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Abstract

The increasing availability of large-scale, complex data has made research into how

human genomes determine physiology in health and disease, as well as its application

to drug development and medicine, an attractive field for artificial intelligence (AI)

approaches. Looking at recent developments, we explore how such approaches inter-

connect and may conflict with needs for and notions of causal knowledge in molecular

genetics and genomic medicine. We provide reasons to suggest that—while capable of

generating predictive knowledge at unprecedented pace and scale—if and how these

approaches will be integrated with prevailing causal concepts will not only determine

the future of scientific understanding and self-conceptions in these fields. But these

questions will also be key to develop differentiated policies, such as for education

and regulation, in order to harness societal benefits of AI for genomic research and

medicine.
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INTRODUCTION

Most practical or commercial technology developments that stand for

the change, promise and fears ascribed to artificial intelligence (AI),

such as in computer vision, robotics or financial modeling, are based

on new machine learning (ML) techniques like deep learning models

in particular, that rapidly evolved in the last decade.[1–3] Current such

techniques can analyze large and complex data sets based on statis-

tical modeling, using correlative associations from observational data

for predicting outcomes.[4] Deep learning has proven to be particularly

powerful for flexibly deriving patterns andpredictivemodels fromsuch

Abbreviations: AI, artificial intelligence; DL, deep learning; CPG, Clinical Practice Guidelines;

EBM, evidence-basedmedicine; GWAS, genome-wide association studies; ML, machine

learning; RCTs, randomized controlled trials; R&D, research and development
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data sets and for independently optimizing models (for AI and ML, see

Box 1). Furthermore, certain methods such as deep learning are “black

boxes” as it is hard for humans to recapitulate how and why predictive

outcomes are achieved (Box 2).

Given increasingly large and complex data sets from biomedical

research (such as on genome sequences or gene expression) and clin-

ical medical practice (including from electronic health records and

biobanks), academic research institutions as well as biotech and tech-

nology companies have developed andusedAI/ML in various areas.[8,9]

These are mainly the prediction of pharmaceutical properties of drug

targets and drug candidates,[10] pattern recognition onmedical images

(such asmagnetic resonance imaging) or histopathological analyses for

diagnosis or monitoring disease states.[9] Another important applica-

tion area is the analysis of multimodal data such as from genomics and
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BOX. 1

Artificial intelligence (AI) andmachine learning (ML)

The terms AI and ML are often used interchangeably. How-

ever, though there appears to be no strict definition of AI, it

may be best described as the (broader) vision of science and

engineering to generate computers and software that can

perform in ways that were thought to require human intelli-

gence. In contrast,ML constitutes a subfield of AI—with deep

learning (DL) as a subset of ML—in which software and mod-

eling automatically improve through experience (which is not

a necessary condition for AI overall).[3]

ML encompasses three major classes: supervised learning,

unsupervised learning and reinforcement learning. Super-

vised learning aims to predict (as output) a classification or

label of data points (e.g., a property of an item) by using a

given set of labeled training examples (providing input fea-

tures known about the item). In unsupervised learning, the

aim is to learn inherent patterns within the data themselves.

Reinforcement learning is basedon rewardingdesired and/or

punishing undesired behavior of software agents (following

a trial-and-error approach). The main difference between

“standard” ML methods such as logistic regression or sup-

port vector machines and DL is that DLmodels have a higher

capacity and are much more flexible (with typically millions

of trainable parameters). Thus DL is very flexible in the kinds

of relationships between inputs (such as genetic variants or

epigenetic marks, in the case of genomics) and outputs (e.g.,

cell-type specific expression of protein forms) that they can

model and has proven to be particularly powerful in deriving

patterns and models for making predictions from large and

complex data sets.[1,5,6] DL models are based on software-

simulated multiple layers of artificial neurons (“deep neural

networks”) and canhavedifferent architectures, correspond-

ing to different assumptions about data and different tasks.

