
Advanced Calibration of Automotive
Augmented Reality Head-Up Displays

To obtain an academic degree of
Doctor of Engineering (Dr.-Ing.)

from the
Department of Electrical Engineering and Information Technology

of the
Karlsruhe Institute of Technology (KIT)

accepted

DOCTORAL THESIS

of

M.Sc. Gao, Xiang

Examination date: April 15, 2021
Supervisor: Prof. Dr. rer. nat. Wilhelm Stork
Second supervisor: Prof. Dr. rer. nat. Uli Lemmer

August 12, 2021

KIT – The Research University in the Helmholtz Association www.kit.edu

Erweiterte Kalibrierung von
Automotiven Augmented
Reality-Head-Up-Displays

Zur Erlangung des akademischen Grades eines
DOKTORS DER INGENIEURWISSENSCHAFTEN (Dr.-Ing.)

von der
KIT-Fakultät für Elektrotechnik und Informationstechnik

des
Karlsruher Instituts für Technologie (KIT)

angenommene

DISSERTATION

von

M.Sc. Gao, Xiang

Tag der mündlichen Prüfung: 15. April 2021
Hauptreferent: Prof. Dr. rer. nat. Wilhelm Stork
Korreferent: Prof. Dr. rer. nat. Uli Lemmer

12. August 2021

KIT – The Research University in the Helmholtz Association www.kit.edu

Abstract

This thesis proposes advanced calibration methods for automotive augmented reality head-

up displays (AR-HUDs) based on parametric perspective projection and nonparametric

distortion models. The AR-HUD calibration is essential for rendering correctly placed and

rectified virtual objects in the latest relevant applications, such as navigation and parking.

Though state of the art has demonstrated some useful approaches, we are motivated to

develop more advanced yet uncomplicated ones. As a prerequisite for the calibration, we

defined several relevant coordinate systems, including the three-dimensional (3D) world,

viewpoint space, HUD field of view (HUD-FOV) space, and the two-dimensional (2D) vir-

tual image space. We describe the projection of images from an AR-HUD projector to the

driver’s eyes as a view-dependent pinhole camera model that consists of intrinsic and ex-

trinsic matrices. Under this assumption, we first estimate the intrinsic matrix utilizing the

boundary of HUD-FOV. Next, we calibrate the extrinsic matrices at different viewpoints

inside a selected “eye box”, considering drivers’ changing eye positions. Those viewpoints’

3D positions are tracked using a driver camera. For any single view, we obtain a group of

2D–3D correspondences between a point array in the virtual image space and their match-

ing control points in front of the windshield. Once these correspondences are available,

we compute the extrinsic matrix at the viewpoint. By comparing the reprojected and real

pixel positions of those virtual points, we acquire a 2D distribution of bias vectors, with

which we reconstruct warping maps that contain the distortion information. For com-

pleteness, we repeat the above extrinsic calibration procedures at all the opted viewpoints.

Using the calibrated extrinsic parameters, we restore the viewpoints in the world coordi-

nate system. Since we have tracked them in the driver camera space simultaneously, we

further calibrate the transformation from the driver camera to the world space by utilizing

these 3D–3D correspondences. To deal with non-participating viewpoints inside the eye

box, we obtain their extrinsic parameters and warping maps via nonparametric interpola-

tion. Our combination of parametric and nonparametric models outperform state of the

art concerning target complexities and time-efficiency, while maintaining a comparable

calibration accuracy. Under all of our calibration schemes, the projection errors in the

evaluation phase at 7.5 m distance fall within a few millimeters, which means an angular

accuracy of about 2 arcminutes, which is close to the resolution of the eye.

i

Zusammenfassung

In dieser Arbeit werden fortschrittliche Kalibrierungsmethoden für Augmented-Reality-

Head-up-Displays (AR-HUDs) in Kraftfahrzeugen vorgestellt, die auf parametrischen per-

spektivischen Projektionen und nichtparametrischen Verzerrungsmodellen basieren. Die

AR-HUD-Kalibrierung ist wichtig, um virtuelle Objekte in relevanten Anwendungen wie

z.B. Navigationssystemen oder Parkvorgängen korrekt zu platzieren. Obwohl es im Stand

der Technik einige nützliche Ansätze für dieses Problem gibt, verfolgt diese Disserta-

tion das Ziel, fortschrittlichere und dennoch weniger komplizierte Ansätze zu entwick-

eln. Als Voraussetzung für die Kalibrierung haben wir mehrere relevante Koordinatensys-

teme definiert, darunter die dreidimensionale (3D) Welt, den Ansichtspunkt-Raum, den

HUD-Sichtfeld-Raum (HUD-FOV) und den zweidimensionalen (2D) virtuellen Bildraum.

Wir beschreiben die Projektion der Bilder von einem AR-HUD-Projektor in Richtung der

Augen des Fahrers als ein ansichtsabhängiges Lochkameramodell, das aus intrinsischen

und extrinsischen Matrizen besteht. Unter dieser Annahme schätzen wir zunächst die

intrinsische Matrix unter Verwendung der Grenzen des HUD-Sichtbereichs. Als nächstes

kalibrieren wir die extrinsischen Matrizen an verschiedenen Blickpunkten innerhalb einer

ausgewählten “Eyebox” unter Berücksichtigung der sich ändernden Augenpositionen des

Fahrers. Die 3D-Positionen dieser Blickpunkte werden von einer Fahrerkamera verfolgt.

Für jeden einzelnen Blickpunkt erhalten wir eine Gruppe von 2D–3D-Korrespondenzen

zwischen einer Menge Punkten im virtuellen Bildraum und ihren übereinstimmenden Kon-

trollpunkten vor der Windschutzscheibe. Sobald diese Korrespondenzen verfügbar sind,

berechnen wir die extrinsische Matrix am entsprechenden Betrachtungspunkt. Durch Ver-

gleichen der neu projizierten und realen Pixelpositionen dieser virtuellen Punkte erhal-

ten wir eine 2D-Verteilung von Bias-Vektoren, mit denen wir Warping-Karten rekonstru-

ieren, welche die Informationen über die Bildverzerrung enthalten. Für die Vollständigkeit

wiederholen wir die obigen extrinsischen Kalibrierungsverfahren an allen ausgewählten

Betrachtungspunkten. Mit den kalibrierten extrinsischen Parametern stellen wir die Be-

trachtungspunkte wieder her im Weltkoordinatensystem. Da wir diese Punkte gleichzeitig

im Raum der Fahrerkamera verfolgen, kalibrieren wir weiter die Transformation von der

Fahrerkamera in den Weltraum unter Verwendung dieser 3D–3D-Korrespondenzen. Um

mit nicht teilnehmenden Betrachtungspunkten innerhalb der Eyebox umzugehen, erhal-

ten wir ihre extrinsischen Parameter und Warping-Karten durch nichtparametrische In-

terpolationen. Unsere Kombination aus parametrischen und nichtparametrischen Mod-

ellen übertrifft den Stand der Technik hinsichtlich der Zielkomplexität sowie Zeiteffizienz,

während wir eine vergleichbare Kalibrierungsgenauigkeit beibehalten. Bei allen unseren

ii

Kalibrierungsschemen liegen die Projektionsfehler in der Auswertungsphase bei einer Ent-

fernung von 7,5 Metern innerhalb weniger Millimeter, was einer Winkelgenauigkeit von ca.

2 Bogenminuten entspricht, was nahe am Auflösungvermögen des Auges liegt.

iii

Contents

Abstract i

List of Figures xi

List of Tables xii

1 Introduction 1

1.1 Background . 1

1.2 Problem Statement . 2

1.3 State of the Art . 4

1.3.1 Calibration of Cameras . 4

1.3.2 Calibration of AR-HUDs . 5

1.3.3 Calibration of AR-HMDs . 6

1.4 Contributions . 7

1.5 Outline . 7

2 Theory 9

2.1 Coordinate Systems . 9

2.1.1 World Space . 10

2.1.2 Virtual Image Space . 11

2.1.3 HUD-FOV Space . 12

2.1.4 Viewpoint Space . 13

2.1.5 Driver Camera Space . 13

2.2 Rigid Body & Transformation . 13

2.3 Ray Optics, Reflection & Refraction . 15

2.4 Pinhole Camera Model . 16

2.4.1 Perspective Projection . 16

2.4.2 Formulation . 16

2.4.3 Simple Analysis . 19

2.4.4 PnP Problem . 21

2.5 Stereo Vision . 21

2.6 Epipolar Constraint . 22

2.7 Scale-Invariant Feature Transform . 24

2.8 Bilinear & Bicubic Interpolations . 25

v

Contents

2.9 Distortion Models . 27

2.9.1 Camera Distortion Model . 27

2.9.2 Warping Maps . 29

2.10 Levenberg–Marquardt Algorithm . 31

3 System 33

3.1 3D Sensor . 33

3.2 Eye Box . 34

3.3 HUD Projector . 35

3.3.1 Structure . 35

3.3.2 Requirement & Compromise . 35

3.3.3 Digital Light Processing . 37

3.4 Monocular Calibration Cameras . 38

3.4.1 Virtual Calibration Camera . 38

3.4.2 Real Calibration Camera . 38

3.5 Windshield . 39

3.6 Driver Camera . 40

3.7 Software . 41

4 Methods 45

4.1 General Pipeline . 45

4.1.1 Pre-caliabration of Sensors . 45

4.1.2 Initial Calibration . 47

4.1.3 Validation . 48

4.1.4 Evaluation . 48

4.2 Multiple Viewpoints & Driver Camera Calibration 49

4.3 Objects for 3D Sensing . 50

4.4 Evolution of Implementation . 51

4.4.1 Manual Implementation . 51

4.4.1.1 Using human eyes . 52

4.4.1.2 Using a Camera . 53

4.4.2 Automatic Implementation . 53

4.5 Experimental Schemes . 55

4.5.1 Calibration with a Chessboard Target 56

4.5.1.1 Preparation . 56

4.5.1.2 Estimation of Intrinsics . 57

4.5.1.3 Calibration of Extrinsics 59

4.5.1.4 Validation & Warping Maps 59

4.5.1.5 Interpolation among Viewpoints 59

4.5.1.6 Summary . 60

4.5.2 Calibration with Patterned Paper 60

4.5.2.1 Preparation . 61

4.5.2.2 Estimation of Intrinsics . 61

4.5.2.3 Transformation from World to Viewpoint 61

vi

Contents

4.5.2.4 Rotation from Viewpoint to HUD-FOV 62

4.5.2.5 Warping Maps & Interpolation 63

4.5.2.6 Summary . 64

4.5.3 Target-free calibration . 64

4.5.3.1 Preparation . 64

4.5.3.2 Estimation of Intrinsics . 66

4.5.3.3 Transformation from World to Viewpoint 66

4.5.3.4 Rotation from Viewpoint to HUD-FOV 69

4.5.3.5 Warping Maps & Interpolation 70

4.5.3.6 Summary . 70

5 Results 73

5.1 Criteria on Projection Results . 73

5.2 Simulation Results . 74

5.2.1 Error-free AR-HUD System . 74

5.2.2 AR-HUD System with 3D Detection Error 75

5.2.2.1 Systematical Error . 77

5.2.2.2 Disparity Error . 77

5.2.2.3 Pattern Recognition Error 78

5.2.2.4 Summary . 79

5.2.3 AR-HUD System with 2D Detection Error 79

5.2.3.1 Random Error . 79

5.2.3.2 Pixel Quantization Error 80

5.2.4 Number of 2D–3D Point Correspondences 81

5.2.5 Tolerance of Viewpoint Positions . 82

5.2.6 Optical Distortion . 84

5.2.7 Opening Angles . 84

5.2.8 Simulation with Chessboards . 87

5.3 Pre-calibration of Cameras . 88

5.4 Manual Implementation Results (with Human Eyes) 88

5.5 Automatic Implementation Results . 91

5.5.1 Calibration Results with a Chessboard Target 93

5.5.1.1 Focal Lengths of HUD . 93

5.5.1.2 Calibration Results at Train Viewpoints 93

5.5.1.3 Driver Camera Calibration Results 93

5.5.1.4 Interpolation Results . 95

5.5.2 Calibration Results with Patterned Paper 96

5.5.2.1 Focal Lengths of HUD . 96

5.5.2.2 Extracted Warping Maps 96

5.5.2.3 Qualitative and Quantitative Evaluation 96

5.5.3 Target-free Calibration Results . 98

5.5.3.1 Focal Lengths of HUD . 99

5.5.3.2 Transformation from World to Viewpoints 99

vii

Contents

5.5.3.3 Validation and Warping Maps 99

5.5.3.4 Evaluation and Interpolation Results 101

5.5.4 Summary . 101

6 Discussion 103

6.1 Comparison among Schemes . 103

6.1.1 Calibration Accuracy . 103

6.1.2 Time Efficiency . 103

6.1.3 Target Complexity . 104

6.2 View-dependent Virtual Images . 105

6.3 Direct Linear Transformation . 106

6.4 Distortion Models & Comparison . 109

6.4.1 Camera Distortion Model . 109

6.4.2 Warping Maps . 110

6.4.3 Polynomial Regression Model . 111

7 Conclusion & Outlook 115

Bibliography I

Appendix VII

viii

List of Figures

1.1 Introduction: illustration of virtual images from non-AR-HUD and AR-HUD 2

1.2 Introduction: virtual objects presented by calibrated and biased AR-HUDs 3

2.1 Theory: side-view illustration of an automotive AR-HUD system 9

2.2 Theory: schematic of world space . 11

2.3 Theory: illustration of a HUD-FOV . 12

2.4 Theory: optical reflection and refraction at boundary between different media 15

2.5 Theory: parallel and perspective projections 17

2.6 Theory: pinhole camera model . 17

2.7 Theory: linear relations among different 2D and 3D spaces 19

2.8 Theory: principles of a stereo camera . 21

2.9 Theory: epipolar constraint in a dual-camera case 23

2.10 Theory: typical examples of radial distortion 28

2.11 Theory: a pair of ground truth and warped point arrays 29

2.12 Theory: simulated warping maps . 30

2.13 Theory: view-dependent distorted virtual point arrays 31

3.1 System: ZED stereo camera . 34

3.2 System: eye box and moving stage . 35

3.3 System: structure of an automotive AR-HUD projector box 36

3.4 System: schematic of digital light processing 37

3.5 System: schematic of human binocular FOV 38

3.6 System: double reflection in an AR-HUD system and suppression 40

3.7 System: face recognition using ZED stereo camera as driver camera 41

3.8 System: software modules for controlling, detection and data processing . . 43

4.1 Methods: entire calibration pipeline . 46

4.2 Methods: collinear and non-collinear evaluations 49

4.3 Methods: chessboard pattern and forward scene with feature points 51

4.4 Methods: manual AR-HUD calibration using human eyes 53

4.5 Methods: manual AR-HUD calibration using a mounted camera 54

4.6 Methods: automatic AR-HUD calibration using a chessboard 55

4.7 Methods: separated chessboards as calibration target 57

4.8 Methods: eye box for calibration using a sizable chessboard 58

4.9 Methods: estimation of HUD’s focal lengths using a chessboard 58

ix

List of Figures

4.10 Methods: estimation of HUD focal lengths and extrinsic calibration 62

4.11 Methods: detection of chessboard and reconstruction of windshield surface . 63

4.12 Methods: rendering of configured virtual points 63

4.13 Methods: flowcharts of calibration scheme using patterned paper 65

4.14 Methods: target-free estimation of HUD’s focal lengths 66

4.15 Methods: images from ZED stereo camera and smartphone camera with

SIFT-based feature points. 67

4.16 Methods: configured virtual point array and the recognized centroids 69

4.17 Methods: configured 2D virtual points and assigned 3D control points with

random depth values . 70

4.18 Methods: target-free calibration pipeline . 71

5.1 Results: simulated 3D control points in world space 76

5.2 Results: simulated (re)projection results after calibration of an ideal HUD . 76

5.3 Results: simulation results with disparity errors in 3D sensing 78

5.4 Results: simulation results with pattern recognition errors in 3D sensing . . 79

5.5 Results: simulation results with 2D detection errors 80

5.6 Results: simulation results with pixel quantization errors 81

5.7 Results: simulated evaluation results with various numbers of 2D–3D cor-

respondences . 82

5.8 Results: statistics of evaluation results with various numbers of 2D–3D

correspondences . 82

5.9 Results: various simulated viewpoint positions in the world space 83

5.10 Results: simulation results on tolerances of viewpoint positions 85

5.11 Results: examples of simulated evaluation results before and after distortion

correction . 86

5.12 Results: statistics of simulated evaluation results with optical distortion . . 86

5.13 Results: simulation results on various opening angles 87

5.14 Results: simulated chessboard at two separated distances 88

5.15 Results: simulation results using two separated chessboards with random

2D detection errors . 89

5.16 Results: statistics on simulation results with two separated chessboard targets 89

5.17 Results: eye box for manual calibration with human eyes 92

5.18 Results: evaluation results of manual implementation using human eyes. . . 92

5.19 Results: validation and raw evaluation after calibrating extrinsic matrix at

a train viewpoint . 94

5.20 Results: reconstructed warping maps from discrete bias vectors 94

5.21 Results: dewarped evaluation result at a train viewpoint 95

5.22 Results: raw and dewarped evaluations at a test viewpoint 95

5.23 Results: statistics of reprojection errors in the raw and dewarped evaluations 96

5.24 Results: reprojection and 2D biases in a virtual image 97

5.25 Results: reconstructed warping maps . 97

5.26 Results: qualitative evaluation results using a sizable chessboard target . . 98

x

List of Figures

5.27 Results: reprojection results from the 3D sensor to the calibration camera . 99

5.28 Results: reprojection for validation and corresponding 2D biases 100

5.29 Results: reconstructed warping maps . 100

5.30 Results: qualitative evaluation results of target-free calibration 101

6.1 Discussion: reconstructed chief rays . 106

6.2 Discussion: validation and evaluation results using the DLT algorithm . . . 107

6.3 Discussion: comparison between calibration results acquired using PnP and

DLT algorithms . 108

6.4 Discussion: evaluation results at a train and a test viewpoint based on

camera distortion model . 110

6.5 Discussion: statistics on raw and dewarped evaluation results based on cam-

era distortion model . 111

xi

List of Tables

4.1 Methods: comparison between manual and automatic implementations . . . 56

5.1 Results: calibrated prameters of a simulated error-free AR-HUD system . . 77

5.2 Results: calibration results of the 1st smartphone camera 88

5.3 Results: calibration results of the 2nd smartphone camera 89

5.4 Results: calibration results of the 1st ZED stereo camera as 3D sensor . . . 90

5.5 Results: calibration results of the 2nd ZED stereo camera as driver camera 90

5.6 Results: statistics on evaluation results under the scheme using patterned

paper . 98

5.7 Results: statistics on reprojection errors for test viewpoints in evaluation . 101

6.1 Discussion: angular accuracy in the evaluation phase of various experimen-

tal schemes . 104

6.2 Discussion: time consumption of our proposed automatic AR-HUD calibra-

tion schemes . 104

6.3 Discussion: time consumption of our target-free AR-HUD calibration scheme

and state of the art . 105

6.4 Discussion: target complexities in different AR-HUD calibration schemes . . 105

6.5 Discussion: normalized calibrated projection matrix using DLT algorithm . 107

6.6 Discussion: comparison between focal lengths acquired from calibration ap-

proaches based on PnP and DLT algorithms 109

6.7 Discussion: comparison among different distortion models 113

xii

1. Introduction

This chapter gives a brief introduction to the augmented reality head-up display (AR-

HUD) from both the technology and application aspects, especially those related to the

automotive industry. Section 1.1 provides a general background. Section 1.2 states the

necessity in the calibration of AR-HUDs and relevant issues. Next, in Section 1.3, we

review state of the art on this topic and point out their novelties and disadvantages.

Section 1.4 profiles our contributions in this field. Finally, Section 1.5 provides readers an

outline of the whole thesis.

1.1 Background

The head-up display (HUD) is an advanced human-machine interface (HMI) [1], which

finds its applications in many modern transportation systems. It origins from aircraft

[2]–[4] and renders much useful information to the pilot, e.g. flight-path markers and

airspeed trend vectors. Images showing various real-time information are projected from

the HUD projector and reflected by an optical combiner (e.g. the windscreen or a partially

reflective device) installed in the cockpit until they reach the pilot’s sight. They are defined

as “virtual images” because they are reflected ones but not directly from an optical source

existing in the external environment. With such a “see-through” display, the pilot can

receive all the projected information without moving the sight to the dashboard. The

appearance of HUD as an advanced avionic device has already enhanced the safety in

taking off and landing operations of the aircraft [5], [6].

The HUD has become a hot topic in the automotive world since people proposed its

potential application in vehicles [7], [8]. The HUD projector is embedded behind the main

dashboard, and the windshield serves as the optical combiner. According to the presence

of augmented reality (AR) technology, current on-vehicle HUDs are roughly categorized

into two groups, i.e. conventional non-AR-HUDs, and more advanced AR-HUDs, as are

illustrated in Figure 1.1. The former renders only static information that is not or indirectly

related to the real-time environment, such as the driving speed, non-immersive navigation

signs, or fuel consumption. Theoretically, these static symbols can appear at any region on

the virtual image with proper color, brightness and contrast. Most HUDs available on the

automotive market belong to this sort, which can be recognized as a “second” dashboard

yet with enough transparency. The latter, i.e. AR-HUDs, generate dynamic virtual images

that are highly immersive in the real world, such as immersive navigation signs, dynamic

semantic labels, floating street names and house numbers. They are realized based on

alignment between the projected virtual objects and the surrounding real objects.

There are critical benefits via using an on-vehicle AR-HUD. Firstly, as a HUD, it

delivers real-time information via virtual images in the driver’s sight, which is superior to

the conventional dashboard in keeping the driver’s attention on the traffic and reducing

human eyes’ accommodation time. Secondly, underlying vehicle sensor data, AR-HUDs

can show important information graphically or semantically fused with the real objects,

1

1.2. Problem Statement

which provides a higher level of driving experience. In the driver’s view, virtual images

from AR-HUD look like natural extensions of the real ones. Furthermore, an AR-HUD can

support more human-machine interaction when its immersive rendering is combined with

advanced driver assistance systems (ADAS) and autonomous vehicle (AV) technology, like

in lane recognition, advanced parking guidance and intelligent speed adaption. When the

ADAS detect threats on the road, the alarming information can be directly placed in the

driver’s sight, followed by immediate decision and action. Last but not least, using AR

cues can also improve awareness of hazardous traffic objects in low visibility, whereas that

of non-hazardous ones is not affected, which is especially beneficial for elderly drivers [9].

In a nutshell, AR-HUDs make driving safer, more intelligent, more user-friendly and more

enjoyable.

(a) An non-AR-HUD. (b) An AR-HUD.

Figure 1.1: Illustration of virtual images from a conventional on-vehicle non-AR-HUD1

(a) and an advanced AR-HUD2 (b). The non-AR-HUD renders a set of static
information, including the current speed, the speed limit and a non-immersive
navigation sign. The AR-HUD can also provide immersive navigation (the
arrow looking like floating on the street) and dynamic virtual symbols for real
objects (the building and the airplane).

1.2 Problem Statement

The calibration demand for AR-HUD comes from several aspects. First, since there are

multiple sensors inside the vehicle, e.g. the 3D sensor, virtual camera (the driver’s eyes)

and driver camera (head tracker), the spatial relations between different coordinate sys-

tems should be accurately determined; otherwise, the virtual images can misalign the real

world due to wrongly defined projection matrices or linear transformations, as is shown in

Figure 1.2. Although these relations’ target values are acquirable from vehicle design or

production sections, the actual ones can be sensitive to the assembly tolerances of relevant

components as the AR-HUD is an optical system. Hence, after all the components are

installed on the vehicle assembling line, a calibration routine for AR-HUDs is still neces-

sary. Furthermore, once any related device like the windshield, HUD projector, or head

1https://media.daimler.com:443/marsMediaSite/Media/VXJ02UIhu7Sfs0Nnt65cE61E4X4UUoYI46H8fg

B2k4StjLRlBcdmtEA75Lr1Bj9t/48863007, Retrieved 2021-02-01.
2https://media.daimler.com:443/marsMediaSite/Media/c34s562D0v66gcP30b39HN500ADoYGqFHzR4Yy

H46ke4VA9wu6t76t0Zz8993au9/48862971, Retrieved 2021-02-02.

2

https://media.daimler.com:443/marsMediaSite/Media/VXJ02UIhu7Sfs0Nnt65cE61E4X4UUoYI46H8fgB2k4StjLRlBcdmtEA75Lr1Bj9t/48863007
https://media.daimler.com:443/marsMediaSite/Media/VXJ02UIhu7Sfs0Nnt65cE61E4X4UUoYI46H8fgB2k4StjLRlBcdmtEA75Lr1Bj9t/48863007
https://media.daimler.com:443/marsMediaSite/Media/c34s562D0v66gcP30b39HN500ADoYGqFHzR4YyH46ke4VA9wu6t76t0Zz8993au9/48862971
https://media.daimler.com:443/marsMediaSite/Media/c34s562D0v66gcP30b39HN500ADoYGqFHzR4YyH46ke4VA9wu6t76t0Zz8993au9/48862971

1.2. Problem Statement

tracker is repaired, replaced or updated in the aftermarket, the factory default settings

may become no longer valid. Thus, the efforts in calibration are inevitable in production

as well as aftermarket.

Second, since the windshield is not designed primarily for the reflection in HUD, but

mainly for aerodynamics, aesthetics, or safety, its curved form leads to view-dependent

optical distortions in projected virtual images [10], [11]. Though in some HUDs, their

optics, e.g. reflective mirrors inside, are designed w.r.t. the windshield, residual distortion

still exists and will affect the image quality. Meanwhile, each windshield or individual HUD

projector may be subject to production-related deviations from the designed geometry.

Consequently, distortion compensation also becomes an inevitable issue in the AR-HUD

calibration.

Last but not least, the AR rendering is highly coupled with the real-time viewpoint,

which is usually monitored by an inherently equipped driver camera. Both the projec-

tion of HUD images and optical distortion should change with the driver’s eye positions.

Therefore, the AR-HUD calibration should consider the acquisition of corresponding pa-

rameters at various viewpoints, without much sacrifice on either the precision or time- and

cost-efficiency. A calibration method is valid and applicable only when it works well for

any reasonable view pose.

(a) Correct AR rendering. (b) Biased AR rendering.

Figure 1.2: Illustration of virtual objects (e.g. a blue navigation arrow and a green vehicle
tracking box) presented by a precisely calibrated AR-HUD (a) and a biased one
(b). Compared to the correct AR rendering via a calibrated HUD, that from
an uncalibrated or wrongly calibrated HUD may lead to deviated navigation
or occlusion.

Therefore, we have the following objectives:

• to realize robust calibration concepts that can be applied in both production line

and after-sale scenarios in the automobile industry;

• to simplify the calibration methods, so that human labor can be saved to the greatest

3

1.3. State of the Art

extent;

• to qualitatively and quantitatively analyze factors that have an impact on the cali-

bration implementation and results;

• to develop new approaches that make it possible for drivers to finish the calibration

by themselves, without visiting the factory or workshop;

• if possible, to integrate the methods into actual vehicles and analyze the performance.

1.3 State of the Art

In this section, we introduce the previous work that is related to our main topic. To

make it clear, we briefly review three research areas, i.e. calibration methods for cameras,

AR-HUDs and AR-HMDs, respectively. The calibrations of cameras and AR-HMDs share

similarities with the AR-HUD calibration, though they are applied in different instances

than AR-HUDs.

1.3.1 Calibration of Cameras

Since in later chapters, we will adopt the pinhole camera model to describe our AR-

HUD system, we review some literature about traditional camera calibration. There is

an extensive body of literature about camera calibration, whether in computer vision or

other photogrammetric applications. For short, we introduce here two popular methods,

i.e. those proposed by Tsai [12] and Zhang [13]. These two methods can be implemented

with a chessboard pattern as the calibration target that we also use in the calibration and

evaluation phases later in Chapter 4.

Tsai’s calibration model assumes that the manufacturer provides the camera’s param-

eters to reduce the initial guess of the estimation. It requires n features points (n > 8)

per image and solves the calibration problem with a set of n linear equations based on

the radial alignment constraint. A second-order radial distortion model was used, while

no decentering distortion terms were considered. The two-step approach copes with ei-

ther a single image or multiple images of a 3D or planar calibration grid, but grid point

coordinates must be known.

Zhang’s calibration method requires people to place a planar chessboard at different

orientations (more than 2) in front of the camera. The developed algorithm uses the chess-

board pattern’s extracted corner points to compute a projective transformation between

the image points of the n different images, up to a scale factor. Afterward, the camera

interior and exterior parameters are recovered using a closed-form solution, while the ra-

dial distortion terms are determined as a linear least-squares solution. A final nonlinear

minimization of the reprojection error, solved using a Levenberg-Marquardt method (see

also Section 2.10), refines all the retrieved parameters.

4

1.3. State of the Art

1.3.2 Calibration of AR-HUDs

Wientapper et al. [10] proposed a camera-based AR-HUD calibration method, which has

already considered the influence of moving viewpoints. They employed the structure-from-

motion (SfM) technique for precise camera registrations, assuming a view-independent

virtual image plane. They estimated the projective transformation from the world to the

calibration camera and compensated for the optical distortion by introducing a fifth-degree

polynomial model. Their method has been adopted in systematical AR-HUD designs [14].

However, this approach requires extra effort in preparation. It is stated that most of

the windshield area should be covered by highly textured patterns, except the HUD’s

field of view (HUD-FOV) that is covered by black canvas; otherwise, the feature points

may be detected incorrectly. Besides, additional markers should be placed near or onto

the windshield following the computer-aided design (CAD) model, which is necessary for

calculating a scaled transformation from the feature map to the vehicle coordinates. Both

the covers and markers are not initially equipped in cars, and they should be attached

with enough precision by the staff. Thus, this approach may not be well suited for quick

calibrations either in the production or aftermarket due to time-consumption or high

precision requirements in attaching additional components. Additionally, the assumption

of a view-independent virtual image plane may not hold since the optical path changes

indeed with the viewpoint.

Hosseini et al. [15] published a systematical design for the AR-HUD using stereo

night vision with an integrated calibration pipeline. Their method first solves an image

warping matrix by iteratively minimizing a cost function, which can neutralize the optical

distortion induced by the non-flat windshield surface. Later, they calibrated an external

stereo thermal camera and a monocular night vision camera separately using a chessboard

pattern. The stereo camera detects 3D real-world objects, while the monocular one tracks

the driver’s eye positions. They applied this system in displaying alert signs in case of

collision against pedestrians under dark lighting conditions. When rendering the virtual

objects, the stereo camera detects the obstacle in front of the vehicle, and the eye-tracking

camera returns the driver’s current line of sight. By solving the real-time spatial intersec-

tion of this line on the windshield surface, the AR-HUD knows where to place the virtual

signs. However, this method requires a pre-calibration between the AR-HUD projector

and the windshield surface. Besides, both solving the warping matrix or calibrating the

involved cameras rely on pre-designed patterned targets. Empirically, the image warping

matrix may vary with the viewpoints, which was not yet considered in their procedures.

Ueno and Komuro [16] raised another AR-HUD calibration method based on multi-

view. For each viewpoint, they created a transformation map from the calibration camera

image to the virtual image. Then they employed linear regression in the virtual image

coordinates to estimate relevant coefficients and repeated this step for different viewpoints

to create a look-up table (LUT). In their approach, the calibration camera has to gaze at

the center of the virtual image, bringing difficulty in mounting and tuning the camera.

Yoon and Kim [17] developed a method based on the Scale-Invariant Feature Trans-

form (SIFT) algorithm and Hough transformation. Using the SIFT algorithm, they de-

5

1.3. State of the Art

tected and matched feature points in the environment ahead of the windscreen from both

photos taken by a front view camera and a driver view (calibration) camera. By calculat-

ing the homography in between, they map the two camera images. Next, they display the

rectangular virtual image frame and use Hough transformation to extract its four corners

in the picture from the calibration camera. Then they acquire the homography from this

camera to the HUD. Using these two homographies, they can project any 3D point sensed

by the frontal view camera to the HUD virtual image. However, their method still has

much room for improvement. The HUD’s intrinsic parameters, such as focal lengths, were

not estimated or measured. Moreover, there is no quantitative evaluation like in [16], [18].

