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Abstract
We study the auto-correlationmeasures of invariant random point processes in the hyperbolic
plane which arise from various classes of aperiodic Delone sets. More generally, we study
auto-correlation measures for large classes of Delone sets in (and even translation bounded
measures on) arbitrary locally compact homogeneous metric spaces. We then specialize to
the case of weighted model sets, in which we are able to derive more concrete formulas for
the auto-correlation. In the case of Riemannian symmetric spaces we also explain how the
auto-correlation of a weighted model set in a Riemannian symmetric space can be identified
with a (typically non-tempered) positive-definite distribution on R

n . This paves the way for
a diffraction theory for such model sets, which will be discussed in the sequel to the present
article.

1 Introduction

1.1 General themes of this article

The study of aperiodic Delone sets in R
n and more general locally compact abelian groups

is a classical topic in harmonic analysis (see [3] for an extensive reference list). A particular
interesting class of such Delone sets are model sets as introduced by Meyer in his pioneering
work [25]. In the first part of this series of articles [8] we have studied model sets in the
wider setting of - typically non-abelian - locally compact second-countable (lcsc) groups and
developed a theory of auto-correlation for such model sets (and more generally, for so-called
Delone sets of finite local complexity in locally compact groups).
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In this second part we study Delone sets, i.e. uniformly discrete and relatively dense
subsets, in arbitrary lcsc homogeneous metric spaces. Here a locally compact metric space
is called homogeneous if its isometry group G acts transitively on X . Examples of such
spaces exist in abundance; wewill consider in particular Euclidean spaces, hyperbolic spaces,
Riemannian symmetric spaces, vertex sets of regular trees and Bruhat–Tits buildings and
locally compact second countable (lcsc) groups themselves with an invariant metric.

Any locally compact homogeneous metric space is of the form X = K\G for a compact
subgroup K < G and we will show that every Delone set in X is the orbit of a Delone set in
G as defined in [7]. In particular, we can define a model set in X as the orbit of a model set
in G, and these are the main protagonists of the current article. While the case of Euclidean
space (seen as homogeneous space under the group of Euclidean motions, [2]) and abelian
locally compact groups [3] have been studied before, this seems to be the first systematic
investigation of auto-correlation of Delone sets in general lcsc homogeneous metric spaces.

The bulk of this article is devoted to transferring the theory of auto-correlation developed
in [8] from model sets in lcsc groups to model sets (and more general translation bounded
measures) in arbitrary lcsc homogeneous metric spaces.

While our results apply in large generality, this introduction will focus on the simple
special case of Delone sets in the hyperbolic plane, for which we can state some of our
results in a particularly nice form. In particular we are going to explain how a model set
in the hyperbolic plane gives rise to an evenly positive-definite (generally non-tempered)
distribution on the real line. The complex Fourier transform of this distribution will be the
subject of the third paper in this series [9], where it will be established that it is a pure point
Radon measure if the model set is uniform. The natural context of this result is the theory of
spherical diffraction alluded to in the title of this series of articles.

1.2 Tilings of the hyperbolic plane

The Poincaré disc model of the hyperbolic plane is given by the unit disc D ⊂ C with the
metric

d(z1, z2) := 2 artanh

( |z1 − z2|
|1 − z1z2|

)

A subset � ⊂ D is called a Delone set if it is uniformly discrete and relatively dense, i.e. if
there exist constants R > r > 0 such that d(λ1, λ2) ≥ r for all λ1, λ2 ∈ � with λ1 �= λ2
and if for every z ∈ D there exists λ ∈ � with d(λ, z) ≤ R. It is called periodic if the group
� := {g ∈ Is(D, d) | g.� = �} acts cocompactly on D.

If � is a Delone set in the hyperbolic plane, then the Voronoi cell of λ ∈ � is the convex
compact set with piecewise-geodesic boundary given by

Vλ = {z ∈ H
2 | ∀λ′ ∈ �\{λ} : d(z, λ) ≤ d(z, λ′)}.

The Voronoi cells (Vλ)λ∈� form a tiling of the hyperbolic plane called the Voronoi tiling of
�. Figure 1, due to Stefan Witzel, shows a piece of a Voronoi tiling associated with a Delone
set in the Poincaré disc. The underlying Delone set is not periodic, but nevertheless enjoys
a great deal of structure, analogous to “quasi-crystals” in the Euclidean plane. In fact, in the
terminology introduced below, it is a uniform model set in the Poincaré disc.