For example, convolutional neural networks can capture spe-

cial spatial dependencies (e.g., to analyze medical images or

patterns in biological sequences), while recurrent neuronal

networks are suited to handle sequential or time-series data

(such as for genomic splicing code analysis or EEG-based pre-

diction of epileptic seizures).[5–7]

other omics fields, and their combination with clinical data, in order to

generate newdiagnostic andpredictivemodels for diseases (like in can-

cer liquid biopsies[11]) and/or for their underlying genetic causes.[5,6]

The black-box character of some important AI/MLmethods is often

seen as amain challenge for their use. The de facto inability by humans

to “explain” or “interprete” how these models generate predictive out-

comes has widely been argued to be especially important in the med-

ical domain, mainly based on two grounds. First, there may be high

risks linked to potential flaws and biases in models and data, and a

BOX. 2

Black boxes in AI andmedicine

Sophisticated forms of ML are especially powerful and flexi-

ble in the kinds of relationships between inputs that they can

model (Box 1). In deep learning models this typically involves

automatic adjusting ofmillions of parameters to create a net-

work that most accurately transforms the inputs into output

predictions.[5,6] Due to this automatic adjustment or “learn-

ing” and the sheer size of the resulting networks, however,

these models are “black boxes”: they are hard to “explain” or

to “interprete” by humanswith respect to how and/orwhy an

outcome is achieved. No human may step through the vast

number of operations or non-linear associations (taking the

input data and model parameters) to recapitulate the model

predictions, at least not in reasonable time.[12,13]

There is an increasing number of techniques from “explain-

able AI” research to provide insight about the internal

operation of such networks (such as automatic-rule extrac-

tion), or networks built to explain themselves. But although

such methods may help in providing relevant information, it

appears still unclear what the best type of explanation met-

ric should be for different purposes, such as risk assessment

and oversight by experts or regulators, or the evaluation of

recommendations by health care practitioners.[12,13]

Though the black-box character of certain AI/ML system is

broadly discussed as a key challenge in relation to applica-

tions in medicine, the black-box issue has not been intro-

duced to medicine through AI/ML. The most important

instrument in evidence-basedmedicine (EBM) for testing the

efficacy and safety of drugs or treatments (and for approving

them), namely randomized controlled trials (RCTs) with their

underlying difference-making, probabilistic conception of

causation, can usually only provide black-box causal claims.

For they establish causal relationships between interven-

tions andmeasured end points on patient outcomes, without

providing a pathophysiological, mechanistic explanation for

why the interventions worked.[14–17]

corresponding need for system verification and improvement,[18,19,12]

including in systems that may constantly retrain and change over

time.[20] Such risks have been broadly discussed in relation to the util-

ity and safety of AI systems as well as to ethical and legal issues (such

as non-discrimination, privacy or accountability),[12] all of which have

made “interpretability” or “explainability” also an issue for regulation.

The second reason often invoked is that explanations on how these

systems work were needed for trust in, and adoption of AI/ML-based

approaches and innovations, including by users such as physicians and

patients.[18,21–23]

In this perspective, we analyze howmodern AI/ML systems interre-

late and may conflict with needs for and accounts of causal knowledge
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in genomic research and medicine, and point out possible implications

for the future of these areas. Our analysis suggests that current discus-

sions and policy proposals too narrowly focus on the black-box issue

and that its relevance for trust in and adoption of AI/ML applications is

far less clear than previously proposed. Rather the future development

andpossible societal benefitswill be determinedby the extent towhich

knowledge fromAI/MLmodels is perceived to need experimental veri-

fication and onwhether such verification is possible.

CAUSAL REASONING AND PREDICTION IN
BIOMEDICAL RESEARCH AND MEDICINE

Causal reasoning and causal accounts

While there are numerous ideas and theories throughout philosophy

about what causality actually is and what role it plays in or to explain

reality (or the physical world),[24–26] causal cognition processes appear

to be evolutionary entrenched in howwe think and act. Thusweuncon-

sciously strive to learn about causal relations in our environment and

we constantly use causal beliefs or knowledge to draw inferences or

make predictions through causal reasoning.[27] Causal reasoning, and

in particular enhanced grades of causal cognition that have occurred

later in human evolution, appear to be also important in contributing

to the development of technological innovations (including first “com-

plex” technologies suchasbowhuntingorpoisonedarrows).[28,29] Such

enhanced grades of causal cognition seem to involve abstract causal

understanding, integrating difference-making information from vari-

ous sources (e.g., one’s own interventions or interventions by others).

This allows to imagine and hypothesize causal networks and their out-

comes under varying circumstances.[28,30]

Given this strong evolutionary foundation of causal cognition pro-

cesses it may not be surprising that causation is key to various mod-

els of explanation and associated conceptions of understanding in

many special sciences,[31] including areas of modern biology, such as

molecular biology, physiology or evolutionary and developmental biol-

ogy, and (bio-)medicine.[32,33] In contrast, the place of causality in

physics, and in fundamental physics in particular, has been controver-

sially discussed.[31,34] Key issues include the nature of laws and time as

well as how to reconcile the central role of causal concepts in the spe-

cial sciences, and to identify effective strategies in practice, with the

often supposed absence of causation in fundamental physical laws.[34]