Finally, they only used four corner points in the second step, which may lead to biased

results when the optical distortion is noticeable.

Recently, Deng et al. [18] realized an AR-HUD calibration method using mixed reality

glasses. In their work, a Microsoft HoloLens served as the calibration camera. Similar

to [16], they mapped all pixels on the virtual image with those on the camera image,

respectively. Then they formed a relatively large training dataset by sampling several

hundreds of viewpoints and applied a nonlinear regression model for coefficients estimation,

which is similar to that proposed by Wientapper et al. [10]. The calibration accuracy is

validated with real-scene augmentations, while the calibration of the HoloLens w.r.t. the

vehicle coordinate system is a prerequisite. To this end, they exploited the Iterative Closest

Point (ICP) algorithm relying on the spatial mapping capability of HoloLens. However,

a HoloLens is a piece of specialized equipment that may not be available in workshops.

Though they also assert the full calibration process can be finished in one minute, the

model training procedure also takes time. This time-consumption holds for each vehicle

since either the configurations of HUD and windshield vary with the car model, or the

mounting tolerance affects the optical path.

1.3.3 Calibration of AR-HMDs

Since AR-HUDs share similarities with projection-based AR-HMDs, the calibration meth-

ods of AR-HMD are also shortly reviewed here. For AR-HMD calibration, various solu-

tions, such as the single point active alignment method (SPAAM) [19] and the interaction-

free method [20]–[22] are two typical ways. However, the features of an automotive AR-

HUD still differ from most AR-HMDs. The viewing angles of an AR-HUD are generally

designed much narrower [14], [18], [23], [24], since the driver’s eyes are usually focusing on

scenes at a far more considerable distance than in an indoor environment, which brings

a higher requirement on the angular calibration accuracy of HUD. For example, an 0.1°
angular error can lead to nearly 90 mm length deviation at a distance of 50 m, i.e. over

6 % of typical vehicle heights.3

Meanwhile, since the HMD is wearable on the head, people can ignore the influence

of head movement in its calibration but should take each eye’s pose into account. Though

some literature has considered individual pupils’ motion, it still adopts physical models

based on the premise of a view-independent static virtual image [20]. Recent work on

3https://www.automobiledimension.com/car-comparison.php, Retrieved 2018-11-24.

6

https://www.automobiledimension.com/car-comparison.php

1.4. Contributions

AR-HMD calibration also adopted nonparametric approaches, which has shown better

accuracy than pinhole-based ones [25], [26]. However, these methods have limitations

if applied to AR-HUD calibration. For example, the 3D space reconstruction in these

approaches requires a large enough target screen covering the calibration camera’s FOV,

and this screen should be placed at several different distances. In this way, since AR-

HUD’s virtual image is located meters away, the screen size should also be up to several

meters. That will result in both high costs and difficulties in preparing setups in factories

or workshops, making such methods ultimately unsuitable for automotive applications.

1.4 Contributions

This dissertation concentrate on the calibration of AR-HUD systems. Although there may

exist another AR display inside a vehicle, i.e. the video-based AR auxiliary display, its

calibration methods are incredibly similar to those for conventional cameras. The AR-

HUD calibration has its particular demands, as is mentioned in Section 1.2.

As is listed in Section 1.2, our main goal is to develop advanced applicable calibra-

tion methods for on-vehicle AR-HUDs. They should outperform those approaches in the

previous work, at least on certain aspects. Here are the main contributions of this thesis:

• we propose various low-complexity calibration schemes, which are highly applicable

in the automotive industry, both in the production and after-sales cases. These

schemes cover the calibration using a sizable chessboard, a sheet of patterned paper,

or inherent features from the environment, which also reflects the evolution of our

practical implementations;

• we develop interpolation concepts to deal with multiple viewpoints, covering both

the linear projection parameters and the nonlinear distortion models;

• all the involved mathematical and physical quantities are solved or approximately

estimated in our calibration schemes, which is uncompleted in most of the previous

work;

• we also finish different kinds of simulations, which are beneficial to our calibration

experiments and future improvement;

• our calibration results are evaluated both qualitatively and quantitatively, demon-

strating a comparable or even better accuracy than state of the art.

1.5 Outline

The rest of this dissertation is organized as follows: Chapter 2 introduces the mathematical

and physical theories that are applied throughout the thesis, especially the pinhole camera

model, perspective projection and epipolar constraint; Chapter 3 describes our AR-HUD

system, including the involved devices, e.g. the HUD projector, calibration camera and

windshield; Chapter 4 details the calibration methods that we have developed, which also

reflect an evolution of experimental schemes; Chapter 5 shows the results of our calibration

7

1.5. Outline

routines, including those from simulations and practical implementation; Chapter 6 com-

pares different calibration approaches and discusses some specific issues; lastly, Chapter 7

draws a conclusion of this thesis and proposes an outlook for future work.

8

2. Theory

In this chapter, we will introduce the physical models and mathematical theories that are

employed in our calibration work. In Section 2.1, we define all the involving coordinate

systems, based on which we describe the projection and transformation matrices. Next in

Section 2.2, we introduce shortly the rigid body motion and linear transformation. Sec-

tion 2.3 explains basic principles in geometric optics, covering the reflection and refraction,

which occur in the image rendering via an AR-HUD. Section 2.4 details the pinhole camera

model in detail, which is a classical model to describe the linear perspective projection. It

is the core theory to model AR-HUD systems throughout this dissertation. In Section 2.5,

we introduce the stereo vision applied in the 3D sensing, particularly related to the esti-

mation of HUD’s focal lengths. Section 2.6 and 2.7 interpret the epipolar constraint and

the SIFT algorithm respectively, both of which we utilize in the reconstruction of feature

points for the target-free calibration approach (see also Section 4.5.3). Section 2.9 provides

readers with the ideas to cope with the nonlinear optical distortion. Finally, Section 2.10

introduces the Levenberg-Marquardt Algorithm that we use to optimize the calibrated

parameters.

2.1 Coordinate Systems

3D sensor

Windshield
Object point P Virtual image I

HUD

u	

v	

XW	
YW	

ZW	

YV	

ZV	

XV	

Refl. point Pr

Driver
camera

YD	

ZD	

XD	

YH	

ZH	

XH	

R

Figure 2.1: A side-view illustration of an automotive AR-HUD system. An optical ray
departs from a HUD pixel and reaches the driver’s sight via a reflection (refl.)
point on the inner surface of the windshield, which corresponds to a virtual
image pixel [u, v]T . A driver camera serves as a real-time tracker for the view-
point. The world space W , HUD-FOV space H, viewpoint space V and driver
camera space D are marked with their X–, Y – and Z–axes, respectively. R
represents a relative rotation from the space V to H. Note that the optical
path changes when the viewpoint moves.

9

2.1. Coordinate Systems

Essentially an entire AR-HUD system involves the 3D world space W and the 2D virtual

image plane I. As is sketched in Figure 2.1, an optical ray departs from a pixel in the

HUD projector and reaches the driver’s sight (indeed, a pupil of the two) via a reflection

point on the inner surface of the windshield, which corresponds to a virtual image pixel.

Thus, the driver receives the information presented on the virtual image. Since the optical

path changes with the viewpoint, a tracking driver camera returns its real-time position.

The primary goal of calibration for an AR-HUD system is to build up a general map-

ping relation between the 3D world squeezed in the HUD-FOV and the 2D virtual image.

Other 3D positions outside the HUD-FOV are irrelevant because they cannot be projected

onto the virtual image. If we consider the whole display area, such a corresponding rela-

tion is recognized as a 3D–2D surjection in mathematics. This means, for any valid 3D

point Pj = [XW
j , Y W

j , ZW
j]T in the world space W , there exists a unique 2D mapping

point pij = [uij , vij]
T on the virtual image Ii corresponding to the viewpoint Vi. On the

contrary, any virtual point pij represents a single optical ray rij that originates from the

pupil’s optical center and passes through pij . Such an optical ray consists of infinitely

many 3D points and extends to infinity. The surjection can be expressed as a spatial

projection, a regression function, or even a simple look-up table, on which the rendering

of virtual objects relies.

Hence, it is necessary to define the associated coordinate systems, i.e. spaces, no

matter in which form this surjection is expressed. Except for the world space W and

virtual image space I, there still involve other three 3D spaces, i.e. the HUD-FOV space

H, the viewpoint space V , and the driver camera space D. We will detail them in the

following sub-sections.

2.1.1 World Space

Taking the vehicle’s movement into account, we define our world space W as a fixed

space on the vehicle, instead of using an absolute geographic reference frame, e.g. that

from a global navigation satellite system (GNSS). Therefore we also name it vehicle space.

Theoretically, this coordinate system can be defined as an arbitrary Euclidean system. For

example, we can locate the origin of coordinates at the centroid of a front wheel’s outer

disk for convenience. The XW –, Y W –, and ZW –axes are illustrated in Figure 2.2:

In practice, real 3D position data from the frontal scene are returned via a 3D sensor

fixed on the vehicle, such as a stereo camera, a light detection and ranging (LiDAR)

apparatus, or an RGB-D camera. Here we assume that these sensors are pre-calibrated

so that they already align the world space; otherwise, our calibration of AR-HUD loses

the absolute accuracy. However, it still makes sense if there is only a systematical error

in the 3D sensor, such as a rotational or translational bias. In this case, our AR-HUD is

calibrated in a rotated or shifted world space W ′, on which the rendering of virtual objects

is identically based. Alternatively, we can also directly employ the coordinate system of

the equipped 3D sensor as the world space, which we, indeed, frequently adopt later in the

laboratory environment with an off-vehicle AR-HUD setup. These sensors are becoming

10

2.1. Coordinate Systems

(a) Front view. (b) Rear view.

(c) Side view. (d) Top view.

Figure 2.2: Schematic of our world space W in multiple views of a Mercedes-Benz S-Class
Limousine WV2231vehicle. Here we locate the origin at the centroid of the left
front wheel’s outer disk.

more and more available in modern vehicles. Since our calibration usually happens in an

offline condition, where the car is parked, we generally ignore the sensors’ time delays.

2.1.2 Virtual Image Space

The virtual image plane I is governed by the projection characteristics of the HUD pro-

jector, as well as the optical combiner, i.e. the windshield in the automotive case. As is

shown in Figure 2.1, it is buried in the frontal scene. The HUD projector delivers real

images by emitting photons up to the windshield. Thus, the virtual image is the optical

conjugate of the real one generated by the projector. The resolution of the virtual image

depends on the arrangement of pixels inside the HUD projector.

As is sketched in Figure 2.1 and 2.3, we fix the origin of virtual image space at the

upper left corner. Regardless of optical distortion, the u–axis stretches horizontally to the

right and the v–axis vertically downwards in the driver’s view. Nevertheless, due to the

windshield’s curved shape and reflective optics in the HUD projector, the virtual image

plane I is also bent. This is an example of field curvature, which belongs to the optical

distortions that we would like to compensate for during the calibration.

Since the receivers inside the HUD system are the driver’s eyes, the optical imaging

paths will change if they move. Under the effects of distortion, we anticipate that the

virtual image plane I also changes slightly with the eye positions, which is later discussed

1Adapted using the pictures from https://www.mercedes-benz.de/passengercars/mercedes-benz-car

s/models/s-class/saloon-wv223/specifications/dimensions, Retrieved 2021-02-02.

11

https://www.mercedes-benz.de/passengercars/mercedes-benz-cars/models/s-class/saloon-wv223/specifications/dimensions
https://www.mercedes-benz.de/passengercars/mercedes-benz-cars/models/s-class/saloon-wv223/specifications/dimensions

2.1. Coordinate Systems

in Section 6.2. Therefore, the assumption of a static virtual image plane in previous work

[10] is an approximation, though based on this point, their calibration method obtained

an impressive accuracy.

Figure 2.3: The FOV of a HUD, which is a 3D frustum. The origin is located at the
viewpoint Vi, and the 2D virtual image space is marked by u– and v–axes.
The horizontal (H-FOV◦, i.e. α) and vertical (V-FOV◦, i.e. β) opening angles
determine its spans. The distance between the viewpoint and virtual image
plane is the physical focal length f . The actual virtual image frame is slightly
biased from a planar rectangular area due to optical distortion. pij represents a
virtual point, while rij denotes its corresponding optical ray. The chief optical
ray starts from the viewpoint and passes through the virtual image’s central
pixel. The XH–, Y H– and ZH–axes label the 3D directions of HUD-FOV
space. The eye box is a selected domain where the driver’s viewpoint appears
frequently.

2.1.3 HUD-FOV Space

The HUD-FOV, as is illustrated in Figure 2.3, is a frustum whose vertex lies at the

viewpoint. In our implementation, the image receiver can be the driver’s (or the operator’s)

eyes or a monocular calibration camera. It is located at a viewpoint inside a reasonable

spatial domain named as “eye box”, which is detailed later in Section 3.2. Conventionally,

in the case of human eyes, the viewpoint is assumed to be at the middle point between

the two pupils [10], [24], [27]. Under the assumption of an imperfect rectangular virtual

image frame I, the HUD-FOV is a pyramid whose edges are the four rays starting from the

viewpoint and passing through the virtual image’s corners. Theoretically, these edges are

at infinity. For convenience in description, we mark two spanning angles of this frustum,

i.e. the horizontal (α) and vertical (β) opening angles.

Analogously, the HUD-FOV space H is defined as a 3D space based on the frustum

as mentioned above. The origin is located at the vertex, and the XH– and Y H–axes

go parallel to the u– and v–axes of the virtual image I. The ZH–axis intersects the

virtual image center. This HUD-FOV space serves as a transitional coordinate system in

12

2.2. Rigid Body & Transformation

formulating the entire pinhole camera model in Section 2.4. Note that when the viewpoint

is changed, the origin of this space shifts correspondingly.

2.1.4 Viewpoint Space

The viewpoint space V is, as is illustrated in Figure 2.1, a 3D space orthogonally trans-

formed from the world W with right angles, i.e. 90° or −90°. It also serves as an inter-

mediary in formulating the pinhole camera model. Later, we will assume that under the

pinhole model, the viewpoint space V shares the same origin with the HUD-FOV space H.

However, due to the HUD and windshield design, there may exist a relative rotation be-

tween them. In the viewpoint space, the XV –axis points to the right, the Y V –axis points

to the floor, and then ZV –axis points forward, which follows the typical definition of a

camera coordinate system [13], [28], [29]. This is analogous to when we place a calibration

camera at the viewpoint, which faces the frontal scene. Hence, the viewpoint space is

beneficial when we use a calibration camera at the viewpoint instead of human eyes (see

Section 4.4.2). Like the HUD-FOV space H, when the viewpoint moves, the origin of this

space V varies accordingly.

2.1.5 Driver Camera Space

A driver camera is also included in the system, as is illustrated in Figure 2.1. We also name

it head tracker because it can track the driver’s head by detecting facial features. Like the

viewpoint space V , the definition of this space follows the conventional camera coordinate

system. However, sometimes an on-vehicle driver camera is already pre-calibrated to the

world space W since its installation.

The driver camera’s basic functionalities are demonstrated in both the calibration of

AR-HUD and the afterward AR content rendering while driving. In the former process,

this sensor measures the viewpoint position so that we can calibrate the corresponding

view-dependent parameters. In the AR rendering, it provides the driver’s current eye

positions so that the picture generation unit (PGU) can call the corresponding parameters

to project real objects on the correct pixel positions.

Later in Section 4.2, we will introduce our method to recalibrate this driver camera

based on the calibration results of the AR-HUD, which is applicable in the after-sale case.

Nevertheless, the driver camera’s calibration is not our primary concern because it plays

an implicit role in the AR-HUD calibration, though this camera is a necessary component

in a vehicle with an AR-HUD system.

2.2 Rigid Body & Transformation

We assume that the whole vehicle is regarded as a rigid body, including the HUD projector,

the connected sensors, and the windshield. This assumption means that we ignore the

components’ deformation, e.g. the small shape change when the car is vibrating on the

road. It is reasonable in practical terms: on the one hand, the deformation should be

small because of the rigidity of the material for vehicle production; on the other hand,

13

2.2. Rigid Body & Transformation

it is impractical to model these deformations under any static calibration routine. The

assumption of rigid bodies guarantees that the offline (when the vehicle is parked) modeling

based on linear transformation can also be effective for online (when the vehicle runs on

the road) AR-rendering. Of course, it is undeniable that in the future, there might be a

new online calibration routine for the AR-HUD, i.e. a real-time implementation while the

car is moving on the street. Nevertheless, it already makes much sense if we primarily

accomplish robust offline calibration in the factory or workshop environment.

As a convention for the projective geometry, we adopt the homogeneous coordinates

[30] throughout this thesis. That means we expand N–dimensional Cartesian coordinates

with an additional element “1”, e.g. :

v = [v1, v2, v3]T −→ v = [v1, v2, v3, 1]T ,

M =

m11 m12 m13

m21 m22 m23

m31 m32 m33

 −→M =

m11 m12 m13 0

m21 m22 m23 0

m31 m32 m33 0

0 0 0 1

 ,
(2.1)

where v (or M) was originally an arbitrary vector (or 3×3 matrix) under Cartesian coordi-

nates. The homogeneous coordinates bring convenience later in describing the perspective

projection and formulating the pinhole camera model. Based on the rigid body assump-

tion, we use Eq. (2.2) to express arbitrary 3D linear transformations, including rotation

and translation.

Rx(α) =

1 0 0 0

0 cosα − sinα 0

0 sinα cosα 0

0 0 0 1

Ry(β) =

cosβ 0 sinβ 0

0 1 0 0

− sinβ 0 cosβ 0

0 0 0 1

Rz(γ) =

cos γ − sin γ 0 0

sin γ cos γ 0 0

0 0 1 0

0 0 0 1

T(t) =

1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1

 .

(2.2)

14

2.3. Ray Optics, Reflection & Refraction

Here α, β and γ are arbitrary rotation angles, while t = [tx, ty, tz]
T is an arbitrary 3D

translational vector. These angles are also named the roll, pitch and yaw angles, respec-

tively [31]. Hence, our 3D transformation T(α, β, γ, t) uses the following paradigm:

T(α, β, γ, t) = T(t)R(α, β, γ) = T(t)Rz(γ)Ry(β)Rx(α) (2.3)

The meaning of Eq. 2.3 is: suppose we have a source coordinate system A and a destination

coordinate system A′, we first rotate the axes of A so that they go parallel to those of

A′, and then displace the origin. This paradigm is in line with the extrinsic matrix of the

pinhole camera model in Section 2.4.

2.3 Ray Optics, Reflection & Refraction

Display and its calibration are generally related to geometric optics, or rather ray optics.

In this context, we ignore the light’s electromagnetic properties, such as spectrum or

nonlinearity. In classical physics, the light shall go along an extreme as is described by

Fermat’s principle, which is usually the shortest way [32]. If we assume that the air is a

homogeneous medium with a relative refractive index nair close to 1, then the light shall

propagate along with straight rays until it is reflected or enters another medium with a

different refractive index. The assumption of ray optics is a generic prerequisite in many

augmented reality applications.

(a) Reflection. (b) Refraction.

Figure 2.4: Optical reflection (a) on the boundary between two media, and refraction (b)
from an optically thinner to an optically denser medium.

Figure 2.4 sketches the cases of reflection and refraction. The illustrations are on

the sectional plane formed by the incident ray and the normal line perpendicular to the

boundary between the media. In the reflection case, an incident ray encounters a reflective

interface and exits in a bounced manner with the angle of reflection (θ′1) equal to the

incident angle (θ1). In the case of refraction, the incident light penetrates the boundary,

but with an angle of refraction (θ2) that is different from the incident angle. Snell’s law

15

2.4. Pinhole Camera Model

determines this angle:

n1θ1 = n2θ2, (2.4)

where n1 and n2 are the refractive indices of the Medium 1 and 2, respectively. The reflec-

tion and refraction phenomenons can be further interpreted by Huygens–Fresnel principle

[32], assuming that the monochromatic light is a series of propagating electromagnetic

waves. Note that the two behaviors co-occur if the two media are both optically transpar-

ent at the incident light’s wavelength. The intensities and polarizations of reflected and

refracted components can be analyzed using the Fresnel equations [32].

2.4 Pinhole Camera Model

In the AR rendering for driving scenarios, we recognize the driver’s viewpoint as the middle

point between the two pupils. Indeed, since the human interpupillary distance is usually

50 mm to 75 mm [33], the human stereo vision can have an impact on the calibration. Ide-

ally, for an individual driver, the AR-HUDs should be calibrated separately for both eyes.

Nevertheless, this is impractical for the factory or workshop because people have various

interpupillary distances and dominant eyes, and the workload and time consumption will

double. Moreover, the physical focal length of automotive AR-HUD is usually designed up

to over 10 m, which is significantly larger than the human interpupillary range. Objects

to be augmented at this distance demonstrate tiny disparities in the human stereo vision.

However, the above-stated effect shall be taken into account for other AR applications,

such as indoor AR-HMD devices, since there are two separate displays for the two eyes.

Alternatively, we can replace the human viewer with a real calibration camera, such as a

smartphone camera or a monocular webcam.

2.4.1 Perspective Projection

Perspective projection is a sort of linear projections where 3D objects are projected on a 2D

picture plane. As the pinhole camera model’s basis, it brings the effect that distant objects

appear smaller than nearer objects even though they possess the same size. There is an

optical center in the perspective projection, which is different from parallel projections, as

is sketched in Figure 2.5. It also means that infinitely long parallel lines (e.g. roadsides

in Figure 1.2 (a) and (b)) appear to intersect in the projected image at a vanishing point

[34]. Photographic lenses [35] and the human eye [36] work in the same way. Therefore

perspective projection looks most realistic. The pinhole camera model is a model to

describe the simplest perspective projection scenario.

2.4.2 Formulation

Conventionally, a lens-based camera or imaging system can be modeled as a pinhole cam-

era, as is illustrated in Figure 2.6. In the pinhole model, the center of the lens is recognized

as a pinhole. Behind the pinhole is a black box, whose bottom at the focal length distance

16

2.4. Pinhole Camera Model

(a) Parallel projection. (b) Perspective projection.

Figure 2.5: Parallel (a) and perspective (b) projections. Compared with the former, there
is an optical center in the latter, where all the projective optical rays meet each
other.

is regarded as the image plane. The pinhole position is also the optical center, through

which all the captured rays travel from the objects to the image plane. Under this model,

it is convenient to formulate the imaging system using matrices and linear transformations.

A typical application is the perspective projection in a monocular camera system.

Figure 2.6: Pinhole camera model. A 3D object is projected to the real image plane at
the focal length distance through a pinhole. A virtual image plane is located
symmetrically to the real one.

Here we approximate the AR-HUD imaging system using this classical pinhole camera

model. The pinhole model brings several advantages. First of all, it is relatively simple

and includes only a few unknowns, which restrains the calibration approaches’ complexity,

especially compared to those using pure transformation mappings [16]. Secondly, since

it is already widely studied in the context of camera calibration, various algorithms [29],

[37]–[40] are available to solve the unknown parameters. Finally, applying the obtained

calibration data in rendering augmentations is straightforward and can be readily devel-

oped upon existing software and hardware functionalities. Thus, we express the AR-HUD’s

17

2.4. Pinhole Camera Model

pinhole model for a viewpoint indexed by i using homogeneous coordinates:

w

ui

vi

1

 = K

XHi

Y Hi

ZHi

1

 = PIiVi

XVi

Y Vi

ZVi

1

 = PIiW

XW

Y W

ZW

1

 , (2.5)

PIiVi = KRHiVi , (2.6)

PIiW = KTHiW = KRHiViTViW , (2.7)

K =

fu s u0 0

0 fv v0 0

0 0 1 0

 , (2.8)

THiW = RHiViTViW =

[
RHiW tHiW

0 1

]
=

r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3

0 0 0 1

 . (2.9)

In Eq. (2.5), P =
[
XW , Y W , ZW

]T
represents an arbitrary point inside the world

space W , which falls in the HUD-FOV, and pi = [ui, vi]
T is the corresponding pixel in the

virtual image Ii. The number w is a scaling factor. The intrinsic matrix K in Eq. (2.8)

describes the inherent characteristics of the HUD, such as respective focal lengths fu and

fv (unit: pixel) in horizontal and vertical directions, principal point [u0, v0]T (unit: pixel)

and the skew factor s. For a single point’s projection, we have w = ZHi . These intrinsic

parameters are determined by the HUD design and independent of the environment under

non-extreme conditions. In contrast, the extrinsic matrix THiW in Eq. (2.9), also named

camera pose, defines a linear transformation that convert the point from the world W

to the HUD-FOV space Hi. It consists of a 3 × 3 rotation matrix RHiW and a 3 × 1

translation vector tHiW . Since the degree of freedom (DoF) of a rotation matrix is three,

we can express it with the roll, pitch and yaw angles, as is defined in Section 2.2. Or we

can convert it into a 3 × 1 Rodrigues rotation vector rHiW = [r1,HiW , r2,HiW , r3,HiW]T .

The conversion is useful later in our interpolation concepts, with which we aim to spread

our calibration results at selected viewpoints to other non-participating viewpoints (see

also Section 4.1.4). Since the DoF of a 3D translation vector is also three, the extrinsic

matrix has a DoF equal to six.

The 3 × 4 projection matrix PIiVi in Eq. (2.5) and (2.6) projects a 3D point in the

viewpoint space Vi to the virtual image Ii, which can be decomposed to the intrinsic matrix

K and a 4× 4 homogeneous rotation matrix RHiVi . Note that here we assume that under

18

2.4. Pinhole Camera Model

the pinhole model, the HUD-FOV space Hi and viewpoint space Vi share the same origin

that is, indeed, the optical center. The other projection matrix PIiW in Eq. (2.5) and (2.7)

projects a 3D point in the world space W to the virtual image Ii. As is implied above,

it consists of the intrinsic matrix K and extrinsic matrix THiW . Note that THiW can be

further decomposed to the relative rotation RHiVi , and the transformation matrix TViW

that convert a point in the world space W into a viewpoint space Vi. These decompositions

are so meaningful that later we will develop different calibration schemes based on them.

The involving spaces and the corresponding matrices are summarized in Figure 2.7.

Note that the matrix TWD represents the transformation from the driver camera space

D to the world space W . Our parametric part of AR-HUD calibration is to restore all of

these linear mathematical relations.

Figure 2.7: Linear relations among different involving 2D (orange) and 3D (blue) spaces,
including the world space W , viewpoint space V , HUD-FOV space H, driver
camera spaceD and virtual image space I. These spaces are pairwise connected
by projection (PIiW , PIiVi), transformation (TViW , TWD), rotation (RHiVi) or
intrinsic (K) matrices in the pinhole camera model. The subscript i indicates
the view-dependency.

2.4.3 Simple Analysis

For an arbitrary 3D point P =
[
XW , Y W , ZW

]T
within the HUD-FOV, we analyze here

the impact of translational vector t = [t1, t2, t3]T according to the above pinhole model.

For simplicity, we assume that:

• the HUD has identical horizontal and vertical focal lengths, i.e. fu = fv = f . This

means the astigmatism is ignored;

19

2.4. Pinhole Camera Model

• the skew factor s is negligible since the pixels of HUD projector usually have rect-

angular shape;

• the origin of image space Ii lies at the principal point, i.e. [u0, v0]T = [0, 0]T , which

is different from the definition in Section 2.1.2.

Then the corresponding ground truth projected virtual point pi is:

pi =

uivi
1

 =

fr11XW+fr12YW+fr13ZW+ft1

r31XW+r32YW+r33ZW+t3

fr21XW+fr22YW+fr23ZW+ft2
r31XW+r32YW+r33ZW+t3

1

 . (2.10)

If there is an error in the component t1, i.e. t1 becomes t1 + ∆t1, then we have:

pi,∆t1 =

ui + ∆ui,∆t1

vi

1

 =

fr11XW+fr12YW+fr13ZW+f(t1+∆t1)

r31XW+r32YW+r33ZW+t3

fr21XW+fr22YW+fr23ZW+ft2
r31XW+r32YW+r33ZW+t3

1

 , (2.11)

which means that only ui is influenced. That is, it leads to a horizontal shift of the virtual

point pi according to the sign of ∆t1. Similarly, an error in the component t2 result in a

vertical shift of pi. However, when there is an error in t3, we have:

pi,∆t3 =

ui + ∆ui,∆t3

vi + ∆vi,∆t3

1

 =

fr11XW+fr12YW+fr13ZW+ft1
r31XW+r32YW+r33ZW+(t3+∆t3)

fr21XW+fr22YW+fr23ZW+ft2
r31XW+r32YW+r33ZW+(t3+∆t3)

1

=

ui ·

(
1− ∆t3

r31XW+r32YW+r33ZW+(t3+∆t3)

)
vi ·
(

1− ∆t3
r31XW+r32YW+r33ZW+(t3+∆t3)

)
1

=

si,∆t3 · ui
si,∆t3 · vi

1

 ,

(2.12)

where si,∆t3 is a real scaling factor subject to si,∆t3 6= 1. It means that the entire virtual

image Ii is zoomed in or out jointly in the u– and v–directions, corresponding to the sign

of ∆t3.

Nevertheless, the above analysis cannot cover all the possible factors affecting AR-

HUDs’ imaging or calibration, e.g. 2D/3D detection errors or tolerance of viewpoint

positions. Unlike the errors in translational components, the others are difficult to de-

rive explicitly from Eq. (2.5)–(2.9). However, they will be investigated with numerical

simulations later in Section 5.2.

20

2.5. Stereo Vision

2.4.4 PnP Problem

The perspective-n-point (PnP) problem [41] is the matter of determining the camera pose

(extrinsic matrix) in the pinhole camera model, with n presenting the number of appli-

cable 2D–3D point correspondences between the image pixels and the world. Originally

raised from camera calibration, the PnP problem is associated with many computer vision

applications, including pose estimation and augmented reality [42], [43]. Since the camera

pose consists of six DoF, we need at least six equations to solve it. According to Eq. (2.5),

it is required n ≥ 3 so that there are at least three equations accessible for both u– and

v–directions. In such an extreme case, it becomes a P3P problem.

Some sophisticated calculation methods are already integrated into open-source soft-

ware, such as the OpenCV Library [44]. Later we will intensively convert the calibration

down to this PnP problem and try to solve it with adaptively modified algorithms.

2.5 Stereo Vision

The stereo vision theory is the basis for our 3D sensing because we will use a stereo

camera as the external sensor, which measures the 3D positions in the forward scene. We

will also construct a stereo vision scenario to estimate our HUD’s intrinsic parameters in

the automatic calibration schemes. Besides, when we use a stereo camera as the driver

camera to track the viewpoint (see Section 3.6), it is again based on the principles in this

section.

(a) Side view. (b) Top view.

Figure 2.8: Stereo vision (a) including two parallel placed identical mono-cameras at View-
point 1 and 2 with a baseline distance B. P is a 3D point, and p1 and p2 are the
corresponding projections in the two images. The depth Z can be triangulated
(b) using the geometrical relations between similar triangles.

Let us assume a dual-camera-based stereo camera with two parallel positioned monoc-

ular “eyes”, as is shown in Figure 2.8. Ideally, the two cameras have identical intrinsic

parameters, e.g. focal length f in pixel, and principal point [u0, v0]T at the image center.

They face along the same direction but are separated by a baseline distance B. Hence, the

same 3D position P are imaged at different pixel positions p1 = [u1, v1]T and p2 = [u2, v2]T

21

2.6. Epipolar Constraint

in the captured pictures. Because the cameras are placed at the same height, we have:

u1 − u2 = d, v1 = v2, (2.13)

where d is named disparity. According to the geometrical relations between similar trian-

gles, we can further derive:

Z =
Bf

d
, (2.14)

where Z is the depth from the baseline to the 3D point P . Let us further define a camera

coordinate system whose origin is fixed at the left-eye camera’s optical center. Then, the

transversal components X and Y can also be determined if we apply the definition of axes

in the viewpoint space V (Figure 2.1) here:

X =
u− u0

f
Z, Y =

v − v0

f
Z. (2.15)

Underlying these relations, a stereo camera, consisting of two such identical monocular

cameras, can measure selected objects’ 3D positions in the forward environment. Note

that the depth detection error of a stereo camera is modeled as:

∂Z = − Z
2

Bf
∂d. (2.16)

This means a larger baseline distance helps reduce the error. In the popular KITTI dataset

for mobile robotics and autonomous driving research [45], the authors used a stereo camera

with B ≈ 54 cm. However, this distance is often restricted by the available room inside or

on top of the vehicle.

