is largely affected by occupant behavior, as they respond dif-
ferently to regain their levels of thermal comfort, which can vary according to their
personal (psychological, physiological) and social characteristics [37]. In addi-
tion, parameters such as climate, economy, regulations and policies, architecture
and interior design of the spaces can also influence energy use (Figure 2.2).

Figure 2.2: Factors influencing occupants’ behavior regarding energy use [37]

Climatic parameters, including outdoor temperature, relative humidity, solar ra-
diation, wind and rain are very significant influences on occupant behavior and
their interaction with a building’s systems to achieve thermal comfort [37]. Sev-
eral researchers have studied the influence of climatic parameters on occupant
behavior [79, 107, 118], and because such parameters are time/date dependent,
stochastic models are the most common method in these studies, estimating the
probability of given outcomes.
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In order to attain more accurate results from building performance simulation
programs, it is important to consider and understand the reasons that lead occu-
pants to take actions and interact with the building and its systems. Factors that
influence occupant behavior, either external or individual, have been categorized
and denominated as “drivers”, which are described as the reasons that lead the
occupant to react in a building and suggests that such occupant acts, thus driving
the occupant to take an action [45]. Occupants needs and preferences drive them
to react and interact with their environment, thus the available controls, to satisfy
their needs [77].

Several researchers have divided driving factors into categories, [145] and [71]
considered the existence of two groups, internal and external factors, as potential
triggers to actions. [99], when conducting a residential study, classified behaviors
in three main categories:

• Environmentally related: actions triggered by environmental factors

• Time related: actions repeated within certain time frames

• Random: actions taken depending on uncertain/non quantifiable factors.

Themain three categories defined by [99] can be applied to other types of building,
such as an office building, where environmental factors will be an important
influence, as will time related actions, which can be related to routine. Random
related actions can also be observed in both types of building. Depending on the
action under consideration, some drivers can have a greater impact on triggering
an action than others.

[45] classified drivers into five groups, namely: physical environmental factors,
psychological factors, physiological factors, social factors and contextual factors.
The latter was included when the authors made a review on window opening,
showing how one action can indicate to different drivers. Their descriptions are
as follows:
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a) Physical environmental: environmental aspects that lead occupants to act and
that have an impact in energy consumption: temperature, humidity, air velocity,
noise, illumination and odor.

b) Contextual: factors that do not influence in a direct way, but are determined
by the context, such as building insulation, facade orientation and heating system
type, for example.

c) Psychological: occupants seek to satisfy their needs regarding thermal comfort,
acoustic comfort, health, among other factors. They also have expectations for
their environment, such as temperature and indoor environmental quality.

d) Physiological: some factors, such as age, gender, health condition, clothing and
activity level are physiological driving forces that can determine the physiological
condition of occupants.

e) Social: social driving forces are related to the interaction between the occupants.

Figure 2.3: Categories of the factors that influence occupant behavior in building [130]

All operations taken to improve or maintain adequate thermal comfort levels
have an impact and a consequence on the indoor environment, and consequently
in energy consumption. By taking actions, the occupant becomes the central
operator who controls the energy consumption and indoor environmental quality
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in a building [45]. Figure 2.3 presents a combination of the above-mentioned
drivers’ categories that can influence occupant behavior. Figure 2.4 shows sub-
groups, as defined by [121], displaying an overview of the triggers and contextual
factors that have been studied and discussed in the literature as having an influence
on occupant behavior. The sub-groups were based on the five above-mentioned
categories as defined by [45].

Figure 2.4: Potential influencing factors of occupant behavior [122]

The authors [121] describe the physical environmental triggers as the properties
that describe the indoor and outdoor environments. Such properties cause a re-
sponse from the body, thus triggering occupants to take an action. As for the
contextual factors, they are divided into physical environmental factors, psycho-
logical factors, related to social factors; and physiological factors, which do trigger
a response, just not an immediate one [94].

Another influential parameter is the building type and the types of activities
performed by the occupants within the built space. The building type usually
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determines the activities performed in it, which in turn, sets a clothing type,
metabolic rates and the occupants’ specific needs and expectations related to such
activities, as well as the way they interact with the building.

Social and personal parameters are also critical when investigating occupants’
comfort and energy-related attitude. Social and personal factors have been identi-
fied as also being influential on energy behavior in residencies, such as occupants’
awareness of energy issues, gender, age, employment, family size and social-
cultural belonging [85]. In an office environment, social parameters can also be
seen as the number of occupants sharing the space. [125] state that perceived
control decreases with higher numbers of occupants in an office, which in turn
affects how occupants operate the available controls. [69] highlights the effect
of education and growth in awareness in people’s attitude towards energy use.
Other relevant and influencing factors, such as energy regulations, policies and
economical parameters, as energy price and employment, have been discussed in
the literature. As part of such discussion, several studies have investigated the
influence of the above-mentioned parameters on occupants’ energy consumption
behavior [24, 85, 110]. Specifically related to energy costs, studies conducted in
residential buildings identified that this variable affects the way energy is con-
sumed. [97] identified, by means of questionnaires, that occupants tolerated a
certain amount of discomfort on account of energy prices. [128] found that, due
to the implications on their energy bills, occupants of a low to middle income
housing development in South Australia ranked air conditioning as their least
preferred strategy.

The state of occupants in office buildings, that is, their arrival, presence and
departure, has been studied and revealed that occupants tend to adjust given
building systems upon arrival more than at departure [58, 152]. This parameter
has been considered and modeled in several studies to investigate the connection
between occupants’ movements and their behavior [95, 152]. Architecture and
interior design can also influence occupants in the way that the space may change
their perception [35]. However, the impact of interior design has not been broadly
studied [37, 82].
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2.2 Building performance simulation and
occupant behavior

Computer simulation increasingly became more affordable and possible, both to
researches and designers, due to the fast progress seen in the computer industry and
in computational techniques [142]. During the 1990’s, there was a considerable
growth in the use of computer simulation tools, due to a greater availability
both of hardware and software. Personal computers became more affordable in
industry and research, leading to a progress in computer simulation in the field of
techniques and tools. Today, as stated by [142], building simulation is involved
in several stages, such as design, engineering, operation and management of
buildings, becoming an integral part of building design and industry. Such tools
and techniques are believed to accelerate the design process and optimize building
performance at what can be considered a low cost [8].

There are several advantages to the use of simulation tools, with the growing need
for energy savings and reduction of environmental impacts, simulation based de-
sign is an important tool to achieve such targets. According to [142], the main
goal for developing building simulation techniques and tools is to assist in the
creation of a built environment that meets all the existing needs and criteria and
presents the least cost with construction and operation, as well as a low amount
of resource consumption. One of the greatest advantages to simulation tools is
that they are able to provide quantitative data and thus aid in the decision making
process. One of the main reasons why such tools are being promoted and enforced
is the increasing number of building performance codes and standards. Therefore,
the adoption of simulation tools has been enforced to evaluate a building’s per-
formance compliance. As exemplified by [142], ASHRAE 90.1 [7] requires that
the whole year building energy simulation results are presented in order to rate
the building’s energy performance. The Green Building Rating System adopts
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the same policy. Various governments also demand, and with that accelerate, the
use of simulation tools for building design to achieve low energy buildings and to
meet their energy and greenhouse gas (GHG) reduction targets [142].

Building energy simulation programs are based on a building’s basic physical pa-
rameters, such as heat transfer, occupant density and operation schedules. They
are very precise in simulating deterministic factors influencing buildings’ energy
balance. However, when representing non-deterministic variables, their accuracy
to faithfully represent reality diminishes. Occupant behavior is by nature stochas-
tic, and many times remains neglected when represented in simulation programs
because it is accounted for as a fixed presence, such as schedules or determinis-
tic interaction strategies [52], as is the traditional method [7]. [146] state that the
adoption of standard schedules to portray occupant behavior is an incorrect way to
represent the dynamic human-building interaction. [34] state that using “average
behavior can be a major cause of the gap between the actual and predicted energy
use of the building". Specifically to the operation of windows, studies have found
that it largely differs from the fixed-schedule scenario, resulting in a discrepancy
between building design and actual performance of up to 10 times when looking
at energy consumption [63].

This is mainly the reason why energy simulation of buildings offering adaptive
opportunities to their occupants present such discrepancies between the simulated
and real data. Buildingswith the same physical features can show great differences
in energy consumption, which can be related to occupancy patterns, occupants’
lifestyle, comfort preferences and interactions with the buildings systems. How-
ever, most programs have little consideration of the impact of occupant behavior
on energy use [79].

This situation is true for residential and office buildings. Several studies conduct-
ing field survey monitoring indicate a large difference between identical buildings,
attributed to differences in occupant behavior. As stated by [52], it is necessary to
reliably represent occupants within a building, so low-energy free running build-
ings can be correctly designed and thus avoid contradictions between occupants’
freedom and sustainability.
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2.2.1 Studies implementing behavioral models in
building energy simulations

Stochastic models provide the opportunity to represent occupant behavior by con-
sidering the several factors that can influence occupants’ actions [77]. Elaborating
such models is key, and integrating building occupant behavior models and energy
simulation programs is extremely helpful to quantify the influence of occupant
behavior on a building’s performance, as a means to increase building energy
prediction accuracy [71]. This implementation is part of the solution to overcome
the gap between measured and simulated data so often found [12, 44].

There are several studies that present the implementation of behavioral models
in building simulation programs, identifying the different results achieved by
using fixed, or deterministic schedules, and the models created based on field
studies [39, 40, 59, 106]. [5] investigated the influence of occupant behavior in
energy consumption by simulating a room occupied by one person who could
operate six different controls. Two behavioral modes were simulated, an energy
consuming and an energy efficient behavioral mode. In addition, a reference
scenario where the occupant had no control was also simulated. Predicted Mean
Vote (PMV) limits were established and simulated within each behavior mode.
The authors reported that there was not a lot of difference on energy consumption
between the different PMV limits within each behavior mode. However, they
reported that the energy consuming behavior mode showed energy consumption
of up to 330% higher than the energy efficient mode, even though PMV limits
were close to neutral during most of the year in both modes. This study shows
that, even though PMV limits did not change that much, there can be significant
different energy consumption levels depending on how the available controls are
operated, which depends on how the occupant behaves.

Specifically to window use, [105] used results from field surveys to create an
adaptive algorithm to simulate window opening in office buildings. By means
of logistic regression analysis, the authors identified that the proportion of open
windows is highly correlated to indoor and outdoor conditions, also showing that
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the applied statistical method is appropriate to establish a relationship between the
observed action and environmental factors. Lastly, the authors implemented the
algorithm in a simulation software, concluding that using the adaptive algorithm is
more suitable than the more common simulation methods, as it is more sensitive
to changes in the building’s design parameters. The authors also state that using an
adaptive algorithm better represents how occupants use windows, thus allowing
more accurate assessments of thermal comfort conditions and energy use.

Studies have explored several aspects of occupant behavior and actions within
the built environment by means of simulation. [101] generated occupancy models
based on two years of monitored data. The authors compared simulation results
using two static standard models, one stochastic model and case specific data-
driven models developed from the monitored data. Results demonstrated that
standard occupancy models are not good representations of occupants attitudes
of the energy peak demand, or of their seasonal behavior. The authors state
that the standardized procedures do not take into account occupants’ adaptability
to the environment associated with human comfort perception. Even though
the data-driven occupancy scenarios still show discrepancies, they are a better
representation of occupants real daily attitudes.

Because occupant behavior models still show discrepancies and limitations, the
work of [51] demonstrates how the different ways that models are built can result
in different simulation results. Specifically for window opening, the models
by [54, 55, 106, 152] were implemented in EnergyPlus. In general, results results
indicated a window opening behavior following a seasonal trend, with a peak
in the summer (July). The model by [152] predicted windows remaining open
for 90% of the time in July, while this value was of 50% for the other models.
The authors [51] state that these results are a reflection of the data with which
the model was created. [152]’s model was based on data collected only during
the summer, while the other models were based on summer and winter data
collections. Nonetheless, simulations results of all four models presented an
increase in heating load and a decrease in cooling load. The authors conclude
that, even though there are differences between the results respective to each

23



2 Literature

window operation model, the models consistently show a seasonal trend for
window opening, as well as a decrease in cooling loads.

As exemplified by the above-mentioned studies, stochastic models are more rep-
resentative of occupant behavior in buildings simulation programs than fixed
schedules. Even though they may still present limitations, they provide more
realistic information about occupants and the consequent energy consumption
depending on how occupants operate the available controls. In this sense, it is im-
portant for researchers to continue developing representative models of occupant
behavior through a human centered design.

2.3 Mixed-Mode Ventilation

Natural ventilation is a passive strategy that can provide better air quality while
improving thermal comfort by increasing air speed during daytime, ventilation
rates during the night and by removing heat from the environment, all without
consuming a significant amount of energy. In hot climates, the most common
method to maintain adequate levels of thermal comfort is air conditioning, which
consumes large amounts of energy, resulting in increased costs and green house
emissions [76,140]. In light of the amount of energy consumed with cooling and
mechanical ventilation in commercial buildings, it is critical that such strategies
are considered when designing.

Due to an increased concern to improve energy efficiency and the need to pursue
a greater use of passive strategies for thermal comfort, new alternatives for design
strategies discourage the use of mechanical cooling systems where and when
natural ventilation can be used [116]. However, studies have shown that when
in extreme weather conditions, using only natural ventilation can lead to higher
levels of discomfort [9]. As a response, a type of hybrid ventilation system,
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denominated “mixed-mode” has been studied and evaluated during the past years
[116]. According to [60], the Mixed-Mode Ventilation (MMV) system is a hybrid
ventilation approach to condition the indoor environment using a combination of
natural ventilation from windows, that can be either manually or automatically
controlled, and mechanical air conditioning that can provide air distribution and
cooling when (or where) needed.

The mixed-mode ventilation system is especially significant in hot climates, for
example, where it is not possible to solely rely on natural ventilation, and thermal
comfort levels are harder to achieve using only passive strategies. Comfort levels
are expected to be met to ensure good indoor environmental quality for occupants.
Using only natural ventilation in such climates has been proven insufficient to
meet requirements and occupant satisfaction. Therefore, a possible strategy is the
combination of natural ventilation and mechanical cooling systems, in a mixed-
mode ventilation system [21]. It is a viable solution to provide cooling, air
ventilation, indoor air quality (IAQ) and thermal comfort for the occupants of a
given building [116].

There are other kinds of ventilation modes that can be combined with natural
ventilation, such as low power fans and passive inlet vents. Whichever choice the
designermakes, themain objective is tomaximize thermal comfort in the building,
while avoiding unnecessary use of energy during the year with mechanical air
conditioning [29].

According to the Center of the Built Environment [29] at the University of Califor-
nia, there are three types of mixed-mode ventilation buildings, classified as shown
in Figure 2.5. The concurrent mixed-mode operation uses natural ventilation and
air conditioning in the same space and at the same time; the air conditioning
serves as a complement to natural ventilation, and occupants are free to operate
windows based on their preferences. In the change-over design, both situations
occur in the same space, though at different times; the change-over can happen on
a seasonal or daily basis. This design uses one system or the other, and in several
cases it involves an automated system that shuts down the air conditioning when
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windows are open and vice-versa. As for the zoned system, it refers to different
zones within the same building, each making use of a different cooling system.

Figure 2.5: Types of MMV buildings (Adapted from Salcido; Raheem; Issa, 2016 and CBE, 2013)

As stated by [116], mixed-mode ventilation strategies have been used and shown
effective results in energy saving, while still maintaining indoor air quality for
occupants. The authors also state that mixed-mode buildings can save up to 40%
of HVAC energy when optimizing window operation schedules, thus considering
such strategy a sustainable way to condition buildings. The studies by [115,117],
also evidence the potential in energy savings of such strategy, specifically for
Brazilian climates. However, there are no complete guides on how to simulate
and/or design mixed-mode office buildings.

2.4 Statistical Methods

Over the years, researches have made use of a variety of statistical methods to
model occupant behavior, in an effort to predict a given action. A mathematical
model of a natural phenomenon is a quantitative description of that phenomenon
[138]. There are several examples in different subject areas, such as biology
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and physics, of mathematical models portraying natural phenomenons. In the
context of architecture, for instance, a model can provide qualitative information
about the relationships between several factors that might influence a given event.
Ultimately, a model is judged by its usefulness, and such criterion allows the
existence of more than just one model for the same event; that is, there isn’t
one best model for a given phenomenon [138]. Within the realm of models,
there are deterministic and the stochastic models. The word deterministic means
“certain", and these models are able to predict a single outcome from a given
set of circumstances, whereas stochastic models, the word “stochastic" meaning
“random", “predict a set of possible outcomes weighted by their likelihoods, or
probabilities" [138].

According to [138], there are three components to scientificmodeling: (a) a natural
phenomenon being studied; (b) a logical system to deduce the implications about
the phenomenon; and (c) a connection that links the elements of the natural
systems being studied to the logical system applied to model it. Several methods,
by using the logical system, can be applied to generate stochastic models to be used
in simulation programs. According to [125], simulating occupant behavior in a
given context of building modeling from an energetic point of view is mostly done
by aggregated stochastic models based on logistic regression, Markov chain or
similar methods [46,55,105,124]. Several authors have used the above-mentioned
methods in their studies [3,23], and some have combined such methods to achieve
their desired results [72, 126]. The following sections are a brief description of
commonly used methods to create such models.

2.4.1 Logistic Regression

“Regression is the process of learning relationships between inputs and continuous
outputs from example data, which enables predictions for novel inputs" [133].
Regression methods are an integral part of any data analysis that intends to
describe the relation between a response variable and one or more explanatory
variables [64].
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Logistic regression is a statistical method commonly applied to predict the prob-
ability of a binary response variable when explanatory variables are at given
values [68]. Such method has been used in several studies [55, 72], analyzing
occupant behavior in relation to the opening/closing of windows to describe the
probability of a window being open or closed, thus configuring the window’s
state [55, 104, 126], or alterations to the window’s state [3, 23] with a set of ex-
planatory variables. The relation between the ‘correct’ probability for the binary
response and the several explanatory variables can be described by multivariate
logistic regression. The univariate logistic regression expresses the probability
function of a certain event occurring, and can be used in the multivariate logistic
regression, which describes the probability of an event occurring depending on
an explanatory variable [23]. To select the most significant variables and to build
a better model, the Akaike Information Criterion (AIC) is commonly applied,
where the forward and backwards procedure is used.