In molecular biology and biomedicine two different types of causal

accounts are common: causal-mechanistic and interventionist concep-

tions. Causal-mechanistic conceptions provide scientific explanation

by revealing the causal network of processes and interactions that lead

to the event to be explained, exploiting experimental interventions.[35]

Against this, in interventionist conceptions the goal is to observe

whether an action or a treatment causes an effect, without necessarily

making assumptions on or looking at causal mechanisms.[36] Causal

mechanistic accounts of understanding prevail in basic molecular

biology and biomedical research[32] and provide insight into molec-

ular and physiological mechanisms (e.g., linking genetic variants to

pathophysiological changes in human cells or animal models).[37–39]

Interventionist conceptions have become key in evidence-based

medicine (EBM), for example, to judge the efficacy of treatments for a

disease on patient outcomes, using randomized controlled trials (RCTs)

as itsmost important tool.[14,15] Under both conceptions, causal claims

can involve counterfactual dependencies and reasoning (i.e., allowing

to answer “what-if-things-had-been-different“ questions),[31,40] with

counterfactuals (such as using control and treatment groups in RCTs)

having become especially important to causal inference in EBM.[41]

Both conceptions on causation, but In particular the quest for

causal understanding derived from specific experimental interventions

in physiological processes, may exemplify a key notion underlying the

transition to modern science involving experimentation in the sev-

enteenth century, as famously called for by Francis Bacon: “to seek,

not pretty and probable conjectures, but certain and demonstrable

knowledge”—as “true sons of knowledge”[42] (Figure 1).

Causality, associative models and prediction

Causal concepts and knowledge derived from them can thus either

establish and/or mechanistically explain (in retrospect) why an out-

come occurred or, directed into the future, enable predictions on out-

comes. To predict future outcomes is also the aim of predictivemodels,

as in theML field. However, these models are usually based on statisti-

cally significant, but not necessarily causal, associations in the data and

thus not on knowledge about what makes outcomes happen.[4,44]

Correspondingly, causal concepts are important to basic biomedi-

cal research to uncover and understand physiological pathways, or to

prove hypotheses on them.[38,39,45] Moreover, causality is critical to

weigh interventions and their (observed or putative) effects in drug

development.[15,46,47] In contrast, associative model approaches are

often used in clinical practice to provide risk estimates, for example,

to predict whether patients are at high risk for a disease or to inform

prognoses.[48,49] Furthermore, in basic science such predictive models

may help to hypothesize likely causes or physiological mechanisms by

analyzing datasets containing complex patterns[5,44] (see also below).

CURRENT AI-BASED METHODS CONFLICT WITH
PREVAILING CAUSAL ACCOUNTS IN MOLECULAR
GENETICS

Though causality and causal modeling have become an active research

field in AI/ML,[50,51] currently established ML methods for analyzing

large and complex data are based on statistical modeling.[4,51] These

methods do not reflect genuine causal properties of the variables they

analyze or reconstruct. Instead correlative associations from observa-

tional data are used for predictive modeling of outcomes,[4,51] such as

functional consequences of genetic variants, cancer diagnoses or prop-

erties of drug candidates.[5,6,52]

Thus, Bacon’s call for “certain and demonstrable knowledge”

and experiments[42,43] (see also Figure 1) as well as the strong
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F IGURE 1 Title page for Novum organum scientiarum (second
edition, 1645) by the English philosopher and statesman Francis Bacon
who is often considered as one of the founders of modern science. In
this and other work he outlines what he believed is needed to reveal
and understand nature: to not only compile as many documented facts
from literature and systematic observations as possible but, as amain
element, to retrieve new knowledge from nature by experiments.
Intervention in nature by experiments would reveal the secrets of
nature better than observing how they “do in their usual course”[43].
The title page shows a ship passing through the Pillars of Hercules,
which symbolized the end of the knownworld. Bacon repeatedly used
this motif, drawing analogies between the exploration voyages and a
need to go beyond the boundaries of traditional knowledge. Image:
EC.B1328.620ib, Houghton Library, Harvard University

foundation of experimentation-based conceptions of causation in

molecular genetics and biomedical research appear to be in stark con-

trast to present-dayMLmethods.