2.6 Epipolar Constraint

The epipolar constraint is derived from multiple view geometry and has many applications

in computer vision [46]. Suppose we have two pre-calibrated monocular cameras, i.e.

Camera 1 and 2, which provide us with two views facing the frontal scene, as is schetched

in Figure 2.9. In machine vision, the essential matrix E can describe the relationship

between the views:

E = t̂R, t̂R = t×R, (2.17)

R =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 , t =

t1t2
t3

 , t̂ =

 0 −t3 t2

t3 0 −t1
−t2 t1 0

 , T =

[
R t

0 1

]
, (2.18)

22

2.6. Epipolar Constraint

Figure 2.9: Epipolar constraint in a dual-camera case, where O1 and O2 are the cameras’
optical centers, and C1 and C2 are the centers of images. P , P ′ and P ′′ are
different 3D points on the same optical ray starting from O1, generating p1 as
the projection in Camera 1, and p2, p′2 and p′′2 as the projections in Camera 2.
e1 and e2 are the intersections of the line O1O2 with the two image planes. L1

and L2 represent the epipolar lines.

where t is the translation vector and R is the rotation matrix, both of which compose the

homogeneous transformation matrix T between these two camera spaces (from Camera

2 to 1). Furthermore, any homogeneous 2D–2D pixel correspondence p1 and p2 (suppose

the two image spaces’ origins are located at the image centers) in the two images follows

the epipolar constraint:

pT2 Fp1 =
[
u2 v2 1

]
·

f11 f12 f13

f21 f22 f23

f31 f32 f33

 ·
u1

v1

1

 = 0, (2.19)

where F is called the fundamental matrix. The geometric interpretation of Eq. (2.19) is

that p2 must lie on the epipolar line defined by Fp1 since p1 and p2 are the projections of

the same 3D point P . By rearranging the equation, we convert the calculation of F to a

least square problem:

xs · f s =
[
u2u1 u2v1 u2 v2u1 v2v1 v2 u1 v1 1

]
· f s = 0, (2.20)

where f s is a degenerated vector form of F:

f s =
[
f11 f12 f13 f21 f22 f23 f31 f32 f33

]T
. (2.21)

For n multiple point correspondences, the vectors xs
i are stacked row-wisely into a n × 9

matrix Xs and Eq. (2.20) becomes:

Xs · f s = 0, (2.22)

which can be solved by least square algorithms. Then, we convert the fundamental matrix

23

2.7. Scale-Invariant Feature Transform

to an initial guess essential matrix with the pre-calibrated 3× 3 intrinsic matrices K1 and

K2 of the two cameras:

Einit = KT
2 FK1. (2.23)

According to the properties of essential matrices [47], a non-zero matrix E is an essential

matrix if and only if it has a singular value decomposition (SVD) E = UΣVT with:

Σ = diag {σ, σ, 0} (2.24)

for some σ > 0 and U,V ∈ SO(3), i.e. a 3D rotation group [48]. The symbol “diag”

represents diagonal matrix. To recover the final essential essential matrix Efin and then

the camera pose T, we need to project Einit into the essential space by first computing its

initial SVD:

Einit = UΣinitV
T (2.25)

with Σinit = diag{σ1, σ2, σ3}. Then we modify the matrix Σinit to its final version Σfin that

accords with the essential space’s property: Σfin = diag{σ, σ, 0}, where σ = (σ1 + σ2)/2.

Hence, the final essential matrix is calculated as:

Efin = UΣfinV
T . (2.26)

For Efin, there exist two possible solutions of the transformation:

t̂1 = URz(+
π

2
)ΣfinU

T , R1 = URz(+
π

2
)ΣfinV

T ; (2.27)

t̂2 = URz(−
π

2
)ΣfinU

T , R2 = URz(−
π

2
)ΣfinV

T , (2.28)

where Rz represents the rotation matrix around the z–axis in a 3D Cartesian coordinate

system, as is defined in Eq. (2.2). For −Efin, we have another two solutions. In the case

of our AR-HUD calibration, we triangulate 2D feature point correspondences with these

four candidate solutions and select a single solution which leads to the most positive depth

values. The reason is that all the reconstructed 3D points should, in principle, lie in front

of the windshield. This condition is called the cheirality constraint [49].

2.7 Scale-Invariant Feature Transform

As a classical algorithm in machine vision, SIFT was invented to detect and depict local

features in images [50], [51]. Later in the target-free calibration scheme in Section 4.5.3,

24

2.8. Bilinear & Bicubic Interpolations

we apply it to find matching feature points between the pictures taken by our 3D sensor

and the calibration camera. The following is an outline of the procedures.

Suppose we have a set of reference images Iref , we first process them to extract the

feature points, namely SIFT keypoints. We calculate the convolution results of these

images using Gaussian filters at various scales k. This means, for an image I (x, y) and a

Gaussian filter G (x, y, kσ) with

G (x, y, kσ) =
1

2π (kσ)2 e
−x

2+y2

2(kσ)2 , (2.29)

we do a convolution:

L (x, y, kσ) = G (x, y, kσ) ∗ I (x, y) . (2.30)

Because we have various scale factor k, we can obtain the Difference of Gaussians (DoG)

image as:

D (x, y, σ) = L (x, y, kiσ)− L (x, y, kjσ) . (2.31)

Next, we compare each pixel in D (x, y, σ) with its 8 neighboring ones at the scale kiσ

and 9 neighboring ones in neighboring scaled DoG images (scale ki+1). Thus, we find the

minima and maxima on these D (x, y, σ) across scales and accordingly, extract candidate

keypoints in the original reference images Iref . A further fine selection of stable keypoints

from these candidates includes interpolation, filtering low-contrast outliers, and rejecting

edge responses.

The last step is to generate a descriptor for SIFT keypoints. A descriptor is a distinct

vector to identify individual keypoints robust to adverse lighting conditions, changing

views, and noise. It should also be able to match fast others belonging to the same features,

so the vector size should be as small as possible. To this end, a weighted Gaussian window

is defined around the keypoint, expanding to a 4× 4 array of “neighbors”. Each neighbor

covers 4×4 pixels. Gradient magnitudes and orientations are sampled within this window.

The orientation is particularly classified into one of 8 bins summing up to 360°. Thus, the

descriptor includes 4×4×8 = 128 elements (4×4 is the number of neighbors, not pixels per

neighbor). Finally, the descriptor is normalized to unit length, modified by thresholding

the elements, and renormalized. Till now, the keypoint has a descriptor that is scale- and

rotation-invariant, and robust against adverse illumination and noise.

2.8 Bilinear & Bicubic Interpolations

Bilinear and bicubic interpolations are widely used tools to reconstruct unknown infor-

mation on a 2D area [52], [53]. Here we briefly introduce their mathematical models and

solutions by taking a simple example. Assuming that we have a rectangular region of

25

2.8. Bilinear & Bicubic Interpolations

interest (ROI) on an image, whose corners are denoted as p11 = [x1, y1], p12 = [x1, y2],

p21 = [x2, y1] and p22 = [x2, y2]. We name these corners as sample points: the information

on these corners (i.e. f(p11), f(p12), f(p21) and f(p22)) is available, but that inside the

rectangle is missing. Our objective is to interpolate the missing values inside the ROI

based on the known boundary condition.

To retrieve the missing information within this ROI, we look for a function f as an

approximation. For bilinear interpolation, the function is written as:

f(x, y) ≈ a0 + a1x+ a2y + a3xy , (2.32)

where ai, i ∈ {0, 1, 2, 3} are coefficients. The final solution is:

a0

a1

a2

a3

 =

1 x1 y1 x1y1

1 x1 y2 x1y2

1 x2 y1 x2y1

1 x2 y2 x2y2

−1

f(p11)

f(p12)

f(p21)

f(p22)

 . (2.33)

For bicubic interpolation, the function is written as:

f(x, y) ≈
3∑

i=0

3∑
j=0

aijx
iyj , (2.34)

where we have 16 coefficients aij . The final solution is:

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

 =

1 0 0 0

0 0 1 0

−3 3 −2 −1

2 −2 1 1

f00 f01 f02 f03

f10 f11 f12 f13

f20 f21 f22 f23

f30 f31 f32 f33

1 0 −3 2

0 0 3 −2

0 1 −2 1

0 0 −1 1

 ,

(2.35)

where
f00 f01 f02 f03

f10 f11 f12 f13

f20 f21 f22 f23

f30 f31 f32 f33

 =

f(p11) f(p12) fy(p11) fy(p12)

f(p21) f(p22) fy(p21) fy(p22)

fx(p11) fx(p12) fxy(p11) fxy(p12)

fx(p21) fx(p22) fxy(p21) fxy(p22)

 . (2.36)

Here, fx, fy represent the derivatives, while fxy denotes the mixed partial derivative. To

reconstruct an image of a fixed resolution, the more sample points we have, the more

accurate this bicubic interpolation can be.

26

2.9. Distortion Models

Later in our automatic AR-HUD calibration schemes and corresponding evaluation

phases, we apply the bicubic interpolation to recover smooth warping maps for distortion

correction. Note that we do not store the solved coefficients aij , but only warping maps

themselves. Therefore, using warping maps is regarded as a nonparametric distortion

compensation approach, as is detailed in Section 2.9.2. We exploit bilinear interpolation to

recover both unknown linear projection parameters and warping maps at non-participating

viewpoints.

2.9 Distortion Models

There are several different optical aberrations in automotive AR-HUDs, including the

double image effect, astigmatism and distortion [54]. Other aberrations, e.g. chromatic

aberration, spherical aberration and coma, have no or little impact. The double imaging

comes from the mismatching reflections on the windshield’s inner and outer surfaces, which

will be detailed in Section 3.5. Astigmatism occurs due to the heterogeneous focal lengths

in the horizontal and vertical directions, originating from both the HUD optics and the

windshield. The most significant impact on the image quality comes from the optical

distortion, which results from the same two sources as astigmatism. Though the current

HUDs on the market usually have a narrow FOV, e.g. 8° × 3° [55], the distortion is still

observed. Note that the windshield’s appearance is primarily designed not for HUDs but

aerodynamic, safety, and even aesthetic goals. Hence, people try to match the HUD’s

reflective mirrors with the windshield to suppress the distortion. Nevertheless, for AR-

HUDs, the residual distortion may still damage the projected image since they have a larger

FOV and are much more sensitive to 2D–3D mappings than the non-AR ones. Moreover, it

is impractical to decouple the HUD optics and the windshield in the calibration. Therefore,

in previous work, the distortion correction is based on these two components as a whole.

Next, we introduce two relevant distortion models that have been included in our

published work [24], [27], [56], [57]. The first is the conventional camera lens distortion

model. It is a parametric model that can be recognized as a combination of radial, tan-

gential, and thin prism distortion. This model’s advantage is that it has been investigated

in much previous work about camera calibration [13], [28], [58]. The second model is the

nonparametric warping map, a 2D distribution describing pixels’ warping on the virtual

image. Both the models are view-dependent in our case. Accordingly, we have to consider

their performances at the calibrated viewpoints inside the eye box and their extensibilities

at non-participating viewpoints. In addition, there are some other distortion models in

state of the art [10], [15], [18]. A comprehensive comparison and discussion is seen later

in Section 6.4.

2.9.1 Camera Distortion Model

The conventional camera distortion model usually deals with the deformation of images

caused by the imperfectly manufactured lenses with residual heterogeneity. In this case,

an unobservable ground truth pixel pgt = [ugt, vgt]
T moves to an observable distorted pixel

27

2.9. Distortion Models

pdist = [udist, vdist]
T . Suppose that we have a distortion center pdc = [udc, vdc]

T on the

image, this model considers three terms [28], [59]:

• radial distortion caused by defective radial curvature of a lens;

• tangential distortion arising from decentering of the lens and other optical compo-

nents;

• thin prism distortion coming from a lens’ tilt w.r.t. the sensor’s pixel plane.

These distortions can be expressed using the following equations:

udist = ugt + ūgt(k1r
2
gt + k2r

4
gt) +

[
p1(r2

gt + 2ū2
gt) + 2p2ūgtv̄gt

]
+ s1r

2
gt

vdist = vgt + v̄gt(k1r
2
gt + k2r

4
gt) +

[
p2(r2

gt + 2v̄2
gt) + 2p1ūgtv̄gt

]
+ s2r

2
gt ,

(2.37)

where ūgt = ugt − udc, v̄gt = vgt − vdc, rgt =
√
ū2

gt + v̄2
gt. The coefficents ki, pi and

si (i ∈ {1, 2}) represent the radial, tangential and thin prism distortions, respectively.

Figure 2.10 illustrates typical examples of radial lens distortion, i.e. barrel and pincushion

distortions. Because pgt is undetectable target values, a pair of inversed equations are

often used, where pgt and pdist are interchanged:

ugt = udist + ūdist(k1r
2
dist + k2r

4
dist) +

[
p1(r2

dist + 2ū2
dist) + 2p2ūdistv̄dist

]
+ s1r

2
dist

vgt = vdist + v̄dist(k1r
2
dist + k2r

4
dist) +

[
p2(r2

dist + 2v̄2
dist) + 2p1ūdistv̄dist

]
+ s2r

2
dist ,

(2.38)

where ūdist = udist − udc, v̄dist = vdist − vdc, rdist =
√
ū2

dist + v̄2
dist. For simplicity in

calculation, we employ a slightly variant form coupling the tangential and thin prism

distortion terms together [28]:

(a) Normal object. (b) Barrel. (c) Pincushion.

Figure 2.10: Typical examples of radial camera lens distortion, including the barrel (b)
and pincushion (c) distortions.

ugt = udist + k1ūdistr
2
dist + k2ūdistr

4
dist + q1r

2
dist + ūdist(p1ūdist + p2v̄dist)

vgt = vdist + k1v̄distr
2
dist + k2v̄distr

4
dist + q2r

2
dist + v̄dist(p1ūdist + p2v̄dist),

(2.39)

28

2.9. Distortion Models

where qi = pi + si for i ∈ {1, 2}. Though this model is initially raised to deal with

camera lens distortion, we still have found its effectiveness for the HUD case at individual

viewpoints. The reason behind this is that a curved windshield can be regarded as a

refractive element like an irregularly formed lens in the virtual optical path from the

virtual image to the viewpoint [27].

2.9.2 Warping Maps

Warping an image means the operation of rearranging its pixels so that the shapes of pro-

jected patterns change. An example consisting of a point array is illustrated in Figure 2.11.

Hence, non-chromatic optical aberrations can be recognized as different sorts of warping.

Another example of image warping is the earlier mentioned camera lens distortion or the

opposite operation to restore objects’ artifact-free forms. To tell the difference, we regard

the optical distortion as a forward warping and the correction as a backward warping or de-

warping. Indeed, the camera distortion model in Eq. (2.37) provides a parametric forward

warping, while that in Eq. (2.38) and (2.39) present a parametric backward warping.

(a) Ground truth array. (b) Distorted array.

Figure 2.11: A 9×16 rectangular ground truth point array (a), and its warped counterpart
(b) deviating from a perfect rectangle.

Our warping maps, however, characterize nonparametric 2D–2D correspondences be-

tween the source and target images. Each correspondence can be expressed by a bias

vector:

vbias = [∆u,∆v]T = [ugt − udist, vgt − vdist]
T . (2.40)

We plot a pair of simulated warping maps in Figure 2.12. Mathematically, a warping map

may be two-dimensionally smooth, or there can exist non-differentiable pixels. Since the

reflective mirrors inside the HUD projector and the windshield are recognized as smoothly

formed, we assume that our warping maps are smooth binary functions with:

w∆u = f∆u (u, v)

w∆v = f∆v (u, v)
. (2.41)

29

2.9. Distortion Models

Alternatively, these relations can be expressed using two matrices:

w∆u =

∆u11 . . . ∆u1n

...
. . .

...

∆um1 . . . ∆umn

w∆v =

∆v11 . . . ∆v1n

...
. . .

...

∆vm1 . . . ∆vmn

, (2.42)

if we the image resolution is n×m pixels. Note that under our definition, a warping map

is similar to specific physics concepts, like an electric or magnetic field, so that it can be

superimposed with others to form new ones. Hence, we can try using some interpolation or

regression functions to reconstruct an entire warping map from several discrete known bias

vectors vbias. Of course, a broader sampling of these vectors generally helps in obtaining a

more precise mapping. Later in Section 5.5, we will show some examples of warping maps

that we have acquired in practical calibrations.

Here we also point out that warping is dependent on the selected viewpoint Vi because

the distortion varies with the optical path, as is captured in Figure 2.13. Put alternatively,

when the optical path from the HUD projector to the image receiver changes, the reflective

area (or rather, the reflection points in Figure 2.1) on the windshield’s inner surface moves.

Considering varying viewpoints, using warping maps is a reasonable option to deal with

the optical distortion because physically, it should change continuously with the viewpoint

position. Nevertheless, this approach faces the problem of an extensive volume of data.

For example, if we have a virtual image of a resolution of 1024 × 768, then the size of

a single warping map is nearly 800 thousand pixels. It might bring a challenge to the

computational and storage capacity for on-vehicle computers.

(a) Warping map in u–direction. (b) Warping map in v–direction.

Figure 2.12: A pair of simulated warping maps presenting the ∆u– (a) and ∆v–components
(b) of bias vectors, plotted as heat maps. The value at a pixel [u, v]T equals
∆u or ∆v in the corresponding bias vector vbias. px: pixel.

30

2.10. Levenberg–Marquardt Algorithm

(a) Virtual point array at the first
viewpoint.

(b) Virtual point array at the second
viewpoint.

Figure 2.13: View-dependent optical distortions in the rendering via our AR-HUD. Here
we display the same 9× 16 rectangular virtual point array and take pictures
at two separate viewpoints. We notice that the arrays are both distorted but
in slightly different manners.

2.10 Levenberg–Marquardt Algorithm

Levenberg–Marquardt algorithm is an iterative nonlinear optimization tool that is inten-

sively used in camera calibration to refine solutions [13], [60], [61]. Generally speaking, it

is one of the applicable techniques to deal with the least-square problem.

Let us take an uncomplicated example about curve fitting here. Suppose we have n

observed pairs of data [xi, yi], where xi are independent and yi are dependent variables.

The task is to solve the least-square problem in the following form:

θ̂θθ ∈ arg min
θθθ

F (θθθ) ≡ arg min
θθθ

1

2

n∑
i=1

[yi − f (xi,θθθ)]2 , (2.43)

where f(x,θθθ) is the model curve function with a set of parameters θθθ and F (θθθ) denotes

the sum of deviations’ squares.

To run iterations for solving θθθ, we should carefully choose an initial guess to achieve

the global minimum; otherwise, the iteration stops at a local minimum. We update the

parameter set θθθ in each iteration to a new set θθθ + h. Hence, we approximate an updated

function using the Taylor series:

f(xi,θθθ + h) ≈ f(xi,θθθ) + Jih , (2.44)

where

Ji =
∂f (xi,θθθ)

∂θθθ
(2.45)

expresses the gradient of our model w.r.t. θθθ. We convert it into a vector form:

f(θθθ + h) ≈ f(θθθ) + Jh , (2.46)

31

2.10. Levenberg–Marquardt Algorithm

where J is the Jacobian matrix. Then we can approximate:

F (θθθ + h) =
1

2
(y − f − Jh)T (y − f − Jh)

=
1

2

[
(y − f)T (y − f)− (y − f)T Jh + hTJTJh

]
.

(2.47)

Here, we introduce a non-negative damping parameter µ and solve

h = arg min
h

[
F (θθθ + h) +

1

2
µhTh

]
(2.48)

by forcing its partial derivative w.r.t. h equal to zero:

JT (y − f)− JTJh− µh = 0, (2.49)

(
JTJ + µI

)
h = (H + µI)h = JT (y − f) , (2.50)

where I is the identity matrix. The damping factor’s functionalities include:

• to µ > 0, the matrix (H + µI) is positive-definite;

• when µ is large, the case matches the gradient descent. The iteration converges fast

when it is relatively far from the final solution;

• when µ is small, the case matches Gauss–Newton algorithm. It leads to a quadratic

rate of convergence when the iteration is close to the final solution.

In short, Levenberg–Marquardt algorithm combines the strengths of gradient descent

and Gauss–Newton algorithms. Later we use it to optimize our calibrated parameters (see

also Section 4.5.2.4).

32

3. System

As is stated in Section 2.1, the AR rendering involves multiple coordinate systems, i.e. the

3D world (W), viewpoint (V), HUD-FOV (H) and driver camera (D) spaces, as well as

the 2D virtual image space (I). The parametric part of calibration includes determining

the transformations between the above 3D reference frames and the 3D–2D perspective

projection. Since the viewpoint space, the HUD-FOV space, and the virtual image vary

with the viewpoint position, the calibration has to consider multiple viewpoints. These

coordinate systems are, indeed, specified by the pose of sensors in actual experiments.

Therefore, this chapter describes our AR-HUD system, especially those involving hard-

ware devices with their connections and the software modules. Some hardware devices are

the same as in vehicles, while others are for setups in our laboratory environment. They in-

clude multiple real and virtual sensors, and reflective interfaces. Section 3.1 introduces our

3D sensor, i.e. a stereo camera for detecting calibration targets or environmental graphic

features. The following Section 3.2 details the selection of eye box and the mounting for

our calibration cameras. Next, we focus on the AR-HUD projector and its image genera-

tion principles in Section 3.3, while Section 3.4 introduces the virtual and real calibration

cameras that observe virtual images at viewpoints. Section 3.5 presents the windshield

for an AR-HUD system and its characteristics for image reflection. We depict the driver

camera in Section 3.6, which tracks the viewpoint live. Lastly, we illustrate the software

modules in Section 3.7, which are responsible for controlling hardware devices, detection

and data processing.

3.1 3D Sensor

For an AR-HUD, we need an extra 3D sensor that provides information about the real-

time forward scene because we want virtual objects to overlap with the real ones. Such is

the immersive effect in the driver’s view, as is introduced in Section 1.1. As is illustrated

in Figure 2.1, the 3D sensor is usually embedded behind the windscreen or fixed on top of

the vehicle. It detects real objects in the frontal environment and returns their positions

in the world space W . Without loss of generality, it can be a stereo camera, a LiDAR, an

RGB-D camera or other devices with an adequate 3D sensing capability.

Figure 3.1 shows a stereo camera (Stereolabs ZED) that we exploit as the 3D sensor. It

is a passive optical sensor that only receives but does not emit photons. The stereo camera

works in the way of human eyes based on the stereo vision principles in Section 2.5. It has

two identically designed monocular cameras whose optical axes are oriented in parallel and

whose optical centers are separated horizontally by a baseline distance BZED = 120 mm.

When a 3D position P to augment is detected, its projection pi in the virtual image Ii is

calculated using the calibrated or interpolated parameters relating to the current viewpoint

Vi. Then the corresponding pixel in the PGU is “switched on”. Thereby, the automotive

AR-HUD has augmented the real-world objects with virtual ones. We also employ a second

ZED stereo camera as the driver camera, as is detailed in Section 3.6.

33

3.2. Eye Box

Figure 3.1: A ZED stereo camera that serves as our 3D sensor in the AR-HUD system.
Another such camera serves as the driver camera. Note that the left and right
eyes are marked inversely because the two mono-cameras are facing out.

3.2 Eye Box

Theoretically, we have to enumerate all possible viewpoints to ensure the completeness

of calibration considering drivers’ various heights and head motions. Both the height

distribution and the head motion appear randomly within reasonable intervals. However,

it is impractical to include all these viewpoints because there are countless ones. Therefore,

our strategy is to define an “eye box” in which the viewpoints frequently appear. A cubic

eye box is sketched in Figure 2.3 as the example. Nonetheless, the viewpoint sampling

inside the eye box is also crucial for calibration implementation. Suppose that we have an

eye box of 100 mm× 100 mm× 100 mm, if our sampling step is 5 mm on each orthogonal

axis, then we have 213 = 9261 different viewpoints. In this case, even if the calibration

at a single viewpoint takes only 5 s, a complete calibration will take more than half a day.

This time consumption is intolerable in the automotive industry and especially for manual

implementation, which will bring too massive a burden to human labor. Therefore, we have

to sample fewer viewpoints and develop a robust estimation for calibration parameters at

other uninvolved ones while sacrificing the accuracy or robustness as little as possible.

As a result, we select several viewpoints inside the eye box as the train set, at which we

complete the calibration. For an uncomplicated scenario, these discrete viewpoints should

be evenly distributed. Afterward, we can readily compute the calibration parameters at

any non-participating viewpoint using interpolation. Practically, our eye box is a 2D

rectangular area lying within the Y WZW –plane. We ignore the displacement along XW –

axis because it has little effect on the final augmenting due to limited opening angles of

the HUD-FOV [23], [24]. This empirical consideration is also validated by our simulation

results in Section 5.2.5. An example of eye box is plotted in Figure 3.2 (a). The 80 mm×
60 mm rectangle includes 9 train and 16 test viewpoints. The train viewpoints are mainly

used for initial calibration and validation (sometimes also for evaluation), while the test

ones are employed for the evaluation phase, which will be detailed in Section 4.1.

34

3.3. HUD Projector

(a) Eye box. (b) Moving stage.

Figure 3.2: A 2D eye box (a) with 9 train (red circle) and 16 test (blue rings) viewpoints,
and a moving stage (b) comprising two perpendicular linear axes along Y W –
and ZW –directions, respectively. A smartphone is fixed on the stage, whose
camera faces out. ∆Y W and ∆ZW represent some offsets.

3.3 HUD Projector

In this part, we first demonstrate the structure of our AR-HUD projector box. Then, we

state some particular requirements on the projector’s design and the trade-offs. They are

directly or indirectly related to our thoughts on the calibration. Moreover, we give a brief

introduction of the popular applied display technology for AR-HUDs, i.e. digital light

processing (DLP).

3.3.1 Structure

Figure 3.3 illustrates the basic schematic of an AR-HUD projector box, which comprises a

light source, i.e. a PGU, some aspherical reflective mirrors, a glare trap and a light trap.

Images are generated from the PGU and bounced by the mirrors. The projected light goes

through the HUD box’s glare trap and reaches the windshield’s inner surface, followed by a

final reflection towards the driver’s eyes. Notice that when the driver’s pose is unchanged,

the optical path from each pixel to the driver’s single eye is fixed. Regardless of the

secondary reflection from the windshield’s outer surface, each optical ray corresponds to a

reflection point onside the windshield’s inner surface, as is already marked in Figure 2.1.

The light trap is deployed close to the glare trap, serving as the exiting window for the

reflected sunlight.

3.3.2 Requirement & Compromise

The HUD projector is the hardware module where images are generated and projected

upward to the windshield. Non-AR-HUD projectors are generally featured a relatively

compact volume (e.g. 5 L), a narrow FOV (e.g. 8° horizontal and 3° vertical) and short

focal lengths (e.g. 2 m) [55], because they only provide drivers static information, as is

introduced in Section 1.1. On the contrary, since an AR-HUD projector transmits images

35

3.3. HUD Projector

Figure 3.3: Structure of an automotive AR-HUD projector box, which contains a light-
source (PGU), aspherical mirrors, a glare trap and a light trap.

that are immersive in the real world, it should be designed with a more expanded FOV

to cover the street scene, as well as a longer focal length (e.g. ≥ 10 m) to make virtual

objects closer to real ones, which reduces the accommodation requirement on drivers’ eyes.

Indeed, the larger its FOV is, the more useful immersive information it can deliver and

the higher replacement ability the AR-HUD has versus the dashboard screen. According

to some investigation, to fulfill the rendering of virtual objects in both urban and highway

traffic, an AR-HUD should have a FOV broader than 20°×20° and a minimum focal length

of 30 m [55]. Nonetheless, to our best knowledge, automotive AR-HUDs with such a large

FOV and a focal length are still under development.

Therefore, the systematical designs for AR-HUDs are much harsher than for non-

AR-HUDs. There are more technical requirements than for non-AR-HUDs. For example,

since the projector box is embedded in the car’s dash, a trade-off appears between its

volume and the FOV: an AR-HUD projector can occupy up to 20 L [55]. Such a much

larger volume brings a challenge for organizing the available space in the dash. Meanwhile,

people should concern additional issues, such as power consumption, heat management,

costs, solar load, and mechanical stability. Though some new types of AR-HUDs, e.g.

holographic waveguide-based AR-HUDs, can save lots of space, they are still, at this

moment, not yet available for mass production or extensive use. The larger volume of an

AR-HUD also brings more requirements for the windshield. For example, in some AR-

HUD systems, there is a film filter or a wedge layer [62] inserted between the windshield

glass layers (see also Section 3.5). Such a mechanism is employed to suppress the secondary

optical reflection from the windshield’s outer surface. This intermediary layer has to be

sizable enough to cover the entire FOV, bringing extra windshield production costs.

36

3.3. HUD Projector

3.3.3 Digital Light Processing

Presently, the most prevalent display technology for AR-HUDs is the DLP. This technol-

ogy’s core is its microelectromechanical system (MEMS) device, i.e. a dense semiconductor-

based array of fast responding reflective digital light switches. Therefore, this MEMS

chipset is also named as digital micromirror device (DMD), whose pitch size is usually not

larger than 5.4 µm.1 As is illustrated in Figure 3.4, the homogeneous unmodulated inci-

dent light is digitally modulated on the reflective DMD and then projected to the user via

later-stage optics. Alternatively speaking, the modulation occurs not directly in the initial

light source but in the semiconductor-based optical reflector. Only after this modulation,

the projected light carries information for the driver. The micromirrors can be rapidly

turned on or off (e.g. 60 Hz), which follow the on-off ratio in the electrical modulation

signal. Usually, the micromirror array size adapts to the resolution of projected images,

such as 800× 600, 1024× 768, or even 1920× 1080 (Full HD) pixels.

Projectors based on DLP have demonstrated many advantages compared to those

adopting other technologies, e.g. liquid-crystal display (LCD) [63]:

• Since the modulation happens on the DMD, both the optical efficiency at pixels and

their brightness are enhanced;

• Because DLP is based on the reflection from the DMD, whose chipset can be cooled

rather uncomplicatedly by the help of a substrate, it supports the use of bright

illumination sources, such as high-power lamps or lasers;

• A DLP projector is a bidirectional digital device that receives the input signal (mod-

ulation) and returns the output signal both in digital form, which guarantees the

image quality and stability.

Figure 3.4: Schematic of a DLP array. The homogeneous unmodulated incident light is
modulated on thousands of micromirrors by the digital input electrical signals
before its digital output is projected to the receiver.

1https://www.ti.com/product/DLP3310, Retrieved 2020-05-24.

37

https://www.ti.com/product/DLP3310

3.4. Monocular Calibration Cameras

3.4 Monocular Calibration Cameras

In our calibration, we can place a virtual or real calibration camera at the viewpoint to

observe the target, frontal scene and virtual images. It collects 2D information in the

virtual image space I or helps reconstruct 3D geometry in the world space W .

3.4.1 Virtual Calibration Camera

The former option is named virtual because it is, indeed, one of the operator’s eyes. Note

the left and right eyes have an overlapping binocular FOV, as is illustrated in Figure 3.5.

In the manual calibration approach with human eyes (see Section 4.4.1.1), we calibrate

our AR-HUDs using one of the two pupils while the other maintains closed or blocked.

The purpose is to avoid double perceptions in human stereo vision when the operator

observes the virtual image. Hence, the virtual camera in our calibration is kept monocular.

However, drivers’ both eyes are open when they are driving. Therefore in the AR rendering

using a calibrated AR-HUD, the middle point between the driver’s pupils is recognized as

the viewpoint, as is interpreted in Section 2.4.

Figure 3.5: Schematic of human binocular vision, including two individual monocular
FOVs and their overlapping FOV.