2.4.2 Markov Chain

A stochastic process is a random process, which is a collection of random values in
a common probability space [17]. It is an abstract notion that describes quantities
that happen at random and can be altered with the passing of time [67]. It is
possible to notice in random processes that the outcome of a given trial usually
depends on the previous trial. When that outcome is known, there is practically
no dependence on the preceding trial, which is known as the Markov property. A
random sequence that takes values in a measurable space is a Markov Chain [17].
More specifically, a Markov chain is a collection of random variables that, given
the present, past and future states are independent [49]. Therefore, a Markovian
process is a stochastic process that only considers the previous state to predict the
next one, being independent of the process [55].

According to [47], aMarkovian process does not have amemory, and the prediction
of the next state will depend only on the present state and no other. The authors
made a first attempt to develop a mathematical model to predict the state of

28



2.5 Predictive behavioral models for office buildings

windows by using a discrete-time Markov process model to predict transitions
between sets of data of opening angles for four office rooms. Studies that use
Markov chain technique, intend to generate synthetic data that can portray the
overall statistics of the measured data [103].

2.5 Predictive behavioral models for office
buildings

Given the growing need to reduce energy consumption, there have been numerous
studies on occupant behavior focused on minimizing the gap between measured
and simulated data. Most of the studies focus on residential and office buildings,
since these show greater impact on global energy use. Great part of the work
in this area focuses on one particular type of occupant interaction; the use of
electricity and plug loads being the most researched subject, followed by window
opening behavior and the use of fans and/or air conditioning [37].

Designers, architects, engineers and researchers need to improve the way energy
consumption is calculated in buildings, and considering occupant behavior is one
way to achieve that. However, this poses a challenge, due to the complexity and
dynamic nature of behavior, that can be influenced by internal and/or external,
individual and contextual factors. Also, because the data is monitored on site,
the models created can be “locally" applied, that is, the scope of applicability of
such models can be limited by the location where the measurements took place.
This characteristic reinforces the need to create models for different locations and
climates, thus expanding their applicability. Several researchers have developed
models from measured data as a means to provide more accurate input data on
occupant behavior to achieve results showing less discrepancy from the real data
when simulating.
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In that sense, operation of different controls have been studied, in an effort to
better understand and relate the different drivers to the selected actions being
considered. [27] conducted a study reviewing different approaches, methods and
findings related to occupants’ presence and actions in different building types.
The set of occupants’ actions in the study includes window, solar shading, electric
lighting, thermostat adjustment, clothing adjustment and appliance use. In the
database provided by the authors [27], the most recurring action studied in office
buildings is related to lighting, followed by window operation.

As shown in the above-mentioned study, researchers have relied on stochastic
and data-driven models to predict the operation of different controls. When
investigating window use, the desired output of the models have varied, such as
window opening/closing, window opening, window state transition and window
opening probability. In some occasions, the window model also considered
lighting operation in the output [53, 89]. The most recurring methods applied to
the prediction of such actions have beenMarkov chain and logit analysis, although
other methods such as generalized linear models, probit analysis and generalized
linear mixed models, for example, have also been used. Recently, deep learning
techniques have been used to model occupant behavior, both to explain and predict
it [27, 83].

The work by [47] was the first attempt to create a stochastic model to predict oc-
cupant behavior in regards to natural ventilation in office buildings. The authors
performed measurements in four offices in the LESO test facility in Switzerland
during a heating season (October to May). Indoor variables such as, room tem-
perature, wind speed, radiation and ambient temperature were registered. Using
Markov chain to develop the models, the authors found that outdoor temperature
acted as a driver for window opening and closing.

Based on measurements and from surveys conducted, [92] proposed the first
coherent probability distribution to predict the state of windows as logit functions
for indoor and outdoor temperatures. As stated by the author, this method assumes
that the probability of an event happening increases as its stimulus increases, or
the intensity of it. The measuring campaigns took place in Pakistan, the United
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Kingdom and five European countries, from 1993 to 1996. It was observed that
in most of the cases, the correlation with indoor temperature is similar to the
one with outdoor temperature, and in this study, the author recommends the use
of outdoor temperature, based on the fact that it is an input in any simulation
tool, whereas indoor temperature is an output. However, the author later reported
that a more consistent predictor for the use of windows was the indoor and not
the outdoor temperature [91]. In the latter study, the authors also analyzed the
relationship between temperature (indoor and outdoor), and the use of controls in
mixed-mode buildings, with mechanical systems available for both cooling and
heating. Their results showed that the AC was used for cooling with outdoor
temperatures starting at 25 oC.

[55], based on nearly seven years of continuous measurements, investigated the
influence of occupancy patterns, indoor temperature and outdoor variables on
window opening and closing behavior. The measurements were recorded in office
buildings in Switzerland. The authors tried different modeling approaches, such
as logistic probability distribution, Markov chains and continuous-time random
processes. Combinations of the approaches were tested, and a hybrid model was
selected to be implemented in building simulation tools. The authors report,
along with other observations, that indoor and outdoor temperatures, among other
possible parameters, are the main drivers for actions on windows.

In addition to establishing a relationship between temperature and window oper-
ation, studies have also investigated the influence of non-thermal stimuli on occu-
pant behavior. [58], based on measurements conducted in 21 offices in Freiburg,
Germany, identified a relationship between window opening/closing and occu-
pancy, showing that most window openings occur at time of arrival. [151] con-
ducted measurements in four offices in South Korea, to demonstrate the link
between temperature, CO2 concentrations, occupancy schedules and window use
patterns. The objective was to predict window operation as a function of both
thermal and non-thermal stimuli. The authors state that seasonal effects are highly
influential in window use, and that the drivers for window operation differ with the
seasons. More recently, a study developed by [113] conducted field measurements
in mixed-mode office buildings in the south of Brazil, in a city characterized by
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a subtropical climate. The study generated models applying different statistical
methods to analyze relevant variables based on their field measurements’ results.
The authors focused on analyzing behaviors such as changing clothing or the
intake of hot or cold beverages, revealing that such behaviors were affected by
different conditions. Data about window and AC operation showed that indoor
and outdoor temperatures were strong predictors for these actions. There was a
higher probability of AC use with outdoor temperature above 25 oC, and lower
probability below 19 oC.

2.6 Considerations

Studies on different actions taken by occupants have been developed, mainly focus-
ing on residential and office buildings, although there are researches on commer-
cial and educational buildings as well. The study conducted by [27] revealed that,
although there are many studies on window operation in office buildings, there
are no works investigating occupant behavior in mixed-mode buildings to create
predictive behavioral models to be implemented in simulation programs. The
mixed-mode buildings presented in the papers reviewed by [27] differ from those
in this work. In other locations, such as Japan [137], Pakistan and Europe [91],
the monitored mixed-mode buildings also allowed the mechanical system to be
used for heating when needed, and the climates are significantly different from
the one in this study (Cwa, for the Koppen classification; [30]), for which there
are no reported models. In addition, several actions are contextually sensitive and
differ according to personal characteristics, demonstrating the need for studies in
different contexts (building type, climate, culture) to better understand a given
action [119,124,125].

This scenario emphasizes the relevance of this study, since there are low rates of
scientific production and collaboration from Latin American countries, specifi-
cally from Brazil. As identified by [27], there is a need to develop research studies
outside the consolidated and well established domains, so there is a wider range
and coverage of knowledge in the field, especially in those climates where there
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are no models yet. This work comes as a contribution to the field, as it attempts
to generate predictive models to a climate, type of building, and consequently
control operation that, to this date, are nonexistent.
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This chapter describes themethodology used in this research, describing themeth-
ods and tools to conduct the monitoring campaign, data treatment and statistical
approaches to create the models. It also presents the steps taken to validate and
test the proposed models.

3.1 Method Overview

The method for the research was developed following the guidelines provided
by [127], and its general overview is illustrated in Figure 3.1. It is composed
of two initial stages entitled Development of Theoretical Model and Definition
of Units of analysis, population and scope. The Development of Theoretical
Model was a step to help define what would be measured given the actions being
studied. The Definition of Units of analysis, population and scope delimited the
applicability of the models, since it defines where the findings can be applied.
Once these initial stages were complete, the model and its applicability were
defined.

The following step was the models’ creation, comprising the main body of the
method and divided into four main stages (Figure 3.2):
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• Buildings’ data collection and pre-test, where the buildings to be monitored
were selected, and a pre-test was conducted to verify the use of equipment
and measuring details to minimize errors during the monitoring period;

• In situ measurements and data analysis, composed of the monitoring cam-
paign and subsequent data treatment and analysis;

• Statistical methods’ application and creation of algorithm, application of
statistical methods to generate the models predicting window opening and
AC activation; and,

• Algorithm’s validation and tests in EnergyPlus, where the generatedmodels
were validated using a test set taken from the data set, followed by tests
where the models were implemented in a building performance simulation
program, namely, EnergyPlus.

All the above mentioned stages of the method are described in detail in the
following sections in this chapter.

Figure 3.1:Method Overview
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Figure 3.2: Timeline of Main Body of method
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3.2 Initial Stage: Development of Theoretical
Model

When studying occupants in buildings, relevant conceptsmay include temperature,
comfort, and glare, for example, which can be measured and then used to predict
occupant behavior. In the process of defining what to be measure and why, it is
important to identify concepts to measure and see how they link to each other,
by drawing out a theoretical model [127]. Figure 3.3 shows the theoretical model
developed for this study.

The theoretical model in this study (Figure 3.3) defines that occupants, in order
to achieve or regain thermal comfort, will take actions, specifically open/close
windows and/or activate the AC. By taking these actions, they will affect the
levels of energy consumption in the building. Links and relationships were
established between possible measured and observed variables that will result in
a combination of the available actions. For example, when looking at measured
variables, high outdoor temperature can result in closing windows and activating
the AC. When analyzing observed variables, activation of either control can be
made upon arrival and their deactivation upon departure.

At this stage, it is useful to make a distinction between concepts and constructs.
Concepts in the field of research on occupants, can be temperature, comfort,
glare, and productivity, for example. While constructs are the occurrences of
such in a given population [84]. Both can be considered the same thing when
inserted in the same population, however, the distinction becomes relevant in
international comparative work, where concepts can transfer between populations,
and constructs cannot [127]. In the area of occupant behavior, the distinction
becomes especially relevant due to the fact that this is a highly international
area, and researchers can measure the same concepts, but knowing how they are
constructed and conducted demands taking into consideration the differences in
climate and culture, for example. With the constructs being well distinguished
from the concepts, the process of determining how to measure such constructs
begins, which is further detailed in Section 3.4.2.
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To aid in further specifying the relationships between the concepts being studied,
it is important to establish questions, such as; (a) what triggers occupants to
open/close windows and/or activate/deactivate AC?; (b) Do occupants open/close
and/or activate AC more frequently as indoor (or outdoor) temperature rises?;
and (c) How differently do occupants respond to environmental changes during
each season and in between seasons (transition periods)? From such questions,
hypothesis can be drawn with the aid of the graphical representation (Figure 3.3),
as for example, as outdoor temperature rises, so does the indoor temperature and
the probability of occupants closing windows and activating the AC is higher.
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Figure 3.3: Graphical representation of the relationships between concepts.
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To aid in further specifying the relationships between the concepts being studied,
it is important to establish questions, such as; (a) what triggers occupants to
open/close windows and/or activate/deactivate AC?; (b) Do occupants open/close
and/or activate AC more frequently as indoor (or outdoor) temperature rises?;
and (c) How differently do occupants respond to environmental changes during
each season and in between seasons (transition periods)? From such questions,
hypothesis can be drawn with the aid of the graphical representation (Figure 3.3),
as for example, as outdoor temperature rises, so does the indoor temperature and
the probability of occupants closing windows and activating the AC is higher.

3.3 Initial Stage: Definition of units of
analysis, population and scope

Once the theoretical model is established, it is then necessary to define the scope
of its applicability, which requires a statement of the population of interest to
which the findings will apply [127]. The first step here is defining the unit of
analysis, which is what the data is collected about. In the context of this study, the
unit of analysis is the mixed-mode office, which can be studied within a multistory
or one story building1. Because the mixed-mode office is the unit of analysis in
this study, the population of interest and scope’s definition are also related to it.

In regards to the population of interest, the samples drawn for the study were taken
from a population of buildings found in the selected city for the study, São Carlos,
in the state of São Paulo, Brazil. The city is located at latitude 22o 02’ South at
863 meters and classified as a high-altitude tropical climate (Cwa, for the Koppen
classification; [30]), with a generally non-rigorous dry winter and moderately
rainy and hot summer. As for the temporal scope, the monitoring period lasted 18
months, encompassing all four seasons. Therefore, the findings of this study are

1 Further detailing of such buildings is provided in Section 3.4
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restricted to mixed-mode offices in a high-altitude tropical climate for summer,
spring, winter and fall.

3.4 Stage 1: Buildings’ data collection and
Pre-test

3.4.1 Buildings’ data collection

The first step in this stage was to create a sample to represent the unit of analysis
in the study. As mentioned above, the sample is drawn from a population of
buildings within the city of the study. As stated by [127], there is a wide range of
sampling strategies that can be used. The “gold standard”, as the authors name
it, is pure random sampling. However, it is not always possible to attain the ideal
case, and other sampling strategies can be applied. In this study, a purposive
sampling was used, in which “population members are recruited based on certain
characteristics considered useful to the study” [127].

In this work, the population members can be understood as the mixed-mode
offices in the city of São Carlos, SP. At first, a data collection was performed
to create a database with potential multistory and one story buildings. Such
one story buildings, mostly former residencies, were entirely adapted to become
a commercial building with offices, changing the rooms within the house into
offices. The initial data collection was performed using the work of [28], which
listed office buildings in the city of São Carlos, SP. In addition to the buildings
provided in the cited work, more recently built office buildings in the city were
included in this initial data set. Three main, and broad, criteria were established
to begin selecting the offices to be included in the sample (Table 3.1), (1) a range
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for the floor area for the offices within the buildings in the data set (10 m2 to
50 m2); (2) the existence of operable windows and an AC unit in each office,
where occupants were free to operate either. The AC units here refer to split and
window units; excluding central AC systems, and (3) no automation systems nor
any other kind of equipment or screen that could somehow influence or inform
occupants’ or their decisions as to which action to take. After applying the main
criteria, part of the buildings within the initial data set was excluded. Next, the
specific criteria were defined and the offices were visited to verify if they met the
established specific criteria, as listed in Table 3.1.

Table 3.1: Main and specific criteria for building selection

Questions Expected Answers

Main Criteria

Office’s floor area 10 - 50m2

Are there operable windows and an AC unit? Yes
Are there automation systems? No

Specific Criteria

Are the windows unobstructed? Yes
Does the user operate the window(s)? Yes
Does the user stay all day? Yes
Type of office Not in health care
Activity Sedentary
Main equipment Computers and printers
Number of occupants 1 - 7

Upon visits, as mentioned above, occupants were asked if they alternated between
using windows and the AC, to which some responded that they did not operate
the windows, using the AC at all times, causing these offices to be excluded from
the data set. As for presence, occupants informed their working hours, and the
criteria questioned if they remained all day in the office, that is, if they occupied
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the office during most of the reported working hours, from 9 a.m. to 6 p.m.,
with a lunch break from 12 p.m. to 2 p.m. Because there was no equipment to
monitor occupancy, units where occupants did not remain for the most part of the
commonly reported working hours, were also excluded from the database.

The common activity performed in the selected offices was sedentary and mainly
using a computer. Offices related to health care, such as medical or dental, were
excluded, due to the difference in the activities performed, fluctuation of the
number of occupants during the day and difference in equipment. The selected
offices only used computers and printers, which account for a specific load that
can be estimated when simulating. The number of occupants varied from 1 to 7,
given the difficulty to select all offices with the same amount of occupants. The
number of occupants in each office can influence the way occupants behave, and
this was taken into consideration when building the model. After applying the
criteria and visiting each location, a total of ten offices was selected. Table 3.2
presents a general characterization of the selected offices. 11 offices are presented
in this table, because office K was measured for a short period and later replaced.
Nonetheless, the data collected in office K was still used in this work, therefore it
is included in the offices’ characterization. During the entire monitoring period
a total of 10 offices (A-J) was monitored in a rotation scheme described in the
following sections. Figure 3.4 shows the façades of the selected buildings.

3.4.2 Pre-test

The pre-test was performed during November/2017, and was designed as a prior
step to the actual monitoring campaign, with the objectives of (a) determining
how best to measure the selected constructs (operationalizing constructs [127]);
(b) testing the selected equipment (Figure 3.6); and (c) testing the location of the
measuring equipment. Figure 3.5a shows the building façade where the pre-test
was conducted, and Figure 3.5b displays the floor plan of the two offices where
the test took place. The gray area is the office located on the 6th floor, while the
hatched area is a smaller office on the 7th floor.
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Figure 3.4: Buildings in final data set.

The indoor variables measured were air temperature and air relative humidity,
as well as the actions being studied; window opening and AC activation. The
equipment to measure such variables are listed in Table 3.3. The variables were
selected based on other field studies in the literature [55,108,154]. The variables
that show greater influence on the studied occupants’ actions, are indoor and
outdoor temperatures and relative humidity, and therefore were monitored [54,55,
152]. Wind speed was not included, since [90] performed a field monitoring in
São Paulo, SP, Brazil, and reported very lowwind speed rates even when windows
were open (maximum registered value of 0.17 m/s). From the observations during
this study, the authors concluded that such low values were a consequence of the
offices being unilaterally ventilated, as is the case of all the offices in the data
set of the present research. [36] reported very similar results when performing

45



3 Method

Figure 3.5: Location of pre-test. No scale.
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Table 3.2: Offices characterization

Office Building Floor Window
orienta-
tion

Numb.
of occu-
pants

Numb.
of win-
dows

Type of
window

Blinds View Type of
ventila-
tion

Numb.
of ext.
walls

Area

A 01 10th west 2 (2018) 5 casement yes street unilateral 1 35m2

1 (2019)
B 02 3rd west 1 1 sliding yes street unilateral 2
C 01 1st south 5 (2018) 5 casement yes street unilateral 2 50m2

7 (2019)
D 01 1st west 3 5 casement yes parking

lot
unilateral 1 35m2

E 03 0 west 1 1 sliding yes wall unilateral 1 10m2

F 03 0 east 1 (2018) 1 sliding yes wall unilateral 1 13m2

2 (2019)
G 04 9th south 5 6 casement yes street unilateral 1
H 04 - - 1 (2018) 2 casement yes street unilateral 2

2 (2019)
I 05 7th west 1 3 casement yes street unilateral 1 15m2

J 05 6th west 3 8 casement yes street unilateral 1 32m2

K 06 3rd east 1 3 casement yes street unilateral 1
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a study for the same type of building in Florianópolis, Brazil. Also, [55] stated
that window operation was correlated with outdoor air temperature, and not wind
speed.