Deep learning models to predict causal genetic
variants for complex traits and diseases

However, especially deep learning approaches have been suggested

to be able to reveal genomic differences, such as inherited genetic

variants, that are causally linked to traits or diseases. For these

approaches can integrate big biological data sets to predict changes

entailed by genomic differences in the complex cellular processes

(“intermediate phenotypes”) that lie in between genotype and phe-

notype. This feature is especially important for predicting effects

of variants in non-coding (often regulatory) genome regions, which

represent most genetic variants linked to common, multigenic

diseases.[5,6] Causal genetic variants influence a molecular or cellular

process to affect a disease, as opposed to variants that may be only

statistically associated with a disease via genome-wide association

studies (GWAS).[53] In fact various recent studies suggest that deep

learning models can rapidly predict cell-type specific intermediate

phenotypes, such as changes in transcription or pre-mRNA splicing,

for any DNA sequence difference (including all variants linked to traits

by GWAS). These models can so pinpoint putative causal variants for

various conditions, like cardiological, neurological and immune-related

disorders.[54–58] In some of the studies, intermediate phenotypeswere

further computationally integrated in multilevel models with gene

and protein interaction networks of physiological processes in cells

or organs, pointing to possible mechanistic pathways from genetic

alterations to disease.[55,58]

Predicted causal variants and the difficulty of
experimental proof

Yet despite efforts to make such models interpretable (e.g., allowing

conclusions on how certain inputs may be linked to outputs),[58] rig-

orous proof that a genetic variant or a pathway is in fact “causal” has

widely been suggested to require functional verification by experimen-

tal interventions. Such experiments would in particular include intro-

ducing corresponding variants or inactivating target genes in human

cell-basedmodels or inmodel organisms relevant for a disease.[38,39,59]

This kind of proof is hard to achieve though, especiallywhen it comes to

themyriad of common variants that have been associated with various

commondisorders byGWAS.[53,60] In addition to theminor effect sizes

these variants are often supposed to have individually, the sheer num-

ber of variants makes such functional verification challenging.[38,59] In

keeping with these challenges, recent studies using deep learning to

computationally predict putative causal variants or mechanistic path-

ways included no functional experiments.[54,58] Or, they did not link

variants and their predicted effects directly back to the disease phe-

notype by introducing or reverting variants in the genome of disease-

relevant cell or animalmodels. Rather, the forecasted functional effects

(such as on direction and degree of changes in gene expression) were

confirmed by artificial reporter gene constructs introduced to cell

lines.[55–57] Furthermore, in all studies, the value of the models to

pinpoint causal variants was supported by showing that regulatory

changes predicted for curated pathogenic variants or variants found in

patients differed significantly from changes forecasted for variants in

unaffected people.

Thus, the deep learning approaches appear to not directly provide

“rigorous” causal knowledge, but rather point to putative causal rela-

tions that may be further tested by experimental interventions.
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THE UNCERTAIN FUTURE OF EXPERIMENTALLY
VALIDATED KNOWLEDGE

If and towhat extent such rigorous experimental verification can play a

role to prove computationally predicted causality of genetic variants in

complex diseases seems uncertain, however.

There are mainly two reasons for this uncertainty. First, the

number of variants with small effect sizes will further increase by

ever larger GWAS,[60,61] likely paralleled by an increase in compu-

tationally predicted causal variants. Second, the complex genetic,

physiological or developmental processes that generate phenotypes

and common diseases are highly dynamic and driven by regulatory

feedback and hierarchical interactions (including cell- and tissue-level

interactions or environmental cues).[62,63] They may therefore be

better represented and understandable by systems genetics and

network approaches.[61,63,64] Based on multilevel and integrative

modeling such approaches try to analyze biological systems as awhole,

focusing on the relevant interactions in networks of genes or proteins

that occur in cell types or tissues.[63,64] However it remains unclear

which experimental and analytical approaches may allow to more

fully recapitulate and validate true network behavior across time.[65]

Due to the limited accessibility of most living human tissues to direct

experimental assays, these networks often need to be inferred from

large omics data byML and statistical methods.[64]

A future, inwhich “rigorous” proof of causal relations betweengeno-

type and (disease) phenotype by experimental intervention will pre-

vail, should thus not be taken for granted. Instead, linking AI-predicted

candidates for causal variants and pathways to disease by integra-

tive computational models involving tissue specific gene and protein

networks[55,58,66]—which themselves may have to largely be inferred

in silico—could becomemorewidespread.