3.4.2 Real Calibration Camera

At the viewpoint, a real monocular calibration camera collects real-time images or videos

so that we can reduce the human labor in the manual calibration or directly apply various

fast image processing techniques in the automatic calibration pipeline. It can be either

a monocular camera [10], [16], [24], [27] or a stereo camera [18]. There is, however, a

few requirements in selecting the calibration camera. First of all, it should have enough

high resolution, e.g. Full HD resolution, otherwise the feature points on the target (e.g.

chessboard corners) or in the forward scene (e.g. inherent keypoints), or rendered virtual

points can be unclear in the captured pictures, which may bring inconvenience for the image

38

3.5. Windshield

processing at later stages. Secondly, it is recommended that the camera is connected (e.g.

wireless via a virtual IP address or via a cable) to a computer so that the photos or clips are

readily accessible. This can significantly enhance the efficiency of running the experiment;

otherwise, the camera might have to be removed from the mounting and then carefully

repositioned after we derive the data. Thirdly, those cameras with strong lens distortion

should be excluded from selection, e.g. fish-eye cameras, since they require extra efforts

in rectifying the severely distorted images.

Therefore, we use a consumer-grade smartphone camera (Huawei P10 Lite or Apple

iPhone 7 Plus) to take photos at viewpoints. The camera is connected to a computer

(Lenovo P50) wirelessly via some webcam apps2 3 so that we can observe the captured

live photos and video stream. We mount the camera on a moving stage consisting of

two motorized linear axes (Physik Instrumente M-414) to sweep different viewpoints. The

stage, as is shown in Figure 3.2 (b), can move both fast (100 mm/s) and precisely (0.5 µm

resolution) under home-made controlling program. In the preparation phase of calibration,

we will first pre-calibrate the smartphone camera to obtain its intrinsic matrix (like K in

Eq. (2.8)) and distortion coefficients, and use them to rectify the captured photos. We

also utilize these data to estimate the intrinsic and extrinsic parameters of our AR-HUD.

3.5 Windshield

The windshield of a vehicle with HUD should be specially designed and manufactured

to mitigate the harmful double reflection. As is shown in Figure 3.6 (a–b), when the

HUD projects images upwards to the windshield, the first reflection happens on its inner

surface, forming the chief virtual image; the second reflection comes from refraction into

the windshield glass, a reflection on its outer surface, and then backward refraction towards

out of the glass, forming the fuzzy “ghost” image [11]. Both reflections obey the laws in

Section 2.3. On the one hand, an incident optical ray is split as two output rays, which do

not superimpose each other spatially; on the other hand, the driver receives two separate

rays from the same pixel in the PGU.

There are three prevalent solutions to this double reflection problem. The first is to

attach a dark film in the windshield to block the second reflection partially. However,

this approach faces the risk of lowering the windshield’s transparency, resulting in safety

issues for the drivers. The second is to use a wedge-formed intermediate layer [64], [65] or

doublet glasses [66] to make the two reflected images close to each other (Figure 3.6 (c–d)),

or to split the secondary image far beyond the first one. The last approach is to use a

thin-film beam splitter [67] made of polyethylene propylene (PEP) substrate and specially

coated with a multilayer, which should guarantee a nearly constant reflectance over the

visible spectrum. This can mitigate the influence of double reflection while reaching a

transmittance ≥ 70% [62]. However, all these solutions bring extra costs for the design

2https://play.google.com/store/apps/details?id=com.pas.webcam.pro&hl=de, Retrieved 2020-05-
24.

3https://apps.apple.com/de/app/epoccam-webcam-for-mac-and-pc/id449133483, Retrieved 2020-05-
24.

39

https://play.google.com/store/apps/details?id=com.pas.webcam.pro&hl=de
https://apps.apple.com/de/app/epoccam-webcam-for-mac-and-pc/id449133483

3.6. Driver Camera

and production of the windscreen. Particularly the second solution should perfectly match

the geometric optical characteristics of the HUD projector.

In our laboratory and on-vehicle experiments, the employed windshields are adaptively

designed for our HUD projector box. Therefore, the second reflection is significantly

suppressed, as is earlier demonstrated in Figure 2.13.

(a) Two optical rays from the same pixel
in PGU reach driver’s sight, forming the

separate chief and ghost images.

(b) Illustration of unmatched chief and
secondary images. Note that the latter is
upward shifted compared to the former.

(c) A wedge angle in the windshield forces
overlapping of optical rays.

(d) Illustration of matched chief and
secondary images.

Figure 3.6: Double reflection in an AR-HUD system (a–b), which occurs on the inner
and outer surfaces of the windshield. It can be mitigated using a wedge-form
windshield (c–d). PVB: polyvinyl butyral.

3.6 Driver Camera

An in-vehicle driver camera, or rather, head tracker, recognizes the human face and detects

the driver’s eye positions. It can be an RGB-D camera [68] or a stereo camera [69]. It has

various applications in modern vehicles. An example is to monitor the driver’s attention

in case of drowsy driving. It can also help in the calibrations of the driver’s seat, the

rear-view and side mirrors, and the steering wheel. In principle, the driver camera has its

own coordinate system, i.e. the driver camera space D mentioned in Section 2.1.5. If it is

pre-aligned to the 3D sensor, it can also track the viewpoint in the world space W .

Throughout our pipeline, we use a second stereo camera (Stereolabs ZED) as the

driver camera. We program it diversely so that in the manual AR-HUD calibration scheme

with human eyes, it can recognize the operator’s facial features and find the opening eye,

which is shown in Figure 3.7; in the implementations with a real calibration camera, the

40

3.7. Software

driver camera can monitor its real-time position. In the consequent AR rendering, the

driver camera first returns the real-time viewpoint to the computer. Then accordingly,

view-related parameters, e.g. extrinsic matrix THiW in Eq. (2.7), are substituted into

the pinhole model (Eq. (2.5)) to project 3D positions in the world W to 2D pixels in the

virtual image Ii, followed by a distortion correction step.

(a) Feature points on a face profile, with
Point 34 circled.

(b) A human face picture on which Point
34 is recognized and marked red.

Figure 3.7: Face recognition by our programmed ZED stereo camera as the driver camera.
There are 68 feature points4 (a) detectable on a human face, one of which is
marked on a human face photo (b).

However, if the driver camera is not accurately calibrated or aligned with the world

space W , there exist biases in the acquired viewpoint position. Consequently, the cal-

culated projection parameters are biased, which will lead to wrongly positioned virtual

objects. Therefore, in Section 4.2, we will introduce a calibration method for the driver

camera using the AR-HUD calibration results.

3.7 Software

Our software part consists of three sub-modules: controlling module, detection module and

data processing module. Their specific duties are also detailed in Chapter 4, combining

our concrete calibration schemes.

The controlling part is responsible for arranging related hardware and software com-

ponents to run the calibration experiment. It organizes the initial calibration, validation,

and evaluation phases in the entire calibration pipeline (see Section 4.1). Its tasks can be

categorized as follows:

1. rendering calibration target pattern on an external screen;

2. changing the viewpoint position by controlling the moving stage for the calibration

camera;

4Sub-figure (a) is adapted using the picture in GitHub: https://github.com/raviranjan0309/Detect

-Facial-Features, Retrieved 2018-07-18.

41

https://github.com/raviranjan0309/Detect-Facial-Features
https://github.com/raviranjan0309/Detect-Facial-Features

3.7. Software

3. rendering of virtual images via the HUD, including the boundary of HUD-FOV and

virtual point arrays;

4. support manual and automatic shifting of virtual points to their corresponding 3D

control points;

5. interacting with the operator.

The detection part is responsible for various detection tasks. It supports:

1. target and feature point detection via our 1st ZED stereo camera (3D sensor);

2. viewpoint tracking via our 2nd ZED stereo camera (driver camera);

3. virtual point and HUD-FOV boundary detection via our smartphone camera (cali-

bration camera);

4. interacting with the operator.

The data processing part is not directly connected to the sensors or other hardware devices.

It receives data collected by the detection module and solve the unknown quantities that

we want. Therefore, its tasks include:

1. solving linear perspective projection (pinhole camera) model and nonlinear distortion

model using 2D–3D correspondences between the virtual image and world spaces at

the selected viewpoints;

2. finish interpolation for other non-participating viewpoints;

3. acquiring the transformation from driver camera to world space using 3D–3D corre-

spondences;

4. calculating reprojection in the validation phase and projection in the evaluation

phase;

5. interacting with the operator.

Thus, we summarize the above three software modules in the following Figure 3.8. They

are developed using our home-made Python (Release 3.7.0) and C++ code.

42

3.7. Software

(a) Controlling module.

(b) Detection module.

(c) Data processing module.

Figure 3.8: Software modules for controlling (a), detection (b) and data processing (c),
respectively. corr.: correspondence(s); proj.: projection.

43

4. Methods

In this chapter, we explain our calibration methods in detail with their evolution. We

first propose a general pipeline that outlines the essential calibration phases in Section 4.1,

including the initial calibration, validation, and evaluation. The following Section 4.2

interpret our approach for driver camera calibration using the acquired extrinsic matrices.

Next, we focus on the 3D sensing in Section 4.3, which is a crucial procedure in each

calibration method. It involves the detection using a pre-designed target, as well as using

inherent feature points from the environment. In Section 4.4, we depict the manual and

automatic implementations, namely, evolution according to participation of human labor.

At the end of this chapter, i.e. Section 4.5, we will demonstrate various experimental

schemes under the automatic calibration concept.

4.1 General Pipeline

As is shown in Figure 4.1, an entire calibration pipeline includes three stages, i.e. initial

calibration, validation, and evaluation. The detected 3D control points can be categorized

into three groups, i.e. the “train”, “validation” and “test” sets. Furthermore, the detected

or projected corresponding 2D virtual points are also classified into these three groups

accordingly. The three terminologies frequently appear in machine learning, while we use

them here for a better understanding of different procedures in the calibration.

We shall finish the above three phases in the laboratory environment to examine the

whole calibration concept. Comprehensive statistics are also based on such completeness

and presented later in Chapter 5. However, for simplicity, we can skip the validation phase

and directly enter the evaluation because the latter can be recognized as a higher level of

validation. When our calibration approaches are proven effective and finally introduced to

the actual automobile industry, only the initial calibration is required on the production

line or in workshops, concerning the time-efficiency and workload.

Notably, this general pipeline is not rigid: some blocks in Figure 4.1 can be rearranged

or replaced according to concrete calibration schemes. Such flexibility is later demonstrated

in the automatic implementations in Section 4.5.

4.1.1 Pre-caliabration of Sensors

We must first pre-calibrate the connected sensors to guarantee the precision of detections

before starting the AR-HUD calibration. This is particularly important for all the partici-

pating cameras because their residual optical distortion can damage our 3D reconstruction

results or 2D detection based on captured pictures. Though for some employed sensors,

e.g. the ZED stereo cameras, we can download their calibration files from the manufactur-

ers’ website by typing in their serial numbers1, we still calibrate them again because of the

different application environments. We pre-calibrate the following three camera systems:

1https://www.stereolabs.com/developers/calib, Retrieved 2020-03-06.

45

https://www.stereolabs.com/developers/calib

4.1. General Pipeline

(a) Initial calibration.

(b) Validation phase.

(c) Evaluation phase.

Figure 4.1: An entire calibration pipeline consists of three phases: initial calibration (a),
validation (b), and evaluation (c). Different colors label different data types:
blue for 3D positions, orange for 2D positions, magenta for relevant parameters,
and green for operations.

46

4.1. General Pipeline

• the first ZED camera that serves as the 3D sensor;

• the second ZED camera that serves as the driver camera;

• the smartphone camera that serves as the calibration camera at viewpoints.

The parameters that we shall calibrate include:

• the focal lengths (fx for horizontal and fy for vertical) in pixel and principal points

[x0, y0]T ;

• the distortion coefficients, such as those for radial (ki) distortions;

• the transformation matrices TWWR
from the right-eye (where we define a “right-eye”

world space WR) to the left-eye cameras (where we define the world space W as

the standard) of the ZED stereo cameras, which contain the information of baselines

BZED.

To unify pictures’ quality, we denote that all the participating cameras run under

the Full HD resolution. We apply a conventional monocular camera calibration algorithm

[13] to calibrate all the single cameras, and the absolute orientation algorithm in [70] to

further calibrate the transformations TWWR
. Note that this “right-world” space WR is

defined similarly to the world space W , whose origin is yet at the ZED camera’s right eye.

Accordingly, we print an A4 paper filled with a 10×15 chessboard pattern as the calibration

target, which contains a 9× 14 grid of corners. Indeed, this target is what we use later in

Section 4.5.2. Alternatively, paper or films of other sizes or designs can also be exploited

as long as they have enough recognizable feature points. After the pre-calibration, we

acquire all the above-stated focal lengths and the baselines, and the distortion coefficients

that we use to rectify captured photos in the following steps.

4.1.2 Initial Calibration

In the initial calibration, our main task is to solve the relevant unknown parameters, e.g.

the intrinsic matrix K and extrinsic matrix TViW of the pinhole camera model in Eq. (2.5)–

(2.9). We first manage to estimate the intrinsic parameters, especially the focal lengths in

pixel, i.e. fu and fv in Eq. (2.8). Then we calibrate the view-dependent extrinsic matrices

by obtaining 2D–3D correspondences at the selected train viewpoints Vi,tr in the eye box.

For a clear description, we take the operation at a single viewpoint Vi,tr as an example.

We first employ the 3D sensor to detect specific train control points Pj,tr from a calibration

target or the scene ahead of the windshield. In the practical implementation, these control

points can stay invariant and be reused when the viewpoint changes. Next, we have to

find their corresponding 2D points pij,tr on the HUD virtual image Ii. Note that the pixel

positions of these virtual points change with the viewpoint. Alternatively, we can also

first display some known 2D virtual points and then reconstruct their corresponding 3D

control points. Till now, we have acquired a group of 2D–3D correspondences, with which

we achieve the parameters for the pinhole camera model, e.g. by using PnP algorithms.

These parameters will be validated and evaluated in the next two phases.

47

4.1. General Pipeline

4.1.3 Validation

Unlike the typical machine learning process, the validation does not require new control

points. Instead, we can directly exploit those 3D control points Pj,tr from the train set

as the validation set. In other words, we do not have to change the scene or move the

target after the initial calibration. We project these control points onto the virtual image

using the above-solved calibration parameters and obtain the 2D virtual points pij,va as

the validation set. Their pixel positions shall be compared with those pij,tr from the train

set since they are related to the same 3D control points Pj,tr. Ideally, there should be no

displacement from these pij,va to pij,tr.

However, even if we assume no detection errors in 3D and 2D sensors, a certain

amount of residual errors will appear due to the optical distortion. If the errors fall into a

tolerable interval, the calibrated parameters are validated for the control points Pj,tr from

the train set. Thus, another important task in the validation phase is to extract distortion

parameters, which can compensate for the optical distortion in both the evaluation and

the future augmented rendering. The extraction usually makes use of the above mentioned

projection errors between pij,tr and pij,va. In our implementations, we use the concept of

warping maps that we introduced in Section 2.9.2.

Nevertheless, this validation cannot guarantee a precise augmentation across the entire

HUD-FOV. There are several reasons behind this. First of all, the control points have not

been updated. Put differently, only the augmentation at these given 3D positions Pj,tr

are safe, whereas that at other positions may suffer a potential underfitting. Sometimes

the validation demonstrates an averaged projection error of only a few pixels, but the

evaluation goes far beyond a reasonable tolerance, ascribed to incompatible algorithms

and target configurations. For example, when we have a planar target at a single pose

in the initial calibration, using non-coplanar calibration algorithms, e.g. direct linear

transformation (DLT) [37] or PnP algorithm [44], will lead to such a failure. Another tricky

scenario appears when in the driver’s view, new 3D positions or the test control points

Pj,te are spatially collinear with those Pj,tr in the train set, as is shown in Figure 4.2 (a).

In this case, the two sets fall on the same optical rays that depart from the viewpoint.

The evaluation’s projection errors can be tiny, but the calibration remains incomplete

because the evaluation only involves the same optical rays as in the initial calibration and

validation phases. At last, only the train viewpoints Vi,tr are involved till the validation

phase, which is only a finite, limited part of the eye box. The further evaluation step at

test viewpoints Vi,te is required for complete proof of the calibration results.

4.1.4 Evaluation

A careful evaluation is necessary for a full examination of any calibration method. Nonethe-

less, we are unable to evaluate the calibration parameters using all the existing real-world

positions inside the HUD-FOV because there are infinitely many to sample, even for a

HUD-FOV with small opening angles. Therefore, a practical compromise is to select test

control points Pj,te that are non-collinear with those Pj,tr from the train set, as is sketched

48

4.2. Multiple Viewpoints & Driver Camera Calibration

in Figure 4.2 (b). Hence, we can move the calibration target to another distance or pose

to fulfill this condition in the implementation. Other similar measures are not exclusive.

In the evaluation phase at a train viewpoint Vi,tr, we project the test control points

Pj,te onto the virtual image Ii using the calibration parameters acquired from the initial

calibration. If and only if the projected virtual points p̂ij,te overlap the test control points

within a tolerable error range, we can conclude that our calibration is precise for the given

Vi,tr. Concerning multiple viewpoints inside the eye box, we should repeat the evaluation

at those test viewpoints Vi,te. The corresponding extrinsic matrices and distortion models

are obtained using interpolation. So far, a complete calibration of an automotive AR-HUD

has been finished.

(a) Collinear case. (b) Non-collinear case.

Figure 4.2: collinear (a) and non-collinear (b) evaluations. Red circles: selected 3D control
points Pj,tr in the initial calibration and validation phases; blue circles: control
points Pj,te in the evaluation phase. In the collinear case, the train and test
control points share the same optical rays (orange) starting from the viewpoint,
whereas, in the non-collinear case, they are distributed on different rays.

4.2 Multiple Viewpoints & Driver Camera Calibration

After completing the initial calibration at all the train viewpoints Vi,tr, we can further finish

a driver camera calibration. The calibration is, indeed, an optional step in our pipeline.

Usually, the relative pose between the driver camera space D and the world space W is

pre-aligned by the vehicle manufacturer or recalibrated independently. Here, we introduce

another undemanding calibration approach for the driver camera, which is integrated into

the AR-HUD calibration as a by-product. From the initially calibrated extrinsic matrix

THiW in Eq. (2.9), we can restore the 3D positions of these train viewpoints in the world

49

4.3. Objects for 3D Sensing

space W , denoted as PW
Vi,tr

:

PW
Vi,tr =

XW

Vi,tr

Y W
Vi,tr

ZW
Vi,tr

1

 = T−1
HiW

0

0

0

1

 =

[
RHiW tHiW

0 1

]−1

0

0

0

1

 . (4.1)

Meanwhile, we also read these viewpoints through the driver camera, denoted as PD
Vi,tr

.

Then using the absolute orientation algorithm [70], we can solve the transformation TWD

from the driver camera space D to the world space W . Thus, the inherent coordinate

system of the driver camera is aligned with the defined world space.

4.3 Objects for 3D Sensing

Generally, a primary task for calibration work is to select a reasonable calibration target

or reference objects and then recover the positional information. In our concept, we shall

make sure that enough control points are available for the 3D sensor to detect. The required

minimum number of control points usually depends on the adopted calibration algorithms.

For example, if we use the PnP algorithms under the pinhole model assumption, then we

need at least three control points (P3P) [71]. Though in our target-free calibration method

(see also Section 4.5), we employ inherent feature points from the frontal scene instead

of any calibration target, the requirement on 3D sensing quality becomes even higher

because we have no preknowledge of their geometry. In any case, accurate 3D sensing

is an essential prerequisite for our calibration work; otherwise, there will be offsets or

non-recoverable deviations in the calculated calibration parameters.

Thus, we interpret the two approaches that we will apply to fulfill the 3D detection

requirement. The first option is to use a manually designed calibration target, e.g. a

chessboard shown in Figure 4.3 (a). We can customize various features or markers for

3D detection, which adapt to the specific experimental environment. Furthermore, we are

already aware of the geometric information while designing it, bringing useful constraints

in the calculation. There have been many different kinds of such targets in the previous

literature on camera calibration, such as a board with chessboard pattern [13] or concentric

circles [72]. The advantage of using a specially made calibration target is that accurate 3D

sensing can be realized through brilliant design. Nonetheless, it brings extra cost when the

target is made of high-quality but expensive material or when it needs to be updated. This

requires supports inside a factory or workshop, which also means a challenge for drivers

to calibrate the AR-HUDs themselves.

As mentioned above, the second approach is to directly extract available features from

the surrounding environment, i.e. the real scene in front of the windshield. Figure 4.3 (b)

shows such a picture in our laboratory, on which our home-made SIFT-based program

automatically discovers the feature points. This method often relies more on the accuracy

of the 3D sensor and requires specific algorithms to reconstruct the spatial information.

50

4.4. Evolution of Implementation

For our case, we only need to reconstruct a static background because the calibration

is offline. The most significant advantage of this approach is that customers themselves

can also implement this target-free calibration routine. That means they do not have

to visit a workshop or factory when they found their AR rendering biased or distorted.

Indeed, this should be built upon robustly developed user interfaces, connections, and

relevant application software in the vehicle. Though this approach escapes the costs of

specific calibration targets, its accuracy may be influenced by many other factors because

it is based on advanced image processing techniques, e.g. 3D reconstruction or feature

extraction. Frequently encountered unfavorable conditions include adverse illumination,

the scarcity of extractable features, and stereo matching errors.

(a) Chessboard standing in the laboratory. (b) Marked frontal scene in the laboratory.

Figure 4.3: Different objects for 3D sensing: a 7×12 chessboard pattern with 6×11 corners
(a) printed on a sizable paper and a frontal scene (b) in the lab marked with
extracted feature points (red circles).

4.4 Evolution of Implementation

According to the extent of the human labor that participates in acquiring 2D–3D cor-

respondences to solve the view-dependent extrinsic matrices THiW , we categorize our

implementation into two sorts: manual and automatic calibrations. Though we cannot

quantitatively estimate the proportion of the involving human labor, they differ from

each other apparently: the former relies on manual alignment between virtual and control

points to provide 2D–3D correspondences, while this procedure in the latter is completed

automatically using related image processing techniques.

The two sorts also reflect our experimental environment’s evolution - in the automatic

calibration, the remaining human labor is mostly for the preparation work. We assume

that the intrinsic matrix K in Eq. (2.8) is a preknowledge in the manual implementa-

tion; otherwise, its acquisition requires ad-hoc configurations of the calibration target or

a pre-calibrated driver camera relative to the world space W . The estimation of intrinsic

parameters is also detailed with automatic implementations in Section 4.5. Thus, we focus

on determining THiW in this section.

4.4.1 Manual Implementation

The manual implementation under our concept has two sub-forms: either we use a human

eye (virtual camera) to view the virtual image at the selected drivers’ viewpoint or use a

51

4.4. Evolution of Implementation

mounted monocular camera instead.

4.4.1.1 Using human eyes

The most straightforward manual implementation relies on the driver camera (head tracker),

which recognizes the operator’s face and returns the real-time position of his/her opening

eye for the calibration, as is shown in Figure 4.4. Thus, the operator sits behind the

windshield to observe the calibration target as well as the virtual image while keeping the

pose as a driver. A group of virtual points is rendered in the virtual image. When the

driver camera confirms that the eye has reached the selected viewpoint Vi under a rea-

sonable pre-defined tolerance (e.g. a spherical domain with a radius of 5 mm), it tells the

controlling software module that the operator’s pose is correct. Note that we have to set

such tolerance in case of head wobbling. Then the further calibration operation, such as

manual shifting of virtual points, will start. The operator employs a keyboard, a gamepad,

or another input device to move the virtual points to the detected control points within

his/her view. Such an interactive process is similar to some manual low-complexity cali-

bration methods for projectors [73]. In this way, we acquire the 2D–3D correspondences

for solving the extrinsic matrix THiW in Eq. (2.9).

The main advantage is that there is no need to develop pattern recognition algorithms

for the captured virtual points. This will save lots of effort in software integration and

potential costs for extra sensors or markers. However, this routine is extraordinarily la-

borious because the operator has to maintain the head pose all the time for each selected

viewpoint Vi. When the operator is relatively tall or short, even after adjusting the seat,

he/she may still have to bend or extend the body to reach the viewpoints. Moreover, the

operator cannot shift as many virtual points as desired, which will affect the accuracy of

our calibration results. Otherwise, the entire calibration takes hours, and the operator

endures too much workload and physiological discomfort. Empirically we collect only nine

2D–3D correspondences for each target distance, as detailed in Section 5.4. The accuracy

is also influenced by the setting of eye-tracking tolerance, though it is usually a few mil-

limeters. Indeed, there is an unignorable dilemma here: on the one hand, the larger the

interval is, the further the real eye position may be off the assigned viewpoint, which will

result in artificial errors in the final acquired calibration parameters; on the other hand,

the smaller the interval is, the harder it is for the operator to keep his/her pose, which

results in lots of burden for the human labor. It is recommended to use a stable head

mounting device, which yet leads to extra cost.

Here, we also give an empirical estimation to show that using human eyes for the

calibration is extremely time-consuming. Assuming we have:

• a 3× 3 rectangular grid of viewpoints inside a 2D eye box;

• 9 virtual-control point correspondences to align at each target distance;

• 2 different distances to place the calibration target;

• at least 20 s to finish each 2D–3D alignment;

52

4.4. Evolution of Implementation

then, the complete calibration takes nearly 1 h even without the evaluation phase. For the

workshop, this brings inconvenience because a worker has to calibrate several on-vehicle

AR-HUDs per day, and therefore such a routine is extraordinarily uncomfortable and

tedious.

Figure 4.4: Manual AR-HUD calibration using human eyes, where a prototype driver cam-
era is tracking the operator’s eye position. For explanation with a clear picture,
here, we display the real-time tracking result on a monitor. When the eye po-
sition falls to the selected viewpoint Vi within the pre-defined tolerance, the
white circle will overlap the inner red ring. In actual calibration, the tracking
result is shown to the operator directly via the HUD. When the eye position is
confirmed correct, the operator can start shifting the virtual points by hand.

4.4.1.2 Using a Camera

Another version of manual implementation is realized by replacing the human eye with a

monocular calibration camera, e.g. a smartphone camera or a webcam. As is shown in

Figure 4.5, the camera is placed on a mounting setup. It is connected to the laptop or a

monitor with a cable or wirelessly so that the operator can watch the real-time streaming

video while sitting beside the experimental setup. The calibration camera is labeled so

that our driver camera can trace its position under adapted programming. Compared

to the implementation using human eyes, the fear of losing the correct view is effectively

circumvented because the mounted camera stays stable at the selected viewpoint Vi. Thus,

it leads to less time-consumption, allowing the operator to employ more 2D–3D point

correspondences. For example, we can design a calibration target with a 4 × 7 grid of

control points and use the same number of virtual points.

4.4.2 Automatic Implementation

In the manual implementations, the shifting of 2D virtual points to align the 3D control

points is accomplished by human labor, even though we can use a calibration camera to

replace human eyes. Since the operator has to move the virtual points one by one, the

manual implementations restrict both the time efficiency and the amount of applicable 2D–

3D point correspondences. In workshops, we also have to be careful of fatigue resulting in

artificial errors and finally affecting the calibration accuracy. Besides, it is hard to extract

53

4.4. Evolution of Implementation

Figure 4.5: Manual AR-HUD calibration using a camera. In this instance, we use a tripod
and sliders to mount the calibration camera at a selected viewpoint Vi and
connect it to a monitor. The operator can shift the virtual points much more
comfortably and efficiently than directly using his/her eyes.

a precise distortion model using too few 2D–3D point correspondences. At a later stage,

we will investigate how the number of 2D–3D correspondences influences the calibration’s

performance (see Section 5.2.4).

In contrast, in the automatic implementation, we assign the task of moving virtual

points entirely to the controlling and detection software modules (Figure 3.8 (a–b)). In

other words, the operator does not have to care about the manual shifting of the virtual

points anymore. Our software can analyze the real-time video stream or captured pictures

from the calibration camera, and then automatically finish and confirm the alignment

between 2D virtual points and 3D control points all at once. For this purpose, we employ

some image processing techniques, such as contour detection to recognize virtual points’

centroids. We also intensively call some relevant functions from the OpenCV library

[44]. After a few iterative rounds, the virtual points will automatically superimpose the

detected 3D control points, as is shown in Figure 4.6. This approach is adopted later

in our automatic calibration scheme using a large chessboard target, as is detailed in

Section 4.5.1.

Alternatively, we can first display a grid of virtual points with known pixel positions

pij in the virtual image Ii, and then reconstruct their corresponding control points Pij

by calculating the connecting optical rays rij . We realize this thought later with the

calibration using a piece of patterned paper in Section 4.5.2 and the target-free calibration

in Section 4.5.3, respectively.

Compared to the manual implementation, the automatic approaches save much time

in running the experiment. As is stated before, it usually takes 20 s to finish aligning a

single virtual point manually when we calibrate our AR-HUD using human eyes, but the

automatic point shifting can align over a hundred virtual points within a few seconds.

54

4.5. Experimental Schemes

(a) A 7× 12 chessboard (6× 11 corners)
with an initially rendered 6× 11 virtual

point array.

(b) After automatic shifting of the virtual
points, all of them overlap the chessboard

corners.

Figure 4.6: Automatic AR-HUD calibration using a chessboard. Here the chessboard cor-
ners serve as the control points while the HUD renders the virtual points. Af-
ter automatic aligning, these virtual points are located precisely at the control
points.

That is why we can deploy many more 2D–3D point correspondences in the HUD-FOV.

The more such correspondences we have, the more accurate calibration parameters and

distortion models we expect to restore.

Nevertheless, the automatic calibration schemes are still not a perfect solution. The

performance of image processing techniques depends on the local environment, especially

the illumination condition. If the lighting is too bright, it is hard for our algorithm to rec-

ognize the virtual points; otherwise, the detection of calibration target or natural feature

points can be unstable if it is too dim. Hence, one should be careful of the illumination

condition in the preparation work. For different HUD types, some critical parameters in

the algorithm shall also be re-adapted, e.g. the brightness filter threshold. Moreover, not

each 2D–3D alignment is collected as accurately as that under the manual implementa-

tion because the automatically recognized centroids of the virtual points may deviate the

corresponding control point for a few pixels. Such a 2D recognition error is investigated

later in Section 5.2.3.

Table 4.1 compares our manual and automatic AR-HUD calibration implementations

empirically and qualitatively w.r.t. various aspects.

4.5 Experimental Schemes

In this section, we describe three examples of our latest developed automatic calibration

schemes in detail. The first is to use a relatively sizeable patterned board as the target,

which is placed in front of the windshield at several meters. The second one is to apply a

small sheet of patterned paper as the calibration target, which is laid onto the windshield’s

outer surface. The last example is a target-free implementation, where we rely no more on

any pre-designed calibration target but extract the inherent graphical features from the

frontal scene for 3D sensing.

All of them are finished using a smartphone as the calibration camera at viewpoints.

In principle, the manual routine can also be conducted under similar schemes, regardless

55

4.5. Experimental Schemes

Table 4.1: Comparison between manual and automatic implementations in several aspects.
Note that this comparison is qualitatively and based on our experience in the
laboratory environment.

Sort of implementation Manual Automatic

Image receiver Human eye or camera Camera

Sort of target Pre-designed target
Pre-designed target

or target-free

Intrinsic parameters Need preknowledge Estimated using pictures

Acquisition of
2D–3D correspondences

Manually aligned
Automatic aligned
or reconstructed

Number of 2D–3D
correspondences

< 30 > 100

Particular error sources
Tolerance of
eye position

Environmental factors,
e.g. illumination

Distortion correction Difficult Warping maps applicable

Accuracy of results
Restricted by number

of correspondences
Enhanced by larger

number of correspondences

Time efficiency Low High

of human workload. Note that we have completed all these schemes in a laboratory

environment. Nonetheless, we will later show their effectiveness with experimental results

in Chapter 5. We also have published these three methods as [24], [56], [57], respectively.