The temporal sampling established in the pre-test to measure indoor temperature
and relative humidity was set at a 10-minute interval, based on previous studies
[3, 72, 108]. The AC temperature was initially also set at a 10-minute interval,
later tested at 5-minute intervals to verify if there were any significant changes at a
shorter interval. The 10-minute interval was then selected, since the temperature
difference recorded between the 5-minute intervals was not significantly different
from the ones recorded on the 10-minute interval trial.

Table 3.3: Equipment for measuring indoor variables

Equipment Variable Model Brand

Air Temp. + RH AC monitoring HOBO H08-003-02 Onset
Air Temp. + RH Indoor environment 175H1 Testo
State data logger Window monitoring HOBO UX90-001 Onset

Figure 3.6: Indoor measuring equipment
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The windows were not monitored based on time intervals; a state logger (Fig-
ure 3.6c) was used to record the changes in state. The equipment continually
logged every event (date and time) when there was a change in state. The pre-test
allowed a better comprehension of how sensitive this equipment is to displace-
ment. The state logger is composed of a sensor and a magnet; when the sensor is
close to the magnet, it records as closed, and when it is away from the magnet, as
open. The office room where the pre-test was conducted had top-hung windows,
and the sensor was attached to the fixed window frame with a velcro band, while
the magnet was attached to the movable part with a tape (Figure 3.7a). The data
from the pre-test showed that the windows remained open the entire time, while
occupants reported that the common routine was that they opened the windows
upon arrival, closed when using the AC and always closed upon departure. It was
possible to conclude that the sensor displaced by very little, and thus the minimal
distance between the sensor and the magnet affected the recording of the closed
periods, showing as always open. These details were all taken into consideration
and attended to when the measuring campaign began. This specific issue was
addressed by using a double-sided heavy duty wall tape.

The location for each equipmentwas also tested, and details, such as positioning on
the window, how to fix the equipment on the AC unit were all verified and tested,
so there were as few errors as possible during the measuring periods. Indoor
temperature and relative humidity loggers were positioned away from windows
and heat generating equipment. In addition, these equipment were positioned at
heights between 80 cm and 160 cm, depending on each office (Figure 3.7b). The
intent was to record the measurements at the same height of the mid-section of a
sitting person, though that was not always possible.

The positioning of the equipment on the AC was initially done by attaching the
equipment on the AC’s flap using a plastic clamp (Figure 3.7c - yellow circle),
which was later changed to being attached with tape with the sensor facing the
flap (red rectangle), to identify the change in temperature more quickly. The
outdoor variables were taken from a meteorological station set by the National
Meteorology Institute (INMET- Station A711 OMM Code: 86845), which takes
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hourly measurements. This station is located approximately 5 Km away from the
monitored building.

Figure 3.7: Equipment positioning in monitored office

Prior to the pre-test, an additional procedure was conducted to verify the equip-
ment’s calibration. Measurements performed during the pre-test also confirmed
that the equipment were functioning well. The software for each equipment was
also verified, updated, and tested, as well as all the cables for downloading and
uploading data. The pre-test allowed the verification and adaptation of several de-
tails for the measuring campaign, which minimized errors during the monitoring
period.
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3.5 Stage 2: In situ measurements and data
analysis

A descriptive, or correlational design, is the basis of studies on the impact of
occupant behavior in building energy consumption. It is when data is gathered
using sensors, be they installed or virtual, or if the data are gathered for other
purposes and possibly enriched with paper or electronically surveys, by use of
smart-phones or computers [127]. Once the data are collected, they are analyzed in
search of correlations between the variables. This type of study allows researchers
to understand the relationships in the data, but not state that a change in one
variable is the cause for a change in another. It is common to relate, for example,
window opening behavior to high indoor temperature, or to control the indoor air
quality. However, as described by [45], there are different types of driving factors,
which can be alternative reasons for occupants to take actions, such as hour of
day, routine, lifestyle or safety, to name a few.

There are many descriptive research designs; the one adopted for this specific
work was the cross-sectional design. As described by [127], this design is one that
collects data at a specific point in time covering a range of units of analysis, such
as occupants and buildings, for example. This type of design can be conducted
once or several times at different moments, thus creating a repeat cross-sectional
design.

3.5.1 In Situ Measurements

The measuring campaign for this study lasted 18 months; from December/2017
to May/2019. The objective was to have enough data to train (build) and test
(validate) the model, as well as to collect data during all the seasons, in an effort
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to broaden the applicability scope of the model. The train and test sets were
created using statistical methods to randomly select the data entries for each set
(Section 3.6). Measurements were conducted in the city of São Carlos, in the
state of São Paulo, Brazil (Figure 3.8). According to the Brazilian Standard 15
220-3 [1], Brazil is divided into eight bioclimatic zones, and São Carlos is located
in Zone 04, representing an intermediate climate within the range of climates in
the country. Figure 3.9 presents monthly characteristics for the city of São Carlos
regarding dry bulb temperature and relative humidity taken from the weather
data provided by [111]. Based on the same weather data, a wind rose was created
(Figure 3.10), showing that the predominant wind direction in the city is southeast.

Figure 3.8: (a) São Paulo state within Brazilian national territory; (b) São Carlos’ location within the
state of São Paulo.

The measuring campaign for this study lasted 18 months; from December/2017
to May/2019. The objective was to have enough data to train (build) and test
(validate) the model, as well as to collect data during all the seasons, in an effort
to broaden the applicability scope of the model. The training and test sets were
created using statistical methods to randomly select the data entries for each set
(Section 3.6).
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Figure 3.9: Climatic characteristics for São Carlos, SP. Adapted from EPView [111].

Each set of five offices, due to the availability of five equipment kits, were
measured for a period of two weeks. After this period, the equipment were
collected, the data downloaded and the equipment reprogrammed for the next
two-week measuring period in five different offices. This rotation was necessary
due to the limitation in the amount of available equipment, combined with the
offices availability. The objective of such rotation - five kits in five offices every
two weeks - was to measure all ten offices every month. However, it was not
possible to strictly follow it due to the availability of each office. Nonetheless,
measurements were taken in all offices during summer, winter and at least one
transition season, with the exception of offices H and K. Figure 3.11 presents a
timeline of the measurements. The 2-week periods identified in the timeline as
first, middle and last weeks of the month are approximations of such periods. The
exact dates can be verified in the complementary material provided and available
in Mendeley Data2.

2 https://data.mendeley.com/datasets/9v5vgkcykh/1
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Figure 3.10:Wind rose for São Carlos, SP. Adapted from EPView [111]
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Figure 3.11: Timeline of monitoring campaign.
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The measurements conducted in the campaign followed the guidelines tested and
defined in the pre-test (Section 3.4.2) and are presented in Table 3.4. Window
opening and AC activation were the two actions monitored and observed in this
study. The equipment recording window opening and closing was a state logger
that registered when one of these events occurred. The availability of this equip-
ment was limited, so there was one state logger in each office, and not one in each
window of each office. Because most offices displayed more than one window,
occupants were asked which window was the most used one, and that is where
the equipment was placed.

Table 3.4: Measuring guidelines

Variable Measuring Interval Details

Occupancy Occupied period: Mon-Fri,
9 a.m. to 6 p.m.

Diminished or no oc-
cupancy during lunch
break: 12 p.m. to 2
p.m.

Indoor air tempera-
ture (oC) 10 minutes Equip. placed near

occupants at height
between 80-160 cmIndoor air relative hu-

midity (%) 10 minutes

Outdoor air tempera-
ture (oC) Hourly Meteorological sta-

tion A711 OMM
Code: 86845*Outdoor relative hu-

midity (%) Hourly

Window State Every state change
Only one window in
each office was mon-
itored

AC Temperature (oC) 10 minutes AC state calculated
from this variable

*www.inmet.gov.br/sonabra

Since there was no equipment to monitor occupancy, if and when there were any
unusual activities or if an occupant worked during the weekend or after hours,
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for example, one of the occupants was designated as a point of contact in each
office to report such occasions to be included in the data collection. If there
were no uncommon activities, it was assumed that the occupied period was from
Monday to Friday, from 9 a.m. to 6 p.m., with a lunch break ranging from 12
p.m. to 2 p.m, as it is the common practice. The measurements’ schedule was
designed intentionally avoiding national holidays, as to minimize the gaps in the
data collection.

The outdoor variables were taken from a meteorological station in the city of São
Carlos, as specified in Table 3.4, with a maximum distance of 7 Km from the
measured buildings, except for one unit that was more distant from the perimeter
containing most of the buildings. This building (Building 04) was approximately
10 Km away from the meteorological station.

Some of the offices were within the same building, but on different floors and
sometimes with different facade orientations, as presented in Section 3.4.2, Ta-
ble 3.2. Themeasurements were repeated in the same units during each designated
period, though occupants in some of the offices varied throughout the measuring
period.

3.5.2 Data Treatment

As described in the Pre-test section, the data logger (HOBO UX90-001) was not
programmed tomeasure at given time intervals, but ratherwhen therewas a change
in state. The equipment is binary and programmed to register an opening event
as zero (0) and a closing event as one (1). When reading the collected data, the
interpretation for such was that when there was a date and time with a given event,
zero for example, it was understood that the window was opened, and that state
only changed when the next entry was recorded. Consequently, the next state read
one (1) and that was read as closed, and so on for the entire monitored period.
Because the other indoor variables were monitored at 10-minute intervals, the
window state data had to be treated to fill the 10-minute interval rows respective
to the readings on the other equipment. During posterior data treatment to create
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the models, the numbers respective to each window state, open and closed, were
inverted to be in accordance with what is commonly used in literature; 1 (one) as
open, and 0 (zero) as closed.

The outdoor variables were also not recorded in 10-minute intervals, the me-
teorological station is set by the National Meteorology Institute (INMET), and
provides the hourly values for each variable (instantaneous), as well as the min-
imum and maximum values within the hour. These data were also treated to be
used in this study, given the established 10-minute interval. The criteria applied
to this was to use the instantaneous value and linearly decrease or increase it, at
10-minute intervals, to match the next hour’s instantaneous value, thus providing
the same measuring interval as the other variables being recorded in the study.
This procedure was applied to outdoor temperature and relative humidity.

The equipment registering the AC temperature followed the 10-minute interval
specified in the Pre-test. Although there was no need to treat these data to fit the
required interval, it was necessary to establish a guideline for its interpretation.
Because the equipment registered temperature and not the date and time when
the AC unit was activated or deactivated, it was necessary to analyze the data set
for the measured period and identify when the AC activation and deactivation
occurred, thus establishing the activation and deactivation periods.

The first method used to identify AC operation consisted in applying Equation
3.1, here specified as ‘thermal velocity’. Where Tn is the nth temperature within
the measured AC temperatures, divided by 10, which is the amount of minutes
in the measuring interval. When the module’s value was greater than 0.3, it was
se to indicate AC operation. However, this method only identified AC operation,
meaning that it also identified AC operation while the equipment was already
activated. The following step was to identify when there was only AC activation
and deactivation considering the recorded temperatures during the monitoring
campaign. When using Equation 3.1, the result value of 0.3 was set to indicate
operation in all offices, since this first treatment was only for measurements during
the summer and this value was adequate to indicate operation of AC. However, as
the monitoring campaign progressed, and because each office displayed different
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use patterns according to each season, this value was changed and became specific
to each monitored period and office as needed.

ThermalV elocity = (Tn − T (n− 1))/10 (3.1)

In each of the spreadsheets for the data treatment, (available in Mendeley Data3),
the following four columns were created; Activation and Deactivation, and Ac-
tivation value and Deactivation value. Each line of the Activation and Deacti-
vation columns was linked to each of its respective line of the ‘thermal velocity’
value established on the previous step by the given equation, and to the Activa-
tion value and Deactivation value specified. The Activation and Deactivation
columns displayed a 1 (one) if activation or deactivation of the AC was identified.
This was achieved by using a formula stating that if the thermal velocity value
was smaller than the activation value established, it should be indicated with a 1
(one). The same logic was applied to establish deactivation, although using the
inverse. Therefore, if the thermal velocity value was greater than the specified
deactivation value, it was indicated with a 1 (one).

Lastly, a formula was applied in another column, with the intention of combining
the information in the Activation and Deactivation columns. This merging
allowed to fill every 10 minute interval with a state for the AC equipment, thus
creating the AC state column. The following step was to verify if every calculated
AC state period was in agreement with the measured data. This was achieved by
creating a line graph including the calculated AC state, measured window state
(to check if they were used alternately or not), AC temperature, as well as indoor
and outdoor temperatures. The graphs allowed to verify if the calculated AC state
was coherent with the monitored AC temperatures. Some manual corrections had
to be made in some cases after verification with the graphs.

After all variables were treated to fit the 10-minute interval, filters were applied
on all spreadsheets (one for each measured period of each office), so that only

3 https://data.mendeley.com/datasets/9v5vgkcykh/1
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days of the week were selected and all holidays excluded. Days when occupants
reported as being on vacation or not at the office for varied reasons were also
excluded. In addition, a filter for time (in minutes, with 0 minutes at 12 a.m.) was
applied, so that the data displayed was only that referring to the occupied period.
The filter applied here ranged from around 8:00 a.m. to 6 p.m. (510 to 1080
minutes), so that the time of arrival would be captured more easily. The actual
reported time of arrival was 9 a.m., but the filter was applied for an earlier time
to ensure the capture of arrival, since it varied around 9 a.m. Because the models
were generated using the data resulting from the filters’ application, the following
sections refer to the reported working hours as from 8 a.m. to 6 pm. The reported
2-hour lunch break was not excluded from the data, since not all occupants took
their lunch break at the same time and with the same duration.

3.5.2.1 Data treatment for Markov Chain models

The data set resulting from the data treatment described in the previous sections
was used to create the models using two different methods; GLMM and Markov
chain (Section 3.6). However, for the Markov chain models to be generated, there
was an additional step to the data treatment procedure, as this type of model
predicts the transition probabilities, which differs it from the GLMM models.

Because one file was created combining all the spreadsheets of all the measured
offices and periods, the first step was to sort the data set, first ordering it by Office
ID, then by Day of Year, and lastly by Time. This was necessary because this
method needs to identify when a transition takes place, and thus indicate the
instance right before the transition occurs. Therefore, having the days and times
in order is important when identifying such instances.

As mentioned above, this method is based on the transitions that occur. In the
case of this study, that means when a window goes from Open to Closed, and
vice versa, or when the AC goes from On to Off, and vice versa. The following
step was to identify such transitions, and every step described from here on out
was performed for the Window State and the AC State separately. This was
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accomplished by applying functions to read the entire data set and identify each
line as 00, 01, 10 and 11. Table 3.5 details what each of these instances mean.

Table 3.5: Markov chain data treatment: states and transitions

State Identification Detail Classification

00 Closed/Off Current and Next states were
closed/off Closed/Off

01 Transition Current state was closed/off,
Next state was open/on Open/On

10 Transition Current state was open/on,
Next state was closed/off Closed/Off

11 Open/On Current and Next states were
open/on Open/On

The Markov chain models, like the GLMM ones, will predict the probability of
an outcome, the probability of state 1 occurring, therefore each state identified as
described in Table 3.5 had to be converted into ones (1s) and zeros (0s), though in
this data set the 1s represent a transition. Every 00 and 11 instance was converted
into 0, as there was no transition, and every 10 and 01 was converted into 1s, as
they implied a transition took place. With this, two separate data sets were created
for each control; Window Open, Window Closed, AC On and AC Off. Every 00
and 01 states were grouped into the Open or On data set, and every 11 and 10
were grouped into the Closed or Off set, resulting in four data sets.

Once the four data sets were complete, each one was split into the Training and
Test sets. Each model was generated using their respective Train set, leaving the
Test set for validation.

3.5.3 Analysis of collected data

Once all the data was treated and the spreadsheets were completed only with
data relevant to the study, an analysis of the studied actions in relation to the
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environmental data collected was conducted. This was a step taken to identify the
relationships between such variables, as thought out in the theoretical model (Sec-
tion 3.2). Relationships mostly between temperature and actions were identified,
providing a basis of what to expect from the statistical models’ predictions.

The first step to this analysis was to look at the characterization of each monitored
office, with its key features as listed on Table 3.2, together with a graph combining
indoor, outdoor and AC temperatures, as well as window opening/closing and AC
activation/deactivation periods, which was created for each monitoring period (2
weeks) for each office (Available in Mendeley Data4). In addition, histograms
portraying the frequency of window opening and AC activation by indoor and
outdoor temperatures, and hour of day were also created for the measurements, as
well as histograms for each control use during each season, box plots and density
graphs to aid in the interpretation of the measured data.

By combining the information from the room’s characterization and the graphs, it
was possible to create a general overview of how the monitored offices performed
differently and how occupants responded to the building’s characteristics, in com-
bination with possible personal preferences and routine. The graphs aided in the
analysis of the measured variables and enabled further analysis, allowing to infer
how routine and hour of day, for example, influence occupants’ actions.

3.6 Stage 3: Statistical Methods’ Application
and Creation of algorithm

Based on previous studies presented in the literature [3,23,46,55,72,105,124,126],
there is a variety of statistical methods that can be used to create occupant behavior

4 https://data.mendeley.com/datasets/9v5vgkcykh/1
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models. The most common methods are Markov chain and logistic regression.
Given the type of data collected, and the desired outcome of the predictions, the
models were first generated using logistic regression. Next, Markov chain models
were created. One model for each control (ACA and WO) was created for the
logistic regression models, while 2 models for each control were created for the
Markov chain models, namely, ACAOn, ACAOff, WOpen and WClosed.

After the data treatment described in the above sections, statistical data treatment
was performed using the statistical software RStudio 1.3.959 [112], which was
also the software used to create the models. The “rosner test" [75] was applied to
identify and remove any outliers from the data set, which resulted in removing 20
data entries from the set. Next, the complete data set (displaying data from the 18-
month monitoring campaign) was randomly divided to create the “training" and
“test" sets. The function ‘sample_fraction’was used, determining a set with 70%
of the complete data set (approximate amount of entries respective to 12months of
measurements), and the function ‘anti_join’was applied to separate the remaining
30% of the set. These functions are part of the ‘dplyr’ package [143].

3.6.1 Logistic Regression Models

With the data treated and the sets established, the following step was to create
the statistical models using the “training" set to predict the studied actions. In
order to address the issue of behavioral diversity, a Generalized linear mixed
model (GLMM) was used. The function “glmer" from the package “lme4" [10]
was applied. According to [52], behavioral diversity is not correctly handled
when simply adding a further predictor to a generalized linear model (GLM).
According to the authors, this issue is correctly addressed by adding a variable of
random nature, which results in a GLMM. Design or environmental factors are
taken to be fixed effects, which are definite values, measured, as opposed to the
individual’s characteristics taken randomly from a population, thus treated as a
random effect. Therefore, the combination of these effects is what composes a
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mixed-effects logistic model to predict the probabilities of a given action as shown
in Equation 3.2

logit(p) = β0 + b0 +
∑

k=1,...,n(βkxk + bkxk) (3.2)

where xk is a fixed effect predictor, βk is the regression parameter for a fixed
predictor xk, and bk is the estimated random effect associated to a predictor
xk [52].