Distinct implications for research, translation and
clinical practice

Such a potential shift toward scientific explanation derived from AI

predictions would challenge the (self-)conceptions of scientific under-

standing and “quality” of knowledge based on experimental interven-

tions, that still appear to prevail in important areas of basic biomedical

research (such as molecular genetics or physiology).[37,38,59] How-

ever, new techniques and approaches may be used to combine and

integrate rigorous molecular interventions with dynamic network

models toward exploring and distinguishing between possible causal

mechanisms, to understand how and why a process occurs in a certain

manner over time.[45,62] Thus approaches that combine human GWAS

data with experimentation-derived tissue- and cell-type-specific net-

works from suitablemodel organisms (such as Caenorhabditiselegans or

mouse) may help to experimentally test actionable network elements

and look more at systems behavior.[66,67] Furthermore, genome-wide

and combinatorial functional screening by CRISPR/Cas-mediated

methods in tissue cultures derived from human induced pluripotent

stem cells (hiPSCs) may contribute to probe disease-relevant network

models.[38,59,68,69]

Likewise such a shift would raise questions about implications for

translation of knowledge for drug development. Thus retrospective

studies on drug approvals suggest that genetic support linking drug

targets to disease significantly increases the likelihood for successful

drug development. This appears to be in particular true if there is clear

causal genetic evidence (e.g., when causal genes were identified in

severe genetic disorders, as opposed to mere statistical associations

of common genetic variants by GWAS).[47,70] Similarly, such genetic

evidence for effects of variants on phenotypes in tissues or organs

can be used to predict safety issues linked to drug targets.[71] Does

this mean that less “well-founded” causal knowledge derived from

AI/ML-based approaches would impair drug development? Not neces-

sarily, for such knowledge might still help solving the pharmaceutical

industry’s research and development (R&D) productivity challenge: to

increase the number and quality of cost-effective new drugs, without

incurring unsustainable R&D costs.[72] Computational models to

(more) rapidly pinpoint “reasonably good bets” (e.g., putative causal

variants) for drug targets may be combined with AI-based, automated

approaches for identifying, designing, synthesizing or repurposing

drug candidates in shorter time,[10,73,74] andwithmore relevant target

validation by new cellular or animal disease models (i.e., models with

higher predictive validity).[75] Combining these approaches might

increase (overall) quality in selecting promising targets and shift

project closures to early stages, as well as reduce development cycle

times and cost. All these factors have been linked to enhanced R&D

productivity.[72,75,76]

Possible effects by AI/ML-based approaches on the quality of

causal knowledge about genetic variants and mechanisms may even

be less clear when it comes to clinical trials and clinical medical prac-

tice (i.e., to infer diagnoses or to reach decisions on treatments).

This is because the role and value of basic science and mechanis-

tic knowledge in these areas—and especially related to EBM, which

has become their dominant concept—is contentious among practition-

ers and in philosophy of medicine.[14,77–79] In EBM, RCTs and sys-

tematic reviews of such studies are widely seen as the “gold stan-

dard” for judging diagnostic tests and/or treatments, and making rec-

ommendations on them. Proving causality in RCTs relies on showing

that a treatment makes a difference for the probability of patient out-

comes. Mechanistic reasoning, that is, inferring patient outcomes fol-

lowing interventions in the pathophysiological mechanisms, is gener-

ally ranked as evidence of low quality by EBM proponents.[77] This

has been ascribed to the challenges and failures in making such infer-

ences due to confounding factors (like interactions between vari-

ous mechanisms) linked to the complexity of common diseases.[78]

However, mechanistic knowledge and reasoning may play a role

in interpreting trial results, for instance to successfully transfer

recommendations from the test population to a different (target)

population.[46,77,78]

Similarly, the role of basic science and mechanistic knowledge

for diagnosis is far from clear. Expert clinicians appear to rarely

use basic science or causal pathophysiological knowledge, which

rather gets “encapsulated” in diagnostic labels or high-level, simplified

models.[80,81] Yet mobilization of such knowledge can become benefi-

cial when cases are rare or complex.[80]
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DIVISIONS IN CAUSE AND EXPLANATION:
BLACK-BOX CAUSAL CLAIMS VERSUS EXPLAINING
WHY AN EFFECT OCCURS

The apparent divide in the importance of causal knowledge on phys-

iological mechanisms between biomedical research and clinical trials

and medical practice is not created because causal claims do not play

a role in inferring diagnoses or in evaluating the efficacy of treatments

by EBM. But rather because the foundations and purposes of causal

claims in these application areas are usually different from the mech-

anistic theories of causality in biomedical research.