We remark that the study of such non-periodic tilings in the hyperbolic plane has a long
history (see e.g. [5,11,24,26]), but we will see that hyperbolic model sets and their associated
tilings have a number of features which are not known to hold in previous examples.
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Fig. 1 Voronoi tiling of a hyperbolic model set (Picture courtesy of Stefan Witzel)

1.3 Weightedmodel sets and unique ergodicity

In the sequel it will be convenient for us to work with the upper half-plane model of the
hyperbolic plane as given by

H
2 = {(x, y) ∈ R

2 | y > 0} = {z ∈ C | Im(z) > 0}
with metric

d((x1, y1), (x2, y2)) = arcosh

(
1 + (x1 − x2)2 + (y1 − y2)2

2y1y2

)
.

The group SL2(R) acts on H
2 by isometries via(

a b
c d

)
.z := az + b

cz + d

((
a b
c d

)
∈ SL2(R), z ∈ C, Im(z) > 0

)
,

and every orientation-preserving isometry of H
2 arises from a matrix in SL2(R) in this way.

Moreover, the action SL2(R) � H
2 is transitive.
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Lemma 1.1 (Lifting lemma) For every Delone set � ⊂ H
2 there exists a Delone set �̃ in

SL2(R) whose orbit coincides with �, i.e.

� = {̃
λ.i | λ̃ ∈ �̃

}
. (1.1)

Not every orbit of a Delone set in SL2(R) is a Delone set in the hyperbolic plane, but if
� < SL2(R) is a uniform lattice, then the orbit �.i of � in H

2 defines a periodic Delone set
in H.

We now explain how to construct non-periodic examples of highly structured Delone set
in the hyperbolic plane: We start from a uniform lattice � in SL2(R)×SL2(R), for example

� = {(Z1(x, y), Z2(x, y)) | x0, . . . , x3, y0, . . . , y3 ∈ Z, det(Z1(x, y)) = det(Z2(x, y)) = 1},
where

Z1(x, y) :=
⎛
⎝

(
x0 + 1+√

5
2 · y0

)
+

(
x1 + 1+√

5
2 · y1

) √
3 + √

5
(

x2 + 1+√
5

2 · y2
)

+
(

x3 + 1+√
5

2 · y3
) √

3 + √
5

1−3
√
5

2

((
x2 + 1+√

5
2 · y2

)
−

(
x3 + 1+√

5
2 · y3

) √
3 + √

5
) (

x0 + 1+√
5

2 · y0
)

−
(

x1 + 1+√
5

2 · y1
)√

3 + √
5

⎞
⎠ ,

Z2(x, y) :=
⎛
⎝

(
x0 + 1−√

5
2 · y0

)
+

(
x1 + 1−√

5
2 · y1

) √
3 − √

5
(

x2 + 1−√
5

2 · y2
)

+
(

x3 + 1−√
5

2 · y3
) √

3 − √
5

1+3
√
5

2

((
x2 + 1−√

5
2 · y2

)
−

(
x3 + 1−√

5
2 · y3

) √
3 − √

5
) (

x0 + 1−√
5

2 · y0
)

−
(

x1 + 1−√
5

2 · y1
)√

3 − √
5

⎞
⎠ .

Moreover, let W be a compact identity neightbourhood in SL2(R) and denote by p1, p2 :
SL2(R) × SL2(R) → SL2(R) the two coordinate projections. We then define a subset of
SL2(R) by

�̃ := p1(� ∩ (SL2(R) × W )).

This is an example of a uniform model set in SL2(R), and such model sets have been system-
atically studied in [7,8]. The following proposition holds for model sets and more generally
for Delone set in SL2(R) of finite local complexity as defined in [7,8].

Proposition 1.2 If �̃ is a Delone set of finite local complexity in SL2(R), for example a
uniform model set, then its orbit � as defined by (1.1) is a Delone set in H

2, and for every
λ ∈ � we have

w(λ) := |{̃λ ∈ �̃ | λ̃.i = λ}| < ∞.

We refer to the pair (�,w) arising from this construction as a weighted uniform model set
in H

2 and to the function w : � → N as its weight function. The associated weighted Dirac
comb is the Radon measure δ(�,w) on H

2 given by

δ(�,w)( f ) =
∑
λ∈�

w(λ) f (λ) ( f ∈ Cc(H
2)).

The weighted Dirac comb of a weighted model set is an example of a translation bounded
measure onH

2. Such measures have been studied extensively in the setting of abelian groups
[1,4,19], and generalizing results from the abelian case we will show:

Proposition 1.3 The weak-∗-closure �(�,w) := SL2(R).δ(�,w) in the space of Radon mea-
sures on H

2 compact.