The environmental variables included in the ACAmodel were indoor and outdoor
temperatures, indoor and outdoor relative humidity and time, which were consid-
ered as fixed effects. All the same environmental variables, and therefore fixed
effects, were included in theWOmodel, except for indoor relative humidity, which
displayed a very high correlation to outdoor relative humidity, and was therefore
not used in this model to avoid non convergence of the model. Although indoor
and outdoor relative humidity were included in the models, an analysis specific to
this variable was not included, as its behavior, and therefore the predictions given
by the models based on this variable, were very similar to indoor and outdoor
temperatures. Office ID, which portrayed an individual or a group of occupants,
was included as a random effect in both models. For the ACA model, window
state was added to the model as a factor and vice-versa.

Polynomial functions were used for the variables time and indoor and outdoor
temperatures. Time and its polynomials to the 4th degree were included, and
temperatures and its polynomials to the 3rd degree were included. No interactions
between variables were included in the models. All variables were scaled, given
the different ranges that they presented. Table 3.6 presents the mean (center) and
standard deviation (scaling factor) for each variable.

3.6.2 Markov Chain Models

Markov models are modeled to predict the transition probabilities of each control.
They were formulated as logistic models (Equation 3.3), with P01 being the

64



3.6 Stage 3: Statistical Methods’ Application and Creation of algorithm

Table 3.6:Mean and Standard Deviation of scaled variables

Variable Center
(mean)

Scaling Factor (SD)

Time (minutes) 795.3 166.5
Indoor Temperature (oC) 24.4 2.4
Outdoor Temperature (oC) 23.1 4.4
Indoor Relative Humidity (%) 50.6 11
Outdoor Relative Humidity (%) 61.5 19.9

probability of a transition from closed to open, or off to on, and vice-versa
(P10) [123]. These models were also generated with the RStudio software [112],
and the lrm function [57] was used to create the models. All measured variables
were included with no interactions (indoor and outdoor temperatures, and indoor
and outdoor relative humidity). Time and temperature (indoor and outdoor) were
included with their respective polynomials with the same degrees as in the GLMM
models, 4th and 3rd, respectively. This model did not include Office ID as one
of its variables, as this was the random effect variable particular to the GLMM
models.

P (X1, . . . , Xp) =
exp(β0 + β1x1 + . . .+ βpxp

1 + exp(β0 + β1x1 + . . .+ βpxp)
(3.3)

3.6.2.1 Penalty Factor

When a model is generated using an imbalanced set, that is, when there is a
predominance of entries of one of the classes over the other, applying a penalty
factor is a method that helps improve the predictions made by the model. In this
work, because of the imbalanced sets resulting from the data treatment to create
the Markov Models (Sections 3.5.2.1 and 4.3), the pentrace function [57] was
applied to determine the penalty factor for each model.
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The pentrace function is applied, where a variety of λ’s, with a range from 0 to
60, is used to estimate the corresponding AIC. The function selects the λ that
maximizes the modified AIC as the optimal penalty factor.

Next, the original model is updated to include the penalty factor. An approxi-
mation of the full penalized model is made, which is simplifying or reducing it.
This step verifies if the original variables in the model will remain or if there are
variables that can be excluded, given their small significance to predict the desired
outcomes.

More detailed information of the applied method, including the specific functions
applied for each step can be found in the additional data available in [86].

3.6.2.2 ROSE Method

The ROSE package [81] allows to generate artificial data based on sampling
methods. The package has functions that allows the creation of sample synthetic
data, achieved by enlarging the features space of minority and majority class
examples.

The ovun.sample function gives four possible options to create the synthetic
sample data, namely; over sampling, under sampling, both and ROSE. Within the
function one can define which of the four above-mentioned methods to be used.
The method then instructs the algorithm as to which type of sampling to perform.
The number of variables within the new sample data is defined by N. Therefore,
when the method over is selected, for example, it defines over sampling, which
over samples the minority class to match the amount of samples in the majority
class. N is then defined as the number of samples in the majority class multiplied
by two. The opposite is true for themethod under, which performs under sampling
and is done without replacement. For themethod both, as the name itself suggests,
does both over and under sampling, therefore the minority class is over sampled
and the majority class under sampled without replacement. With this method,
variable P is also defined, and refers to the probability of positive class in the
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newly generated sample. In this work, P was set at the default value of 0.5 for all
four models.

The last method used with the ROSE package created synthetic data, which can
help avoid limitations found in the above describedmethods. The newly generated
data has the same size as the original set. Once all the newly generated data sets
were ready, the models were run using each of the sets, yielding a total of 16
models. Next, predictions were made using the test sets, and the accuracy of each
newmodel was verified using the in-built roc.curve function to determine the best
performing model for each of the studied actions. The models generated using
this method are referred to in this study as ROSE models.

3.7 Stage 4: Validation and algorithm’s tests
in EnergyPlus

3.7.1 Validation

Validation and verification are procedures employed to determine realistic and
confidence expectations [147]. For this research area, specifically, [146] describe
that validation can include a careful collection and preparation of sufficient and
representative data, and a systematic separation of subsets to (a) generate a model
and (b) to evaluate the model and generate a clear discussion of its limitations
based on statistical significance and application.

In this study, RStudio [112] was used to randomly generate the training and test
sets, splitting the data into two sets, of 70 and 30% of the data for each of the tasks,
respectively (Figure 3.12). Next, the test set was used as input for the models to
predict the desired outcomes. Lastly, the outcomes given by the model while
using the test set, were compared to the measured values in that same set and
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Confusion Matrices were generated to evaluate the models’ performance given
the different values (thresholds) established to create the classes.

Figure 3.12: Validation process overview

3.7.1.1 Confusion Matrix and AUC-ROC Curve

After creating the models and getting the output in probabilities, it is important to
measure the effectiveness of the models. For this measurement, Confusion Matri-
ces can be used as a way to measure a models performance. A Confusion Matrix
is a performance measurement to classify machine learning problems [88]. Fig-
ure 3.13 illustrates the concept, showing the four different classes of predicted and
measured values. This method is useful to calculate Recall, Precision, Specificity
and Accuracy, as well as the AUC-ROC Curve, which are described below.

Once the model is fitted and predictions are made using the test set, the following
step is to turn the probabilities into classes and verify their frequencies. In this
study, probabilities of 40, 50 and 70% were turned into classes and analyzed for
the GLMM models, (Section 4), while a value of 90% was used for the ROSE
models (Section 4.3.2).

As shown in Figure 3.13, the predicted data can fall into four different categories,
namely; True Positive (TP), False Positive (FP), False Negative (FN), and True
Negative (TN) [78]. The predicted values are described as Positive and Negative,
whereas the Measured (or actual) values are described as True and False. In
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terms of the studied actions, the interpretations are as follows when using window
opening as an example, also shown in Figure 3.14:

Figure 3.13: Confusion Matrix: Combinations of predicted and actual values

True Positive: The model predicted the window as open (positive), and it was
true, the window was open in the measured data.

True Negative: The model predicted the window as closed (negative), and it was
true, the window was closed in the measured data.

False Positive: The model predicted the window as open (positive), and it was
false (Type 1 error), the window was closed in the measured data.

False Negative: The model predicted the window as closed (negative), and it was
false (Type 2 error), the window was open in the measured data.

Once the amount of predictions of each category is given, it is then possible to
calculate the Recall, Precision, Accuracy and F-score of the models. The Recall
is calculated using Equation 3.4, which gives how much was predicted correctly
out of all the positive classes. Ideally, it should be as high as possible.

Recall =
TP

TP + FN
(3.4)

Precision (Equation 3.5) is given by calculating how many are actually positive
given all the positive classes that were predicted correctly. The Accuracy will be
given by how much was predicted correctly out of all classes.
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Figure 3.14: Confusion Matrix: Possible outcomes of window example

Precision =
TP

TP + FP
(3.5)

And lastly, because of the difficulty of comparing two models with low precision
and high recall, or vice versa, the F-score (Equation 3.6) is used to make the
models comparable. This method combines Precision and Recall using Harmonic
Mean instead of Arithmetic Mean by punishing extreme values more.

F −measure =
2 ∗ Precision ∗Recall
Precision+Recall

(3.6)

Once the Confusion Matrices are complete, the following step is calculating the
AUROC Curve. This can be considered an additional step, since it is another per-
formance measurement. This method, which stands for Area Under the Receiver
Operating Characteristic curve, measures the performance of classification of the
given problem at different threshold settings [87]. The AUC plots the values of the
False Positive Rate (FPR) (x-axis) against those of the True Positive Rate (TPR,
also Sensitivity or Recall) (y-axis) for specified cutoff values. This is useful since
it shows how well the model can distinguish between the classes. The higher the
AUC, the better the model can predict zeros and ones correctly.
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The following terms are then defined to be used in the AUROC Curve:

TPR =
TP

TP + FN
(3.7)

Specificity =
TN

TN + FP
(3.8)

FPR = 1− Specificity (3.9)

When analyzing the AUROC Curve, the model can be classified into one of four
possible general categories. A model that is predicting very well will have its
AUC near to 1, meaning it has a very good measure of separability. On the
other hand, a poor model will display an AUC near to zero, meaning the exact
opposite. A third scenario is when the AUC is 0.5, meaning the model does
not have any separation capacity. And lastly, when the distributions overlap, the
model’s capability of distinguishing between the classes will be classified given
the AUC value, as described in more detail ahead.

Figure 3.15 displays the four possible outcomes as mentioned above. Figure
3.15a illustrates the ideal situation, when the curves do not overlap, meaning the
model has a good measure of separability and is able to distinguish well between
the positive and negative classes (AUC=1). Figure 3.15b shows some degree of
overlapping, which is where Type 1 and Type 2 errors are introduced. Depending
on the threshold, these errors can be minimized or maximized. In this example,
with an AUC=0.7, it means that there is a probability of 70% that the model will
be able to correctly distinguish between the classes. Figure 3.15c shows the worst
situation, where the model has no capability of distinguishing between the classes
(AUC=0.5). And lastly, Figure 3.15d, with AUC=0, illustrates a scenario where
the model is reciprocating the classes, that is, it is predicting a negative class as
positive and vice-versa.
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Figure 3.15: Possible outcomes of the AUROC Curve. Adapted from [87].

3.7.2 Algorithm’s tests in EnergyPlus

It is well known and established that there is a performance gap betweenmeasured
and simulated data concerning occupant behavior [78, 89, 101]. As this work’s
objective was to contribute to bridge such gap, the objective of the tests was
to compare the energy consumption outcome of a mixed-mode office building
when using the generated models versus the commonly applied fixed schedule for
occupant behavior.

3.7.2.1 EnergyPlus

EnergyPlus (EP) is an open source program that models heating, ventilation,
cooling, lighting, water use and renewable energy generation among other building
energy flows. It is supported by the Department of Energy of the United States and
validated by ASHRAE-140 [6]. The program includes some capabilities that can
be considered innovative, such as sub-hourly time-steps, natural ventilation and
thermal comfort. It is a reliable program, since its heat balance approach has the
potential to be the most accurate method to solve heating and cooling loads, since
it accounts for all energy flows in their most fundamental form [142]. Interfaces
and modules were created to make the program easier to use in engineering.
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3.7.2.2 Building configuration

All simulations were based on the EP model by [117], therefore containing the
same general information about the building. The selected EP model has very
similar characteristics to the measured offices in this work. The above-mentioned
authors defined their models after analysing a database provided by a real estate
company [20]. After applying a filter to display only offices with floor area of less
than 100m2, the authors verified that the offices’ floor areas varied between 13 and
67 m2, with an average of 36 m2, and most of them with a floor-to-ceiling height
of 2.7 m, as well as a split air conditioning system. These characteristics are very
similar to those of the monitored offices in this work, in addition to the simulated
model also displaying unilateral ventilation, as was the case of all the monitored
offices in this work. Further detailing of the model, such as materials, internal
gains and occupation, are also in agreement with the collected data, therefore the
simulations outputs for the selected EP model are comparable to the measured
data.

The definition of the constructive components was based on the work of [19],
where the author defined common office buildings’ characteristics based on the
data collection performed by [28]. Each constructive components’ properties,
such as thermal transmittance (U), thermal capacity (TC), thermal conductivity
(λ), specific heat (h) and visible solar absorptance (α), were calculated based on
the Brazilian Standard NBR 15220 [2] and are presented in Tables 3.7 and 3.8.

The internal gains provided by [117] and shown in Table 3.9 were calculated
taking into account occupants, equipment and artificial lighting. A total of 5
occupantswas considered, with occupation hours from8 a.m. to 6 p.m. During the
occupation period, the equipment, such as computers and printers, was considered
to be constantly in use, while artificial lighting was activated when needed.

Figure 3.16 shows the model’s geometry (Figure 3.16a) and simulation module
(Figure 3.16b). All comparisons to the model in the work of [117] were in relation
to the north facing room. A window to wall ratio (WWR) of 40% was used. The
same weather file for the city of São Carlos, SP, Brazil [111] was also used for

73



3 Method

Table 3.7: Input data for EnergyPlus simulation: Constructive Components

Component Material

Roof Concrete slab (8 cm)

External Wall
External Plaster (2.5 cm)

Perforated concrete block (19 cm)
Internal Plaster (2.5 cm)

Internal Wall
Plaster (2.5 cm)

Perforated concrete block (9 cm)
Plaster (2.5 cm)

Floor

Gravel (3 cm)
Concrete (5 cm)
Plaster (2.5 cm)

Ceramic floor (0.5 cm)
Door Wood (3.5 cm)

Simple Glazing Clear (6 mm)*

*EnergyPlus database

all simulations. The type of windows and air conditioning system characteristics
remained the same in all simulations. The AC was modeled in EP as objects in
the classHVAC Template, with a cooling set point of 25oC and running as an ideal
system. Natural ventilation was modeled using the Airflow Network object, where
the unilateral ventilation was also modeled. The type of windows used in this
model represent an effective opening area of 100%. Lastly, to alternate the use of
AC and windows with the fixed schedules, a hybrid ventilation manager was used
(Availability Manager Hybrid Ventilation), where the specific parameters for the
use of each control are defined. Figure 3.17 illustrates the temperature limits that
allowAC and window use within the fixed schedules scenario. The variation from
one simulation scenario to another was the way the controls were allowed to be
operated, and not their type.
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Table 3.8: Specification of constructive components

Material U
(W/m2.K)

TC
(KJ/m2.K)

λ
(W/m.K)

h
(J/kg.K)

α

Concrete slab 3.31 1.76 1.75 1,000

0.11*
External Plaster 2,62 323 1.75 1,000
Perforated concrete
block (19cm)

2,62 323 1.15 1,000

Internal Plaster 2,62 323 1.15 1,000
Plaster 2,27 206 1.15 1,000
Perforated concrete
block (9cm)

2,27 206 1.75 1,000

Gravel 3.08 281 0.7 800

-Concrete 3.08 281 1.75 1,000
Ceramic floor 3.08 281 1.15 1,000
*Matt acrylic white paint (Branco Neve) [41]

3.7.2.3 Implementation of behavioral models

The models created in this work were implemented in EnergyPlus using the
Energy Management System, following the guidelines as described by [51]. The
first step is to define the sensors (EnergyManagementSystem: Sensor), which are
variables that will be used in the model, such as indoor and outdoor temperatures,
for example. Next, actuators are defined (EnergyManagementSystem: Actuator),
and these are linked to each actions’ respective schedules already defined in
the .idf file. When the model calculates an output, it will set a value for the
actuator, meaning action or no action. The actuator will then allow the action in
the schedule that it is linked to. In this case, actions will be taken to control the
window and the AC, therefore the actuators’ schedules are related to these actions.
The following step is to identify the programs that will be used in the simulation
(EnergyManagementSystem: ProgramCallingManager). The programs are the
models themselves, in this section their respective names are listed, and the order
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Table 3.9: Input data for EnergyPlus simulation: Internal Gains

Internal Gains

Users Occupation: 7 m2/person
Metabolic rate: 65 W/m2

Equipment (computers) Density: 10.7 W/m2

Radiant factor: 0.3

Lighting Density: 9.7W/m2

Use pattern (hours): Dimmer

in which they are listed is the order in which EP will read and run them. For this
study, the windowmodels are listed first, since the measured data showed a higher
frequency of window opening at time of arrival.

And lastly, the program is written (EnergyManagementSystem: Program) using
the variables and their respective coefficients as previously defined.5. The pa-
rameters defined to be used in each program must be entered as Global Variables
(EnergyManagementSystem: GlobalVariable). All models were created using
scaled variables, therefore the scaling factors (mean and SD) had to be included
when writing the models in EP. These variables were configured in the same
section as the other ones in the model. As a way to verify if EP calculated all
scaled variables correctly, all variables defined in EMSwere selected in the section
EnergyManagementSystem: OutputVariable, which displays the scaled variables
as calculated by EP and used in the models for each simulation.

3.7.2.4 Simulation scenarios: models’ combinations

Different models combinations were tested in an attempt to find the best rep-
resentation of occupant behavior in mixed-mode office buildings, taking into

5 The coefficients for each model generated in this work can be found in the Appendix (Section A)
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Figure 3.16: (a) Dimensions of selectedmodel; (b) Simulationmodule. No scale. Adapted from [117].

Figure 3.17: Temperature control for air conditioning and natural ventilation use during the occupied
period. Adapted from [117] .
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consideration comparisons to the measured data. Simulation A and the measured
indoor temperature were used as the basis of comparison. Simulation A is repre-
sentative of the way mixed-mode offices are modeled in the Brazilian scenario of
energy simulation. Energy consumption was not one of the measured variables
in the monitoring campaign, thus the choice of comparing the indoor tempera-
ture between measured and simulated data. However, energy consumption was
compared between the outputs of all simulated scenarios.

The following scenarios were tested in this specific order, as the outputs of each
scenario were analysed and compared to the measured data. This comparison
indicated if the behavioral models used in the simulation were accurately depicting
themeasured behavior. As limitations were identified, differentmodels were used,
as well as different combinations of the available models.

• Simulation A | Model using fixed schedules by temperature to allowwindow,
that is, natural ventilation (NV), or air conditioning (AC) use, and thus
alternate between these controls (Figure 3.17).

• Simulation B | Window opening and AC activation models to control the
studied actions. Both models in this simulation were GLMM models.

• Simulation C | GLMM Window opening model combined with the AC by
temperature as used in Simulation A. The use of AC was only allowed when
the window was closed and the remaining parameters were met as well.

• Simulation D | Window opening and AC activation models generated using
Markov chain.