Making use of RCTs to assess and make recommendations on

diagnostic methods and therapies, in particular, appears to relate

to difference making probabilistic conceptions of causation. Under

these conceptions, causation requires that a cause (e.g., a drug)makes a

difference for the probability of its effect (patient outcome).[14,16] Cau-

sation may be seen as a form of correlation after all, under conditions

where, ideally, all biases or confounding factors are controlled.[14,46]

In RCTs randomization is used to control for putative other difference-

making, confounding factors between treatment and control groups

(such as age or comorbidities) that may affect the probability for a

given outcome. Since they provide nomechanistic rationale for why an

intervention entails a certain outcome, difference-making probabilistic

approaches like RCTs can usually only provide black-box causal claims

(Box2) about the (statistical) effectiveness of interventions in a studied

population.[14,15,46]

These differences in the foundations of causal claims thus appear to

be linked to two kinds of use: an inferential use to infer causal relation-

ships between interventions and outcomes (e.g., in RCTs) or to predict

effects of interventions (e.g., by transferring RCT results to new tar-

get groups), and an explanatory use to tell why an effect occurred.[16]

The difference-making conception of causation in EBM is suited for

inferential use, but it does not suffice for explanatory use; that is, why

the effect occurs. Such explanation needs knowledge on linking causal

mechanisms.[16,17]

MISSING EXPLANATIONS AND THEIR SUPPOSED
ROLE FOR POLICY

Present-day ML methods share some features with EBM’s difference-

making probabilistic conceptions for (black-box) causal claims. For

these methods also use correlative associations to predict outcomes

and can showmarked black-box characteristics (Box 2). However, they

are not designed to exclude or control for biases or confounding fac-

torswith respect to the found associations (e.g., between certainmuta-

tions or treatments and patient outcomes) in order to make any causal

claims.

When it comes to policies on applying AI/ML-based systems for

medical innovations, it appears to be not this fundamental, concep-

tual difference regarding causality and its implications that are dis-

cussed most, though. Instead, discussions and proposals often focus

on the black-box properties or opacity of certain ML techniques such

as deep learning (Box 2), for they may be linked to possible flaws and

biases in data and models.[18,19,12] Furthermore, the (missing) “inter-

pretability” or “explainability” of the inner workings of these black-

boxes has widely been suggested to be key for trust in, and adoption

of AI/ML-based applications or innovations.[18,21–23] Though no com-

mon definitions of “interpretability” or “explainability” exist, there are

two more widely accepted dimensions of these terms: transparency of

models and post-hoc interpretability.[12] Transparent models convey

some degree of interpretability by themselves, for example, if a model

is simple enough that a human can contemplate the entire model at

once (simulatability) or if one canunderstandhow it produces anygiven

output from its input data (algorithmic transparency). Post-hoc inter-

pretations do typically not explicate specifically how a model works,

but provide explanations by examples (such as similar training exam-

ples) or text explanations for already made predictive outcomes.[12,13]

The meaning and, in turn, the usefulness of “interpretability” or expla-

nations on how and why AI/ML systems produce the output they do

will thus differ between groups of people. For instance, detailed infor-

mation on inputs or algorithms may be useful for software developers

and to some extent also regulators, in order to test, evaluate and/or

improve models. But such information might be less understandable

andmeaningful to (end-)users of the systems, like clinicians or patients.

For them, post-hoc explanations may be more helpful. These differ-

ences might thus also affect the perception of benefits and possible

risks (such as ethical and social issues linked to hidden biases in mod-

els) and therefore trust in applications.

Medical AI regulation and explainability

Despite the suggestions that the black-box character of certain

advanced AI/ML-systems may affect their assessment of safety and

effectiveness, current regulatory schemes (e.g., in Europe and theUSA)

that cover such systems, as so called Software as aMedical Device, lack

clear standards on “explainability” or “interpretability”.[82] Yet under

the U.S. Food and Drug Administration’s medical device regulations

developers should provide information such as an “explanation of how

the software works”,[83] and the ability of clinicians to “understand”

or “independently review” the basis of recommendations is important

to initially decide whether to regulate a software.[83] It appears

still unclear, however, to what the mainly technical information that

developers must disclose (such as “the logic or rationale used by an

algorithm”)[84] had to amount to in practice. This issue may be partic-

ularly relevant for modern deep learning approaches since these lack

this sort of algorithmic transparency, thoughupcoming “explainableAI”

techniquesmay help to provide some relevant information[12] (Box 2).

Explainability as the key for trust and adoption:
“pretty conjecture” or “demonstrable knowledge”?