4.5.1 Calibration with a Chessboard Target

We first present a calibration method for AR-HUDs using a sizable chessboard and warp-

ing maps. The intrinsic matrix of HUD is estimated using a constructed stereo vision. By

automatically shifting 2D virtual points to 3D chessboard corners within the smartphone

camera’s view, we obtain 2D–3D correspondences and then compute view-dependent ex-

trinsic parameters. Using the obtained parameters, we reproject the chessboard corners

to the virtual image. Comparing the reprojected with ground truth virtual points, we

acquire 2D bias vectors, from which we reconstruct a series of warping maps for compen-

sating optical distortions. We further obtain the corresponding extrinsic parameters and

warping maps through interpolation for any other uninvolved viewpoint in the eye box.

Besides, we calibrate the driver camera by utilizing the acquired extrinsic parameters and

viewpoint tracking results.

4.5.1.1 Preparation

In this scheme, the chessboard pattern is placed in front of the windshield at different

distances to the viewpoints. It is shown on a 140 cm × 80 cm large screen (Samsung

UE65MU6199UXZG) with proper mounting devices. Generally, any other featured pattern

can also serve the same role. For simplicity and lower cost, we can also use a giant paper

chessboard instead, but using the screen is flexible to change the chessboard geometry.

56

4.5. Experimental Schemes

We adopt the conventional non-coplanar camera calibration algorithm to solve the

unknown parameters. This requires that not all the control points fall on/near a common

plane in the space. For this purpose, we set upright the chessboard to two sufficiently

different distances (approximately 3.0 m and 3.8 m to the ZED stereo camera) so that

the control points are distributed on different planes, as is sketched in Figure 4.7. More

than two distances are also applicable. The implementation consists of several steps in

sequence: estimation of the intrinsic matrix K, calibration of extrinsic matrices THiW at

the train viewpoints Vi,tr, calibration of driver camera, restoration of distortion characters,

and finally, interpolations for the test viewpoints Vi,te.

Figure 4.7: Configuration of two sufficiently separated planar chessboard targets, whose
corners form a group of non-coplanar 3D control points Pj . The two half-
transparent triangles illustrate the FOVs of 3D sensor and calibration camera,
respectively.

We define the origin of world space W at the optical center of the 3D sensor’s left

eye. At each distance, the chessboard is approximately parallel to the Y WZW –plane. We

adjust the chessboard design and its position at the nearer distance so that the control

points are roughly homogeneously distributed in the HUD-FOV. This is useful in obtaining

an unbiased warping map at a later stage. Although this tricky condition should also be

fulfilled at the farther distance, the screen size cannot fill out the HUD-FOV in this case.

The eye box is selected as an area in the Y WZW –plane, plotted in Figure 4.8. As is

stated in Section 3.2, the calibration is insensitive to the XW –component of viewpoints

when the HUD’s opening angles are small. Inside the eye box, we select a grid of 18

viewpoints as the train set, with 20 mm between neighboring ones. We also select 10

test viewpoints, at which we will evaluate our interpolation results. Usually, placing the

chessboard and mounting the smartphone camera takes less than 10 min. Before the next

steps, all the involving cameras, including the smartphone and stereo cameras, should be

pre-calibrated.

4.5.1.2 Estimation of Intrinsics

We estimate the intrinsic matrix K using a stereo method with the chessboard target.

As is shown in Figure 4.9 (a), by controlling the moving stage, we place the smartphone

camera sequentially at two viewpoints that are horizontally separated by a baseline dis-

tance of 120 mm. We take two pictures of a chessboard pattern displayed on the screen,

57

4.5. Experimental Schemes

Figure 4.8: The selected 2D eye box with 18 train (red circle) and 10 test (blue ring)
viewpoints on the Y WZW –plane. ∆Y W and ∆ZW represent the offsets on the
corresponding two axes.

respectively. Then we can acquire the depth dboard using triangulation from the stereo

vision. Meanwhile, since we have known the geometry of the chessboard and detected the

frame of virtual image (i.e. white frame in Figure 4.9 (b)), we can calculate the physical

width whud and height hhud of the HUD-FOV on the chessboard plane. In the end, we

estimate the horizontal (fu) and vertical (fv) focal lengths of our HUD using the following

equations:

(a) Constructed stereo vision to measure
the chessboard.

(b) Frame of virtual image (HUD-FOV’s
boundary) on the chessboard plane.

Figure 4.9: Estimation HUD’s focal lengths by constructing a stereo vision (a) to capture
a displayed chessboard pattern (b).

fu = dboard ·
umax

whud
, fv = dboard ·

vmax

hhud
, (4.2)

where umax × vmax denotes the virtual image’s resolution.

We assume that the principal point [u0, v0]T falls close to the image center, and

the HUD projector’s pixels are rectangular, as is in line with conventional designs of

automotive HUDs. That means in the intrinsic matrix K in Eq. 2.8, we have s = 0

58

4.5. Experimental Schemes

and [u0, v0]T = [umax/2, vmax/2]T . These approximations will be justified later with our

experimental results in Section 5.5.1. In general, other possible values are not excluded,

depending on the concrete design of the HUD optics or practical measurements.

4.5.1.3 Calibration of Extrinsics

We have two rounds for the two target positions, for which we utilize a 7× 12 chessboard

pattern with 6 × 11 corners as the control points. In each round, we detect the corners’

3D positions in the world space W and reuse them for every train viewpoint Vi,tr. The

respectively aligning 2D virtual points pij,tr are obtained as follows: we render a 6 × 11

grid of virtual points via the HUD and shift them automatically using the software that

is also connected to our smartphone camera. Finally, in the camera image, all the virtual

points overlap with the control points, as is shown above in Figure 4.6. After the two

rounds, we have 132 2D–3D correspondences at the two target distances for every Vi,tr.

Thus, the calibration of the extrinsic matrix THiW becomes a non-coplanar PnP problem,

which we solve using functions in the OpenCV library [44]. Then, we perform a driver

camera calibration according to the method in Section 4.2.

4.5.1.4 Validation & Warping Maps

As is stated in Section 2.9.2, for each train viewpoint Vi, we compute its corresponding

warping maps wi,∆u and wi,∆v from the validation phase. Since we have obtained the

intrinsic K and extrinsic matrix THiW , we project the 3D control points Pj onto the

virtual image Ii to acquire the reprojected virtual points pij,va. Then we compute the bias

vectors using the following equation analogous to Eq. (2.40):

vij,bias = [∆uij,rep,∆vij,rep]T = [uij,tr − uij,va, vij,tr − vij,va]T . (4.3)

Indeed, both groups of virtual points, i.e. pij,tr and pij,va, are already affected by the optical

distortion. Since the former is obtained from detection while the latter from calculated

reprojection, we regard pij,tr as ground truth. As we have assumed, the optical distortions

should vary smoothly within the virtual image Ii. Therefore, the warping map wi,∆u

and wi,∆v are differentiable at each inner pixel. Consequently, we reconstruct the whole

warping maps using bicubic interpolation with those bias vectors.

4.5.1.5 Interpolation among Viewpoints

An ideal AR-HUD calibration routine should be valid at not only the train viewpoints

Vi,tr, but also other non-participating ones inside the eye box. However, it is impractical

to repeat calibration measurements at all these countless viewpoints. Out of this concern,

we introduce our interpolation concept among viewpoints as a solution, which includes

two aspects: one is the interpolation for extrinsic matrix THiW , while the other is the

interpolation of warping maps wi,∆u and wi,∆v.

The raw interpolation of extrinsic matrices is accomplished as follows: after we finish

calibration for all the 18 train viewpoints, we use their corresponding RHiW and tHiW

59

4.5. Experimental Schemes

(see also Eq. 2.9) to interpolate the extrinsic parameters at a non-participating viewpoint

through bilinear interpolation. A convenient way to interpolate RHiW is first to convert

them to the rotation vectors rHiW , interpolate these vectors, and then convert the results

back to matrices.

We further obtain warping maps for non-participating viewpoints. Assuming that

warping maps change smoothly within the eye box, for any non-participating viewpoint,

we compute its warping maps through bilinear interpolation using those wi,∆u and wi,∆v

at the train viewpoints. Later for distortion correction in AR rendering, we can extract

the corresponding bias vector vij,bias from the warping maps and dewarp the projected

virtual image, as is interpreted in Section 2.9.2.

We apply these interpolation approaches later to evaluation steps at the test 10 view-

points Vi,te. Those relevant results are shown in Section 5.5.1.4.

4.5.1.6 Summary

The above AR-HUD calibration scheme employs a conventional sizable chessboard as the

target. It applies viewpoint-based interpolation and warping-map-based distortion cor-

rection. These new concepts in AR-HUD calibration circumvent extensive sampling on

hundreds of viewpoints in the polynomial-based calibration models [10], [18]. Meanwhile,

using the chessboard pattern and the smartphone, this scheme depends less on particular

components such as on-vehicle markers or textured cover in [10], or HoloLens glasses in

[18].

It is worthy to note that in our method, the chessboard should be designed appropri-

ately. Its corners should cover the HUD-FOV as densely and homogeneously as possible

so that the bicubic interpolation to generate warping maps is accurate enough, as is stated

in Section 2.8. Even then, setting a proper target pattern for the full HUD-FOV requires

a flexible yet stable mounting, which may result in extra labor and costs. Indeed, the

chessboard’s dimension is also dependent on the distances where it stands. For a fixed

distance, the larger the HUD-FOV is, the larger the chessboard should be; for a fixed

HUD-FOV, the larger the distances are, the larger the chessboard should be.

4.5.2 Calibration with Patterned Paper

To avoid using a sizable calibration target, we propose here a low-complexity yet accurate

calibration scheme using only a small sheet of printed patterned paper as the target, which

is laid directly on the windscreen. The full HUD-FOV can be calibrated, with the optical

distortion corrected by warping maps. The issue of changing views is again resolved by

interpolating both projection parameters and warping maps.

Particularly, we utilize the decomposition of the extrinsic matrix THiW in Eq. (2.7):

THiW = RHiV TViW , (4.4)

indicating that the transformation from the world space W to the current HUD-FOV space

Hi consisting of:

60

4.5. Experimental Schemes

• the transformation from W to the current viewpoint space Vi;

• the rotation from Vi to the current Hi.

Our inspiration is to calibrate the above-stated three matrices individually. Indeed, the

calibration of TViW can be somewhat recognized as an independent routine because it is

purely solving the calibration camera’s relative pose and not related to the HUD-FOV or

virtual images. The HUD can keep switched off in this step.

In terms of implementation, when we lay the patterned paper on the windshield, it

can be seen by the smartphone camera, yet not by the 3D sensor. However, when it is

off the windshield, we can place it inside the overlapping FOV between the 3D sensor and

the smartphone camera so that both the sensors see it. Therefore, when the paper stays

onside the windshield, we can switch on the HUD and calibrate the rotation matrix RHiVi ;

otherwise, we can use the paper target to calibrate the transformation TViW .

4.5.2.1 Preparation

We print an A4 paper filled with a 10 × 15 chessboard pattern as the calibration target,

which contains a 9 × 14 grid of corners, as is shown in Figure 4.10. Of course, paper or

films of other sizes or designs can also be used as long as they are large enough to cover the

HUD-FOV and have an adequate number of detectable feature points. Next, we choose a

5× 5 grid that covers an 80 mm× 60 mm area as our eye box, identical to the example in

Figure 3.2 (a). We select 9 viewpoints as the train and the other 16 as the test set. For

any viewpoint Vi inside, the entire HUD-FOV remains unblocked in the captured video.

The origin of world space W is still defined at the optical center of the 3D sensor’s

left eye, like in Section 4.5.1.1. Before the next steps, all the involving cameras, including

the smartphone and stereo cameras, are pre-calibrated.

4.5.2.2 Estimation of Intrinsics

To estimate the intrinsic matrix K of our HUD, we still adopt the assumption in Sec-

tion 4.5.1, i.e. the skew factor is zero and the principal point [u0, v0]T falls at the center of

virtual image. Then, the remaining parameters to estimate are the horizontal and vertical

focal lengths in pixel, i.e. fu, and fv. Here we hold upright the chessboard paper in the

HUD-FOV and adopt the estimation approach in Section 4.5.1.2. We display the HUD-

FOV borders (Figure 4.10 (a)) and then take photos at two viewpoints on the Y W –axis

yet separated by a baseline distance. In this case, we have formed a stereo vision and

can obtain the depth dboard of the chessboard by detecting its corners. Using the chess-

board geometry, we estimate the physical width whud and height hhud of HUD-FOV at the

distance dboard, and further acquire the focal lengths using Eq. (4.2).

4.5.2.3 Transformation from World to Viewpoint

The next step is to determine the transformation TViW from the world W to the train

viewpoint Vi,tr. As is shown in Figure 4.10 (b), we hold the same chessboard paper in

the joint FOV of the smartphone and stereo camera. By actuating the moving stage,

61

4.5. Experimental Schemes

(a) Hand-held chessboard inside
HUD-FOV.

3D sensor

Paper chessboard

Smartphone

TViW

(b) Chessboard detection in multiple
views.

Figure 4.10: Estimation of HUD focal lengths (a) and determination of transformation
from the world to one of the viewpoint coordinate systems (b).

we capture the chessboard photos at all train viewpoints and find its corners. Using the

disparities and triangulations, we calculate those corner positions in each viewpoint frame

Vi,tr. Meanwhile, we triangulate those corners in the world W using the ZED stereo camera

photos. In such a way, we obtain a group of 3D–3D correspondences between W and each

Vi,tr, and further determine those transformations using the absolute orientation algorithm

[70].

4.5.2.4 Rotation from Viewpoint to HUD-FOV

In this step, we utilize the concept of reflection points in Figure 2.1 to calibrate the

rotation matrices RHiVi at the train viewpoints Vi,tr. Since the intrinsic matrix K is

already estimated, we convert this sub-task into a PnP problem. To this end, we need

to find a group of 2D–3D correspondences between the virtual image Ii and viewpoint

space Vi,tr. The 2D points are chosen as a configured grid of virtual points pij,tr whose

pixel positions are known as input for the PGU, while the 3D ones are their corresponding

restored reflection points Prij,tr.

Next we reconstruct these reflection points for each train viewpoint. For this purpose,

we apply an indirect method by firstly calculating the shape of 3D windshield surface

Si,tr where Prij,tr are distributed. We stick the chessboard paper to the windshield’s

outer surface at the four paper corners, as shown in Figure 4.11 (a). The inner surface

is not readily applicable because the smartphone camera cannot observe virtual points

clearly. From captured photos at multiple viewpoints, we can find the chessboard corners

(Figure 4.11 (b)) and reconstruct their 3D positions in Vi,tr. With these data, we obtain a

fitted quadratic equation that describes the windshield outer surface Si,tr in the space Vi,tr,

including the area which intersects the HUD-FOV. After that, we display the virtual points

pij,tr (e.g. the 7 × 5 grid in Figure 4.12 (a)). Using adaptive grayscale thresholding and

contour detection, we locate their centroids in the smartphone photos (Figure 4.12 (b)).

These centroids are regarded as the captured projection of reflection points Prij,tr.

As we have already pre-calibrated the smartphone camera, we know about its intrinsic

matrix KC . Therefore, we can calculate the parameterized optical ray rij,tr for each

62

4.5. Experimental Schemes

(a) Chessboard paper sticked on the outer
surface of windshield

(b) Located chessboard corners, which are
marked and linked by rainbow lines

Figure 4.11: A printed chessboard (a) is laid on the windshield and captured by the smart-
phone camera. Corners are detected (b) for further reconstruction of the
windshield surface.

centroid cij,tr = [xij,tr, yij,tr, 1]T (homogeneous form), which starts from the origin of Vi,tr

and points to the reflection point Prij,tr:

rij,tr = w

XVi,tr/w

Y Vi,tr/w

1

 = K−1
C cij,tr =

fx 0 x0

0 fy y0

0 0 1

−1

xij,tr

yij,tr

1

 , (4.5)

where fx and fy indicate the camera’s focal lengths in pixel, [x0, y0]T is the principal point,

and w is a scaling factor. Usually, the thickness of a windshield is up to a few millimeters,

which is three to four orders of magnitude smaller than the HUD’s focal length that is

up to meters. Hence, we estimate the reflection points Prij,tr as the intersection between

the outer surface Si,tr and the ray rij,tr. These approximated Prij,tr and 2D virtual points

pij,tr form a group of 2D–3D correspondences, with which we can further calculate RHiVi

using relevant algorithms, such as solvePnP function in the OpenCV library [44] and then

Levenberg–Marquardt optimization method. Now according to Eq. (2.6)–(2.7), we can

finally obtain the projection matrices PIiVi and PIiW for the train viewpoints Vi,tr.

(a) A 7× 5 virtual point grid. (b) Centroids of virtual points.

Figure 4.12: An array of configured virtual points with the chessboard paper as the back-
ground is captured in a smartphone photo (a). Their centroids (b) are local-
ized using image processing techniques.

4.5.2.5 Warping Maps & Interpolation

In Figure 4.10 (a), we can observe optical distortion because the white rectangular borders

of the virtual area are askew and bent. To mitigate this artifact, we extract warping maps

63

4.5. Experimental Schemes

through reprojection by applying the concept in Section 2.9.2. However, in this step, the

transformation TViW becomes irrelevant because its calibration did not involve any 2D

virtual pixel in Ii. Instead, we use directly those reconstructed 3D reflection points Prij,tr

from Vi,tr. Feeding the projection matrix PIiVi into Eq. (2.6), we project all Prij,tr onto the

virtual image Ii. Then we acquire bias vectors vbias = [∆uij,rep,∆vij,rep]T pointing from

the reprojected virtual points pij,va to the ground truth input pij,tr. We still reconstruct

the corresponding warping maps wi,∆u and wi,∆v using the approach in Section 4.5.1.5.

As we have assumed in Section 2.9.2, these warping maps change continuously within the

domain of eye box. Therefore the maps at uninvolved viewpoints should be obtainable

through interpolation that is similar to in Section 4.5.1: for any new viewpoint, we can first

interpolate TViW and RHiVi , and then the warping maps. Particularly, the interpolation

of rotational parts are done via conversion to Rodrigues rotation vectors.

4.5.2.6 Summary

The flowcharts in Figure 4.13 outline this calibration approach using readily available

patterned paper. The workflows accomplish step by step the acquisition of linear matrices

for perspective projection and the reconstruction of nonlinear warping maps for distortion

correction. Due to the reduced effort and simplified equipment, our method opens the

way for customers to recalibrate their AR-HUDs themselves. To this end, we can further

develop supporting user interfaces in the vehicle.

Although this scheme is low-complexity, there is a risk of losing accuracy because

the recovery of transformation TViW relies much on the 3D sensor. Since the distortion

correction and the determination of the above transformation are decoupled during im-

plementation, the extracted warping maps cannot compensate for any potential deviation

in TViW . Therefore in this scheme, the requirement on the 3D sensor’s quality becomes

higher than in Section 4.5.1; otherwise, the virtual objects can be inaccurately located in

the final AR rendering.

4.5.3 Target-free calibration

This scheme presents a target-free calibration method for AR-HUDs, which is also finished

automatically using the smartphone camera. Regarding target complexity, the target-free

fashion is more advanced than the above two that still rely on calibration targets. The

same as in Section 4.5.2, we decouple the perspective projection matrix PIiW into three

parts: intrinsic matrix K, relative pose TViW between the 3D sensor and the smartphone

camera, and then rotation RHiVi between the viewpoint and the HUD-FOV spaces. We

directly exploit feature points from the real scene inside the joint FOV of the 3D sensor

and the smartphone camera to obtain the relative pose. The other two threads, i.e. the

determinations of intrinsic and rotational parts, are also accomplished without any ad-hoc

target. They are even irrespective of environmental feature points.

4.5.3.1 Preparation

In this step, we do not have to prepare any designed target. Therefore, we focus on setting

up the moving stage and the selection of an appropriate eye box. The deployed eye box

64

4.5. Experimental Schemes

(a) Procedures from start till acquisition of linear matrices.

(b) Reprojection and reconstruction of warping maps.

Figure 4.13: Flowcharts to summarize our calibration scheme using a piece of patterned
paper, including the acquisitions of linear matrices (a) and warping maps (b).
Colors in blocks indicate different phases. Purple: operation or sub-tasks;
green: linear matrices; orange: data or operation in 2D spaces; light blue:
data or operation in 3D spaces.

65

4.5. Experimental Schemes

and moving stage are identical to those in Figure 3.2 (a) and (b), respectively. We still

divide the viewpoints into 9 train and 16 test ones.

In the laboratory, we find a proper frontal scene that contains some geometrical fea-

tures, as is the captured background in Figure 4.14. Those corners of shelves, ceiling pieces

and other objects are potential feature points to localize. Otherwise, it is not simple to

extract useful feature points from a rather texture-free frontal scene.

4.5.3.2 Estimation of Intrinsics

We provide here a different method to estimate the intrinsic matrix than in Section 4.5.1.2

and 4.5.2.2, which does not rely on stereo vision. It is also a target-free estimation method.

As is shown in Figure 4.14, the margins of virtual image area is captured by the smartphone

camera. Inside the photo, we can search for the 4 corners of the white frame, which are

denoted as [x1, y1]T (upper left), [x2, y2]T (upper right), [x3, y3]T (bottom left) and [x4, y4]T

(bottom right). Since we also know the resolution umax × vmax of the virtual image and

the smartphone camera’s focal lengths (fx and fy), then the horizontal (fu) and vertical

(fv) focal lengths are approximately:

fu ≈ umax ·

2fx
x2 − x1 + x4 − x3

fv ≈ vmax ·
2fy

y3 − y1 + y4 − y2
.

(4.6)

Then we assume again that the principal point [u0, v0]T in K lies at the center of virtual

image, i.e. [umax/2, vmax/2]T , and the skew factor s is zero.

Figure 4.14: Target-free estimation of HUD’s focal lengths. The virtual image frame is
rendered and captured by the smartphone camera. All the [xk, yk]T (k ∈ {1,
2, 3, 4}) represent its corner positions. Note that the expected rectangular
virtual image enclosed by the white margins is distorted.

4.5.3.3 Transformation from World to Viewpoint

We determine the transformation TViW from world to viewpoint spaces by exploiting the

2D–2D correspondences among common feature points from the stereo and the smartphone

66

4.5. Experimental Schemes

camera images. We take three images of the frontal scene, one with the ZED camera’s left

eye (denoted with IZED,L), another with its right eye (denoted with IZED,R) and the last

one with the smartphone camera (denoted with IC). Then we use the SIFT algorithms to

extract feature points onside the three images, as is introduced in Section 2.7. An example

of those feature points is shown in Figure 4.15. We first find matching point-pairs in IC

(point set denoted with pC) and IZED,L (point set denoted with pL). For each feature point

pC,j , we find the two nearest neighbors by comparing its descriptor with those of all the

pL. Then we perform Lowe’s ratio test [51] to ensure the matched pairs are distinctive.

That means a point pC,j does not have multiple candidate matching points pL,j whose

descriptors are all very similar. After that, we use the same method to find corresponding

points (pR) of the matched points (pL) in the image IZED,R. Next, we use these extracted

correspondences to estimate the fundamental matrices FL and FR following the theories

in Section 2.6:

pTC · FL · pL = 0 pTC · FR · pR = 0 (4.7)

(a) Left-eye image from
ZED camera.

(b) Right-eye image from
ZED camera.

(c) Image from smartphone
camera.

Figure 4.15: Captured images from ZED stereo camera (a–b) and smartphone camera (c)
with SIFT-based feature points marked (red circles).

Given that we have pre-calibrated the ZED stereo camera and the smartphone camera,

their intrinsic matrices are known, i.e. KL for the ZED’s left-eye camera, KR for the ZED’s

right-eye camera, and KC for the smartphone camera. Therefore, we put them into the

calculation of essential matrices:

Einit,L = KT
CFLKL Einit,R = KT

CFRKR (4.8)

As is stated in Section 2.6, we can totally derive four candidate transformations TViW

for ±Einit,L. Subsequently, we perform the cheirality constraint [49] to find the correct

one, with which the number of reconstructed 3D points possessing positive depth values

is the largest. Till now, the rotation matrices (RViW and RViWR
) and unit translation

vectors (tViW and tViWR
) are recovered.

However, the scale information of those translation vectors is still missing. To de-

termine the scaling factors, we utilize the pre-calibrated transformation TWWR
(see also

Section 4.1.1) of the stereo camera. We notice the relation that the transformation from

67

4.5. Experimental Schemes

the world space W to the viewpoint space Vi should be equivalent to the combination of

the following two transformations:

• transformation from the world space W to the right-world space WR;

• transformation from WR to the viewpoint space Vi.

This relation is expressed using matrix multiplication:

TViW =

[
RViW α1tViW

0 1

]

= TViWR
TWWR

=

[
RViWR

α2tViWR

0 1

][
RWWR

tWWR

0 1

]

=

[
RViWR

RWWR
RViWR

tWWR
+ α2tViWR

0 1

]
,

(4.9)

where αk > 0 (k ∈ {1, 2}) represent the scaling factors to solve. Here, we focus on this

equation:

α1tViW = RViWR
tWWR

+ α2tViWR
. (4.10)

We denote tViW = [t1,x, t1,y, t1,z]
T , tViWR

= [t2,x, t2,y, t2,z]
T and RViWR

tWWR
= [c1, c2, c3]T

and the equation becomes:

α1

t1,xt1,y

t1,z

 =

c1

c2

c3

+ α2

t2,xt2,y

t2,z

 . (4.11)

By rearranging the variables, we obtain an equation in the form of a linear equation of

scaling variables:

t1,x −t2,x −c1

t1,y −t2,y −c2

t1,z −t2,z −c3

α1

α2

1

 =

0

0

0

 , (4.12)

which is rewritten as:

A ·ααα = 0. (4.13)

Due to approximation in the calculation and noises in the measurement, it becomes a

least-squares problem under the constraints:

• the first two elements of ααα are greater than zero;

• the last element of ααα is equal to one.

68

4.5. Experimental Schemes

By solving this constrained least-square problem, we recover the scale information of tViW

and tViWR
. Thus, we have determined the transformation TViW from the world to the

viewpoint space.

4.5.3.4 Rotation from Viewpoint to HUD-FOV

The last sub-task is to determine the relative rotation RHiVi from the calibration camera to

the HUD-FOV. To this end, we would like to apply the PnP algorithms again. Therefore,

we need a group of 2D–3D correspondences from the viewpoint space Vi to the virtual image

space Ii. As is mentioned in Section 2.4, we have to find at least three such correspondences.

To obtain such correspondences, we first render a 2D virtual point array (Figure 4.16 (a))

whose pixel positions pij,tr (or pj,tr since they can stay the same for each viewpoint) in the

virtual image are known, and then extract the centroid of each blob cij in the captured

image at the viewpoint (Figure 4.16 (b)). Next, we construct optical rays rij,tr by back-

projecting cij,tr into the train viewpoint space Vi,tr, as is earlier detailed in Eq. 4.5.

As is mentioned in Section 4.1.3, PnP algorithms should avoid coplanar cases [74], i.e.

the 3D control points should not lie on the same plane. Hence on each ray rij , we select

a point with a random depth value in a reasonable range, e.g. from 3 m to 6 m. Indeed,

because there is only a relative rotation but no translation between the viewpoint space

and HUD-FOV space, the solution of this PnP problem is determined by these optical

rays, as is shown in Figure 4.17. Put alternatively, as long as the selected control points

stay on the same optical rays, the 2D–3D correspondences lead to the same solution of

RHiVi . That is why we can randomly assign the depth values under the condition that

they are non-coplanar.

With the knowledge of the HUD’s intrinsic matrix K, these generated 3D points Pij,tr

and their corresponding 2D points pij,tr are then used for the PnP algorithm to calculate

the rotation matrix RHiVi . At this point, we have recovered the full projection matrix

PIiW in the pinhole camera model in Eq. (2.5).

(a) Virtual points within the HUD-FOV. (b) Detected centroids (red dots) of the
virtual points.

Figure 4.16: Configured virtual point array pij,tr (a) and the recognized centroids cij,tr (b).
Note that the array is deviated from a rectangular form due to the optical
distortion.

69

4.5. Experimental Schemes

(a) A group of 2D–3D correspondences in
a viewpoint space Vi,tr.

(b) Another group, where 2D points and
optical rays remain the same.

Figure 4.17: Configured 2D virtual points and two examples of corresponding assigned 3D
control points with random depth values. Orange circles: 2D virtual points
pij,tr; blue circles: 3D control points Pij,tr.

4.5.3.5 Warping Maps & Interpolation

We inherit the tool of warping maps to compensate for the optical distortion. Therefore,

the procedure here is identical to that in Section 4.5.2.5. We reproject the above randomly

reconstructed control points Pij,tr back to the virtual image Ii using the solved matrix PIiVi

and compare the results pij,va with the input array pij,tr. The differences, i.e. pij,tr−pij,va,

are regarded as bias vectors, from which we reconstruct warping maps for both ∆u– and

∆v–components. To deal with uncalibrated parameters at non-participating viewpoints,

we interpolate both the linear matrices (TViW and RHiVi), and the warping maps acquired

from the train viewpoints bilinearly. Thus, the perspective projection and distortion model

at any viewpoint inside the eye box are restored.

4.5.3.6 Summary

Figure 4.18 summarizes our target-free AR-HUD calibration scheme. Instead of using any

pre-designed calibration target, we directly extract adequate feature points in the frontal

scene and apply the epipolar constraint to recover the relative poses between the 3D sensor

and the calibration camera. The estimations of the HUD projector’s intrinsic parameters

and the relative rotation from viewpoint space to the HUD-FOV are also accomplished

without any target. The initial calibration phase including 9 train viewpoints takes less

than 5 min, including the initialization of our devices. The feature points can be out of

the narrow HUD-FOV - they are only required to lie in the joint FOV of our 3D sensor

and calibration camera. Hence, they are readily sampled by our cameras and home-made

software.

70

4.5. Experimental Schemes

Significantly, our target-free approach is promising for customers to calibrate AR-

HUDs themselves because the efforts in preparing targets are circumvented. When corre-

sponding on-vehicle connections and interfaces are developed, the drivers can park their

cars in front of a scene with enough textures and stable illumination (at least within a

few minutes), such as a building or a gate, and then start the calibration on their smart-

phones at the accustomed eye positions. Thus, a visit to the factory or workshop becomes

unnecessary, saving relevant costs and human labor.

We also notice that the frontal scene’s quality may affect the recovered transformation

part TViW . Compared to the target-based rivals, the current implementation may be

more sensitive to noise in feature extraction, unfavorable illumination or other adverse

conditions, which are the anticipated challenges in various scenarios.

Figure 4.18: Target-free calibration pipeline. Different colors label different data types:
blue for 3D positions, orange for 2D positions and magenta for acquired data.

71

5. Results

This chapter encompasses all our simulated and experimental results, particularly those

acquired data under different calibration concepts. Before showing the results in detail, we

explain our criteria on relevant evaluation and statistics in Section 5.1. Next, Section 5.2

shows the simulations under various assumptions, through which we can build up a deeper

understanding of the possible influencing factors in the AR-HUD calibration. Section 5.3

provides readers the pre-calibration results of all the connected sensors, including different

smartphone cameras and ZED stereo cameras. In Section 5.4 and 5.5, we sequentially

present the obtained calibration results in the manual and automatic implementations,

corresponding to the experimental schemes introduced in Section 4.4 and 4.5.

5.1 Criteria on Projection Results

We have to unify the quantitative criteria to demonstrate the reprojection or projection

errors in the validation and evaluation phases. We calculate them as the root-mean-square

error (RMSE). For example, when we have N 2D–3D correspondences and M viewpoints,

in the validation phase, we have the reprojection error in pixel as:

RMSEva,px =

∑M
i=1

√∑N
j=1[(uij,va−uij,tr)

2+(vij,va−vij,tr)2]
N

M
, (5.1)

where pij,va = [uij,va, vij,va]T and pij,tr = [uij,tr, vij,tr]
T are reprojected and ground truth

virtual points, respecitvely. Since we have estimated our HUD’s focal lengths, i.e. fu and

fv, then we convey this RMSE in pixel to that in physical length at a distance dstat from

the eye box:

RMSEva =
RMSEva,px

f̄u,v
· dstat, (5.2)

where f̄u,v = (fu + fv) /2. In the evaluation phase with test sets, we calculate a likewise

the projection error between the projected (p̂ij,te) and ground truth (pij,te) virtual points.