• Simulation E | GLMM Window opening model and AC activation model
using Markov chain.

• Simulation F | Window opening and AC activation models generated using
Markov Chain with Penalty Factor applied.

• Simulation G | GLMM Window opening model and AC activation model
using Markov chain model with Penalty Factor.
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• Simulation H | Window opening and AC activation ROSE models (Markov
chain).
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4 Results

This chapter presents the results of an analysis of the collected data, followed by
the results of the models generated in this work with their respective validation
procedures, and lastly, the results of the simulations where the models were
implemented and tested in EnergyPlus. Models coefficients for the GLMM and
MC Rose models are presented along with the models’ results. Coefficients of all
models are available in Section A (Appendices A-D).

4.1 Analysis of collected data

This data analysis was based on the full treated data set, which comprises 18
months of monitoring. This analysis was conducted to provide a better under-
standing of the complete data set, such as the temperature ranges and the tem-
peratures at which the controls were mostly in use or not. It was also important
to identify key information, for example, most frequent outdoor temperature at
which the AC was used, to verify if the models predictions reflected the measured
data well.

In addition, this analysis allowed to identify differences in how the controls were
used in each office. The information of the graphs provided here, combined with
the information about the offices provided in Table 3.2 (Section 3.4), as well as
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the graphs available in Mendeley Data1, allowed to draw conclusions about some
of the offices.

4.1.1 Temperature

The indoor temperature ranged from 16 to 34.5 oC, while the outdoor temperature
ranged from 9.5 to 33.4 oC (Figure 4.1). Figure 4.2 shows a density graph for
the entire measured period, displaying the indoor, outdoor and AC temperatures.
As it can be seen, indoor temperature is mostly maintained at 25 oC. Figure 4.3
presents the temperature density specific for each control use.

Figure 4.1: Indoor and outdoor temperature frequencies during the measured period

Figure 4.3a shows two peaks of AC temperatures. A smaller one, showing that
the AC was set at low temperatures, around 10 oC, and a bigger one, with a peak
at around 25 oC. This figure also allows to see that the AC was activated with
higher outdoor temperatures

As for window use, Figure 4.3c shows a higher density of outdoor temperature
around 20 oC when windows were open, while Figure 4.3d shows that they were
closed with higher outdoor temperatures, likely coinciding with the use of AC.

1 https://data.mendeley.com/datasets/9v5vgkcykh/1
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Figure 4.2: Density graphs of measured data

As for indoor temperature, it is clear that occupants alternate between controls to
maintain it around 25 oC, as it constantly shows a peak at this value.

Figure 4.4 shows the frequency of use of controls based on time, and indoor and
outdoor temperatures. The column to the left displays AC use, while window use
is shown to the right. As it can be seen, AC is mostly activated in the afternoon,
while windows are mostly used in the morning, although both controls are used
throughout the entire day (Figure 4.4a and Figure 4.4b). In relation to indoor
temperature (Figure 4.4c and Figure 4.4d), both controls show higher frequency
of use with values around 25 oC. However, windows are also used at temperatures
below 20 oC, and the AC use below that temperature is nearly zero. As for outdoor
temperature (Figure 4.4e and Figure 4.4f), it is possible to see that the AC has
a higher frequency of activation with outdoor temperature above 25 oC, while
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Figure 4.3: Density graphs of measured data for each control state

windows show their highest frequency of use with such temperatures below 25
oC, and a second peak of use above 25 oC, around 27 oC.
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Figure 4.4: Frequency of use of the measured controls
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4.1.2 Seasons

Figures 4.5 and 4.6 present the distribution of the indoor and outdoor temperatures
by season for each of the studied actions. As it can be seen, there is a seasonal
effect to the way the controls are operated. The AC is mostly operated with indoor
temperature close to or above 25 oC, except during the winter, when it is operated
at temperatures lower than 25 oC. Window operation is distributed along a wider
range of indoor temperature, showing higher frequencies of use around 25 oC,
except during the summer, when its highest frequency of use is around 27 oC.

When analyzing the use of controls and outdoor temperature in each season, the
peaks of use of the AC are constantly seen around 27 oC, with the peak closer to
30 oC during the summer. As for window use, the highest frequencies of use shift
with each season. During the summer, the highest frequencies of use are seen
around 20 oC, which is also true for fall and spring. However, during fall there
is more use of windows with outdoor temperatures below 20 oC, which is seen
with less frequency during the summer and spring. During the winter, the highest
frequencies of use are seen around 27 oC, showing a similar frequency as seen in
the fall for values below 20 oC.
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Figure 4.5: Distribution of the indoor temperature by season and operation mode
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Figure 4.6: Distribution of the outdoor temperature by season and operation mode
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4.1.3 Offices: general observations

For the offices analysis, Figure 4.7 shows the AC, indoor and outdoor temperatures
ranges for each office, while Figures 4.8 and 4.9 show the temperatures ranges for
each control state.

Figure 4.7: Temperature box plots of full data set

Figure 4.7 shows that even with different outdoor and AC temperature means, the
indoor temperature was, for the most part, maintained around 25 oC. It can also be
observed that outdoor temperature mean is around the same value for all offices,
and yet their indoor, and especially AC temperature means vary, indicating the
influence of different building properties, office characteristics, and occupants
preferences and thus behaviors.
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Figure 4.8 allows amore detailed insight on how the offices used the AC andmain-
tained indoor temperatures around 25 oC. Figure 4.8a, showing the temperatures
during the periods of AC activation, illustrates how differently each office used
the AC in terms of the temperature they set. Offices A, B, G and J show the lowest
AC temperatures, and yet, with the exception of office G, they all show indoor
temperature means very similar to the other offices. In addition, all offices show
AC activation with outdoor temperature means above 25 oC, once again with the
exception of office G. As for the periods with the AC not in use, Figure 4.8b shows
that the mean indoor temperature was below 25 oC, and the indoor temperature
mean was maintained at, but mostly below, 25 oC, except for office A.

As for window use, Figure 4.9a shows that occupants opened windows with
outdoor temperature means below 25 oC, mostly around 22 oC, which caused
indoor temperaturemeans to remain close to or below25 oC.Figure 4.9b shows that
windows were closed with outdoor temperature means approximately between 22
to 25 oC. In these cases, some offices show more clearly the use of AC, displaying
AC temperature means lower than indoor temperature means. However, based on
this plot, other offices may have (a) closed the windows and not used the AC, as
AC temperature means are the same as indoor, or (b) used the AC at a temperature
very close to the indoor temperature, thus displaying similar values.
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Figure 4.8: Temperature box plots of measured data for AC state in each office
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Figure 4.9: Temperature box plots of measured data for window state in each office
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4.1.4 Offices: specific observations

Offices A, C and D: Offices within the same building. AC equipment in office
A is an older window model and distant from occupants. Offices C and D have
split models and the equipment is closer to the occupants. However, all three
offices show indoor temperature means above 25 oC when the AC is activated
(Figure 4.8a), which can indicate that the building orientation and materials may
be playing a significant role in this building’s thermal performance, thus affecting
the way the studied controls were operated.

Office B:West facing balcony window. This feature may have influenced the oc-
cupant to use the AC because of high temperatures, but also because the occupant
may have had to close the window to be able to use the blinds because of wind
and glare.

Offices E, FF, and I : These offices, all occupied by one female (two female
occupants in office FF in 2019), showACusewith the highest outdoor temperature
means, and yet also the highest AC temperature means.

Office J: Indoor temperature mean above 25 oC even when the AC was in use.
AC was activated every day, and some days there was only AC use and windows
were not opened. AC always activated at a very low temperature, but indoor
temperature did not decrease much. Possibly location of AC unit is not favorable
to cooling down the entire office. Current location probably chosen due to window
proximity and installation viability.

Office K: AC was not activated during the entire monitored period. Possible
unusual occupant preference, AC unit location, health conditions, etc.
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4.2 Generalized Linear Mixed Models (GLMM)

4.2.1 Validation: Confusion Matrix

The validation method applied to each study can vary according to the model ob-
tained after applying the selected statistical method. As described in Section 3.6,
70% of the collected data was used to generate, or train, the models, leaving the
remaining 30% to be used to test them, and thus establish their performance.

The models’ results are given in percentages, that is, the probability of the desired
outcome happening. Two GLMM models were generated, one that predicts the
probability of AC activation and the other of window opening. The higher the
percentage given by the model, the more likely it is that the action will take place.
As described in Section 3.7, the probabilities were turned into classes to verify
their frequencies. Probabilities of 40, 50 and 70% were calculated. This means
that for the 40% probability, for example, if the model predicted a probability of
0.4 or above, this prediction was classified as a 1, otherwise as a 0. Confusion
Matrices and their respective metrics were calculated for each probability for each
model (Table 4.1). This test set contained a total of 10,598 observations.

As shown in Table 4.1 and Figure 4.10, both models predict more negatives than
positives, that is, more zeros than ones. From those, the negatives are true much
more than the positives are, meaning that the models are better at predicting
when there will not be an action, instead of the opposite. Ideally, when looking
at Figure 4.10, the highest numbers would be in a diagonal from the upper left
corner to the lower right corner of each matrix, which would mean high numbers
of True Negatives and True Positives. As shown, the higher the threshold (higher
probability), or when the specificity is increased, the lower the sensitivity, and
the result is more negative values predicted. Because sensitivity and specificity
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Table 4.1: WO and ACA models performance calculated using Confusion Matrix

Probabilities 40% 50% 70%
Models WO ACA WO ACA WO ACA
Predictions (0) 7 380 8 980 8 741 9 511 10 298 10 200
Predictions (1) 3 218 1 618 1 857 1 087 300 398
Precision .58 .58 .66 .62 .75 .67
Recall .59 .49 .39 .35 .07 .14
Accuracy .75 .84 .76 .84 .72 .83
F-score .58 .53 .49 .45 .13 .23

are inversely proportional, when the threshold is lower, in this case at 40%, more
positive values are predicted.

Overall, the accuracy for the WO model remains around 70%, and for the ACA
around 80%. However, the higher the threshold for the classes, the lower their
F-scores are. From 40 to 50% there is a decrease of about 0.1 in the F-scores. But
when the threshold is increased from 50 to 70%, the values decrease by 0.36 and
0.22, for WO and ACA, respectively. The accuracy rates remain around 0.7 and
0.8 for WO and ACA, respectively, in all 3 instances (40, 50 and 70%), mostly due
to the fact that they predict a good amount of True Negatives, when, preferably,
there would be high rates of True Positives as well.

4.2.2 Validation: AUROC Curve

The AUROC Curve plots the model’s Specificity (x-axis) against its Sensitivity
(y-axis). The AUC shows how well the model is at predicting zeros as zeros and
ones as ones. Figure 4.11 shows the curves for both models. The AUC for the
ACAmodel is of 0.84, while for the WOmodel it is slightly lower, with a value of
0.78. The AUC values show that both models can correctly distinguish between
the classes around 80% of the time.
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Figure 4.10: Confusion matrices of models predictions

Although the AUC values for both models are around 0.8, which is close to the
ideal value of 1, it is important to highlight that a large portion of the classes
correctly classified is of zeros, as shown in Section 4.2.1. Therefore, there are
improvements that can be made to the models to achieve higher AUC values, or
even maintain them around 0.8, but correctly classifying a larger portion of ones.

4.2.3 Results of GLMM

Occupants manually controlled windows and the AC based on their preferences
and needs. Tables 4.2 and 4.3 show the GLMM models for the operation of such
controls.

Hour of day and routine are variables known to have an impact on occupant
behavior. Studies have shown that occupants tend to operate controls upon arrival
and departure [55,58,152], thus the respective hours of day corresponding to such
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Figure 4.11: AUROC Curves and confidence intervals for ACA and WO models (GLMM)

actions show a higher frequency of operation. The models developed in this work
show behavior consistent with what is reported in the literature.

Figure 4.12 shows that high probability of control use, for both ACA and WO,
is in the morning around 8 a.m., which is associated with arrival. The lowest
probability for ACA is at 1 p.m., around lunch time, as reported by occupants
(Figure 4.12 (a) and (b)). WO has the highest probability of use during this
hour, which can be related to occupants turning the AC off and leaving windows
open during the lunch break, while the office is either not occupied or with lower
occupancy. This behavior can also indicate an energy saving attitude (Figure
4.12 (c) and (d)). As the day progresses, WO probabilities are lower and ACA
probabilities increase. This is due to the increase in outdoor temperature during
the afternoon, and consequently of indoor temperature as well. At the end of
the day WO probabilities reach zero, meaning that they are closed, increasing the
probabilities of ACA. Because the models were generated using the data related to
the working hours, the models do not take into account the later hours when both
controls were deactivated, hence the probabilities ofWO being low andACA high.
The models are shown as inverses of each other, demonstrating that occupants
alternate between controls. The pattern displayed by the probabilities of control
use based on time also depict an occupancy pattern, seen more clearly with the
ACA model. The pattern seen in Figure 4.12 shows a higher probability of use
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Table 4.2: Generalized Linear Mixed Model for Air-Conditioning Activation (ACA)

Predictor Coefficient (b) Sig.

Intercept -2.20 p < 0.001
Time 1 0.21 p < 0.001
Time 2 0.93 p < 0.001
Time 3 -0.21 p < 0.001
Time 4 -0.36 p < 0.001
Indoor Temperature 1 -0.50 p < 0.001
Indoor Temperature 2 -0.01 .55
Indoor Temperature 3 -0.003 .71
Outdoor Temperature 1 1.85 p < 0.001
Outdoor Temperature 2 0.01 .45
Outdoor Temperature 3 -0.10 p < 0.001
Indoor Rel. Humidity -0.62 p < 0.001
Outdoor Rel. Humidity 1.27 p < 0.001
Window State -1.00 p < 0.001

in the beginning of the day, when the office is occupied, the lowest between the
reported lunch break (12-2 p.m.), when it is expected to be empty or with lower
occupancy, and then an increase during the afternoon, when occupants are once
again in the office. In relation to time and temperature, during the entire day,
indoor temperatures at 24 oC shows the lowest activation probabilities for both
controls. As for the outdoor temperature, the lowest probabilities for WO are seen
at 23 oC, but for ACA they are at 32 oC.

Indoor and outdoor temperatures are considered the main drivers for occupants’
actions, such as window opening [55]. Lower indoor temperatures present higher
probabilities of use for both controls (Figure 4.13). For the ACA, Figure 4.13a
shows the highest probabilities of use when indoor temperature is at its highest and
lowest values, with the lowest value’s probability (19 oC) decreasing as outdoor
temperature increases. The highest probability at the lowest indoor temperature
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Table 4.3: Generalized Linear Mixed Model for Window Opening (WO)

Predictor Coefficient (b) Sig.

Intercept -0.63 p < 0.001
Time 1 0.03 .45
Time 2 0.51 p < 0.001
Time 3 -0.11 p < 0.001
Time 4 -0.30 p < 0.001
Indoor Temperature 1 -0.54 p < 0.001
Indoor Temperature 2 -0.10 p < 0.001
Indoor Temperature 3 -0.03 p < 0.001
Outdoor Temperature 1 -0.56 p < 0.001
Outdoor Temperature 2 -0.24 p < 0.001
Outdoor Temperature 3 -0.02 .17
Outdoor Rel. Humidity -0.15 p < 0.001
AC State -1.35 p < 0.001

is a result of how this type of model is built. The models use indoor temperature
to predict the desired outcomes. However, this same variable is affected by the
use of the AC, and the models capture both effects. The same can be considered
for indoor temperatures at 22 oC and 26 oC, with almost identical probabilities
of ACA. Indoor temperature at 22 oC can be a result of the AC already being in
use, and at 26 oC occupants activate the AC. The lowest probabilities are seen
for indoor temperature at 24 oC, which can be considered a temperature at which
occupants are most comfortable, not needing to change it.

Indoor temperatures ranging from 22 to 29 oC show a peak in ACA probability
with outdoor temperature at 20 oC, followed by a decrease. This peak in the
probability of ACA with outdoor temperatures between 18 and 23 oC, can be
related to arrival as well. As it can be seen in Figure 4.14, most of the instances
with outdoor temperature between the aforementioned range can be seen in the
morning (between 500 and 650 minutes, or 8 a.m. and 11 a.m.), where indoor
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Figure 4.12:Models’ predictions based on Time and Temperature

temperatures vary around 22 and 30 oC. Therefore, the probabilities observed
in Figure 4.13a can be a result of the combination between indoor and outdoor
temperatures.

When looking at the outdoor temperature, probabilities decrease as outdoor tem-
perature increases after showing a peak. Figure 4.13a depicts this behavior, which
is likely a result of how occupants operate the AC. Figure 4.14 illustrates how
values of outdoor temperature above 30 oC are seen after 1 p.m. (800 minutes),
with the highest values more concentrated towards the end of the work day. In
agreement with the measured data, the AC is deactivated some time before the
hour of departure, and not exactly at the moment of departure, as can happen with
windows. This is so because once the AC is deactivated, indoor temperatures are
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Figure 4.13: Models’ predictions based on indoor and outdoor temperatures

still maintained at acceptable levels, making it possible to deactivate it some time
before departure. In addition, it can be a preventive measure taken by occupants,
to not forget the AC activated when they leave.

Figure 4.14: Measured Indoor and Outdoor temperatures’ progressions during the work hours

When analyzing WO, once again the behavior pattern shown by the models are
inverses of each other. Again, the highest probabilities are seen with the highest
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and lowest values of indoor temperature. High probabilities of WO with indoor
temperature around 20 oC indicates that occupants open windows to allow the
warmer outdoor air to enter the environment. As for when indoor temperature
is around 28 oC, the same logic is followed, though inverted; thus allowing the
cooler air inside. This behavior also suggests that at higher indoor temperatures,
occupants may desire some air movement, thus allowing natural ventilation with
open windows. Lastly, indoor temperature at 24 oC shows the lowest probabilities
of WO, as it does for ACA, once again showing that this value may be associated
with a comfort temperature for occupants.

In response to the limitations found in the GLMMs, the following sections report
the results of the additional methods implemented in this work in an effort to
create more precise models.

4.3 Markov Chain Models

As mentioned in Section 4.2.3, the GLMMs show high probabilities of control
activation with low indoor temperatures, indicating when the AC is already on.
Because this is a result of how the models were built, a second approach to
building the models was taken; Markov chain (MC). The first models built using
MC showed that the models almost always predicted an outcome of zeros, due to
the greater amount of zeros in the data set, configuring the data as imbalanced.
Table 4.4 shows the resulting amount of zeros and ones for each control state after
the data treatment for the Markov chain models was performed, as described in
Section 3.5.2.1. The following sections, 4.3.1 and 4.3.2, present the results of the
additional methods applied to increase the MC models’ accuracy, Penalty Factor
and Synthetic Data, respectively.
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For the validation of such models, train and test data sets were created by applying
the method as described in Section 3.6. The AUC, calculated for each model
using the test set, was used as the metric to validate the models and indicate their
accuracy. These values are reported along with the results of the MC models in
their respective sections.