Similarly, understanding how andwhy a prediction or recommendation

was made has been argued to be crucial for trust in and adoption of
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AI/MLapplications by stakeholders at large, andbyusers in themedical

domain in particular.[18,12,21,85] However, there exist considerable diffi-

culties and variance in defining “explainability” or “trust”, and in empir-

ically assessing the role of explanations for trust in AI-based systems

or recommendations.[22,13,86,87] Moreover, trust in such systems and

their outcomes may depend on various factors, in general [86] and in

themedical domain.[88–90]

For instance, several studies on early AI-based systems suggest that

users appreciate explanatory features.[91] Yet empirical evidence that

such features may actually increase trust or confidence in a system’s

recommendations is rather limited and mixed,[92–95] and it remains

unclear to what extent these mostly laboratory studies (such as on

hypothetical e-commerce websites) can be conferred to “real-life” set-

tings or the medical domain. Also, the role of explanations for trust

can depend on users’ prior beliefs or expectations on outcomes.[96]

Finally, empirical studies on AI systems for different tasks suggest that

various other factors can affect trust, such as a system’s reliability,

the perceived level of machine intelligence (e.g., in form of personal-

ized outputs or responses), or questions regarding who is intended to

benefit.[86]

Someof these empirical findings also appear to resonatewith obser-

vations on trust of physicians and patients in diagnoses or recommen-

dations involving such systems. Thus the belief that AI does not take

into account one’s unique characteristics and circumstances (“unique-

ness neglect”) can be an important factor that impedes trust and use of

AI systems.[97] Or, when a physician uses AI, trust of patients seems to

depend on the physician and its confirmation of the AI system’s recom-

mendation, rather than on explanations on the system’s performance

or on how it works.[97] Likewise, trust by patients in physicians in gen-

eral appears to be not strongly dependent on being involved in med-

ical decision making, but is most closely linked to the personality and

behavior of physicians.[88] Lastly, given the difficulty in keeping upwith

the rapidly expanding breadth and depth of medical knowledge, clini-

cal practice guidelines (CPGs) play an important role in current clinical

decision making.[98,99] CPGs on how to include the outputs of specific

AI-based systems in decisions might play a key role for trust and adop-

tion by physicians, not least because of unclear liability issues linked

to the use of AI systems.[100,101] Similar to the evidence on the role

of explanations for trust in AI systems by physicians or patients, vari-

ous studies indicate that diffusion or uptake ofmedical innovations is a

complex social process and depends on many factors and their inter-

relations, including marketing, data from clinical trials or regulatory

environments.[102–104]

Thus a too strong focus on “interpretability” or “explainability” at

the expense of other elements appears to be wrong-headed. In addi-

tion to raising ethical questions,[17] trading “nudged” trust and accep-

tance based on “plausible” explanations for potentially better patient

outcomes or proof by clinical trials may be myopic, since such trust

could be short-lived. Further evidence on what type of information on

AI applications and provisions can sustainably generate trust in and

adoption of medical AI systems will be needed to inform more differ-

entiated policies.

WHY CAUSALITY MATTERS AND WHAT MAY
DETERMINE FUTURE DEVELOPMENTS

A too strong or even single focus on “interpretability” or “explainabil-

ity” ofAI/MLsystemsmayalsobe less rewarding thanwidely suggested

when it comes to assessing and approving the efficacy and safety of

such systems, given the only correlative knowledge currentMLmodels

can provide. Similarly, towhat degreeMLmodelswill transform knowl-

edge generation in genomic and biomedical research may depend on

whether such systems can once provide causal inference, and on how

people in these areas will rate such causal models and their underlying

assumptions.

Mind the causality gap: Explainability should not
become all-important for approval of biomedical AI
systems

As regards evaluation and approval, we contend that rigorous test-

ing with respect to patient outcomes of AI-based systems for diag-

nosis and treatment recommendations (e.g., by RCTs or prospective

cohort studies[21,52,101]) will be required as the most important ele-

ment. This is because of the conceptional issue that, even if made

“explainable”, current high-capacity AI methods can only account for

how associations (and predictions based on them) have been drawn by

the software.[4,105] These statistical modeling methods and interpre-

tations of how they work cannot provide causal inferences (e.g., that a

diagnosis and cognate intervention by a treatment will be effective), at

least not without existing causal knowledge or making causal assump-

tions (“no causes in; no causes out”).[105–108] Integrating counterfac-

tual reasoning into currentML algorithmsmay however improve accu-

racy of associative diagnosis models, especially for rare and very rare

diseases.[109] Yet, ultimately, any causal assumption may need exper-

imental control and cannot be inferred from statistical associations

alone.[107]

As longas this conceptional issuepersists, it appearsworth to recon-

sider making “explainability” or “interpretability” an all-important ele-

ment for the approval of AI methods. Furthermore, giving priority to

“explanations” and “understanding” of such methods over potentially

higher performance of certain AI systems[12] and/or the best available

evidence on patient outcomes, poses ethical as well as legal issues.