One can show that �(�,w) consists of those weighted Dirac combs of weighted Delone
sets inH

2 which locally coincide with (�,w) up to an element of SL2(R). We refer to�(�,w)

as the hull of (�,w). By construction the group SL2(R) acts on the hull, and we can extend
the results from [8] to show:
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Theorem 1.4 (Unique ergodicity of regular weighted model sets) If �̃ is a regular uniform
model set, then the hull �(�,w) is minimal and admits a unique SL2(R)-invariant probability
measure.

Remark 1.5 The topological structure of hulls of Delone sets in homogeneous metric spaces
has also been studied by Benedetti and Gambaudo in [6]. Their focus is however quite
different from ours.

We refer the reader to [8] for the precise definition of a regular uniformmodel set. Besides
some technical conditions on the window it requires the window to be in general position
with respect to the lattice �.

1.4 Auto-correlationmeasures and auto-correlation distributions

From now on we fix a weighted uniform model set (�,w) in the hyperbolic plane arising
from a regular uniform model set in SL2(R).

By Theorem 1.4 there exists a unique SL2(R)-invariant probability measure on the hull
�(�,w). If we denote thismeasure by ν, then the pair (�(�,w), ν) is an example of a (weighted)
point process in the hyperbolic plane, and for such point processes one can define correlation
measures in the usual way. For example, the two-point correlation η(2) is the Radon measure
on H

2 × H
2 given by

η(2)( f1 ⊗ f2) =
∫

�(�,w)

(∫
H2

f1 dμ

) (∫
H2

f2 dμ

)
dν(μ).

Since ν is SL2(R)-invariant, the two-point correlation descends to a Radon measure η on the
quotient SL2(R)\(H × H) called the auto-correlation measure of (�,w) (or of ν).

There are several ways to think of this measure. Firstly, if we abbreviate G := SL2(R) and
K := SO2(R), then we can identify SL2(R)\(H × H) with the double coset space K\G/K ,
and hence η can be seen as a Radon measure on this space. Secondly, one can show that there
is a well-defined homeomorphism

ι : K\G/K → [1,∞), K gK �→ 1

2
tr(g�g), (1.2)

and hence η corresponds to a Radon measure on [1,∞). We now offer several descriptions
of this measure.

Firstly, we can identify Cc(K\G/K ) with the convolution algebra Cc(G, K ) of bi-K -
invariant functions on G via pullback along the canonical projection G → K\G/K . From
this identification Cc(K\G/K ) inherits the structure of a ∗-algebra. Secondly, we can also
identify every f ∈ Cc(K\G/K )with a radial function fH2 on the hyperbolic plane. We then
obtain the following description of η.

Proposition 1.6 (General formula for the auto-correlation measure) The auto-correlation
measure η is the unique Radon measure on K\G/K such that for all f ∈ Cc(K\G/K ),

η( f ∗ f ∗) =
∫

�(�,w)

∣∣∣∣
∫
H2

fH2 dμ

∣∣∣∣
2

dν(μ).

Using results from [8] we obtain the following alternative description. Here, we denote by
F ⊂ G × G a fundamental domain for the �-action on G × G and by mG a suitably
normalized choice of left-Haar measure on G. Moreover, given f ∈ Cc(G, K ) we denote by
K fK ∈ Cc(K\G/K ) the function given by K fK (K gK ) = f (g).
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Theorem 1.7 (Auto-correlation formula for weighted model sets) The auto-correlation mea-
sure η is the unique Radon measure on K\G/K such that for all f ∈ Cc(G, K ),

η(K fK ∗ (K fK )∗) =
∫

G

∫
G
1F (g, h)

∣∣∣∣∣∣
∑

(γ1,γ2)∈�

f (γ1g)1W (γ2h)

∣∣∣∣∣∣
2

dmG(g) dmG(h)

where F is a fundamental domain for � in G × G. Equivalently, η is the unique Radon
measure on K\G/K such that for all f ∈ Cc(G, K ),

η(K fK ∗ (K fK )∗) =
∑

(γ1,γ2)∈�

( f ∗ f ∗)(γ1)(1W ∗ 1W−1)(γ2).

Finally, denote by (Bt ) the ball of radius t around i in the hyperbolic plane, and define
Ft := {g ∈ G | g.i ∈ Bt } ⊂ G.

Theorem 1.8 (Sampling formula for the auto-correlation) The auto-correlation measure η is
the unique Radon measure on K\G/K such that for all f ∈ Cc(G, K )

η(K fK ) = lim
t→∞

1

mG(Ft )

∑
x∈�∩Ft

∑
y∈�

f (xy−1).

From Proposition 1.6 one sees that the auto-correlation measure is positive-definite on
K\G/K in the sense that

η( f ∗ f ∗) ≥ 0 for all f ∈ Cc(K\G/K ).