Table 4.4: Data sets’ classes distribution

0 1
Window Open 0.98 0.02
Window Closed 0.96 0.04

AC On 0.99 0.01
AC Off 0.94 0.06

4.3.1 Markov Chain models with Penalty Factor

As a way to address the imbalanced data, a Penalty Factor was applied to each
model. Table 4.5 presents the values of each Penalty Factor calculated and applied,
as well as the AUC values of each model resulting from the validation procedure.

There was a slight difference in probabilities of the predicted outcomes after
applying the penalty factors for each model, but because the difference was very
small, results only for the MC models with Penalty Factor are presented. Such
models still display very low probabilities of prediction and still predict more
zeros than ones. There was no improvement on the AUC values, therefore only
the AUC for the MC models with Penalty Factor are reported. Nonetheless, the
behavior pattern shown in each instance is in agreement with the measured data,
and with the previously built models, with some improvements.

All the MC models were built using time and its polynomials to the 4 th degree,
indoor and outdoor temperatures and their polynomials to the 3 rd degree, and
indoor and outdoor relative humidity. Figure 4.15 shows each models’ predictions
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Table 4.5: MC models and Penalty factors

Model Penalty Factor AUC
Window Open 1 0.74
Window Closed 8 0.70

AC On 2 0.72
AC Off 4 0.64

based on time, indoor and outdoor temperatures. The predicted outcome of each
model is the probability of a transition occurring, hence the four different models,
as opposed to the GLMMs, where each model predicted the probability of control
activation.

When analyzing the predictionsmade based on time, also during the reportedwork
hours (8 a.m. to 6 p.m.), the behaviors seen are closely related to routine, as the
GLMMs also showed. Even though the predicted probabilities for AC On are low,
the curve shows a pattern of higher activation before 9 a.m., which is in agreement
with the reported time of arrival, around 8 a.m. This is followed by a drop during
themorning period, later showing an increase, from 1 p.m. until around 5:30 p.m.,
30 minutes before departure time. The period displaying higher probabilities are
coherent with themeasured data, which showed the highest activation frequency of
AC during the afternoon. Around 5:30 p.m. the probability decreases, meaning
the AC is deactivated when occupants are close to leaving the office. This is
confirmed when observing the AC Off model, as it displays the inverse of the
above described behavior. The AC Off model shows higher probabilities during
the morning period, and its highest probabilities around 5:30 p.m.

As for the window models, they both show their respective higher probabilities
around 5:30 p.m. For the Window Closed (WC) model, this is related to the hour
of departure, as occupants close windows to leave the office. When looking at the
Window Open (WO) model, this behavior can reflect occupants deactivating the
AC around the same time, and thus opening windows, later closing them upon
departure. The second highest probability of Window Opening is in the morning,
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before 9 a.m., related to arrival, consequently causing the WC model to display
its lowest probabilities at the same time. The Window Open model shows a slight
increase in probabilities between 12 and 1 p.m., which is similar to the results
seen for the GLMMWO model.

When analysing the models predictions based on temperature, the AC On model
shows an improvement in comparison to the GLMM ACA model in relation to
correctly capturing the desired effects. TheACOnmodel displays the lowest prob-
abilities with the lowest values of indoor temperature, showing that it correctly
captures the temperature of AC activation, that is with higher indoor temperatures,
beginning to rise around 26 oC, and not including the instances when the AC was
already on. For the outdoor temperature, the model predicts higher probabilities
for the lower temperature value, and then again for the highest values. The high
probability of transition with the lowest outdoor temperature value can also be
related to arrival, as the lowest outdoor temperatures were mostly measured during
the morning, as seen in Figure 4.14 with the measured temperatures fluctuations
throughout the day. As for the AC Off model, it correctly predicts higher prob-
abilities of AC Off with lower indoor temperatures, displaying the opposite for
outdoor temperatures.

For the windows, the predictions for Window Open are higher with higher indoor
temperatures, and the opposite for outdoor temperatures, considering the range of
probabilities seen for this model. Higher probabilities of window opening with
higher indoor temperatures and lower outdoor temperatures is an effect that was
also captured by the GLMMWOmodel (Figure 4.13b). However, the GLMMWO
model shows high probabilities of control use with the lowest indoor temperature,
which is not shown by the MC Window Open model. The MC Window Closed
model shows higher probabilities for higher indoor temperatures, in agreement
with the ACOn, also evidencing that occupants tend to alternate between controls,
once again, just as the GLMMs also showed. As for the outdoor temperature,
predictions for all values are very low, only showing a slightly higher probability
for the lowest values. The fact that window closing probabilities are low for all
outdoor values can indicate that this variable does not have a strong effect on this
action.
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Figure 4.15: Predictions of Markov Chain Models with Penalty Factor
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4.3.2 Markov Chain ROSE Models

The results for the MC models with penalty factor presented in the previous
section showed that MC is a method that can address the limitation found in the
GLMMs. However, even after applying the penalty factor, AUC values were still
low, as were the prediction probabilities given by the models.

This section presents MCmodels created using newly generated data sets for each
MC model by using four different approaches available with the ROSE RStudio
package [81] (Tables 4.6-4.9). The new data sets were used to generate the MC
ROSE models. Over sampling, under sampling, both of these methods combined
and the creation of synthetic data were implemented and their respective results
analyzed in comparison with each of the four models previously generated.

For Window Opening (WO), Window Closing (WC), and ACon, the method
both showed the best results, while the ACoff model had best results with the
oversampling method. To determine the best outcome of the four tested methods
for each model, both their AUC and accuracy values were considered. Table 4.10
shows such values for each model and the selected ones are shown in boldface
type, while Figure 4.16 shows the Confusion Matrices for the original models and
for the MC ROSE selected ones. These confusion matrices were calculated with
the threshold set at 0.9. The selection of the best performing ROSE model was
based on comparisons made among the four newly generated models (only ROSE
models), and not the ROSE models against the original ones. When selecting the
WO model, the over and both methods yielded the same results. In this case, the
threshold for the predictions was increased from 0.9 to 0.99, and the accuracy of
the model using both had a slight increase in relation to the other model, and was
therefore selected.

Even though the AUC values show small improvements when compared to the
values of the original models, and in some occasions with lower accuracy, the
advantage of the ROSE generated models is that they predict ones, which the
original models do not. Despite the new models not having a high True Positive
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Table 4.6:Markov Chain Rose Model for Window Opening (WO)

Predictor Coefficient (b) Sig.

Intercept -0.47 p < 0.001
Time 1 -0.22 p < 0.001
Time 2 -0.71 p < 0.001
Time 3 0.12 p < 0.001
Time 4 0.48 p < 0.001
Indoor Temperature 1 0.35 p < 0.001
Indoor Temperature 2 -0.12 p < 0.001
Indoor Temperature 3 0.01 .05
Outdoor Temperature 1 -0.66 p < 0.001
Outdoor Temperature 2 -0.002 .92
Outdoor Temperature 3 -0.05 p < 0.001
Indoor Rel. Humidity 0.33 p < 0.001
Outdoor Rel. Humidity -0.36 p < 0.001

R2=0.28

rate (TPR), they predict differently from the original models, and therefore were
also implemented and used in the EnergyPlus simulations.

Even with a low TPR, this procedure showed that given a more balanced set,
the models are able to correctly predict both classes. Ideally, this correction in
the data sets’ imbalance would be addressed by a more extensive data collection.
Since this option was not available, the ROSE methods were applied.

In addition, as Figure 4.17 shows, the ROSE generated models present the same
patterns of prediction as the previously presented GLMM and MC models (Sec-
tions 4.2 and 4.3, respectively). The difference with the ROSE models is that
their predicted probabilities for each outcome are higher than those of the Markov
Chain models with the Penalty Factor.
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Table 4.7: Markov Chain Rose Model for Window Closing (WC)

Predictor Coefficient (b) Sig.

Intercept -0.44 p < 0.001
Time 1 -0.08 .24
Time 2 0.02 .86
Time 3 0.44 p < 0.001
Time 4 0.15 .0003
Indoor Temperature 1 0.05 .43
Indoor Temperature 2 0.10 p < 0.001
Indoor Temperature 3 0.03 .02
Outdoor Temperature 1 0.60 p < 0.001
Outdoor Temperature 2 -0.07 .04
Outdoor Temperature 3 -0.1 p < 0.001
Indoor Rel. Humidity -0.50 p < 0.001
Outdoor Rel. Humidity 0.81 p < 0.001

R2=0.21

Figure 4.16: Confusion Matrices of ROSE methods
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Table 4.8: Markov Chain Rose Model for Ac On (ACon)

Predictor Coefficient (b) Sig.

Intercept -0.19 p < 0.001
Time 1 0.69 p < 0.001
Time 2 -0.73 p < 0.001
Time 3 -0.27 p < 0.001
Time 4 0.23 p < 0.001
Indoor Temperature 1 0.72 p < 0.001
Indoor Temperature 2 0.09 p < 0.001
Indoor Temperature 3 -0.03 p < 0.001
Outdoor Temperature 1 0.53 p < 0.001
Outdoor Temperature 2 0.06 p < 0.001
Outdoor Temperature 3 -0.09 p < 0.001
Indoor Rel. Humidity -0.18 p < 0.001
Outdoor Rel. Humidity 0.36 p < 0.001

R2=0.23
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Table 4.9: Markov Chain Rose Model for AC Off (ACoff)

Predictor Coefficient (b) Sig.

Intercept -0.33 p < 0.001
Time 1 -0.35 p < 0.001
Time 2 -0.16 .08
Time 3 0.40 p < 0.001
Time 4 0.14 p < 0.001
Indoor Temperature 1 -0.43 p < 0.001
Indoor Temperature 2 0.002 .94
Indoor Temperature 3 0.04 .0003
Outdoor Temperature 1 0.30 p < 0.001
Outdoor Temperature 2 0.04 .06
Outdoor Temperature 3 -0.05 .001
Indoor Rel. Humidity -0.01 .70
Outdoor Rel. Humidity 0.17 .0002

R2=0.14
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Table 4.10: ROSE Models AUC and Accuracy values

AUC Acc. AUC Acc.

WO WC

Original 0.74 0.98 0.70 0.96
Over 0.74 0.92 0.70 0.93
Under 0.74 0.88 0.70 0.85
Both 0.74 0.92 0.71 0.93
Rose 0.73 0.98 0.69 0.95

AC On Ac Off

Original 0.72 0.99 0.64 0.94
Over 0.73 0.90 0.65 0.90
Under 0.73 0.88 0.63 0.91
Both 0.73 0.91 0.64 0.90
Rose 0.72 0.93 0.63 0.93
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Figure 4.17: Predictions of Markov Chain Models with ROSE methods
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4.4 Simulation tests in EnergyPlus

4.4.1 Overview of the different simulations scenarios
outputs

A total of seven scenarios with varied models of occupant behavior for mixed-
mode offices were simulated in EnergyPlus (Figure 4.18). In addition, the fixed
schedules scenario, for means of comparison, was also simulated. The initial
analyzed units of comparison were indoor temperature and cooling energy loads.
Indoor temperature was also used to compare the simulated outcomes to the
measured data. In a second step of the analysis, the use of the controls, here
specified as behavior graphs, was analyzed for the scenarios that showed results
closer to the measured data.

Figure 4.18: Simulation scenarios: models combinations

Figure 4.19 shows the average values for indoor temperature and cooling energy
consumption of each simulated scenario, while Table 4.11 shows the values for the
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mean, standard error and standard deviation of each scenario. Figure 4.20 shows
the indoor temperature amplitude for each simulation scenario, while Figure 4.21
shows the different indoor/outdoor temperature distributions for all scenarios. It
was not possible to compare cooling energy consumption levels to the measured
data, as this variable was not monitored in the campaign.

Each scenario presented different energy consumption levels, and average indoor
temperature, even though in some cases the difference was of 0.1 oC (Table 4.11).
The measured average outdoor temperature was the same as the simulated one.
All simulations used the same air conditioning and natural ventilation parameters
as those established by [117]. The difference from one scenario to another was
the way these controls were operated, but their characteristics remained the same.
All reported values were considering the occupied period, from 8 a.m. to 6 p.m.

Figure 4.19: Average indoor temperature and cooling energy consumption of measured and simulated
scenarios

Simulation A, with the fixed schedules, presents a higher indoor temperature
average than the measured value, as well as higher levels of energy consumption
when compared to Simulations D and H, which present lower indoor temperature
averages than Simulation A. Simulation A also presents very similar levels of
energy consumption as Simulation F, although the average indoor temperature for
the fixed schedules scenario is slightly higher.
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Figure 4.20: Box plots of indoor temperature for each simulation scenario

Simulation B shows the highest indoor temperature values, and consequently the
lowest values for energy consumption. Simulations C, E andG, where the GLMM
window model was combined with different options of AC models or control, all
displayed indoor temperature averages above 25 oC, as well as the highest levels
of energy consumption.

As it can be seen, Simulations D and H are the scenarios with the closest indoor
temperature average values to the measured data, followed by Simulation F.
However, their energy consumption levels differ. In terms of maintaining indoor
temperature averages closer to the measured value, all three types of Markov
models performed satisfactorily. As for energy consumption, values varied, with
lower values seen with Simulation H. As a way to verify which scenario best
represented the measured data, excerpts from summer and winter were taken from
each scenario and compared to each other and the measured data (Section 4.4.3.)
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Table 4.11: Mean, Standard Error and Standard Deviation of indoor temperature and cooling energy
consumption of measured data and simulated scenarios

Tin kWh

Simulation Mean SE SD Mean SE SD

Measured 24.4 0.012 2.35 - - -
A 25.1 0.019 1.78 0.63 0.0076 0.71
B 28.5 0.030 2.81 0.08 0.0027 0.25
C 25.7 0.015 1.38 0.72 0.0069 0.65
D 24.8 0.020 1.88 0.61 0.0065 0.61
E 25.7 0.014 1.33 0.84 0.0073 0.69
F 24.9 0.025 2.34 0.64 0.0067 0.63
G 25.7 0.014 1.32 0.84 0.0073 0.69
H 24.7 0.026 2.43 0.34 0.0050 0.47

The following section brings further analysis and discussion of the differences
between the scenarios.
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Figure 4.21: Scatterplots of indoor and outdoor temperatures for all simulation scenarios
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4.4.2 Simulation Scenarios

Simulation A presented an average indoor temperature of 25.1 oC, which is 0.7 oC
above the measured average, and 0.63 kWh average related to the cooling energy
consumed. However, because this model alternates between the studied controls
based on temperature while it attempts to represent occupant behavior, it does not
precisely capture how occupants behave, since it is known that occupants may
tolerate higher or lower temperatures than the fixed ones. This is illustrated with
Figure 4.22, which shows the frequency of use of both controls in the measured
data, while Figure 4.23 shows the frequency of use of the controls as allowed
by the schedules in this simulation scenario. In addition, mixed-mode offices of
the same type as the one simulated, and as the ones measured, do not have any
temperature displays, nor any type of system to inform occupants of the indoor
and/or outdoor temperatures, meaning that occupants do not operate the controls
at specific temperatures, as established in the schedules of this scenario, but rather
on how hot or cold it feels to them.

Simulation B, using both models generated using the GLMM method, presented
the highest indoor temperatures among the simulated scenarios, ranging from 21
to 37 oC, with an average of 28.5 oC, and the lowest cooling energy consumption.
By observing the measured data (Figure 4.22), it is possible to see a higher
frequency of ACA with indoor temperature ranging from approximately 25 to 27
oC, and outdoor temperatures from 25 to 30 oC. However, Simulation B presented
very little use of the AC, which is not coherent with the measured data, especially
during the warmer seasons. As stated in Section 4.2, and shown by the outputs
from Simulation B, this ACA model gives the highest probabilities of AC use
when the indoor temperature is at 19 oC, which is a result of the AC already being
on, and the second highest probability given with indoor temperature at 29 oC.
Given the indoor temperature range in this scenario, there were no instances with
indoor temperature at 19 oC in order for the model to predict AC use with these
values. Also, the highest frequency of indoor temperature was 27.5 oC, and the
GLMMACAmodel has its second highest probabilities for indoor temperature at
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29 oC, also contributing to mostly window and very little AC use in this scenario
(Figure 4.24).

As a consequence, the cooling energy consumption was much lower than the
other scenarios. To address this issue, two actions were taken, (a) to combine the
GLMM WO model with the AC activation control by temperature, the same one
used in Simulation A; and (b) to use the models generated using Markov Chain.

The first above-mentioned action resulted in Simulation C and the second in
Simulation D. Simulation C allowed the AC to be activated if/when the windows
were closed, and all the temperature parameters established in Simulation A for
AC were also met. This instance presented higher indoor temperature averages
than the measured data, as well as Simulation A, possibly due to the fact that there
was very little use of windows (Figure 4.25). This scenario shows almost the
opposite of Simulation B, where the AC had very little use. These extremes show
that, in this kind of office in a high-altitude tropical climate, using only one of
the controls can result in high indoor temperature values. In addition, Simulation
C presented higher cooling energy consumption than Simulation A, because the
indoor temperature ranged from 20 to 31 oC, therefore meeting the criteria for
AC use during practically the entire period. As shown in Figure 4.25, there was
almost no use of windows, resulting in higher energy consumption.

The second action taken, Simulation D, used the models generated using Markov
Chain with no additional treatment for both controls. This scenario presented
average indoor temperatures very close to the measured ones, and a cooling
energy consumption average lower than Simulation A. Given the average indoor
temperatures observed, it can be said that the models used in Simulation D were
a better representation of occupant behavior than Simulation A. In comparison to
Simulation C, Simulation D is more representative of occupant behavior because
it allows both controls to be activated at different temperatures (Figure 4.26),
unlike the fixed schedules situation. Also, if this model is a closer representation
of occupant behavior than Simulation A, and the cooling energy consumption is
lower than that of Simulation A, it can be argued that occupants make more use of
natural ventilation than what is set in the fixed schedules commonly used. This
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shows, once again, that occupants tolerate higher temperatures before alternating
to the AC. In addition, it shows that it is possible to maintain lower indoor
temperature values and consume less energy by using windows more frequently.

Next, Simulation E was run to combine the window model of Simulation B and
the AC model from Simulation D. Such combination was made given that the
AC model from Simulation B did not perform well, therefore the AC model
in Simulation D was created. This instance, Simulation E, was to verify how
the GLMMWO model performed when combined with a different AC model, as
SimulationC combined it with a fixed schedule option. However, this combination
presented higher indoor temperature averages than all other instances, except for
Simulation G. Results from simulations E andGwill be addressed in the sequence
(Figure 4.27).