These include important questions as to whether patients have the

right to benefit from, and doctors the duty to use the most effective

diagnosis systems or treatments.[17,100]

Technological and social or psychological factors will
shape AI’s future in biomedical research

To what extent AI systems in biomedical research can develop a

role beyond a quicker or more comprehensive means for the gen-

eration of hypotheses (such as on causal genetic variants or drug



8 of 12 KÖNIG ET AL.

candidates) will depend on both technological and social or psycholog-

ical factors.

Various efforts aim to develop AI methods to identify causal rela-

tions from observational and interventional data, by incorporating

causal and counterfactual reasoning in suitable high-capacity ML sys-

tems, such as deep learning models. Proposed solutions include com-

bining structural causal modeling and representation learning,[51] or

neural computing frameworks to infer causality from time series (i.e.,

grounded on the assumptions of time-order).[110,111] However, in how

far and atwhich level (e.g., single genes or complex networks) such new

methods might once “establish” causal relationships in genomics and

genomic medicine remains to be seen. An important issue may be to

what degree the assumptions underlying such methods can be tested

by (and stand up to) experimental approaches in cells or organisms.

Furthermore, the role ofAImethods in research and their relation to

causal knowledge will likely not only depend on new algorithms or the

kind of observational or interventional data used. But these issuesmay

also be affected by the extent to which causal relations (such as patho-

physiological mechanisms), be they “established” by future “causal AI”

systems or only predicted by current associative ones, will be accepted

or perceived to require experimental validation. This may be deter-

mined by entrenched andnewly upcoming beliefs or thinking about sci-

entific methods (including new AI models and their underlying causal

assumptions), results and theories among groups of scientists. Work

from the history and philosophy of science and from cognitive sciences

suggests an important role for such often “incommensurable” kinds

of perception and thinking, that underlie concepts such as “thought

styles”,[112] “paradigms”[113] or “habits of minds”,[114] in both continu-

ous and radical conceptual (“revolutionary”) scientific change. A puta-

tive change in perception and thinking regarding causality, and thus sci-

entific self-conceptions and understanding, may not least be driven by

newpeople fromor close to theAI field, who enter biomedical research

and education. In keepingwith this, recent empirical data frombiomed-

ical research indicate that such change by “outsiders” can be fostered

by the premature death of eminent scientists in a research area.[115]

Obviously such potential change by “new entrants” does not mean

that AI talent or people from other areas will not be needed or should

not move into genomic research and biomedicine, or that biomedical

researchers and clinicians should not be educated in AI. Quite to the

contrary, such influx of expertise will be required to further advance

the use of AI in biomedicine, and its opportunities outlined above. Yet

in addition tomutual learningbetween scientist fromboth fields, young

scientists at the interface of the two fields might benefit from courses

with input from biomedical and AI scientists with diverse thinking as

well as from other relevant fields such as philosophy of science or cog-

nitive sciences.

CONCLUSIONS

Current associative AI models are in stark contrast to the strong

foundation of intervention-based conceptions of causation in genomic

research and medicine. Given this fundamental conceptual difference,

present discussions and policy proposals too narrowly focus on the

black-box issue. Notions of making “explainability” or “interpretabil-

ity” of AI models an all-important element for their assessment or for

generating sustained trust need rethinking. Rather, the future develop-

ment of knowledge fromAImodels for genomic research andmedicine,

their adoption and possible societal benefits will, for one thing, depend

on whether such models can develop beyond hypotheses generators

and association-based prediction tools, as generating rigorous causal

knowledge by experimental intervention is laborious and costly. For

another, in particular as regards direct medical applications like diag-

nostics, respective policies demanding clinical trials will be critical.

Both the development of AI-based knowledge and policies on its use

will not only hinge on technological progress on causal AI models and

means to test them and their underlying assumptions experimentally.

But they will also be driven by how such knowledge is perceived or

judged by different actors.

Given the complexity and broad implications of issues ranging from

scientific understanding to adoption of innovations, as well as the cur-

rent scarcity of evidence on how to best govern these issues, the

development of policies for different contexts may need engagement

with people and perspectives from different disciplines and societal

groups. Such inclusive approaches—which should not be expected to

produce simple consensus but rather learn about and recognize dif-

ferent needs, preferences or (scientific) thinking—may reduce the risk

that education, R&D and policy schemes to govern them succumb

to one-dimensional concepts. These could narrow down, rather than

broaden and leverage, the potential for societal benefits from using AI

to understand genome function in biomedical research and to advance

genomic medicine.
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