However, if we consider η as a Radon measure on [1,∞) ⊂ R via the identification (1.2),
then η is not a positive definite Radon measure onR in these coordinates. We can remedy this
by applying the so-called Harish transform and obtain an evenly positive-definite distribution
on R. To state the result, we denote by C∞

c (R)ev ⊂ C∞
c (R) the subspace of even functions,

i.e. functions satisfying f (t) = f (−t). The dual spaceD(R)ev := C∞
c (R)∗ev can be identified

with the subspace of D(R) = C∞
c (R)∗ consisting of those distributions which are invariant

under the reflection at 0, and hence we refer to elements of D(R)ev as even distributions.
A distribution is positive-definite if ξ(ϕ ∗ ϕ∗) ≥ 0 for all ϕ ∈ C∞

c (R), and we call an
even distribution ξ evenly positive-definite if ξ(ϕ ∗ ϕ∗) ≥ 0 for all ϕ ∈ C∞

c (R)ev. Given
ξ ∈ D(R)ev and ϕ ∈ C∞(R)ev we write

∫ ∞
0 ϕ(t) dξ(t) := ξ(ϕ).

Theorem 1.9 (Auto-correlation as a positive-definite distribution) If η denotes the auto-
correlation measure considered as a Radon measure on [1,∞), then the formula

ξ(ϕ) := −1

2π

∫ ∞

1

∫ ∞

−∞
ϕ′(arcosh(t + v2/2))√

(t + v2/2)2 − 1
dv dη(t) (ϕ ∈ C∞

c (R)ev)

defines an evenly positive-definite distribution ξ ∈ D(R)ev, and for all ψ ∈ C∞
c ([1,∞)) we

have

η(ψ) =
∫ ∞

0

∫ ∞

−∞
ψ(cosh(t) + u2/2) du dξ(t).

In particular, η is uniquely determined by ξ .

In view of the theorem we refer to ξ ∈ D(R) as the auto-correlation distribution of
(�,w). In general, ξ is not a tempered distribution, i.e. it does not extend to a continuous
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linear functional on the Schwartz space S (R). The reason for this is that, unlike for model
sets in the Euclidean plane, the number of elements of a model set contained in a ball of
radius R in the hyperbolic plane grows exponentially (rather than polynomially) in R. While
tempered distributions can be studied by their real Fourier transform, to study non-tempered
distributions one needs to employ a certain complex Fourier transform. We will see in the
sequel article [9], that ξ is uniquely determined by its complex Fourier transform, which we
will show to be a pure-point positive Radon measure supported on a certain 1-dimensional
subset of C. This should be seen as the analog of pure point diffraction of Euclidean quasi-
crystals in the hyperbolic setting.

1.5 The general picture

All of the resultsmentioned this introductionwork inmuch larger generality: The basic theory
of auto-correlation measures up to Proposition 1.6 can be developed for translation bounded
measures with uniformly locally bounded orbit (in particular, weighted Delone sets of finite
local complexity) in an arbitrary locally compact homogeneous metric space. The formula
in Theorem 1.7 still works for arbitrary weighted model sets in this very general setting.
The approximation formula in Theorem 1.8 is more restrictive. It works for example if G is
amenable and (Ft ) is a weakly admissible Følner sequence as defined in [8]. It also works in
many non-amenable situations, for example if G satisfies the conclusion of the Howe–Moore
theorem, (G, K ) is a Gelfand pair and (Ft ) is an arbitrary bi-K -invariant weakly admissible
sequence. Notably this covers the case of balls in Riemannian symmetric space, in particular
balls in the hyperbolic plane. Theorem 1.9 makes use of an identification between the ∗-
algebra C∞

c (K\G/K ) and the subalgebra of C∞
c (R) consisting of even functions. This can

be extended to semisimple Lie groups: If G is a semisimple Lie group of real rank n with
maximal compact subgroup K , then bywork of Harish-Chandra the ∗-algebraC∞

c (K\G/K )

is isomorphic to the subalgebra ofC∞
c (Rn) consisting of functionswhich are invariant under a

certain finite reflection group, the so-calledWeyl group of G. In this case, the auto-correlation
measure can be identified with a Weyl group invariant positive-definite distribution on R

n ,
and we will investigate complex Fourier transforms of these distributions in the sequel article
[9].

1.6 Organization of the article

In Sect. 2 we discuss Delone sets in and translation bounded measures on a general proper
lcsc metric space X . We explain how Delone sets in X give rise to translation bounded
measures (Proposition 2.6) and how they can be lifted to Delone sets in the isometry group
provided X is homogeneous (Corollary 2.13). As special cases we obtain Lemma 1.1 and
Proposition 1.2 from the introduction. We conclude by discussing weighted model sets as
important examples.