Simulation F was run using Markov Models with the Penalty Factors. Results
from this scenario were very similar to those in Simulation D, as these models
presented very similar results (Section 4.3), however with slightly higher values
for both the variables being considered (Figure 4.28). Simulation G (Figure 4.29)
was once again an attempt to combine the newly generated AC Markov Models
with Penalty factor and the GLMM WO model. As with the previous similar
instance (Simulation E), this also resulted in higher indoor temperatures and
energy consumption.

All the combinations that used the GLMMWOmodel and another model/control
for the AC resulted in higher indoor temperature values, as well as higher levels
of energy consumption. These combinations resulted in the AC being used most
of the time, allowing very little use of windows. As a consequence, indoor
temperatures were higher, consequently causing the cooling energy loads to also
be higher. Although these combinations (Simulations C, E, G) didn’t accurately
represent the measured data from this study in the simulations, they can be
representative of a type of occupant, one that gives preference to the AC over the
window. As shown by these results, occupants with similar behavior are likely to
cause higher levels of energy consumption.

121



4 Results

The final simulation, Simulation H, was run using the MC ROSE models. This
scenario presented the closest indoor temperature average to the measured data,
and the lowest energy consumption, with the exception of Simulation B. Simula-
tionsD, F andH had very similar outcomes in terms of indoor temperature values.
Interestingly, Simulation H had the lowest average values for temperature and for
energy consumption. Figure 4.30 shows the frequency of use of each control for
this scenario, illustrating a higher frequency of window use when compared to
most of the other scenarios. The average indoor temperature values of these three
scenarios (D, F and H) were very similar, but their energy consumption varied, so
samples from summer (January) and winter (July) were taken from their simula-
tion outputs to analyze how the models predicted occupant behavior. In addition,
comparisons between the measured data and these outputs were made.
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Figure 4.22:Measured Data: histograms for AC and window use

123



4 Results

Figure 4.23: Simulation A: histograms for AC and window use
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Figure 4.24: Simulation B: histograms of AC and window use
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Figure 4.25: Simulation C: histograms for AC and window use use
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Figure 4.26: Simulation D: histograms for AC and window use
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Figure 4.27: Simulation E: histograms for AC and window use
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Figure 4.28: Simulation F: histograms for AC and window use
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Figure 4.29: Simulation G: histograms for AC and window use
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Figure 4.30: Simulation H: histograms for AC and window use

131



4 Results

4.4.3 Behavior Graphs

Exerts of one week from summer and one fromwinter were taken from the outputs
of Simulations D, F and H to compare how the different models allowed different
control activation. The selected days refer to the second week (Mon-Fri) of each
month, January 8 to 12, and July 9 to 13.

The considerations made here are based on the portrayed days, from 8 a.m. to 6
p.m., as the objective of such comparison is to demonstrate how differently each
model portrayed occupant behavior in the simulations, even though the resulting
average indoor temperatures were very similar. The results from these three
scenarios show that, given the different use of the available controls, the same
indoor temperature can be obtained. However, because of such difference in
control use, it is possible to also achieve lower levels of energy use.

During these days the outdoor temperature ranged from 20.9 to 30 oC during
the summer, and from 10.7 to 23.6 oC during the winter. The schedule values
shown in Figures 4.31, 4.32 and 4.33 refer to the average value of each control,
meaning how much that control was allowed to be activated within the respective
hour. This does not mean that the control was in fact used because it was allowed.
There were occasions when the AC was allowed to be activated, but so was the
window, and the latter took precedence. These figures are to illustrate how much
each model allowed each of the studied controls to be activated each hour.

As shown in Figures 4.31a and 4.32a, these models (Simulations D and F) allowed
very little use of window during the summer. Because the AC was in use during
most of the time, the indoor temperaturewasmaintained at 25 oC. It is interesting to
see that these two models allowed very little use of window, however in different
occasions within the same week. In Simulation D, window use was allowed
during the morning of day 4, while in Simulation F, it was allowed mostly during
the afternoon of day 5. As for the winter, Simulation D allowed more use of
windows in comparison to F, and these behaviors are in agreement with the
energy consumption relative to each scenario, which, as shown in Figure 4.19,
Simulation F presents higher levels of energy consumption.
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When analyzing Figures 4.31b and 4.32b, it is possible to see that Simulation
D allowed the most window use during the last three days of the represented
winter period, while Simulation F allowed it during the last day. However, in both
situations, when natural ventilation was used, because the outdoor temperature
was close to, or below 20 oC, indoor temperatures decreased, and were maintained
below, or slightly above 25 oC. Even though these figures show values of how
much each control was allowed to be activated during each hour, one can identify
when natural ventilation was in use when allowed, as the indoor temperatures
oscillate more, accompanying the pattern seen for the outdoor temperatures, as
opposed to being maintained at 25 oC, as this was the cooling set point for the
AC.

In addition, Figure 4.22 shows when occupants most used each control based on
time, indoor and outdoor temperatures according to the measured data. When
looking at the results from Simulations D and F and at the histograms of the
measured data (Figures 4.26, 4.28 and 4.22), it can be observed that these simu-
lated models did not allow much window use with outdoor temperature between
20 and 25 oC, even though the measured data shows higher frequency of AC off
(Figure 4.22e) and window open (Figure 4.22f) for the same temperature range.
Figures 4.26e and 4.28e, referent to Simulations D and F, respectively, also bring
evidence to the above statement, showing high frequencies of AC use with out-
door temperature between 20 and 27 oC, consequently yielding high frequencies
of window closed, which in turn resulted in higher energy consumption than
Simulation H.

As for SimulationH, it is the scenario that better represents the alternating behavior
seen in the measured data, as shown in Figure 4.33. One of the main differences
that can be seen between these three scenarios when looking at Figures 4.31,
4.32 and 4.33, is that in Simulation H, the AC and Window models took both
indoor and outdoor temperatures into account, balancing the use of both controls,
consequently resulting in lower levels of energy consumption (Figure 4.19), while
maintaining the indoor temperature around 25 oC. Figure 4.33 clearly shows the
relation between indoor and outdoor temperatures and the resulting control that
was allowed for a longer period of timewithin each hour. Figure 4.33a showsmore
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Figure 4.31: Simulation D: summer and winter

clearly that when outdoor temperature is equal to or above indoor temperature,
the AC is the control most allowed, and likely the one activated. This response to
the interaction between the temperatures is also in agreement with the measured
data. In addition, when comparing Figure 4.30 to the measured data (Figure 4.22)
it can also be seen how this scenario, among the ones presented, more closely
represented the measured data and thus better simulated occupant behavior.

Figure 4.34 shows the indoor and outdoor temperatures distribution for the mea-
sured data, as well as for the fixed schedules scenario (Figure 4.34b), and the three
analyzed scenarios in this section (Figures 4.34c-e). There is a clear difference
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Figure 4.32: Simulation F: summer and winter

from Simulation A to the three scenarios using the behavior models, as there is
also a clear difference from Simulations D and F to H. Figure 4.34e depicts the
least use of AC and a more distributed relation between indoor and outdoor tem-
peratures. In this scenario, the cloud is dense with outdoor temperature between
20 and 25 oC, corresponding to indoor temperature ranging close to and above 25
oC, resembling the measured data (Figure 4.34a).
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Figure 4.33: Simulation H: summer and winter
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Figure 4.34: Indoor and Outdoor temperatures’ distribution
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4.4.4 Final Considerations

The previous sections have shown that, among the simulated scenarios, Simulation
H is the one that best represented occupant behavior in EP. With that in mind,
it is important to highlight some main differences between the fixed schedules
scenario based on temperature, Simulation A and Simulation H, using the MC
ROSE models. Once again, taking into account the metrics here analyzed, indoor
temperature and cooling energy load, it is possible to see that Simulation A resulted
in a higher indoor temperature average, 0.9 oC higher than themeasured value, and
0.4 oChigher than the average for SimulationH. However, as shown in Figure 4.19,
a higher indoor temperature average did not result in lower energy consumption.
This result evidences that the way the controls are operated greatly influence on
how energy is consumed, in addition to impacting the indoor environment.

This test analyzed one small mixed-mode office facing north, and different results
were obtained using fixed schedules vs. occupant behavior models. If this data
were to be extrapolated, and one considered, for instance, a 20 story building
with 10 north facing offices, the differences seen in the simulation results would
be much higher, having a more significant impact. Not to mention if the offices
were larger, had more windows, etc. Even the small differences among the results
between Simulations D, F and H could have a high impact when considering a
large building. The tests presented in this work show the need to have models
that accurately represent the real data, as well as their relevance in the results.
Specifically, two aspects of behavioral models can be highlighted, (a) the different
way that the models are built can result in different outcomes in simulations, and
(b) they have a clear impact in energy simulations, and therefore having accurate
models is key to having precise simulation results.

The fixed schedules commonly used do not realistically capture and portray how
occupants behave. Figure 4.23 shows how this method does not allow window
use with indoor temperature above 25 oC and outdoor temperature above 22.5
oC. However, as the measured data shows (Figure 4.22), occupants operate both
controls within a vast range of both indoor and outdoor temperatures, granted at
different frequencies. Therefore, in this work, Simulation H (Figure 4.30) best
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represents the measured occupant behavior. Given the differences identified in
control use, it is advised to use occupant behavior models when these are available
and reliable, to represent occupant behavior instead of fixed schedules.

4.4.5 Application of Models

In this study, occupant behavior models were generated using different statistical
methods, GLMM and Markov Chain. The models were generated to predict the
use of window and AC in mixed-mode offices. As described in the previous
sections, these models performed in different ways, each presenting different
applications, advantages and limitations.

The GLMMs are simpler models to create, also considering the fewer steps to
treat the data to generate such models, and there is the need for only one for each
action. Considering these aspects of their simplicity, and taking their limitations
into account, the application of thesemodels is easier, thus being a viable option as
an early approach to a study. In addition, this model reflects a pattern of occupancy
based on the use of the controls, even though occupancy was not measured, which
is an interesting feature not present in the MC models.

As for the Markov Chain models, they require a more extensive data collection
so more precise models can be created based on real data, in addition to a more
complex data treatment to generate the models. However, this type of model
addresses part of the limitations found in the GLMMs, while correctly predicting
each outcome. Therefore, this type of model is better suited to be used in
simulation software when predicting occupant behavior in mixed-mode offices.
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This chapter brings a further discussion to the collected data analysis, to themodels
results, and the results of the simulation tests run in EnergyPlus, all presented in
Chapter 4.

5.1 Collected data

The collected data showed that season has an effect on how occupants operate
the controls available to them, which is in agreement with the findings of other
studies in the literature. The study by [113], also conducted in a mixed-mode
office setting, showed a predominant use of AC, and nearly no use of windows,
during the summer, while the present study identified use of both controls during
all seasons. In studies conducted in naturally ventilated offices, [79] reported
that window opening probability linearly increases with outdoor temperature
increase, and [73] showed that windows are more likely to be open during warmer
seasons. Seasonal window opening behavior reported for naturally ventilated
buildings differ from the one observed in this study, as occupants in mixed-mode
offices have different choices of actions to take. Nonetheless, different patterns of
behavior are observed in each season in naturally ventilated offices as well as in
mixed-mode ones.

The results from the analysis on the collected data highlights the importance of
generating models specific for each climate and culture. The measured data in
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this study showed higher frequency of use of windows in the winter and fall
(Figures 4.5 and 4.6), with the lowest use of windows during the summer, while
studies in different locations show different results. For example, [151] conducted
a study in Korea, and while the authors also state that seasonal effects have an
impact on window use patterns, their results present a higher frequency of window
use during the summer and the lowest during the fall.

Even within the same country, however different climates, different window use
patterns are seen in each season. The work of [113], who also conducted mea-
surements in mixed-mode offices, although in the south region of Brazil, in a
sub-tropical climate, shows that there was almost no use of windows during the
summer, and very little use of AC during the winter. In the work presented here,
located in a high-altitude tropical climate within the same country, the analysis
showed higher use of windows during the summer in comparison to [113], as
well as a higher use of AC during the winter, evidencing a very different behavior
pattern.

These findings show that many actions taken by occupants are contextually sensi-
tive and will differ according to their personal characteristics. Therefore, studies
in several different contexts, for example, cultures and climates, need to take place
in order to collect data on a broad range of these influencing variables [124,125].

5.2 Models

This study aimed to create models to predict the use of windows and the AC based
on data collected during a monitoring campaign. The objective of the models
was to be representative of occupant behavior in mixed-mode office buildings in a
high-altitude tropical climate, and therefore be implemented in building simulation
software in order to provide more accurate results on energy consumption. Two
statistical methods were applied to generate the models, namely, Generalized
Linear Mixed Models (GLMM) and Markov Chain (MC). GLMM was the first
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method applied, and given the limitations found in the models, MC models were
generated as a way to address such limitations.

Both statistical approaches resulted inmodels showing the samegeneral behavioral
trends, satisfactorily portraying the behavior seen in the measured data. The
models demonstrated that indoor and outdoor conditions are highly influential
on how occupants operate windows [77, 105], and consequently the AC. The
overall identified behavior, given the type of office, actions studied, and freedom
of occupants to operate both controls as they pleased, was that occupants alternate
between the use of windows and the AC “adequately". That is, occupants will
mostly use windows, until indoor and/or outdoor temperatures reach 25 oC or
above, when they will close windows and switch to AC. Similar results have been
reported in the literature. [74], although in a residential setting in Sydney (Cfa,
for the Köppen classification [98]), reported an increase in AC use with outdoor
temperature above 25 oC, with a decrease in window and doors use. [109] reported
a steeper increase in AC use with indoor temperature above 24 oC in mixed-
mode offices in five European countries and five cities in Pakistan, and [113]
showed a higher probability of AC use with outdoor temperature above 25 oC in
Florianópolis, Brazil.

The alternating behavior shows great potential for energy savings, as this is
already an advantage of the mixed-mode setting discussed in other studies, such
as a 52% reduction in AC use [117], and a 64.9% reduction in energy use when
combining the use of natural lighting and hybrid ventilation [114]. In addition to
the energy savings potential presented by the mixed-mode scenario as studied in
this work, it is also important to highlight that this setting presents great freedom
for occupants to operate the controls, contributing to high levels of perceived
control, which, in turn result in higher levels of control operation [82, 153],
occupant satisfaction [18], and energy savings [150].

The models indicate a higher use of controls upon arrival and departure, before 9
a.m. and around 6 p.m., respectively, especially of windows upon arrival, which
is consistent with the findings reported by [55, 58, 152]. Where [55] reported
their results based data collected from an experiment building with operable
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windows located in Lausanne, Switzerland. [152] conducted measurements in
naturally ventilated offices located in Cambridge, UK. And [58] reported findings
based on the monitoring of naturally ventilated individual offices in Freiburg,
Germany. This behavior can also be associated with occupants’ routine, which
also plays a role in their decisions to use a given control, as window operation
could be a function of routine, as pointed out by [45], and is identified as a
predominant feature in AC use [130]. In addition, upon entering a room occupants
are more sensitive to bad air quality, and WO could also be in response to low
IAQ perception [3].

Indoor and outdoor temperatures were key predictors to window operation, in
agreementwith several studies in the literature [96,131,148]. Consideringwindow
and AC operation in the same environment, these variables were also strong
predictors, especially outdoor temperature for the AC, in accordance with the
results found by [113].

Low outdoor temperature showed high probabilities of window opening with both
types of model, a behavior that allows to cool the indoor environment [106], and
also let fresh air inside [70, 156].

GLMMs show higher probabilities of window use with higher outdoor tempera-
ture, while the MC Window Open model shows decreasing probabilities of win-
dow use as outdoor temperature increases. The behavior shown by the GLMM
model, although seemingly counter intuitive, may indicate that occupants will
open windows after having used the AC for longer periods. When the AC is
activated, as the measured data showed, windows were closed, resulting in no air
renovations, since these offices are equipped with split or window AC equipment.
If one considers that occupants activate the AC with higher outdoor temperatures,
and remain with the control active for as long as the temperature remains high,
then it is possible to consider that the AC is on and windows closed for several
hours, resulting in occupants opening the windowswhile outdoor temperatures are
still high. There were no IAQ measures in this study to correlate to the observed
behavior, and such measures should be conducted in future studies.
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Lower indoor temperature values (19 oC) showed high probabilities of window
opening, which depicts the same logic of window opening to avoid overheating,
though reversed. That is, occupants open windows when indoor temperatures are
low to let the outside air in, likely expecting the outdoor air temperature to be
higher than the indoor. Once again, this effect was only captured in the GLMMs,
and not in the MC models.

In general, the two different types of models predicted similar behavior trends.
However, when analyzing how eachmodel predicted given each variable identified
as a significant predictor, it is possible to see that there are details that differ them,
which are consequences of the different ways they were built. These differences,
though seemingly minor, show an impact on building energy simulation results,
as evidenced with the results of the simulation tests performed.

5.3 Simulation tests

The models created in this work were implemented in EnergyPlus. The tests were
designed to allow comparisons between the commonly applied fixed schedules
determining window and AC use, and the created models generated.

Eight different controls combinations were simulated (Figure 4.18), including the
fixed schedules scenario. As shown in Figure 4.19, each different model combi-
nation presented different energy consumption and indoor temperature averages,
as these were the main indexes analyzed. As shown in the work of [51], different
ways of creating the models can cause different simulations results. In this work,
although all the models were created using the same data, the different mod-
eling techniques and different models combinations generated different results,
evidencing that the way these models are built can greatly influence the results
they provide in building simulations.

The fixed schedules scenario, Simulation A, resulted in indoor temperature average
slightly above 25 oC, which is above the measured data average of 24.4 oC, and an
intermediate energy consumption among the simulated scenarios. In this scenario,
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no windows were operated with outdoor temperature above approximately 23 oC,
causing higher levels of energy consumption. A greater, although not sole, use
of windows can result in less energy use [155]. This fixed schedules scenario
did not accurately portray the observed occupant behavior, which is in agreement
with what is commonly reported in the literature [59]. The simplifications seen in
fixed schedules do not accurately simulate the complexity of occupant behavior
and their influence on energy use and the indoor environment [39, 40].

Simulation B presented the highest indoor temperature averages, 28.5 oC, and
lowest energy consumption. This scenario presented a predominance of window
use, showing that in the studied climate, the sole use of windows can lead to
overheating. On the other hand, among the three scenarios presenting the closest
indoor temperature averages to the measured data, Simulations D and F, presented
the highest energy consumption averages. These two scenarios show a counter-
point to Simulation B, since they presented mostly the use of AC. Simulations B,
D and F exemplify how different types of occupants, and therefore the different
ways the available controls can be operated, result in different energy consumption
levels [5].