The above criteria are built upon pixel positions in the virtual image. Similarly, if we

use captured photos from the calibration camera for the quantitative evaluation, then we

have:

RMSEte,px =

∑M
i=1

√∑N
j=1[(x̂ij,te−xij,te)2+(ŷij,te−yij,te)2]

N

M
(5.3)

and

RMSEte =
RMSEte,px

f̄x,y
· dstat, (5.4)

73

5.2. Simulation Results

where ĉij,te = [x̂ij,te, ŷij,te]
T represent the projected virtual points’ centroids in the photos,

and cij,te = [xij,te, yij,te]
T are the captured features to be augmented. The term f̄x,y is the

averaged focal lengths in pixel of the calibration camera with f̄x,y = (fx + fy) /2.

The standard deviation (STD) is calculated for distribution of all the individual

(re)projection error at the distance dstat. An individual error is expressed like:

eij,va =

√[
(uij,va − uij,tr)2 + (vij,va − vij,tr)2

]
f̄u,v

· dstat (5.5)

w.r.t. the virtual image for the validation phase or

eij,te =

√[
(x̂ij,te − xij,te)2 + (ŷij,te − yij,te)2

]
f̄x,y

· dstat (5.6)

w.r.t. the photos from the calibration camera for the evaluation phase.

For a clear comparison, we always take dstat = 7.5 m, the same as in state of the art

[10] that provided quantitative evaluation.

5.2 Simulation Results

In the simulation, we build up a virtual HUD system and calibration environment. The

main tasks are to investigate our physical model’s validity and determine the influence of

possible error sources, including the 3D sensing and 2D detection errors, as well as optical

distortion. We also consider the robustness of calibration under different restrictions,

such as the number of 2D–3D correspondences. Although our simulation differs from

the practical experiment in several aspects, we can still draw some useful conclusions as

guidance for our implementations. Nevertheless, the simulation results can also be valuable

for reference purposes, e.g. for a robust design of automotive AR-HUD systems.

All the simulations are carried out with our home-made Python (Release 3.7.0) code.

We separate various kinds of error sources and add them individually in programming

to reveal every single sort’s influence. In most of these sub-tasks, we set the number of

iteration as 1000 to acquire an average effect in case of possible outliers. Note that the

“mean” errors in our simulations means simply the RMSE averaged over the number of

iteration.

5.2.1 Error-free AR-HUD System

An error-free AR-HUD is an ideal system that escapes any systematic or random error.

That means we ignore any 3D or 2D detection error, as well as any optical distortion. Al-

though this is not a realistic case, it is a primary step to validate our calibration concept

based on the pinhole camera model in Section 2.4. We can examine the recovery of rele-

vant matrices and parameters using precise 2D–3D correspondences and PnP algorithms.

74

5.2. Simulation Results

If it works, then the linear part, i.e. the obtained perspective projection matrix PIiW in

Eq. (2.5)–(2.9), should be able to approximate the imaging behavior in AR-HUDs. Fur-

thermore, for the following cases with error sources, we can still execute the simulations

similarly.

Since this virtual AR-HUD is an ideal model, we simulate the calibration at 25 view-

points (9 as train and 16 as test set), which are chosen the same as shown in the eye box

in Figure 3.2 (a). We first deal with the calibration and validation at the train viewpoints.

The pre-defined intrinsic matrix K remains the same throughout the simulation. For a

train viewpoint Vi,tr, we pre-define a transformation from the world W to it, then based

on the eye box’s geometry, we know the corresponding ground truth extrinsic matrices

THiW for all the viewpoints. When we start any iteration of the simulation, for each

viewpoint, we randomly set 50 non-coplanar 3D control points Pij in the world space W ,

as is shown in Figure 5.1. Then at each viewpoint, we use the intrinsic matrix K and its

extrinsic matrix THiW to project Pij onto the 2D virtual points pij,tr for the train set or

pij,te for the test set. Thus, we have 50 2D–3D correspondences. Above is a forward step

to construct the ground truth perspective projections, which are error-free.

Next, we do the backward step using the known K, and 2D–3D correspondences

between pij,tr and Pij . This is, actually, the simulated extrinsic calibrations at those Vi,tr,

followed by a qualitative validation. We solve the extrinsic matrices T̂HiW by employing

the PnP algorithms. Then we compare them with the ground truth THiW elementwise.

Meanwhile, we also compare these two groups by doing reprojections, which means we

compute the validation set of virtual points pij,va using K, T̂HiW and Pij . We further

compare the biases between the ground truth pij and reprojected pij,va.

After the validation, we will do the evaluation at test viewpoints Vi,te to examine the

interpolation concept described in Section 4.1.4 and 4.5.1.5. As is stated, we convert each

calculated extrinsic matrix T̂HiW into a Rodrigues rotation vector r̂HiW and a translation

vector t̂HiW . We interpolate these vectors for all the test viewpoints bilinearly, and convert

the interpolated results back to transformation matrices. Using them, we reproject the 3D

control points Pij to the corresponding virtual image space Ii, and compare the acquired

virtual points p̂ij,te with the ground truth pij,te.

Table 5.1 shows the ground truth and recovered extrinsic parameters at an example

train viewpoint and then a test viewpoint. Without any error source, we can see that the

calibrated ones are identical to the ground truth. Figure 5.2 shows the simulated validation

result at a train viewpoint and the evaluation result at a test one, which demonstrates

accurate overlapping between ground truth and (re)projected virtual points. Therefore, it

is validated that our calibration pipeline works well in estimating the linear perspective

projection part if the sensors’ detection accuracy is guaranteed and the optical distortion

is negligible.

5.2.2 AR-HUD System with 3D Detection Error

There are mainly three different sorts of possible detection errors in our stereo camera,

even after pre-calibration. One is the systematical error that turns out absolute biased

75

5.2. Simulation Results

Figure 5.1: 50 simulated 3D control points Pij in the world space W for a viewpoint Vi,tr
in an iteration. They are randomly chosen with a depth range of 3.5 m to 5.0 m
from the eye box.

(a) Validation using 50 random control
points at a train viewpoint Vi,tr.

(b) Evaluation using another 50 random
control points at a test viewpoint Vi,te.

Figure 5.2: Simulated (re)projection results after the calibration of an ideal HUD. GT:
ground truth; px: pixel.

76

5.2. Simulation Results

Table 5.1: Calibrated prameters (Rodrigues rotation vector r = [r1, r2, r3]T and translation
vector t = [t1, t2, t3]T) of an ideal AR-HUD system at a train viewpoint and
evaluation at a test viewpoint, regardless of any error source. GT: ground truth.

Element Train viewpoint (GT) Train viewpoint (PnP) Relative error (%)

r1 1.24546 1.24546 0

r2 1.22819 1.22819 0

r3 -1.17985 -1.17985 0

t1 474.02 474.02 0

t2 -154.291 -154.291 0

t3 425.771 425.771 0

Element Test viewpoint (GT) Test viewpoint (PnP) Relative error (%)

r1 1.24546 1.24546 0

r2 1.22819 1.22819 0

r3 -1.17985 -1.17985 0

t1 494.018 494.018 0

t2 -134.319 -134.319 0

t3 426.853 426.853 0

detected 3D positions; the other two, i.e. the disparity error and the pattern recognition

error, are random errors in real-time detection. Though all these errors may appear in the

3D sensing, they have different influences on the calibration results. Errors from other 3D

sensors, such as the RGB-D camera or the LiDAR, can be modeled likewise, as long as

their respective characters are taken into account.

5.2.2.1 Systematical Error

The systematical error means that there always exists a constant bias
[
∆XW ,∆Y W ,∆ZW

]
in the 3D detection. Alternatively speaking, the 3D sensor is not precisely aligned with the

defined world or vehicle space W but stays stable. This bias will lead to biased extrinsic

matrices THiW for each viewpoint. However, theoretically, the bias for each viewpoint

should remain the same if the sensor remains fixed during the implementation.

Thus, if the 3D sensor remains unchanged as in the AR-HUD calibration, the presented

virtual images should not be affected when presenting any AR content. This is because

the biased extrinsic calibration and the biased projection using the solved THiW form a

close loop, or rather, the biases from these two procedures cancel each other. Nevertheless,

the constant bias may lead to issues when the extrinsic parameters are called in additional

routines that are indirectly related to AR-HUD calibration.

5.2.2.2 Disparity Error

The disparity or depth error refers to the deviation in the 3D sensing to acquire the depth

value (ZW) of a detected real-world position, e.g. that in pixel triangulation. Here we

add on some noise in the simulated 3D sensing. As is expressed in Eq. 2.14, since the

77

5.2. Simulation Results

detected depths are derived from disparity values, we assume that there are Gaussian

random errors in them. We tune the standard deviation of this Gaussian distribution,

calibrate the virtual AR-HUD, and finally investigate the changing of projection error in

the evaluation phase. The results are plotted in Figure 5.3. As we notice in Figure 5.3 (a),

under the influence of fluctuation in the disparity, the pixel positions of those reprojected

virtual points deviate from the ground truth. We also plot the average reprojection errors

and their corresponding standard deviations as a function of the disparity errors’ variance

in Figure 5.3 (b). The average reprojection error increases almost linearly. However, its

standard deviation shows a jumping behavior when the disparity error fluctuates to a

certain level.

(a) Projection result when σd = 2.0 px. (b) Statistics for a series of σd.

Figure 5.3: Simulation results with disparity errors in the 3D sensing. Here we have a
total of 50 random 2D–3D correspondences inside the HUD-FOV. GT: ground
truth; STD: standard deviation; px: pixel; σd: standard deviation of Gaussian
errors added on disparity.

5.2.2.3 Pattern Recognition Error

The pattern recognition error refers to the biased 3D detection of pre-selected control

points, mainly when we apply a designed calibration target. For example, in our case, even

though there is no disparity error, there exists the chance that the stereo camera cannot

locate the features on the target correctly. This means there might be some biases between

the ground truth pixel position [xi, yi]
T and the recognized pixel position [x′i, y

′
i]
T in the

captured image pairs of the stereo camera. Here we add a series of normally distributed

biases [∆xi,∆yi]
T whose mean values are set as zero, but standard deviations vary. This

is not a systematic error within the stereo camera because this error changes at different

detectable control points.

A corresponding evaluation example is shown in Figure 5.4 (a), where the configured

standard deviation is 5.0 pixel, while Figure 5.4 (b) plots the statistics with increasing

fluctuation in pattern recognition. In our simulation environment, it is best to suppress

the standard deviation of pattern recognition error down to 2 pixels under the assumption

that the stereo camera has a Full HD resolution. On the curve (the blue one) of standard

deviations in the reprojection errors, we notice again a jumping of the slope, which is

similar to Figure 5.3 (b).

78

5.2. Simulation Results

(a) Projection result when σxy = 5.0 px. (b) Statistics for a series of σxy.

Figure 5.4: Simulation results with pattern recognition errors in the 3D sensing. Here we
have a total of 50 random 2D–3D correspondences inside the HUD-FOV. GT:
ground truth; STD: standard deviation; px: pixel; σxy: standard deviation of
a single set of pattern recognition errors.

5.2.2.4 Summary

In general, the absolute accuracy and stability of the 3D sensing matter much in our

calibration precision. Since the calibration of each vehicle’s AR-HUD is a one-time effort

in the workshop, the fluctuation in the 3D sensing should be restricted within a satisfying

interval. However, this requirement depends not only on the sensors’ quality: we have to

guarantee that the environment should be experimentally favorable for robust detection.

For example, the illumination should be appropriately controlled, or the features and

control points should be enough and properly distributed to suppress potential disparity

or pattern recognition error.

5.2.3 AR-HUD System with 2D Detection Error

The 2D detection error mainly refers to the deviated detection of virtual points in the

automatic calibration schemes. Sometimes, it also happens in the manual implementation,

e.g. considering the operator’s visual fatigue. When the pre-calibration of the calibration

camera is finished (see Section 4.1.1), we can assume no systematical error in the 2D

detection but only random errors. Moreover, we have to concern the so-called “pixel

quantization” effect because in both the virtual images and captured images from the

smartphone, the acquired pixel values can only be rounded to integers, though 2D–3D

matchings (see Section 4.4.1 and 4.5.1) or 2D virtual point localization (see 4.5.2 and

4.5.3) may appear at non-integer pixel positions.

5.2.3.1 Random Error

The random 2D detection errors lead to the incorrect overlapping between the virtual

point array and the 3D control points, or inaccurate localization of virtual points in the

calibration camera’s view. In our implementations, it occurs due to careless manual shift-

ing or imperfect contour extraction algorithms. Here we add a series of Gaussian noise

[∆uij ,∆vij]
T in this process, whose mean value is zeros but standard deviation increases.

79

5.2. Simulation Results

After simulated calibration with random 2D detection error, we demonstrate an eval-

uation example in Figure 5.5 (a), where the pre-set standard deviation is 10.0 pixel. The

projected virtual points are generally located close to the ground truth, but apparently,

there exist differences between their pixel positions in the virtual image Ii. Figure 5.5 (b)

shows the statistics with increasing standard deviation in the Gaussian noise. A jump-

ing behavior happens on both the curves of mean projection errors and their standard

deviations in the interval from 7.0 pixels to 8.0 pixels.

As a matter of fact, this error’s influence is related to the virtual image’s resolution.

For example, a virtual image with a 640×480 pixel resolution should be more vulnerable to

a certain amount of 2D detection biases than a Full HD one. Nevertheless, this error should

be suppressed at least within the limit over which the jumping of projection errors occurs;

otherwise, a one-time calibration with a large enough fluctuation in the 2D detection

performance may lead to outlier parameters.

(a) Projection result when σuv = 10.0 px. (b) Statistics for a series of σuv.

Figure 5.5: Simulation results with 2D detection errors. Here we have a total of 50 ran-
dom 2D–3D correspondences inside the HUD-FOV. GT: ground truth; STD:
standard deviation; px: pixel; σuv: standard deviation of a single set of 2D
detection errors.

5.2.3.2 Pixel Quantization Error

Another 2D detection error that we have to consider is the pixel quantization error. This

error comes from the mismatching between the resolutions of the calibration camera and

the virtual image. For example, when we use a calibration camera with 1920× 1080 pixel

resolution, whereas the virtual image has a size of 800 × 600, then a pixel in the virtual

image can cover different neighboring pixels in the captured image or vice versa. Even

if they have the same resolution, the relative pose between their image planes can still

lead to this error. However, the pixel values we acquired are always rounded to integers.

Besides, when any 3D real-world position Pj is projected to the virtual image Ii, the raw

projection pij = [uij , vij]
T is also rounded to an integer pixel location p̂ij = [ûij , v̂ij]

T . A

single rounding can lead to maximum matching error of 0.5×
√

2 ≈ 0.7 pixel.

As is mentioned in Section 5.1, the absolute projection error in length at a certain

distance depends on two factors, i.e. the HUD-FOV (opening angles) and the virtual image

80

5.2. Simulation Results

resolution. Here we fix the HUD-FOV to 40°× 20° and check the influence of the angular

virtual image resolution, i.e. pixel per degree. Other influences of opening angles are

detailed later in Section 5.2.7. In the current simulation, other error sources are removed

except for the pixel quantization. The statistics of simulated average projection errors and

their standard deviations are plotted in Figure 5.6. As we notice, both the errors and their

spreading fall monotonous down to a convergent level close to zero. This means for HUDs

with a fixed FOV, a larger angular resolution helps accomplish a more precise calibration.

However, this number is highly dependent on the manufacturing of the HUD projector

and potential costs.

(a) Average projection error against
angular resolution.

(b) Standard deviation of projection errors
against the angular resolution.

Figure 5.6: Simulation results with pixel quantization errors. GT: ground truth; STD:
standard deviation; Res.: resolution; px/◦: pixel per degree.

5.2.4 Number of 2D–3D Point Correspondences

The number of available 2D–3D correspondences between the virtual and control points

can affect our AR-HUD calibration accuracy. In Section 2.4.4, we have mentioned that if

we solve the extrinsic matrix THiW using PnP algorithms, we need at least three 2D–3D

correspondences, i.e. in a P3P form. Other algorithms also have such a requirement. For

example, the DLT algorithm [37] requires at least six 2D–3D corresponding pairs because

the projection matrix PIiW is a 3×4 matrix with 11 DoF. Nevertheless, after all, these are

the lower bounds of the required numbers, i.e. the theoretical minimum requirement. We

can imagine that too few 2D–3D correspondences may lead to apparent biased calibration

results due to various error sources.

Here we investigate this issue using a simple case, where we only add a constant

pattern recognition error (σxy = 3.0 pixels) in the 3D detection. Note that we have to

include an error source; otherwise, the projection errors in the evaluation phase keep zero

with an error-free AR-HUD system. We set different numbers of control points and observe

the performance. The results are shown in Figure 5.7 and 5.8. If we compare the case

with only 6 control points (Figure 5.7 (a)) with the case with 50 ones (Figure 5.7 (b)), we

see that the alignment between the projected virtual points and the ground truth is far

more precise in the latter than in the former. This is in line with what we have expected.

81

5.2. Simulation Results

From the statistical results in Figure 5.8 (a), it is noticed that when the control points

reach a threshold number (e.g. over 60), the average projection errors in the evaluation

converge to a specific level. On the plotting of the standard deviation in Figure 5.8 (b), a

similar convergence appears. The simulated phenomenon denotes that we have to ensure

a large enough group of 3D control points so that the influence of errors can be suppressed

below a certain level. The main reason is that in the workshop or factory, we cannot

sacrifice the costs and efficiency to iterate the calibration routines many times. Especially,

this number can be much larger than the theoretical minimum requirements for those

calibration algorithms.

(a) Projection result when 6 control points
are used for calibration.

(b) Projection result when 50 control
points are used for calibration.

Figure 5.7: Example of simulated evaluation results with various numbers of 2D–3D cor-
respondences inside the HUD-FOV for the calibration. GT: ground truth; px:
pixel.

(a) Average projection errors for a series
of numbers of control points.

(b) STD of projection errors for a series of
numbers of control points.

Figure 5.8: Statistics of simulated evaluation results with various numbers of 2D–3D cor-
respondences inside the HUD-FOV. STD: standard deviation; px: pixel.

5.2.5 Tolerance of Viewpoint Positions

As is introduced in Section 3.6, because the alignment between the 2D virtual image and

the 3D real world is highly dependent on the viewpoint, we have to include a driver camera

in the vehicle to track its real-time position. This tracker is also deployed in our calibration

82

5.2. Simulation Results

routine since we calibrate the AR-HUD at multiple viewpoints inside the defined eye box.

However, we have to be careful that such a measurement is not error-free. Therefore, we

would like to take certain tolerances into account. This consideration mainly comes from

two aspects. Firstly, the driver camera may also contain detection errors. In practice,

it is not guaranteed that it provides perfect sensing results, particularly concerning the

environmental factors, e.g. illumination. Secondly, in the manual implementation using

human eyes, since the operator’s head cannot be fixed strictly, we have to set an interval

where the operator’s eyes are “relatively free” to move. However, this interval may also

sacrifice the final calibration results. Figure 5.9 shows a 3D plot of 100 various viewpoint

positions in the world space W . These viewpoints are centered around a mean position[
X̄W , Ȳ W , Z̄W

]T
, obeying a 3D Gaussian distribution confined by [σXW , σYW , σZW]T .

Figure 5.9: 100 simulated various viewpoint positions in the world space W . Here we set
σXW = 10 mm, σYW = 10 mm and σZW = 10 mm.

In the simulation, we set σXW , σYW and σZW independently as a linear space varying

from 0 mm to 100 mm. The simulation results are plotted in Figure 5.10. The variance

in each of XW –, Y W – and ZW –axes leads to biases in the evaluation. Nevertheless, it

is noticed that the viewpoint displacement in the XW –direction demonstrates an order

smaller contribution to the projection errors than in the other two. The reason is that the

opening angles of our AR-HUD are relatively narrow. Therefore, in practice, we only need

to define a 2D eye box in the Y WZW –plane, as is stated in Section 3.2. However, when

the opening angles become larger, the viewpoint displacement in the XW –axis may also

influence the projection results, as is later demonstrated in Section 5.2.7.

We also notice that in Figure 5.10 (c) and (e), the viewpoint’s displacement on the

Y W –axis only results in a shift of the u–component of the virtual image, while the that on

the ZW –axis only results in a shift of the v–component. This is intuitively true but may be

invalid for a real AR-HUD because the virtual image might have a non-zero roll rotation

angle around the XW –axis. Furthermore, the tolerance of viewpoints on an individual

83

5.2. Simulation Results

axis affects the final projection errors almost linearly, as is shown in Figure 5.10 (b), (d)

and (f).

5.2.6 Optical Distortion

In this simulation, we examine our distortion correction based on warping maps. Without

generality, we add random warping bias vectors vbias on the ground truth virtual points

from an error-free AR-HUD, which corresponds to the train viewpoints in the eye box.

Then for the test viewpoints, we can calculate their ground truth bias vectors using bilinear

interpolation among train viewpoints.

Next, we calibrate the extrinsic matrices THiW for the train viewpoints and then

acquire the interpolated ones at the test viewpoints. Meanwhile, in the validation phase,

we reconstruct the warping maps for the train viewpoints and interpolate them for those

test viewpoints. Finally, we project control points to the virtual image in the test views

and rectify them with the interpolated warping maps. Then we can observe the evaluation

results qualitatively, as is shown in Figure 5.11. In this example, we set the amplitude of

added bias vectors ‖vbias‖ evenly distributed from 0 to 10 pixel and their orientations are

evenly distributed in 360°. We observe that the dewarped virtual points are located closer

to the ground truth than the raw projected ones.

We change the maximal amplitudes of bias vectors and repeat the simulation. Fig-

ure 5.12 shows the statistics. Note that both the projection error and standard deviation

fall downwards compared to those in the raw evaluations.

5.2.7 Opening Angles

As is mentioned in Section 3.2, the opening angles of currently available AR-HUDs on

the market are still narrower than desired. However, we cannot exclude new AR-HUDs

with larger FOV in the future. If the laser-based or waveguide-based AR-HUDs come into

mass production and intensive use, we can expect a much more expanded frustum, which

is expected to be greater than 40°. In such a case, more elements can be added to the

broader virtual image, and the calibration may assert higher requirements. Therefore, it

makes sense if we investigate the influence of different opening angles on the final results.

Especially, we have an interest in seeing their relations to the projection errors with a

fixed tolerance of the viewpoint’s displacement in the XW –direction. We have assumed this

tolerance has little impact on the calibration when the HUD-FOV is narrow, but we were

unsure what happens when it became larger. Here we set σXW = 100 mm and the angular

resolution (pixels per degree) constant. We use 100 control points and enumerate the

horizontal opening angle from 5° to 60°. To keep the aspect ratio, we always set the vertical

opening angle equal to half of the horizontal one. The results are shown in Figure 5.13.

Since we have expanded the opening angle to 60° while keeping the angular resolution,

the virtual image’s absolute resolution is also enlarged, as is plotted in Figure 5.13 (a).

If we zoom in on the figure, we observe that the biases are smaller in the central region

and larger in the periphery. This coincides with the assumption that when the HUD-FOV

84

5.2. Simulation Results

(a) An evaluation example with a
tolerance of viewpoint displacement on the

XW –axis with σXW = 100 mm.

(b) Statistics of simulation results with a
series of tolerances of viewpoint
displacement on the XW axis.

(c) An evaluation example with a
tolerance of viewpoint displacement on the

Y W –axis with σYW = 100 mm.

(d) Statistics of simulation results with a
series of tolerances of viewpoint
displacement on the Y W axis.

(e) An evaluation example with a
tolerance of viewpoint displacement on the

ZW –axis with σZW = 100 mm.

(f) Statistics of simulation results with a
series of tolerances of viewpoint
displacement on the ZW axis.

Figure 5.10: Separate simulation results on tolerances of viewpoint positions along the
XW –, Y W – and ZW –axis. VP: viewpoint; GT: ground truth; px: pixel;
STD: standard deviation.

85

5.2. Simulation Results

(a) Raw projection. (b) Dewarped projection.

Figure 5.11: Examples of simulated evaluation results before (a) and after (b) distortion
correction using warping maps. GT: ground truth; Proj.: projected; px: pixel.

(a) Average projection errors before and
after distortion correction.

(b) STD of projection errors before and
after distortion correction.

Figure 5.12: Statistics of evaluation results with various magnitudes of optical distortion.
Max. amp.: maximal amplitude; STD: standard deviation; px: pixel.

86

5.2. Simulation Results

is narrow, the calibration is insensitive to the viewpoint’s displacement along the XW –

axis. Figure 5.13 (b) explicitly draws this conclusion. Both the average projection error

in the evaluation phase and its standard deviation increase with the size of HUD-FOV.

Therefore, for the calibration of AR-HUDs with larger opening angles, we have to be

careful in selecting the eye box. For example, it is best to define a cube or sphere and use

three linear axes aligned with the XW –, Y W – and ZW –directions to move the calibration

camera, respectively.

(a) An example evaluation with a
tolerance of viewpoint displacement on the
XW –axis with σXW = 100 mm under the

horizontal opening angle of 60°.

(b) Statistics of projection with a
tolerance of viewpoint displacement on the
XW –axis with σXW = 100 mm under a

series of horizontal opening angles.

Figure 5.13: Simulation results on various opening angles under the same angular reso-
lution of the virtual image. GT: ground truth; Proj.: projected; px: pixel;
STD: standard deviation.

5.2.8 Simulation with Chessboards

Since we employ two separated chessboard targets under the scheme in Section 4.5.1, we

also simulate the scenario here. As is shown in Figure 5.14, we place a chessboard target

with a 6×11 corner grid at two distances from the viewpoint. We repeat the simulation in

Section 5.2.3.1, i.e. with 2D detection error. Other simulation schemes in Section 5.2.1–

5.2.5 can also be repeated, though we do not show them concerning the conciseness of text.

Figure 5.15 presents the evaluation examples where the separation between the boards is

1.5 m, which are similar to Figure 5.5.

When we use the chessboard target at two distances, we are also curious about the

influence of different separations in between. The reason is that when the separation is not

large enough, the practical experiment can degenerate to a semi-coplanar case, which is not

supported by those PnP algorithms. The simulated results are plotted in Figure 5.16. We

notice that both the average projection errors and their standard deviations are extremely

unstable when the separation dsep < 2 m. This means we have to be careful that the

two chessboard positions shall be chosen with a sufficient distance in between. Of course,

the minimal requirement of such a separation may also depend on the precision of 3D

detection, the number of control points, and other mentioned error sources. That is why

87

5.3. Pre-calibration of Cameras

Figure 5.14: A simulated grid of 6× 11 control points on a chessboard at two distances in
the world space W .

we have adopted only a separation of around 0.8 m in the practical calibration scheme (see

Section 4.5.1.1).

5.3 Pre-calibration of Cameras

The pre-calibration results for the involving smartphone cameras, i.e. the Huawei P10

Lite and the Apple iPhone 7 Plus, are shown in Table 5.2 and 5.3, respectively. Table 5.4

and 5.5 present the calibrated parameters of the first ZED stereo camera used as the 3D

sensor and the second ZED stereo camera applied as the driver camera.

Table 5.2: Calibration results of the smartphone camera Huawei P10 Lite. fx and fy are

the horizontal and vertical focal lengths in pixel, respectively. [x0, y0]T is the
principal point. k1 and k2 are the 1st and 2nd order radial distortion coefficients.

Camera type Huawei P10 Lite Monocular Camera

Resolution (px×px) 1920× 1080

fx (px) 1517 fy (px) 1502

x0 (px) 964 y0 (px) 509

k1 0.185 k2 -1.006

5.4 Manual Implementation Results (with Human Eyes)

Our manual AR-HUD calibration results correspond to the experimental approach in Sec-

tion 4.4.1.1. The implementation was initially trialed in the laboratory environment using

a home-made calibration target and human eyes, and then transplanted into some vehicles

with supporting diagnostic interfaces. Here we show the test results on a Mercedes-Benz

88

5.4. Manual Implementation Results (with Human Eyes)

(a) Projection result when σuv = 10.0 px. (b) Statistics on projection errors for a
series of σuv.

Figure 5.15: Simulated evaluation results after calibration using two separated chessboards
with random 2D detection errors. Both the two boards contain a 6 × 11
control point grid and are 1.5 m separated. Another chessboard with the
same geometry is placed at an even farther distance for evaluation. GT:
ground truth; STD: standard deviation; px: pixel; σuv: standard deviation of
a single set of 2D detection errors.

(a) Average projection errors when
σuv = 10.0 px.

(b) STD of projection errors when
σuv = 10.0 px.

Figure 5.16: Statistics on simulated evaluations with two chessboard targets under different
separations. We introduced a 2D detection error with a standard deviation
σuv = 3 px. STD: standard deviation; px: pixel.

Table 5.3: Calibration results of the smartphone camera Apple iPhone 7 Plus. fx and
fy are the horizontal and vertical focal lengths in pixel, respectively. [x0, y0]T

is the principal point. k1 and k2 are the 1st and 2nd order radial distortion
coefficients.

Camera type Apple iPhone 7 Plus Monocular Camera

Resolution (px×px) 1920× 1080

fx (px) 1551 fy (px) 1550

x0 (px) 963 y0 (px) 533

k1 0.246 k2 -1.440

89

5.4. Manual Implementation Results (with Human Eyes)

Table 5.4: Calibration results of the 1st ZED stereo camera, which is used as the 3D sensor.
fx and fy are the horizontal and vertical focal lengths in pixel, respectively.

[cx, cy]T is the principal point. k1 and k2 are the 1st and 2nd order radial
distortion coefficients.

Camera type ZED left eye ZED right eye

Resolution (px×px) 1920× 1080

baseline (mm) 120

fx (px) 1399 1401

fy (px) 1398 1402

cx (px) 991 1043

cy (px) 601 548

k1 (px) -0.168 -0.168

k2 (px) 0.026 0.025

Table 5.5: Calibration results of the 2nd ZED stereo camera, which is used as the driver
camera. fx and fy are the horizontal and vertical focal lengths in pixel, respec-

tively. [cx, cy]T is the principal point. k1 and k2 are the 1st and 2nd order radial
distortion coefficients.

Camera type ZED left eye ZED right eye

Resolution (px×px) 1920× 1080

baseline (mm) 120

fx (px) 1401 1400

fy (px) 1401 1400

cx (px) 945 942

cy (px) 587 580

k1 (px) -0.166 -0.169

k2 (px) 0.025 0.026

90

5.5. Automatic Implementation Results

S 500 car equipped with an AR-HUD system, which we parked in a workshop. As is de-

clared before, using too many viewpoints or 2D–3D correspondence is impractical for the

manual calibration. Hence, we defined an eye box containing only 3× 3 train viewpoints

(Figure 5.17) and mark 3 × 3 control points on a calibration target board. We did not

include test viewpoints considering limited storage in the vehicle’s control units and extra

required human labor. The projection results in the evaluation phase at 7.5 m distance

are plotted in Figure 5.18. Since there are not many point correspondences, we have not

corrected the optical distortion because any distortion model can be underfitted in this

case. Even so, we have observed that the projected 9 virtual points are tightly distributed

to the measured ones at most of the train viewpoints. Here we show the situation of a

single viewpoint, i.e. Viewpoint 3, as an example. Such projection errors are comparable

to those under automatic implementations in the previous work [10], [24], [27].

At some other viewpoint, e.g. Viewpoint 7, the case becomes yet worse with a pro-

jection error larger than 10 mm. Several reasons can result in such instability, e.g. the 3D

sensor or driver camera detection errors and the optical distortion. However, compared

to the automatic calibration routines, a distinct error source is the operator’s unfixed eye

position. Though we have set a tolerance of 5 mm for the driver camera to verify the

operator’s view position, the head motion range of 1 cm can already affect the calibration

accuracy. This effect has been demonstrated with the simulation in Section 5.2.5. We also

notice that along with viewpoints on each horizontal line in the eye box (e.g. Viewpoint

1 to 3, 4 to 6, and 7 to 9), the average projection error decreases. This is mainly due to

the changing display area on the windshield with varying curvature along Y W –axis: since

the driver’s seat is on the left, if the viewpoint goes right, the optical path from the HUD

projector goes right as well, and the reflection area for images on the windshield becomes

flatter than on the left.