The scenarios where the different generated window models were combined with
a fixed AC schedule showed the highest energy consumption levels. Studies have
shown that the actual operation of windows largely differ from fixed schedules
[63], as seen in Simulation A. However, Simulations C, E and G show that
the actual use of AC, in this kind of mixed-mode configuration, also largely
differs from the fixed schedules. These three simulation scenarios present a
predominance of the use of AC, when in fact, the measured data shows that
occupants alternated between the use of both controls within a considerable range
of indoor and outdoor temperatures.

SimulationHwas the scenario that best represented themeasured data in this study,
consequently presenting indoor temperature average values closest to themeasured
data. This scenario showed evidence that indoor and outdoor temperatures were
taken into account to allow the use of one control or the other, portraying the
“alternating" behavior identified in the measured data. By allowing more use

146



5.3 Simulation tests

of windows, more amenable indoor temperatures were achieved, and less energy
consumed [155,156]. The reduction seen in energy consumption, here occasioned
by the actual use of both controls, is also in agreement with the results from other
studies on the advantages of the mixed-mode strategy in Brazil [114, 117].

The simulation tests evidenced the discrepancy between the fixed schedules com-
monly implemented to simulate the mixed-mode strategy, and the actual data
on occupant behavior. This discrepancy can be attributed to the inability of the
fixed schedules to take into account occupant adaptability [101], which is a key
element of occupant behavior. The simulation tests results showed that occupant
behavior models are indeed necessary to achieve more accurate simulation results.
Furthermore, accurate behavior models, although difficult to create, are essential
in order to achieve more precise simulation outputs for energy consumption.
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This work created predictive behavioral models for mixed-mode office buildings,
focusing on window and AC operation, with the purpose of implementing such
models in computer simulation programs. The models were created using data
collected during an 18-month monitoring campaign in ten offices in the city of
São Carlos, SP, Brazil, classified as a city of high-altitude tropical climate. The
monitored office buildings displayed operable windows and AC units, all of which
occupants were free to operate at any given time, with no aid from systems or
displays to indicate the indoor or outdoor environmental conditions, which is the
most recurring type of mixed-mode building in the city of this study. During
the monitoring campaign, indoor and outdoor environmental measurements were
taken, as well as measurements related to occupants’ actions related to the study.
Indoor variables, such as air temperature and relative humidity were measured,
while outdoor environmental variables were taken from a meteorological sta-
tion. Occupants’ actions, that is, window opening and AC activation, were also
monitored.

The complete data set provided an overview of occupants behaviors, considering
time of day and temperature, within the studied climate and type of building.
Occupants tend to operate controls upon arrival and departure. Specifically, they
tend to open windows upon arrival. As for the studied actions in relation to
indoor and outdoor temperatures, windows are opened when outdoor temperature
is around 20 oC and indoor temperature is close to, but mostly below, 25 oC. As
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for AC, it is mostly activated when indoor and outdoor temperatures are close to
or above 25 oC.

Using the measured data, two statistical modeling techniques were applied to cre-
ate the models: (a)Generalized Linear Mixed Models (GLMM), which generated
two models, one predicting the probability of window opening, and another the
probability of AC activation, and (b)Markov Chain (MC), which resulted in four
models, two for each of the studied controls, one model for opening/activation
and another for closing/deactivation. Due to the prediction patterns given by
the GLMMs, simulation results did not accurately depict the measured occupant
behavior, and the MC models were implemented. Several combinations of the
different models created were tested, and results showed that the model that most
accurately portrayed the monitored occupant behavior in simulations, given the
type of controls being studied, were MCmodels that are able to accurately predict
both classes (zeros and ones). These models, in this work the MC ROSE mod-
els, best depicted the way occupants alternate between one control and the other
given the fluctuations in, and relation between, indoor and outdoor temperatures
throughout the day.

Nonetheless, both modeling techniques present their advantages to the further
investigation of occupant behavior in mixed-mode buildings. GLMMs are able to
address the issue of behavioral diversity by adding a variable of random nature -
in this study the different monitored offices. In addition, this type of model can be
built with smaller samples thanMCmodels and still provide good results, allowing
researchers to use thismethod evenwhen shortermonitoring campaigns take place.
However, it is important that one knows and understands the measured data well,
so that the limitations in the resulting models can be identified and accounted for
when using the model. On the other hand, although the MC models presented
a better performance in the simulation tests, they require a more extensive data
collection and/or additional steps to generate a model that can correctly identify
both classes, and thus perform well in simulation programs.

Because the models are built based on data collected on site, they are locally
applicable. The models created in this work can be applied to building types of
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the same kind, i.e. mixed-mode, within the same climate, a high altitude tropical
climate. To this date, there are no predictive behavioral models for mixed-mode
offices in Brazil to be implemented in simulation programs, especially for a high-
altitude tropical climate, highlighting the importance of future studies on occupant
behavior for this context. Brazil is a large country with several different climates
and cultures. Because occupant behavior is influenced by a number of factors,
physical environmental ones, as well as contextual factors, such as culture, it is
crucial to investigate the different drivers that triggers actions. Furthermore, the
mixed-mode configuration poses an additional challenge in predicting actions,
since occupants have another factor that influences their decisions; the option to
use a different control whenever they feel necessary. Within the mixed-mode
context it is important to study and understand what causes occupants to alternate
from one control to the other, thus giving insights on how this combination can
be better used to minimize energy consumption.

6.1 Limitations

The monitoring campaign in this study lasted 18 months, and 10 offices were
monitored in alternated periods within the 18-month period. There were limita-
tions in equipment availability, which were reflected as limitations in the study.
The amount of state loggers was very low, resulting in an impossibility to monitor
all the windows in offices with multiple windows. Another equipment-related
limitation was the AC state measurement. Since there was no equipment to mea-
sure the actual AC state by monitoring energy consumption, for example, AC
temperature was measured and the state calculated based on such measurements.
This poses two implications, (1) the resulting calculated AC state can present
flaws and indicate some incorrect records of this control’s state, and (2) it was not
possible to quantify the amount of energy consumed by the AC equipment in each
office to make more accurate comparisons to the simulated data. There were also
no equipment to monitor occupancy, and the study relied on the general schedule
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of occupancy provided by occupants, eliminating unoccupied days reported by the
occupants.

In relation to the occupants themselves, because the equipment remained in each
office for a period of two weeks at a time, the Hawthorne effect [129] can be
mentioned as a limitation, since occupants were aware they were being monitored.
However, there is no way of quantifying any Hawthorne effects in this study if
they do exist.

The sample size in the study can be considered a limitation. First, sample size
related to the amount of monitored offices, since being able to monitor more
offices, and therefore more occupants, would be ideal to capture a broader range
of behavioral diversity. And second, to generate Markov chain models a larger
data set is ideal, which enables the models to correctly identify both classes, and
thus be more precise in portraying the desired behavior.

And, lastly, although the monitoring campaign in this study occurred prior to the
COVID pandemic, this new reality and subsequent requirements show that the
studied mixed-mode office configuration does not present enough air renovations
to maintain adequate air quality in these offices, mainly when the windows are
closed and the AC is in use.

6.2 Future Work

In order to improve the models generated in this study, and to further investigate
the driving factors of occupant behavior in mixed-mode office buildings, it is
suggested that future works apply questionnaires related to occupants’ personal
preferences, in relation to window and AC use, to learn how those preferences
interfere with the actions taken in the office. Also, because this study is focused
on mixed-mode offices, it would be interesting to analyze occupant behavior
in solely naturally ventilated offices, with the aid of questionnaires, in order to
compare which actions occupants in NV buildings take, given the same season
or environmental conditions, when occupants of MM buildings activate the AC.
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This would further the understanding of what leads occupants to use the AC, and
also provide ways to suggest alternatives to MM building occupants to space out
the use of AC as much as possible, implementing the techniques observed in the
behavior of NV buildings’ occupants.

And, to address the issue of accuracy in the data collection, the ideal scenario is to
conduct measurements where all the windows are monitored, and AC activation
is precisely registered. Monitoring doors, or the main/entrance door to the office,
is also suggested, since it is a way to verify; (a) time of arrival and departure,
thus aiding in occupancy as well; (b) if occupants combine the use of windows
and doors to improve air movement, quality, etc.; and (c) if occupants open
doors before activating the AC, as an intermediate action to improve the indoor
environment, and if occupants close the door when using the AC.

Lastly, it is important that future works based on monitoring campaigns consider
the implications that the COVID pandemic brought to the way occupants operate
windows and the AC. Post-pandemic occupant behavior may differ from previous
years, when the concern for the risk of contamination in an office environment,
for example, was not something so evident and frequent in occupants’ minds.
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A Appendix

This section provides themodels coefficients for all themodels generated as part of
this study. These coefficients were used to implement the models in EnergyPlus.

A.1 Generalized Linear Mixed Models
Coefficients

Table A.1: Generalized Linear Mixed Model for Air-Conditioning Activation (ACA)

Predictor Coefficient (b) Sig.

Intercept -2.20 p < 0.001
Time 1 0.21 p < 0.001
Time 2 0.93 p < 0.001
Time 3 -0.21 p < 0.001
Time 4 -0.36 p < 0.001
Indoor Temperature 1 -0.50 p < 0.001
Indoor Temperature 2 -0.01 .55
Indoor Temperature 3 -0.003 .71
Outdoor Temperature 1 1.85 p < 0.001
Outdoor Temperature 2 0.01 .45
Outdoor Temperature 3 -0.10 p < 0.001
Indoor Rel. Humidity -0.62 p < 0.001
Outdoor Rel. Humidity 1.27 p < 0.001
Window State -1.00 p < 0.001
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Table A.2: Generalized Linear Mixed Model for Window Opening (WO)

Predictor Coefficient (b) Sig.

Intercept -0.63 p < 0.001
Time 1 0.03 .45
Time 2 0.51 p < 0.001
Time 3 -0.11 p < 0.001
Time 4 -0.30 p < 0.001
Indoor Temperature 1 -0.54 p < 0.001
Indoor Temperature 2 -0.10 p < 0.001
Indoor Temperature 3 -0.03 p < 0.001
Outdoor Temperature 1 -0.56 p < 0.001
Outdoor Temperature 2 -0.24 p < 0.001
Outdoor Temperature 3 -0.02 .17
Outdoor Rel. Humidity -0.15 p < 0.001
AC State -1.35 p < 0.001
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A.2 Markov Chain Models Coefficients

Table A.3: Markov Chain Model for Window Opening (WO)

Predictor Coefficient (b) Sig.

Intercept -4.66 p < 0.001
Time 1 -0.92 p < 0.001
Time 2 -1.16 p < 0.001
Time 3 0.44 p < 0.001
Time 4 0.67 p < 0.001
Indoor Temperature 1 0.58 p < 0.001
Indoor Temperature 2 -0.09 .08
Indoor Temperature 3 -0.02 .57
Outdoor Temperature 1 -0.60 .0008
Outdoor Temperature 2 0.06 .28
Outdoor Temperature 3 0.06 .11
Indoor Rel. Humidity 0.33 .0005
Outdoor Rel. Humidity -0.34 .007

R2=0.14
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Table A.4: Markov Chain Model for Window Closing (WC)

Predictor Coefficient (b) Sig.

Intercept -3.65 p < 0.001
Time 1 -0.03 .88
Time 2 -0.04 .87
Time 3 0.43 p < 0.001
Time 4 0.15 .12
Indoor Temperature 1 0.34 .002
Indoor Temperature 2 0.10 .04
Indoor Temperature 3 -0.02 .05
Outdoor Temperature 1 0.30 .16
Outdoor Temperature 2 -0.12 .14
Outdoor Temperature 3 -0.10 .06
Indoor Rel. Humidity -0.38 .001
Outdoor Rel. Humidity 0.51 .002

R2=0.11
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Table A.5: Markov Chain Model for Ac On (ACon)

Predictor Coefficient (b) Sig.

Intercept -4.38 p < 0.001
Time 1 0.82 p < 0.001
Time 2 -0.73 .003
Time 3 -0.33 p < 0.001
Time 4 0.25 .005
Indoor Temperature 1 0.70 p < 0.001
Indoor Temperature 2 0.06 .27
Indoor Temperature 3 -0.03 .06
Outdoor Temperature 1 0.57 .004
Outdoor Temperature 2 0.02 .71
Outdoor Temperature 3 -0.11 .004
Indoor Rel. Humidity -0.12 .20
Outdoor Rel. Humidity 0.31 .02

R2=0.08
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Table A.6: Markov Chain Model for AC Off (ACoff)

Predictor Coefficient (b) Sig.

Intercept -3.11 p < 0.001
Time 1 -0.43 .03
Time 2 -0.38 .16
Time 3 0.41 p < 0.001
Time 4 0.22 .03
Indoor Temperature 1 -0.45 p < 0.001
Indoor Temperature 2 0.03 .65
Indoor Temperature 3 0.02 .24
Outdoor Temperature 1 0.51 .007
Outdoor Temperature 2 0.03 .63
Outdoor Temperature 3 -0.05 .22
Indoor Rel. Humidity -0.12 .16
Outdoor Rel. Humidity 0.30 .02

R2=0.08
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A.3 Markov Chain Models with Penalty Factor
Coefficients

As a result of the additional statistical methods applied to create the models with
the Penalty Factors included, all models have R2 values of 1.0, and all variables
show significance values p < 0.001, therefore only the models coefficients are
displayed in the following tables in this section.

Table A.7: Markov Chain Model with Penalty Factor for Window Opening (WO)

Predictor Coefficient (b)

Intercept -0.47
Time 1 -0.85
Time 2 -1.0
Time 3 0.41
Time 4 0.61
Indoor Temperature 1 0.55
Indoor Temperature 2 -0.09
Indoor Temperature 3 -0.02
Outdoor Temperature 1 -0.57
Outdoor Temperature 2 0.05
Outdoor Temperature 3 0.05
Indoor Rel. Humidity 0.32
Outdoor Rel. Humidity -0.32
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Table A.8: Markov Chain Model with Penalty Factor for Window Closing (WC)

Predictor Coefficient (b)

Intercept -3.67
Time 1 0.07
Time 2 0.01
Time 3 0.37
Time 4 0.13
Indoor Temperature 1 0.35
Indoor Temperature 2 0.09
Indoor Temperature 3 -0.02
Outdoor Temperature 1 0.26
Outdoor Temperature 2 -0.09
Outdoor Temperature 3 -0.08
Indoor Rel. Humidity -0.29
Outdoor Rel. Humidity 0.38
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Table A.9: Markov Chain Model with Penalty Factor for Ac On (ACon)

Predictor Coefficient (b)

Intercept -4.40
Time 1 0.73
Time 2 -0.61
Time 3 -0.30
Time 4 0.21
Indoor Temperature 1 0.70
Indoor Temperature 2 0.06
Indoor Temperature 3 -0.03
Outdoor Temperature 1 0.56
Outdoor Temperature 2 0.03
Outdoor Temperature 3 -0.10
Indoor Rel. Humidity -0.11
Outdoor Rel. Humidity 0.29
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Table A.10: Markov Chain Model with Penalty Factor for AC Off (ACoff)

Predictor Coefficient (b)

Intercept -3.11
Time 1 -0.33
Time 2 -0.30
Time 3 0.37
Time 4 0.20
Indoor Temperature 1 -0.42
Indoor Temperature 2 0.03
Indoor Temperature 3 0.01
Outdoor Temperature 1 0.43
Outdoor Temperature 2 0.02
Outdoor Temperature 3 -0.04
Indoor Rel. Humidity -0.12
Outdoor Rel. Humidity 0.26
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A.4 Markov Chain ROSE Models Coefficients

Table A.11: Markov Chain Rose Model for Window Opening (WO)

Predictor Coefficient (b) Sig.

Intercept -0.47 p < 0.001
Time 1 -0.22 p < 0.001
Time 2 -0.71 p < 0.001
Time 3 0.12 p < 0.001
Time 4 0.48 p < 0.001
Indoor Temperature 1 0.35 p < 0.001
Indoor Temperature 2 -0.12 p < 0.001
Indoor Temperature 3 0.01 .05
Outdoor Temperature 1 -0.66 p < 0.001
Outdoor Temperature 2 -0.002 .92
Outdoor Temperature 3 -0.05 p < 0.001
Indoor Rel. Humidity 0.33 p < 0.001
Outdoor Rel. Humidity -0.36 p < 0.001

R2=0.28
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Table A.12: Markov Chain Rose Model for Window Closing (WC)

Predictor Coefficient (b) Sig.

Intercept -0.44 p < 0.001
Time 1 -0.08 .24
Time 2 0.02 .86
Time 3 0.44 p < 0.001
Time 4 0.15 .0003
Indoor Temperature 1 0.05 .43
Indoor Temperature 2 0.10 p < 0.001
Indoor Temperature 3 0.03 .02
Outdoor Temperature 1 0.60 p < 0.001
Outdoor Temperature 2 -0.07 .04
Outdoor Temperature 3 -0.1 p < 0.001
Indoor Rel. Humidity -0.50 p < 0.001
Outdoor Rel. Humidity 0.81 p < 0.001

R2=0.21
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Table A.13: Markov Chain Rose Model for Ac On (ACon)

Predictor Coefficient (b) Sig.

Intercept -0.19 p < 0.001
Time 1 0.69 p < 0.001
Time 2 -0.73 p < 0.001
Time 3 -0.27 p < 0.001
Time 4 0.23 p < 0.001
Indoor Temperature 1 0.72 p < 0.001
Indoor Temperature 2 0.09 p < 0.001
Indoor Temperature 3 -0.03 p < 0.001
Outdoor Temperature 1 0.53 p < 0.001
Outdoor Temperature 2 0.06 p < 0.001
Outdoor Temperature 3 -0.09 p < 0.001
Indoor Rel. Humidity -0.18 p < 0.001
Outdoor Rel. Humidity 0.36 p < 0.001

R2=0.23
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Table A.14: Markov Chain Rose Model for AC Off (ACoff)

Predictor Coefficient (b) Sig.

Intercept -0.33 p < 0.001
Time 1 -0.35 p < 0.001
Time 2 -0.16 .08
Time 3 0.40 p < 0.001
Time 4 0.14 p < 0.001
Indoor Temperature 1 -0.43 p < 0.001
Indoor Temperature 2 0.002 .94
Indoor Temperature 3 0.04 .0003
Outdoor Temperature 1 0.30 p < 0.001
Outdoor Temperature 2 0.04 .06
Outdoor Temperature 3 -0.05 .001
Indoor Rel. Humidity -0.01 .70
Outdoor Rel. Humidity 0.17 .0002

R2=0.14
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A.5 Icons

Credit attributions of the icons used in this work. Icons not listed here either did
not require attribution or were created by the author of this work.
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