We have repeated such a manual implementation several times in the workshop with

the car. Empirically for a rough AR-HUD calibration without using a calibration camera

or much data to process, this manual manner with human eyes can already fulfill the basic

calibration requirements in terms of accuracy.

5.5 Automatic Implementation Results

Next, we will show the calibration results under various automatic schemes that correspond

to Section 4.5. They verify the involving schemes and provide a deeper understanding of

the related concepts. In contrast to the relatively strenuous manual implementation, the

automatic ones are chosen as counterparts of those in state of the art [10], [15]–[18], followed

by a detailed comparison at a later stage in Chapter 6.

All the results come from calibrations of off-vehicle AR-HUD setups in our laboratory

environment. We have used two different “HUD projector - windshield” pairs: one for the

calibration using a sizable chessboard target, the other for the calibration using a piece of

patterned paper and the target-free calibration.

91

5.5. Automatic Implementation Results

Figure 5.17: Selected 2D eye box with 9 train viewpoints on the Y WZW –plane. ∆Y W and
∆ZW represent the offsets on the corresponding axes.

(a) Evaluation at Viewpoint 3 using a
3× 3 target board at 7.5 m.

(b) Statistics of evaluation results at all
the train viewpoints in the 3× 3 eye box.

Figure 5.18: Evaluation results of manual implementation using human eyes. There is no
distortion correction because of too few applied control points on the target.
GT: ground truth; px: pixel.

92

5.5. Automatic Implementation Results

5.5.1 Calibration Results with a Chessboard Target

This scheme, as is described in Section 4.5.1, utilizes a conventional sizable chessboard

pattern as the calibration target. At two different distances we finished the initial cali-

bration and validation, and then at 7.5 m distance from the eye box, we accomplished the

evaluation. Such a pattern has already been used for calibration of cameras [13].

5.5.1.1 Focal Lengths of HUD

We estimated the focal lengths fu and fv in pixel based on the approach in Section 4.5.1.2.

Then we have fu = 4815 pixel and fv = 5321 pixel. The difference between these two focal

lengths indicates the astigmatism in our AR-HUD.

5.5.1.2 Calibration Results at Train Viewpoints

Figure 5.19 (a) shows an example of our AR-HUD calibration results at a train viewpoint.

Using the acquired 2D–3D correspondences, we computed the extrinsic matrices THiW for

all the train viewpoints Vi,tr, respectively, followed by the validation step. The detected

and reprojected virtual points are located close to each other with small biases. Regardless

of measurement noises in the 3D detection and 2D pattern recognition, those residuals are

mainly caused by optical distortion. Then for both u– and v– directions, we reconstructed

the corresponding warping maps using the method described in Section 2.9.2, as is shown

in Figure 5.20.

A raw evaluation result at the same train viewpoint is plotted in Figure 5.19 (b), where

the projected virtual points are also well overlapping with the measured ground truth.

From the above obtained warping maps, we selected the discrete bias vectors [∆uij ,∆vij]
T

corresponding to all the projected [uij , vij]
T . We then dewarp the projections by adding

these bias vectors, as shown in Figure 5.21 (a). Qualitatively we observe a closer overlap

between measured and projected virtual points than in the raw evaluation. Till this step,

we have accomplished initial calibration, validation and evaluation at train viewpoints Vi,tr.

Figure 5.23 (a) collects the projection errors as statistics. According to the calculation in

Section 5.1, the averaged projection error RMSEva across all train viewpoints is 2.4 mm

(1.1 arcmin), which is smaller than in state of the art. (Curve (c–d) in Fig. 9 of [10] shows

approximately 3.8 mm i.e. 1.7 arcmin.)

5.5.1.3 Driver Camera Calibration Results

Applying Eq. (4.1), we have acquired 3D information of each train viewpoint Vi,tr in the

world space W . Note that the XW –component in the world coordinates was separately

measured with a laser range finder (Leica DISTO™ D110), since in Section 3.2 and 5.2.7

we have concluded that this value could not be accurately acquired from calibration due

to the HUD’s narrow opening angles. Alternative measuring tools, such as a tape measure

or ruler, should also be suitable.

Besides, we also have the viewpoint positions in the driver camera space D. Therefore,

we computed the linear transformation TWD from the driver camera to the world space

93

5.5. Automatic Implementation Results

(a) Reprojection on the nearer target. (b) Raw evaluation result at 7.5 m
distance.

Figure 5.19: Validation and raw evaluation after calibrating the extrinsic matrix THiW at
Train Viewpoint 8 in Figure 4.8 using a 6 × 11 chessboard pattern as the
target. GT: ground truth; px: pixel.

(a) Reconstructed warping map of ∆u. (b) Reconstructed warping map of ∆v.

Figure 5.20: Warping maps corresponding to Train Viewpoint 8, which are reconstructed
from discrete biases as continuous 2D fields. The yellow margins indicate the
virtual image periphery that is not covered by the target due to its limited
size, where the information of warping is actually missing.

94

5.5. Automatic Implementation Results

and then reprojected the train viewpoints for comparison, as is shown in Figure 5.21 (b).

The RMSE in Y W – and ZW –axis is 1.9 mm and 2.6 mm, respectively. Considering the size

of eye box (40 mm× 100 mm), the reprojection errors are 1.9% and 6.5%.

(a) Dewarped projection, where porjected
virtual points and ground truth are closer

located than in Figure 5.19 (b).

(b) Validation of driver camera calibration
by reprojecting viewpoints to the world
space W using the solved TWD. ∆Y W

and ∆ZW represent offsets.

Figure 5.21: Dewarped evaluation result at Train Viewpoint 8 in Figure 4.8 and the driver
camera calibration result. GT: ground truth; px: pixel.

5.5.1.4 Interpolation Results

The interpolation concept in Section 4.5.1.5 was implemented at the 10 test viewpoints in

Figure 4.8, which includes interpolations of extrinsic parameters as well as warping maps.

Figure 5.22 shows the projection results at a test viewpoint before and after distortion

correction. Qualitatively we observe again that the projected virtual points are close to

the measured ones, especially after dewarping. To further confirm the effectiveness of our

distortion compensation, we show statistics on projection errors without/with distortion

correction in Figure 5.23 (b). The RMSEte across all the test viewpoints is 2.5 mm (1.1

arcmin), which is also comparable to the result in [10] (Curve (a–b) in Fig. 9).

(a) Raw evaluation result at 7.5 m
distance.

(b) Dewarped evaluation using
interpolated warping maps.

Figure 5.22: Evaluation results at Test Viewpoint 24 in Figure 4.8 after interpolation of
extrinsic matrices.

95

5.5. Automatic Implementation Results

(a) Statistics of reprojection errors in
evaluation at train viewpoints.

(b) Statistics of reprojection errors in
evaluation at testing viewpoints.

Figure 5.23: Statistics of reprojection errors in the raw and dewarped evaluations. The
viewpoint indices correspond to those in Figure 4.8.

5.5.2 Calibration Results with Patterned Paper

This scheme, as is described in Section 4.5.2, utilizes a piece of patterned paper as the

calibration target for the initial calibration and validation phases, which can be laid on

the outer surface of the windshield. In the evaluation phase, however, we employ a sizable

chessboard target at 7.5 m from the eye box. This rectangular target paper has a size of

997 mm × 741 mm. A 12 × 7 chessboard with an 11 × 6 corner grid of corners is printed

onside this target.

5.5.2.1 Focal Lengths of HUD

We estimate the focal lengths fu and fv in pixel based on the approach in Section 4.5.2.2.

Then we have fu = 4242 pixel and fv = 4089 pixel. The difference between these two focal

lengths indicates the astigmatism in our AR-HUD.

5.5.2.2 Extracted Warping Maps

We extract warping maps through reprojection in the validation phase. Feeding the pro-

jection matrix PIiVi into Eq. (2.5), we project all 3D reflection points Prij in the view Vi,tr

onto the virtual image Ii. An example at a train viewpoint is plotted in Figure 5.24 (a). Be-

cause of the nonlinear distortion, pixel errors exist between the ground truth input virtual

points and reprojected ones. Therefore, we obtain the bias vectors in Figure 5.24 (b). Using

bicubic interpolation, we reconstruct the warping maps for both ∆u– and ∆v–components,

as are shown in Figure 5.25. Warping maps at other non-participating viewpoints should

be obtainable through interpolation.

5.5.2.3 Qualitative and Quantitative Evaluation

As is stated in Section 1.2, a calibration routine for AR-HUDs is robust if and only if virtual

objects align accurately with the real world at any feasible viewpoint Vi, including those

uninvolved in the calibration. To examine our method’s capability, we finally evaluate it

at the 16 test viewpoints Vi,te using a chessboard target 7.5 m away from the eye box. We

96

5.5. Automatic Implementation Results

(a) Input and reprojected virtual points (b) Bias vectors pointing from reprojection
to input

Figure 5.24: Reprojection and 2D biases in the virtual image, corresponding to Train View-
point 5 in Figure 3.2 (a). GT: ground truth; Rep.: reprojected; px: pixel.

(a) Warping map wi,∆u (b) Warping map wi,∆v

Figure 5.25: Reconstructed warping maps for Train Viewpoint 5 in Figure 3.2 (a).

97

5.5. Automatic Implementation Results

interpolate the respective extrinsic matrices THiW and warping maps bilinearly using the

calibrated ones at the 9 train viewpoints.

Our 3D sensor, i.e. the ZED stereo camera, detects the chessboard corners on the

evaluation target. Then we managed to augment these corners with projected virtual

points. Using the estimated intrinsic matrix K and interpolated extrinsic matrix THiW ,

we obtained these virtual points and rendered them via our AR-HUD. The picture captured

by the smartphone camera is shown in Figure 5.26. Note that in the raw evaluation without

distortion correction (Figure 5.26 (a)), the virtual points are already roughly aligned with

the chessboard corners. After dewarping the virtual points using the interpolated warping

maps, we realize a more accurate overlap (Figure 5.26 (b)).

(a) Raw evaluation (b) Dewarped evaluation

Figure 5.26: Raw (a) and dewarped (b) qualitative evaluation results using a sizable chess-
board target at 7.5 m. The pictures are captured by our smartphone camera
at Test Viewpoint 16 in Figure 3.2 (a).

As for the quantitative evaluation, we search for centroids of projected virtual points

in the above photos and compare them with the captured chessboard corners. Using

Eq. (5.3) and (5.4), we can obtain the final RMSE across all the test viewpoints. Table 5.6

shows the statistics of such projection errors. The results are comparable with those in

previous work [10], [27], which confirms that our AR-HUD is robustly calibrated.

Table 5.6: Statistics on projection errors in the evaluation at the test viewpoints under the
calibration scheme using a piece of patterned paper.

Evaluation phase RMSEte (mm)
Angular accuracy

(arcmin)
Standard

deviation (mm)

Raw 13.3 6.1 6.0

Dewarped 4.6 2.1 2.7

5.5.3 Target-free Calibration Results

This scheme, as is described in Section 4.5.3, accomplishes the calibration of an AR-HUD

in a target-free manner. We still employ the same chessboard target for the evaluation

phase as in Section 5.5.2.

98

5.5. Automatic Implementation Results

5.5.3.1 Focal Lengths of HUD

We adopt the method in Section 4.5.3.2 and estimate the focal lengths of our HUD in

pixel. Then we have fu = 4574 pixel and fv = 4054 pixel as the horizontal and vertical

focal lengths, respectively. The values are different than those in Section 5.5.2.1 because

of changed view and random measurement errors.

5.5.3.2 Transformation from World to Viewpoints

As is described in Section 4.5.3, the transformation TViW from the world W to a train

viewpoint space Vi,tr is acquired using the frontal scene. Hence, we triangulate the inlier

feature point pairs in the stereo images with our ZED stereo camera’s pre-calibrated pa-

rameters (Table 5.4–5.5) to restore the 3D positions of the feature points Pj . With the

calibrated matrix TViW and the pre-calibrated smartphone camera’s intrinsic matrix KC ,

we reproject these Pj onto the camera image whose resolution is Full HD, as is shown in

Figure 5.27 (a). From the picture, we compare the ground truth and reprojection of those

features by collecting the biases between them, as is plotted in Figure 5.27 (b). The mean

value of the reprojection error is −0.4 pixel in the x–axis and 0.1 pixel in the y–axis. The

standard deviation is 1.7 pixel and 1.1 pixel, respectively.

(a) Ground truth and reprojected features (b) Histogram of reprojection errors

Figure 5.27: 21 inlier SIFT-based feature points and their reprojections from the 3D sensor
to the calibration camera (a). We also plot statistics of the reprojection errors
in pixel (b). GT: ground truth; px: pixel.

5.5.3.3 Validation and Warping Maps

As is stated in Section 4.5.3, the 3D control points are selected on the reconstructed optical

rays rij,tr corresponding to the train viewpoint Vij,tr, while the 2D virtual points pj,tr are

known as the array input. With these 2D–3D correspondences, we solve the rotation RHiVi

using the PnP algorithms. Applying it with the estimated HUD’s intrinsic matrix K, we

obtain the reprojection results and the corresponding bias vectors. An example at Train

Viewpoint 5 in the eye box (Figure 3.2 (a)) is plotted in Figure 5.28. We can notice that

the optical distortion affects more on the edges or corners of HUD-FOV than in the central

region. Using these bias vectors, we reconstruct the warping maps wi,∆u and wi,∆v, as are

shown in Figure 5.29.

99

5.5. Automatic Implementation Results

(a) Input and reprojected virtual points (b) Bias vectors pointing from reprojection
to input

Figure 5.28: Reprojection for the validation phase and its corresponding 2D biases on the
virtual image. Here we take Train Viewpoint 5 in the eye box (Figure 3.2 (a))
as the example. Rep.: reprojected; px: pixel.

(a) Warping map wi,∆u (b) Warping map wi,∆v

Figure 5.29: Reconstructed warping maps for Train Viewpoint 5 in Figure 3.2 (a). Here
the peripheries are also reconstructed by extrapolation.

100

5.5. Automatic Implementation Results

5.5.3.4 Evaluation and Interpolation Results

The qualitative evaluation approach is the same as in Section 5.5.2.3. We first acquire

the transformation TViW and rotation matrices RHiVi for all the test viewpoints Vi,te via

interpolation. Then, the 3D sensor detects the chessboard corners’ 3D positions. For each

test viewpoint, feeding the estimated matrices K, TViW and RHiVi , we can project the 3D

positions onto the virtual image Ii. Finally, we render the obtained virtual points, and

observe the alignment between them and chessboard corners with the smartphone camera.

The qualitative results are demonstrated in Figure 5.30. We can see that the projection

after distortion correction is more accurate than before it.

(a) Raw evaluation (b) Dewarped evaluation

Figure 5.30: Qualitative evaluation results of the target-free calibration scheme. The raw
projected virtual points align close with the chessboard corners (a). After
distortion correction using the reconstructed warping maps, we acquire a more
precise alignment (b).

As quantitative results, we make statistics about reprojection errors and angular ac-

curacy, which is listed in Table 5.7.

Table 5.7: Statistics on reprojection errors for the test viewpoints Vi,te in the evaluation
phase.

Evaluation phase RMSEte (mm)
Angular accuracy

(arcmin)
Standard

deviation (mm)

Raw 11.5 5.0 8.4

Dewarped 6.7 3.1 4.7

5.5.4 Summary

We note that all of our automatic calibration pipelines lead to tiny projection errors in

the evaluation phase for test viewpoints. Till now, they have been validated as effective

AR-HUD calibration methods. Remarkably, the method using a chessboard target has

achieved a better accuracy in the evaluation phase than the previous work [10]. However,

these schemes have respective advantages and disadvantages. A detailed comparison will

be done in Section 6.1.

101

6. Discussion

This chapter opens a discussion on several aspects of the AR-HUD calibration, which is

highly related to our proposed concepts. We first compare our schemes with state of the art

in Section 6.1. The comparison involves accuracy, time-efficiency, and target complexity.

Section 6.2 focuses on the virtual image plane, where we reveal its changing behavior at

multiple viewpoints, though in each approach in Section 4.5, we have estimated the HUD’s

intrinsic parameters only once. Next, we trial the DLT algorithm in Section 6.3 and explain

why we did not apply it in the AR-HUD calibration. Finally in Section 6.4, we compare

our distortion model, i.e. warping maps, with conventional camera lens distortion model

and polynomial regression model.

6.1 Comparison among Schemes

In this section, we compare the automatic calibration schemes because, in the literature,

they generally use automatic approaches with calibration cameras. We exclude manual

implementation in case of the influence of artificial errors, such as the head motion or

manual visual perception error. The discussion covers our proposed schemes [24], [27],

[56], [57] and those from the previous work [10], [15]–[18]. We consider various aspects in

terms of both quality and operability in the automotive industry.

6.1.1 Calibration Accuracy

We demonstrate all the projection errors available from our experiments and state of the

art to compare the calibration accuracy. Note that for a fair comparison, we have always

employed the target in the evaluation phase at 7.5 m from the eye box, which is in line

with that in the previous work [10]. Some other literature [15]–[18] only demonstrates

qualitative evaluations of their calibration methods, whereas their quantitative results are

not available.

From Table 6.1 we observe that our automatic calibration scheme using a chessboard

yields better angular accuracy than that using a piece of patterned paper or the target-free

approach. This can be understood because a sizable calibration target is more favorable

for 3D sensing so that the positions of control points are restored more accurately. The

projection error is also smaller than that in state of the art. Nonetheless, considering that

different HUD projectors and windshields were used and the values still fall in the same

order of magnitude, we cannot curtly claim which approach performs the best. We can

yet conclude that all these different schemes offer comparable, accurate results that can

already fulfill the automotive industry’s requirement.

6.1.2 Time Efficiency

The time consumption mainly includes two aspects: preparation for the experiments and

the implementation duration. Regardless of the development and integration of hardware

103

6.1. Comparison among Schemes

Table 6.1: Average angular accuracy in the evaluation phases of various experimental
schemes.

Scheme
Wientapper
et al. [10]

Using
chessboard

Using patterned
paper

Target-free

Angular
accuracy

1.7 arcmin 1.1 arcmin 2.1 arcmin 3.1 arcmin

devices or software, we emphasize the deployment of calibration targets and ad-hoc com-

ponents. Some approaches require less labor in this process than others, while others may

take less time when the calibration operation starts (or vice versa). Note that the latter

depends on the number of involving train viewpoints.

Table 6.2 lists the time consumptions in our three automatic calibration schemes that

correspond to Section 4.5.2, 4.5.1 and 4.5.3. Note that though the target-free scheme omits

the calibration target’s preparation, it does not mean that there is no preparation time

because we have to select a proper frontal scene for our pattern recognition algorithms

to extract enough feature points. Nevertheless, this scheme generally performs best in

accelerating the implementation according to our experience. We can imagine that in the

future if the workshop deploys a suitable frontal scene for cars, the target-free scheme

will save much more time accumulatively as more vehicles equipped with AR-HUDs are

calibrated.

Table 6.3 shows the comparison of time-consumption between our fastest scheme, i.e.

the target-free one, and those in certain previous work [10], [18]. Other publications [15]–

[17] did not disclose information on their time-efficiency. Moreover, we can only provide

the available data because Deng et al. [18] did not prepare a target, while Wientapper et

al. [10] did not publish their implementation duration at each viewpoint. Nevertheless,

this comparison still implies that our target-free calibration scheme has shown a satisfying

time-efficiency, indicating high applicability in the automotive industry.

Table 6.2: Time consumption of our proposed automatic AR-HUD calibration schemes.

Scheme Using chessboard Using patterned paper Target-free

Target preparation ∼ 10 min ∼ 5 min -

Running per viewpoint ∼ 1 min ∼ 1 min ∼ 10 s

6.1.3 Target Complexity

Table 6.4 shows a comparison between our schemes and those in previous literature [10],

[15]–[18] in terms of target complexity. Wientapper’s method [10] requires the most ad-

hoc components to support the experiment. Our scheme in Section 4.5.1 demands a

sizable calibration target that can be properly placed in front of the windshield. Both the

104

6.2. View-dependent Virtual Images

Table 6.3: Comparison between our target-free AR-HUD calibration scheme and state of
the art with regard to time consumption.

Scheme Our target-free
Wientapper et al.

[10]
Deng et al.

[18]

Target preparation - 30 min to 45 min -

Running per viewpoint ∼ 10 s - < 1 min

above bring extra costs for the factory or workshops. In contrast, our other schemes in

Section 4.5.2 and 4.5.3 require less efforts in preparing calibration targets. Hence, they

are potential for the customers to calibrate their automotive AR-HUDs themselves once

related user-interfaces are available.

Table 6.4: Target complexities in different AR-HUD calibration schemes, including those
in state of the art.

Scheme
Our chessboard-

based
Our patterned-

paper-based
Our target-free

Wientapper et al.
[10]

Target
complexity

A sizable
chessboard pattern

A piece of
patterned paper

Fontal scene
with features

Canvas, textured
covers, markers

Scheme
Hosseini et al.

[15]
Ueno and Komuro

[16]
Yoon and Kim

[17]
Deng et al.

[18]

Target
complexity

A chessboard
pattern

Target-free, but
relies on precise
camera orienting

Fontal scene
with features

Target-free, but
relies on mixed
reality glasses

6.2 View-dependent Virtual Images

In this section, we investigate the changing behavior of HUD’s focal lengths with view-

points. From the calibrated extrinsic matrix THiW , we can recover the Euler angles, i.e.

roll (α), pitch (β) and yaw (γ) angles, and the translation vector tHiW , as is stated in

Section 2.2. Since we have also tracked the positions of all the train viewpoints Vi,tr in

the world space W using the driver camera, we can readily reconstruct the chief rays ri,tr

starting from the individual viewpoint and passing through the corresponding centers of

virtual images Ii, as is mentioned in the caption of Figure 2.3.

We apply some measured data from the manual experimental scheme (see Section 4.4.1.1)

and plot the reconstructed chief rays in Figure 6.1. Notice that these chief rays are not

exactly intersecting with each other at a common 3D point. Regardless of measurement

errors, a possible reason is the influence of optical distortion. Alternatively speaking, be-

cause of the curved windshield and reflective mirrors in the HUD projector, the residual

distortion leads to a deformed virtual image plane whose pose and geometry become, in

fact, view-dependent. Our analysis indicates that the assumption of a view-independent

virtual image plane in state of the art [10], [18] is only a rough approximation. Therefore,

throughout this thesis, we have not adopted this conventional premise.

105

6.3. Direct Linear Transformation

Nonetheless, the view-dependent virtual images imply view-dependent intrinsic ma-

trices K of the HUD. This has interpreted the difference between the acquired HUD’s focal

lengths in Section 5.5.2.1 and 5.5.3.1. Hence, we should have estimated the intrinsics at

each train viewpoint Vi,tr separately instead of measuring it only once. However, repeating

this estimation is unnecessary because the eye box size is much smaller than the HUD’s

projection distance, and the resulted biases can be readily mitigated by the warping maps

in the distortion correction.

Figure 6.1: Reconstructed chief rays ri,tr starting from the individual viewpoint Vi,tr and
passing through the corresponding centers of virtual images. We can observe
that they are not exactly intersecting with each other in the world space W .

6.3 Direct Linear Transformation

Besides the PnP algorithms, we trial the DLT algorithm to accomplish the calibration.

The main difference between them is: the former requires knowledge or pre-estimation

about intrinsic matrix K to recover the extrinsic transformation THiW ; on the contrary,

the latter directly recovers the projection matrix PIiW followed by a decoupling procedure

to offer K and THiW , respectively. Nevertheless, it is sometimes not easy to decouple this

matrix precisely. Here we take the experimental data from the scheme in Section 5.5.1 as

an example for the analysis of the DLT algorithm. Accordingly, the selected eye box is

identical to Figure 4.8.

The projection matrix PIiW is a 3× 4 matrix having the following form:

PIiW =

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

 , (6.1)

106

6.3. Direct Linear Transformation

where mij are normalized in term of m34 = 1 for convenience. From Eq. (2.7)–(2.9) we

have:

PIiW = KTHiW = K

[
RHiW tHiW

0 1

]
=

fu s u0 0

0 fv v0 0

0 0 1 0

r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3

0 0 0 1

 . (6.2)

We show the restored projection matrix PI11W at the Train Viewpoint 11 here in Ta-

ble 6.5. Figure 6.2 shows the validation result at Viewpoint 11, and the evaluation result

at Test Viewpoint 23 after distortion correction. To acquire the projection matrix PI23W ,

we directly interpolate its elements using those matrices obtained at neighboring train

viewpoints, while the distortion correction is accomplished using correspondingly recon-

structed warping maps. We observe that the reprojected virtual points in the validation

phase (Figure 6.2 (a)) are located closer to the measured ground truth than the projected

ones in the evaluation phase (Figure 6.2 (b)).

Table 6.5: Normalized calibrated projection matrix PIiW using the DLT algorithm at
Viewpoint 11 under the scheme in Section 5.5.1.

m11 -0.4919 m12 20.11 m13 -0.5817 m14 -846.0

m21 0.3756 m22 -0.0725 m23 -21.58 m24 -4478

m31 -0.0041 m32 0.0004 m33 -0.0011 m34 1.000

(a) Validation result at Viewpoint 11. (b) Evaluation result at Viewpoint 23.

Figure 6.2: Validation (a) and evaluation (b) results using the DLT algorithm. The view-
points are selected in the eye box shown in Figure 4.8. Note that we show
the validation on the nearer target distance here. GT: ground truth; Proj.:
projected; px: pixel.

Figure 6.3 shows the statistical comparison between the calibration results based on

the DLT algorithm and that based on PnP algorithms. Both data sets are acquired from

the automatic calibration scheme in Section 5.5.1. We notice that the validation results us-

107

6.3. Direct Linear Transformation

ing the DLT algorithm are better than using PnP algorithm in terms of reprojection error,

while the evaluation performances in terms of projection error are in contrast. The reason

is that while calculating the projection matrix PIiW , some mathematical constraints, such

as the hidden orthonormality of the rotation matrix RHiW , are missing. Therefore, the

validation performs better, but the interpolation is more vulnerable to noises from the im-

plementation or overfitted elements in PIiW at the train viewpoints. However, we accept

that the DLT algorithm is also applicable for AR-HUD calibration if there is no require-

ment for a precise recovery of the AR-HUD system’s intrinsic and extrinsic characteristics.

(a) Validation result at the train
viewpoints.

(b) Dewarped evaluation result at the test
viewpoints.

Figure 6.3: Comparison between the calibration results acquired using PnP and DLT algo-
rithms at multiple viewpoints whose indices are in line with those in Figure 4.8.

Next, we introduce the decoupling of intrinsic (K) and extrinsic (THiW) matrices

from the projection matrix PIiW acquired from the DLT algorithm. We shall apply the

orthonormality of the rotation matrix RHiW explicitly [75], while keeping m34 = 1. Then

we have:

t3 = ‖m3,1:3‖−1

u0 = t23 · 〈m1,1:3,m3,1:3〉

v0 = t23 · 〈m2,1:3,m3,1:3〉

fu = t23 · ‖m1,1:3 ×m3,1:3‖

fv = t23 · ‖m2,1:3 ×m3,1:3‖

t1 = t3(m14 − u0) · f−1
u

t2 = t3(m24 − v0) · f−1
v

r1,1:3 = t3(m1,1:3 − u0m3,1:3) · f−1
u

r2,1:3 = t3(m2,1:3 − v0m3,1:3) · f−1
v

r3,1:3 = t3m3,1:3

, (6.3)

where 〈, 〉 represents the inner product of two vectors, ‖·‖ represents the norm of a vector, ×
represents the cross product between two vectors, and ai,j:k denotes a row vector containing

the sequential elements aij , ..., aik in the ith row of a matrix A.

108

6.4. Distortion Models & Comparison

Table 6.6 lists the restored focal lengths from the DLT algorithm and those estimated

for the PnP algorithm. As we see, the two groups differ obviously from each other.

Moreover, suppose we interpolate the projection matrix PIiW directly for test viewpoints.

In that case, we have to interpolate 11 elements separately (under the condition that m34 =

1). We cannot guarantee this naive interpolation’s quality because the results might not

obey mathematical consistency (e.g. orthonormality of the hidden rotation matrix RHiW)

under the influence of measurement errors. On the contrary, when using PnP algorithms,

we only have to interpolate 6 terms, and they are mathematically consistent. Therefore,

we insisted on first estimating the intrinsic matrix and then using PnP algorithms to

calibrate the extrinsic ones. This has already provided us robustness in dealing with

multiple viewpoints.

Table 6.6: Comparison between intrinsic parameters acquired from two approaches: the
first group is estimated under stereo vision in Section 4.5.1.2, which we regard
as ground truth (GT); the second group is decoupled from the projection matrix
PI11W that we calibrated using the DLT algorithm (here we take the data at
Viewpoint 11 in Figure 4.8 as example). px: pixel.

Quantity fu (px) fv (px)

Intrinsic parameters (GT) 4815 5321

Intrinsic parameters (DLT) 4689 4930

Relative Error (%) -2.6 -7.3

6.4 Distortion Models & Comparison

In this section, we discuss different distortion models and compare them under our cali-

bration circumstances. We focus mainly on the models that we have ever applied in our

published work: the conventional camera distortion model [27] and bicubically interpolated

warping maps [24], [56], [57], which are introduced in Section 2.9.1 and 2.9.2, respectively.

The experimental data are taken from the scheme in Section 4.5.1. We also review the

polynomial model in the previous literature [10], [18].

6.4.1 Camera Distortion Model

We take Eq. (2.39) as the standard form to describe the camera distortion model. Firstly,

we consider every single train viewpoint Vi,tr. Because all the distortion coefficients (k1,

k2, p1, p2, q1 and q2) are extracted from the validation phase, we have to examine their

effectiveness in the evaluation phase. This means we rectify the raw projected virtual

points using these coefficients and observe the correction outcome. We further consider

those test viewpoints Vi,te by acquiring their respective distortion coefficients from a bi-

linear interpolation using those of the train set and then substituting them again into the

evaluation phase.

To qualitatively demonstrate our results, we select a viewpoint (Train Viewpoint

8) from the train set and another one (Test Viewpoint 24) from the test set (see also

109

6.4. Distortion Models & Comparison

Figure 4.8). As are shown in 6.4, we plot the measured (ground truth), projected, and

rectified projected virtual points together. We notice that at Train Viewpoint 8, the

distortion is suppressed, while at Test Viewpoint 24, some dewarped projections are more

separated from the ground truth than the corresponding raw projected ones, especially

those on the right part of the virtual image. The possible reason is that for a fixed

viewpoint, the optical distortion is stronger on the right part than other regions, which is

not fully compensable using the interpolated distortion coefficients.

We also show statistics in Figure 6.5 on the projection errors before and after employ-

ing the camera distortion coefficients in the evaluation phase. For each train viewpoint,

the distortion model helps reduce projection errors, but for each test viewpoint, the inter-

polated distortion coefficients show no such obvious rule. Nonetheless, at Test Viewpoint

19 and 22, we encounter outliers, where the distortion correction makes the projections

even much worse.

In conclusion, though the conventional parametric camera distortion model can com-

pensate the optical distortion individually for each train viewpoint, its effectiveness is

doubtable for other non-participating viewpoints inside the eye box after interpolation.

Therefore, to use this precisely, we have to repeat our implementation densely at many

viewpoints. For example, suppose we have an 80 mm× 60 mm planar eye box, empirically

we have to set the interval between neighboring viewpoints to 5 mm, that means there are

total 17 × 13 = 221 viewpoints to calibrate. Even if the implementation at each of them

takes 30 s, the initial calibration phase takes totally around 2 h, which is intolerable for

automotive factories or workshops.

(a) Evaluation at Train Viewpoint 8. (b) Evaluation at Test Viewpoint 24.

Figure 6.4: Evaluation results at a train viewpoint and a test viewpoint based on the
camera distortion model. GT: ground truth; px: pixel.

6.4.2 Warping Maps

The power of warping maps for distortion correction is already proven with the results in

Section 5.5. Here we mainly discuss its advantages and disadvantages, especially compared

to the conventional camera distortion model.

The warping map is a nonparametric method to correct the optical distortion. It

is reconstructed from locally bias vectors via a bicubic interpolation. In contrast to the

110

6.4. Distortion Models & Comparison

(a) Train set. (b) Test set.

Figure 6.5: Statistics on raw and dewarped projections from the evaluation phase at the
train and test viewpoints, which are based on camera distortion model. All the
distortion coefficients come from the validation at corresponding train view-
points and are applied to test viewpoints via interpolation.

parametric camera distortion model, it recovers much more details in the virtual image

Ii, even deep into each pixel. These details may also help understand the variation of

distortion across the reflection area and examine the windshield’s quality. Hence, our

warping maps have the same resolution as the virtual image and occupy much more storage

space than the parametric models. For example, if we have an 800×400 virtual image and

an eye box including 25 train viewpoints, we should have to store a total of 800×400×25 =

8 × 106 bias vectors, i.e. a total of 1.6 × 107 numbers for the warping maps wi,∆u and

wi,∆v. Assuming the distortion is not extremely severe, and all these numbers fall within

the interval [−128, 127] (the range of a byte in the computer), then we need at least

15.3 MB storage space. In contrast, if we use the camera distortion model in Eq. (2.39),

we only have 6 coefficients for each viewpoint. Suppose the coefficients are represented in

float type (4 bytes for a float number), and the eye box remains the same, then we need

only 6× 4× 25 = 0.6 KB storage space, which is about 2.7× 104 times smaller than using

warping maps. However, in the laboratory environment, i.e. regardless of storage capacity,

using warping maps is a more robust option. We can also declare that if the on-vehicle

computer’s storage and computational capacity fulfill the requirement, warping maps are

highly recommendable for distortion correction.

6.4.3 Polynomial Regression Model

Some state of the art applied polynomial regression models to fit the optical distortion.

Deng et al. [18] defined a regression model as:

111

6.4. Distortion Models & Comparison

ûij =

∑
d1,d2,d3

bij,u (d1, d2, d3)
(
X̂W

Vi,tr

)d1 (
Ŷ W
Vi,tr

)d2 (
ẐW
Vi,tr

)d3
v̂ij =

∑
d1,d2,d3

bij,v (d1, d2, d3)
(
X̂W

Vi,tr

)d1 (
Ŷ W
Vi,tr

)d2 (
ẐW
Vi,tr

)d3 di ∈ N0,
∑
i

di ≤ dall.

(6.4)

where P̂W
Vi,tr

=
[
X̂W

Vi,tr
, Ŷ W

Vi,tr
, ẐW

Vi,tr

]T
is a train viewpoint’s position in the world space,

bij,u (·) and bij,v (·) are coefficients, and dall is the maximal degree of the regression function.

If we set dall = 3, then for each 2D–3D correspondence in a single view, we have 20×2 = 40

coefficients. Suppose we have 80 control points and 25 train viewpoints, then we have

totally 40× 80× 25 = 8× 104 coefficients, which requires 79 KB if we store them as float

type. If we set dall = 4, then we need 137 KB storage space.

Wientapper et al. [10] employed a similar yet more comprehensive regression model,

considering additionally another two variables uij and vij that represent normalized ob-

served virtual point positions. Therefore, for each 2D–3D correspondence in a single view

they have 56 × 2 = 112 coefficients when dall = 3, and 126 × 2 = 252 coefficients when

dall = 4. With 80 control points and 25 train viewpoints, they need 219 KB and 493 KB

storage spaces, respectively. Therefore, in terms of storage for distortion coefficients, the

above state of the art are more efficient than using warping maps.

However, solving those polynomial regression models requires a massive number of

captured pictures from the calibration camera. Wientapper et al. [10] captured two

sequences containing 1193 and 2251 frames, respectively, whereas Deng et al. [18] stated

that 500 sample photos are enough. Note that the photos are taken at different individual

train viewpoints. In contrast, we have sampled far fewer train viewpoints, which is enough

for our distortion correction based on interpolation and less demanding on the camera

moving device. For example, some cheaper camera tripods can also be employed instead

of motored linear stages.

We briefly summarize the above three distortion models’ strength and weakness in

Table 6.7. Indeed, there is not a perfect approach to eliminate the optical distortion

existing in automotive AR-HUDs. Practical solutions should be selected according to

concrete scenarios.

112

6.4. Distortion Models & Comparison

Table 6.7: Comparison among various distortion models for AR-HUD calibration.

Model
Camera distortion

model
Warping maps Polynomial regression

Type Parametric Nonparametric Parametric

Data size
dependency

Number of viewpoints,
order of formula

Number of viewpoints,
virtual image resolution

Order of formula

Reflection of virtual
image detail

Low High Low

Requirement on
storage & computation

Low High Low

Functionality on
interpolation among
viewpoints

Low High High

Required viewpoint
sample size

Medium Small Large

113

7. Conclusion & Outlook

This research aimed to identify different factors that influence AR-HUDs’ calibration and

develop our own methodologies for this purpose. The principles are based on the pinhole

camera model because of the perspective projection mechanism in the image formation

and receiving. Both the simulation and experimental results are provided in qualitative

and quantitative aspects.

We simulated error sources, such as 2D/3D detection errors, tolerance of viewpoint

tracking and optical distortion. We have found out there exist threshold values for some

of these quantities, under which the calibration accuracy can be guaranteed. We have

also taken the number of control points and the HUD’s opening angles into account. The

results indicate that the calibration accuracy also relies on target characteristics (if it is

used) and the HUD’s specific parameters.

We proposed and proved new novel calibration schemes for automotive AR-HUDs, ex-

pecting to enhance the time-efficiency and reduce the target complexity while maintaining

a high level of precision. First, we presented our concepts with an evolution that includes

the manual and automatic implementations. The transformations between the pre-defined

world coordinate system and other reference frames, i.e. viewpoint space, HUD-FOV space

and virtual image, are accurately restored. Our automatic implementations are based on

pattern recognition. They can exploit more 2D–3D correspondences than the manual one

while consuming far less time. We have successfully developed various automatic calibra-

tion solutions, including the schemes using a sizable chessboard target, a piece of printed

paper target and even no target. Particularly in the target-free calibration, we applied the

SIFT algorithm for feature extraction and epipolar constraint to combine multiple views.

Finally, the calibration period for an AR-HUD is reduced to less than 5 min. Meanwhile,

the implementation process has become more and more friendly to the operator, mainly

thanks to the lowered target complexity and freed human labor.

The calibration of AR-HUDs is highly dependent on the viewpoint positions. Some

involved coordinate systems, e.g. the 3D HUD-FOV space Hi, varies together with the

viewpoint. We have also pointed out that the virtual image space Ii is view-dependent,

which is a challenge to the conventional assumption of static virtual images. To deal

with multiple views, we have presented the selection of an eye box and corresponding

interpolation methods so that the calibration can cover any reasonable viewpoint. The

interpolation concept has been validated in the evaluation phases under all the proposed

schemes, both qualitatively and quantitatively.

To cope with the nonlinear optical distortion caused by the HUD optics and curved

windshield, we have developed a useful tool, i.e. warping maps. It is reconstructed from

reprojection errors in the validation phases and appears in a nonparamatric form. Indeed,

it compensates not only the distortion, but also potential offsets in the estimated intrinsic

and extrinsic matrices. Notice that though this tool has shown a convincing performance,

some residual distortion still exists. A deeper understanding of AR-HUD’s optical distor-

115

tion and the development of uncomplicated yet robust rectification models can be a future

research topic.

Our experimental data from the lab are carefully analyzed. Compared to state of the

art, our calibration accuracy is competitive, even though the target-free scheme sacrifices

a bit on this aspect. In summary, the calibration concepts we have proposed are diverse

and highly applicable in the automobile industry.

There are still some open points in this work waiting for solutions. In our calibra-

tion concepts, the viewpoint is referred to as the middle point between the driver’s eyes.

However, there are, after all, two eyes on a human face. Therefore, rigorously speaking,

it is worth considering the human binocular vision in the AR-HUD calibration as a future

topic.

It is also notable that none of the proposed calibration methods is perfect. For exam-

ple, when we use a conventional calibration target standing in front of the vehicle, it must

be large enough to cover the HUD-FOV. When we use a smaller paper target laid on the

windshield, it can easily cover the HUD-FOV. However, when we calibrate the transfor-

mation between the 3D sensor and smartphone camera, this small target can only occupy

an extremely limited area in the joint FOV. In this case, the calculated transformation

matrix may be biased. When we calibrate an AR-HUD in a target-free manner, selecting

an appropriate frontal scene is an essential prerequisite; otherwise, too few feature points

cannot fulfill the demand. Practically speaking, there is not “the best” choice for the auto-

motive industry, i.e. the selection of the calibration scheme should be based on the specific

scenario. Ideally, we recommend that factories or workshops adopt one of the target-based

approaches, whereas the customer should be able to choose the target-free approach as a

more cost-effective option.

116

Acknowledgement

My work in this Ph.D. thesis was inspired by many others who have offered me kind help.

Therefore the word “we” was used instead of the term “I.”

I want to thank Mercedes-Benz AG, Sindelfingen, since they provided me their cars

and equipment for AR-HUD calibration experiments. Then, I would like to thank the

following people, without whom I would not have been able to complete this research, and

without whom I would not have made it through my Ph.D. study!

Prof. Wilhelm Stork at Karlsruhe Institute of Technology (KIT) steered me through-

out this research. He provided me with guidance and suggestions on how to form my work

into a valuable and clear scientific profile. Prof. Uli Lemmer at KIT reviewed this thesis

very carefully. Dr. Marc Necker at Mercedes-Benz AG, Sindelfingen managed my research

at the company. As the team leader, he gave me the chance to do the job in a very com-

fortable atmosphere and helped organize my working plan with efforts. Dr. Janis Werner,

Philipp Pitzer and Adam Schatton, colleagues at Mercedes-Benz, led me to solve many

technical problems with the cars and other equipment. Steffen Tacke, my department

leader at Mercedes-Benz, gave me critical feedback on my project presentations. Martin

Keppler, a colleague in the department, collaborated with me on several relevant patent

writing.

Felicia Ruppel, Kai Wu, Lu Guo, Lukas Jaeckle and Christian Eissler shared much

coding knowledge in Python and C++. Jonas Haeling helped me much in brainstorming

and conference paper revision. Gordana Bojovic always gave me much instant support in

the company, especially in many administrative affairs.

I also would like to thank Rui Ma at KIT for sharing his experience in thesis writ-

ing. Thank Ye Liu for her patience, encouragement, and the precious friendship we have

throughout the years.

Finally, I shall give many thanks to my parents in China, who showed me, invaluable

love, even at a far distance.

117

Bibliography

[1] H. Okumura, “Human centric AR & VR display and interface technologies for auto-

mobile,” IEEE Consumer Electronics Magazine, vol. 8, no. 5, pp. 60–61, 2019.

[2] J. H. Iavecchia, H. P. Iavecchia, and S. N. Roscoe Illiana, “Eye accommodation to

head-up virtual images,” Human Factors, vol. 30, no. 6, pp. 689–702, 1988.

[3] D. C. Foyle, A. J. Ahumada, J. Larimer, and B. T. Sweet, “Enhanced/synthetic

vision systems: Human factors research and implications for future systems,” SAE

Transactions, pp. 1734–1741, 1992.

[4] D. P. Burch and M. Braasch, “Enhanced head-up display for general aviation air-

craft,” in Digital Avionics Systems Conference, 2002. Proceedings. The 21st, IEEE,

vol. 2, 2002, pp. 11C6–11C6.

[5] L. J. Prinzel III and M. Risser, “Head-up displays and attention capture,” 2004.

[6] T. Nojima and H. Kajimoto, “A study on a flight display using retro-reflective pro-

jection technology and a propeller,” in CHI’08 Extended Abstracts on Human Factors

in Computing Systems, 2008, pp. 2721–2726.

[7] S. Patterson, J. Farrer, and R. Sargent,“Automotive head-up display,” in Automotive

Displays and Industrial Illumination, International Society for Optics and Photonics,

vol. 958, 1988, pp. 114–123.

[8] J. A. Betancur, J. Villa-Espinal, G. Osorio-Gómez, S. Cuéllar, and D. Suárez, “Re-

search topics and implementation trends on automotive head-up display systems,”

International Journal on Interactive Design and Manufacturing (IJIDeM), vol. 12,

no. 1, pp. 199–214, 2018.

[9] Y. Hwang, B.-J. Park, and K.-H. Kim, “Effects of augmented-reality head-up display

system use on risk perception and psychological changes of drivers,” ETRI Journal,

vol. 38, no. 4, pp. 757–766, 2016.

[10] F. Wientapper, H. Wuest, P. Rojtberg, and D. Fellner, “A camera-based calibration

for automotive augmented reality head-up-displays,” in 2013 IEEE International

Symposium on Mixed and Augmented Reality (ISMAR), 2013, pp. 189–197.

[11] D. Wagner, M. Schneider, F. Dross, S. Langer, S. Zeidler, T. Ganz, and U. Lem-

mer, “Impact study of windshield geometry on the subjective customer perception

for augmented reality head-up displays (AR HUD),” in SID Symposium Digest of

Technical Papers, Wiley Online Library, vol. 51, 2020, pp. 254–257.

I

Bibliography

[12] R. Tsai, “A versatile camera calibration technique for high-accuracy 3D machine

vision metrology using off-the-shelf tv cameras and lenses,”IEEE Journal on Robotics

and Automation, vol. 3, no. 4, pp. 323–344, 1987.

[13] Z. Zhang, “A flexible new technique for camera calibration,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 22, no. 11, pp. 1330–1334, Nov. 2000.

[14] M. Biswas and S. Xu, “World fixed augmented-reality HUD for smart notifications,”

in SID Symposium Digest of Technical Papers, Wiley Online Library, vol. 46, 2015,

pp. 708–711.

[15] A. Hosseini, D. Bacara, and M. Lienkamp, “A system design for automotive aug-

mented reality using stereo night vision,” in 2014 IEEE Intelligent Vehicles Sympo-

sium Proceedings, IEEE, 2014, pp. 127–133.

[16] K. Ueno and T. Komuro, “Overlaying navigation signs on a road surface using a

head-up display,” in 2015 IEEE International Symposium on Mixed and Augmented

Reality, 2015, pp. 168–169.

[17] C. Yoon and K.-H. Kim, “Augmented reality information registration for head-up

display,”in 2015 International Conference on Information and Communication Tech-

nology Convergence (ICTC), IEEE, 2015, pp. 1135–1137.

[18] N. Deng, Y. Zhou, J. Ye, and X. Yang,“A calibration method for on-vehicle AR-HUD

system using mixed reality glasses,” in 2018 IEEE Conference on Virtual Reality and

3D User Interfaces (VR), 2018, pp. 541–542.

[19] M. Tuceryan, Y. Genc, and N. Navab,“Single-point active alignment method (SPAAM)

for optical see-through hmd calibration for augmented reality,” Presence: Teleopera-

tors & Virtual Environments, vol. 11, no. 3, pp. 259–276, 2002.

[20] Y. Itoh and G. Klinker, “Interaction-free calibration for optical see-through head-

mounted displays based on 3D eye localization,” in 2014 IEEE Symposium on 3D

User Interfaces (3DUI), Mar. 2014, pp. 75–82.

[21] ——,“Light-field correction for spatial calibration of optical see-through head-mounted

displays,” IEEE Transactions on Visualization & Computer Graphics, vol. 21, no. 4,

pp. 471–480, Apr. 2015.

[22] ——, “Simultaneous direct and augmented view distortion calibration of optical see-

through head-mounted displays,” in 2015 IEEE International Symposium on Mixed

and Augmented Reality, Sep. 2015, pp. 43–48.

[23] R. Haeuslschmid, Y. Shou, J. O’Donovan, G. Burnett, and A. Butz, “First steps

towards a view management concept for large-sized head-up displays with continu-

ous depth,” in Proceedings of the 8th International Conference on Automotive User

Interfaces and Interactive Vehicular Applications, ACM, 2016, pp. 1–8.

II

Bibliography

[24] X. Gao, J. Werner, M. Necker, and W. Stork, “A calibration method for automo-

tive augmented reality head-up displays using a chessboard and warping maps,” in

Twelfth International Conference on Machine Vision (ICMV 2019), W. Osten and

D. P. Nikolaev, Eds., International Society for Optics and Photonics, vol. 11433,

SPIE, 2020, pp. 787–794.

[25] M. Klemm, F. Seebacher, and H. Hoppe, “Non-parametric camera-based calibra-

tion of optical see-through glasses for AR applications,” in Cyberworlds (CW), 2016

International Conference on, IEEE, 2016, pp. 33–40.

[26] ——, “High accuracy pixel-wise spatial calibration of optical see-through glasses,”

Computers & Graphics, vol. 64, pp. 51–61, 2017.

[27] X. Gao, J. Werner, M. Necker, and W. Stork, “A calibration method for automotive

augmented reality head-up displays based on a consumer-grade mono-camera,” in

2019 IEEE International Conference on Image Processing (ICIP), 2019, pp. 4355–

4359.

[28] J. Wang, F. Shi, J. Zhang, and Y. Liu, “A new calibration model of camera lens

distortion,” Pattern Recognition, vol. 41, no. 2, pp. 607–615, 2008.

[29] Q. Zhu, “A technique of camera calibration using single planar calibration image,”

in Image and Signal Processing (CISP), 2012 5th International Congress on, IEEE,

2012, pp. 824–827.

[30] J. Bloomenthal and J. Rokne, “Homogeneous coordinates,” The Visual Computer,

vol. 11, no. 1, pp. 15–26, 1994.

[31] J. J. Craig, Introduction to robotics: mechanics and control, 3/E. Pearson Education

India, 2009.

[32] E. Hecht and K. Lippert, Optik, ser. De Gruyter Studium. De Gruyter, 2018, isbn:

9783110526707.

[33] N. A. Dodgson, “Variation and extrema of human interpupillary distance,” in Stereo-

scopic Displays and Virtual Reality Systems XI, International Society for Optics and

Photonics, vol. 5291, 2004, pp. 36–47.

[34] M. J. Magee and J. K. Aggarwal, “Determining vanishing points from perspective

images,” Computer Vision, Graphics, and Image Processing, vol. 26, no. 2, pp. 256–

267, 1984.

[35] R. G. Willson and S. A. Shafer, “Perspective projection camera model for zoom

lenses,” in Optical 3D Measurement Techniques II: Applications in Inspection, Qual-

ity Control, and Robotics, International Society for Optics and Photonics, vol. 2252,

1994, pp. 149–158.

[36] K. Naus and A. Makar, “Dynamic perspective projection for presentation of the

geometrical information about the geographical environment,” space, vol. 3, no. 2,

p. 1, 2002.

III

Bibliography

[37] Y. I. Abdel-Aziz, “Direct linear transformation from comparator coordinates into

object space in close-range photogrammetry,” in Proceedings of the ASP Symposium

on Close-Range Photogrammetry, 1971, American Society of Photogrammetry, 1971,

pp. 1–18.

[38] Y. Zheng, Y. Kuang, S. Sugimoto, K. Astrom, and M. Okutomi, “Revisiting the

PnP problem: A fast, general and optimal solution,” in Proceedings of the IEEE

International Conference on Computer Vision, 2013, pp. 2344–2351.

[39] C. Chatterjee and V. P. Roychowdhury, “Algorithms for coplanar camera calibra-

tion,” Machine Vision and Applications, vol. 12, no. 2, pp. 84–97, 2000.

[40] K. Sirisantisamrid, K. Tirasesth, and T. Matsuura, “A technique of camera calibra-

tion using single view,” in Control, Automation and Systems (ICCAS), 2011 11th

International Conference on, IEEE, 2011, pp. 1486–1490.

[41] M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm for model

fitting with applications to image analysis and automated cartography,” Communi-

cations of the ACM, vol. 24, no. 6, pp. 381–395, 1981.

[42] F. Moreno-Noguer, V. Lepetit, and P. Fua, “Accurate non-iterative O(n) solution

to the PnP problem,” in 2007 IEEE 11th International Conference on Computer

Vision, IEEE, 2007, pp. 1–8.

[43] E. Marchand, H. Uchiyama, and F. Spindler, “Pose estimation for augmented real-

ity: A hands-on survey,” IEEE transactions on visualization and computer graphics,

vol. 22, no. 12, pp. 2633–2651, 2015.

[44] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.

[45] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The KITTI

dataset,” The International Journal of Robotics Research, vol. 32, no. 11, pp. 1231–

1237, 2013.

[46] D. V. Papadimitriou and T. J. Dennis, “Epipolar line estimation and rectification for

stereo image pairs,” IEEE transactions on image processing, vol. 5, no. 4, pp. 672–

676, 1996.

[47] T. S. Huang and O. D. Faugeras, “Some properties of the E matrix in two-view mo-

tion estimation,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 11, no. 12, pp. 1310–1312, 1989.

[48] N. Jacobson, Basic algebra I. Courier Corporation, 2012.

[49] R. I. Hartley, “Cheirality invariants,” in Proc. DARPA Image Understanding Work-

shop, vol. 3, 1993.

[50] D. G. Lowe, “Object recognition from local scale-invariant features,” in Proceedings

of the seventh IEEE international conference on computer vision, Ieee, vol. 2, 1999,

pp. 1150–1157.

[51] ——, “Distinctive image features from scale-invariant keypoints,” International jour-

nal of computer vision, vol. 60, no. 2, pp. 91–110, 2004.

IV

Bibliography

[52] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes

3rd edition: The art of scientific computing. Cambridge university press, 2007.

[53] R. Keys, “Cubic convolution interpolation for digital image processing,” IEEE trans-

actions on acoustics, speech, and signal processing, vol. 29, no. 6, pp. 1153–1160,

1981.

[54] L. S. Dı́az, “Optical aberrations in head-up displays,” M.S. thesis, Technische Uni-

versität München, 2005.

[55] K. Blankenbach, “Requirements and system aspects of AR-head-up displays,” IEEE

Consumer Electronics Magazine, vol. 8, no. 5, pp. 62–67, 2019.

[56] X. Gao, M. Necker, and W. Stork,“A low-complexity yet accurate calibration method

for automotive augmented reality head-up displays,” in Thirteenth International

Conference on Machine Vision, International Society for Optics and Photonics,

vol. 11605, 2021, 116050B.

[57] X. Gao, K. Wu, M. Necker, W. Stork, A. Jadid, and G. Klinker, “A target-free cal-

ibration method for automotive augmented reality head-up displays,” in Thirteenth

International Conference on Machine Vision, International Society for Optics and

Photonics, vol. 11605, 2021, p. 116051V.

[58] J. Weng, P. Cohen, and M. Herniou, “Camera calibration with distortion models

and accuracy evaluation,” IEEE Transactions on pattern analysis and machine in-

telligence, vol. 14, no. 10, pp. 965–980, 1992.

[59] P. Drap and J. Lefèvre, “An exact formula for calculating inverse radial lens distor-

tions,” Sensors, vol. 16, no. 6, p. 807, 2016.

[60] R. I. Hartley, “Self-calibration from multiple views with a rotating camera,” in Eu-

ropean Conference on Computer Vision, Springer, 1994, pp. 471–478.

[61] L. Krüger and C. Wöhler, “Accurate chequerboard corner localisation for camera

calibration,” Pattern Recognition Letters, vol. 32, no. 10, pp. 1428–1435, 2011.

[62] C.-C. Lee and C.-C. Kuo, “Optical coatings for displays and lighting,” in Optical

Thin Films and Coatings, Elsevier, 2018, pp. 565–594.

[63] L. J. Hornbeck, “Digital light processing for high-brightness high-resolution appli-

cations,” in Projection Displays III, International Society for Optics and Photonics,

vol. 3013, 1997, pp. 27–40.

[64] G. Sauer, Laminated glass windscreen intended to be used at the same time as a hud

system reflector, US Patent App. 11/057,161, Jun. 2005.

[65] M. Marcus,“Simultaneous head-up display windshield wedge-angle and layer-thickness

measurements,” SPIE Newsroom, 2016.

[66] G. Peng and M. J. Steffensmeier, Head up display having a combiner with wedge

lenses, US Patent 7,570,430, Aug. 2009.

[67] P. Thomas and W. David, “Augmented reality: An application of heads-up display

technology to manual manufacturing processes,” in Hawaii International Conference

on System Sciences, 1992, pp. 659–669.

V

Bibliography

[68] I. T. Feldstein, A. Güntner, and K. Bengler, “Infrared-based in-vehicle head tracking:

A prototype for tracking drivers’ head movements in real time,” Procedia Manufac-

turing, vol. 3, pp. 829–836, 2015.

[69] M. Kutila, M. Jokela, G. Markkula, and M. R. Rué, “Driver distraction detection

with a camera vision system,” in 2007 IEEE International Conference on Image

Processing, IEEE, vol. 6, 2007, pp. VI–201.

[70] B. Horn, “Closed-form solution of absolute orientation using unit quaternions,” Jour-

nal of the Optical Society of America A, vol. 4, no. 4, pp. 629–642, 1987.

[71] X.-S. Gao, X.-R. Hou, J. Tang, and H.-F. Cheng, “Complete solution classification

for the perspective-three-point problem,” IEEE transactions on pattern analysis and

machine intelligence, vol. 25, no. 8, pp. 930–943, 2003.

[72] G. Jiang and L. Quan, “Detection of concentric circles for camera calibration,” in

Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume 1,

IEEE, vol. 1, 2005, pp. 333–340.

[73] C. Portalés, P. Casanova-Salas, S. Casas, J. Gimeno, and M. Fernández, “An in-

teractive cameraless projector calibration method,” Virtual Reality, vol. 24, no. 1,

pp. 109–121, 2020.

[74] X. X. Lu, “A review of solutions for perspective-n-point problem in camera pose

estimation,” in Journal of Physics: Conference Series, vol. 1087, 2018, p. 052 009.

[75] Z. Zhao, D. Ye, X. Zhang, G. Chen, and B. Zhang, “Improved direct linear transfor-

mation for parameter decoupling in camera calibration,” Algorithms, vol. 9, no. 2,

p. 31, 2016.

VI

Appendix

Abbreviations throughout the thesis

Abbrev. Meaning Abbrev. Meaning

2D two-dimensional 3D three-dimensional

ADAS advanced driver assistance systems AR augmented reality

AR-HMD
augmented reality

head-mounted display
AR-HUD

augmented reality
head-up display

AV autonomous vehicle CAD computer-aided design

DLP digital light processing DLT direct linear transformation

DMD digital micromirror device DoF degree of freedom

DoG difference of Gaussians FOV field of view

Full HD full high definition GNSS
global navigation
satellite system

HMD head-mounted display HMI human-machine interface

HUD head-up display HUD-FOV
field of view

of head-up display

ICP iterative closest point IP Internet protocol

KB kilobyte LCD liquid-crystal display

LiDAR
light detection
and ranging

LUT look-up table

MB megabyte MEMS
microelectromechanical

system

PEP polyethylene propylene PGU picture generation unit

PnP perspective-n-point RGB-D red, green, blue and depth

RMSE root-mean-square error ROI region of interest

SfM structure-from-motion SIFT
scale-invariant

feature transform

SPAAM
single point active
alignment method

STD standard deviation

SVD singular value decomposition

VII

	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Background
	1.2 Problem Statement
	1.3 State of the Art
	1.3.1 Calibration of Cameras
	1.3.2 Calibration of AR-HUDs
	1.3.3 Calibration of AR-HMDs

	1.4 Contributions
	1.5 Outline

	2 Theory
	2.1 Coordinate Systems
	2.1.1 World Space
	2.1.2 Virtual Image Space
	2.1.3 HUD-FOV Space
	2.1.4 Viewpoint Space
	2.1.5 Driver Camera Space

	2.2 Rigid Body & Transformation
	2.3 Ray Optics, Reflection & Refraction
	2.4 Pinhole Camera Model
	2.4.1 Perspective Projection
	2.4.2 Formulation
	2.4.3 Simple Analysis
	2.4.4 PnP Problem

	2.5 Stereo Vision
	2.6 Epipolar Constraint
	2.7 Scale-Invariant Feature Transform
	2.8 Bilinear & Bicubic Interpolations
	2.9 Distortion Models
	2.9.1 Camera Distortion Model
	2.9.2 Warping Maps

	2.10 Levenberg–Marquardt Algorithm

	3 System
	3.1 3D Sensor
	3.2 Eye Box
	3.3 HUD Projector
	3.3.1 Structure
	3.3.2 Requirement & Compromise
	3.3.3 Digital Light Processing

	3.4 Monocular Calibration Cameras
	3.4.1 Virtual Calibration Camera
	3.4.2 Real Calibration Camera

	3.5 Windshield
	3.6 Driver Camera
	3.7 Software

	4 Methods
	4.1 General Pipeline
	4.1.1 Pre-caliabration of Sensors
	4.1.2 Initial Calibration
	4.1.3 Validation
	4.1.4 Evaluation

	4.2 Multiple Viewpoints & Driver Camera Calibration
	4.3 Objects for 3D Sensing
	4.4 Evolution of Implementation
	4.4.1 Manual Implementation
	4.4.1.1 Using human eyes
	4.4.1.2 Using a Camera

	4.4.2 Automatic Implementation

	4.5 Experimental Schemes
	4.5.1 Calibration with a Chessboard Target
	4.5.1.1 Preparation
	4.5.1.2 Estimation of Intrinsics
	4.5.1.3 Calibration of Extrinsics
	4.5.1.4 Validation & Warping Maps
	4.5.1.5 Interpolation among Viewpoints
	4.5.1.6 Summary

	4.5.2 Calibration with Patterned Paper
	4.5.2.1 Preparation
	4.5.2.2 Estimation of Intrinsics
	4.5.2.3 Transformation from World to Viewpoint
	4.5.2.4 Rotation from Viewpoint to HUD-FOV
	4.5.2.5 Warping Maps & Interpolation
	4.5.2.6 Summary

	4.5.3 Target-free calibration
	4.5.3.1 Preparation
	4.5.3.2 Estimation of Intrinsics
	4.5.3.3 Transformation from World to Viewpoint
	4.5.3.4 Rotation from Viewpoint to HUD-FOV
	4.5.3.5 Warping Maps & Interpolation
	4.5.3.6 Summary

	5 Results
	5.1 Criteria on Projection Results
	5.2 Simulation Results
	5.2.1 Error-free AR-HUD System
	5.2.2 AR-HUD System with 3D Detection Error
	5.2.2.1 Systematical Error
	5.2.2.2 Disparity Error
	5.2.2.3 Pattern Recognition Error
	5.2.2.4 Summary

	5.2.3 AR-HUD System with 2D Detection Error
	5.2.3.1 Random Error
	5.2.3.2 Pixel Quantization Error

	5.2.4 Number of 2D–3D Point Correspondences
	5.2.5 Tolerance of Viewpoint Positions
	5.2.6 Optical Distortion
	5.2.7 Opening Angles
	5.2.8 Simulation with Chessboards

	5.3 Pre-calibration of Cameras
	5.4 Manual Implementation Results (with Human Eyes)
	5.5 Automatic Implementation Results
	5.5.1 Calibration Results with a Chessboard Target
	5.5.1.1 Focal Lengths of HUD
	5.5.1.2 Calibration Results at Train Viewpoints
	5.5.1.3 Driver Camera Calibration Results
	5.5.1.4 Interpolation Results

	5.5.2 Calibration Results with Patterned Paper
	5.5.2.1 Focal Lengths of HUD
	5.5.2.2 Extracted Warping Maps
	5.5.2.3 Qualitative and Quantitative Evaluation

	5.5.3 Target-free Calibration Results
	5.5.3.1 Focal Lengths of HUD
	5.5.3.2 Transformation from World to Viewpoints
	5.5.3.3 Validation and Warping Maps
	5.5.3.4 Evaluation and Interpolation Results

	5.5.4 Summary

	6 Discussion
	6.1 Comparison among Schemes
	6.1.1 Calibration Accuracy
	6.1.2 Time Efficiency
	6.1.3 Target Complexity

	6.2 View-dependent Virtual Images
	6.3 Direct Linear Transformation
	6.4 Distortion Models & Comparison
	6.4.1 Camera Distortion Model
	6.4.2 Warping Maps
	6.4.3 Polynomial Regression Model

	7 Conclusion & Outlook
	Bibliography
	Appendix