In Sect. 3we define the hull dynamical system of a translation boundedmeasure. Corollary
3.6 yields a compactness result generalizing Proposition 1.3 from the introduction (as well
as [4, Thm. 4] in the abelian case). Proposition 3.9 relates hulls of Delone sets (as studied in
[8]) to the hull dynamical systems of their Dirac combs and Lemma 3.11 yields naturality
of these systems under proper equivariant maps. Together with results from [8] these imply
(the general form of) Theorem 1.4 (cf. Corollary 3.12).

Section 4 introduces the auto-correlationmeasure of a sufficiently nice translation bounded
measure (including Dirac combs of weighted model sets). The most general form of Propo-
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sition 1.6 is given in Proposition 4.14. We then specialize to the case of weighted model sets
and derive the auto-correlation formulas from Theorem 1.7 in Corollary 4.18 and Proposition
4.19.

The final two sections are logically independent. Section 5 discusses the notion of auto-
correlation distribution (for SL2(R) andmore general semisimple Lie groups) and establishes
Theorem 1.9. Section 6 establishes a sampling formula like the one in Theorem 1.8 in large
generality (Theorem 6.6).

The appendix collects various useful facts concerning convolution structures on double
coset spaces, in particular concerning the existence of certain approximate identities.

1.7 Notational conventions

Throughout this article G will always denote a unimodular lcsc group G and the letter K
is reserved to denote a compact subgroup of G. We denote by mG a fixed choice of Haar
measure on G and by mK the Haar probability measure on K . Moreover, we will use the
following notations.

Remark 1.10 (Notations concerning point sets in groups) Given subsets A, B ⊂ G we denote
by AB := {ab | a ∈ A, b ∈ B} the product set of A and B. Similarly, we define A−1 :=
{a−1 | a ∈ A} and write An+1 := AAn for iterated product sets. To avoid confusion with
Cartesian products of sets we will usually write X×2 := X × X and X×(n+1) := X × X×n

for iterated Cartesian products of a set X with itself, except in standard notations like R
n or

C
n .

Remark 1.11 (Notations concerning G-spaces) By a G-space we shall mean a lcsc space X
together with an action of G on X which is jointly continuous in the sense that the map
G × X → X , (g, x) �→ g.x is continuous. If there exists a metric d on X which defines
the topology and is invariant under G in the sense that d(g.x, g.y) = d(x, y) for all g ∈ G
and x, y ∈ �, then (X , d) is called an isometric G-space. If � is a compact G-space (in
particular metrizable), then we sometimes call� a topological dynamical system (TDS) over
G.

Remark 1.12 (Notations concerning function spaces) If X is a lcsc space, then we denote
by Cc(X), C0(X) and Cb(X) the function spaces of complex-valued compactly supported
continuous functions, continuous functions vanishing at infinity and continuous bounded
functions respectively.

If (X , ν) is a measure space and f , g ∈ L2(X , ν), then we denote by

〈 f , g〉X := 〈 f , g〉(X ,ν) :=
∫

X
f · g dν

the L2-inner product. Contrary to the convention in [8] we will choose all our inner products
to be anti-linear in the second variable.

Given a function f : G → C we denote by f̄ , f̌ and f ∗ respectively the functions on G
given by

f̄ (g) := f (g), f̌ (g) := f (g−1) and f ∗(g) := f (g−1).

Given f ∈ Cc(G) and x, y ∈ G we define Lx f (y) := f (x−1y) and Rx f (y) := f (yx).

Remark 1.13 (Notations concerning measures) If X is a lcsc space, then we denote by
M(X) = Cc(X)∗ the Banach space of complex Radon measure on X . We write Mb(X)
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for the subspace of finite complex measures (i.e. μ ∈ M(X) with |μ|(X) < ∞) and M+(X)

for the subset of (positive) Radon measures. Finally, we denote by M+
b (X) the space of

bounded Radon measures on X and by Prob(X) ⊂ M+
b (X) the space of probability mea-

sures on X . We identify μ ∈ M(X) with the corresponding linear functional on Cc(X) and
write μ( f ) := ∫

X f dμ for f ∈ Cc(X).

2 Point sets andmeasures in proper homogeneous spaces

2.1 Metrics on proper homogeneous spaces

Recall that G denotes a unimodular lcsc group with Haar measure mG and that K < G
denotes a compact subgroup with Haar probability measure mK . We denote by K\G, G/K
and K\G/K respectively the quotients of G by the left-action of K , right-action of K and
action of K × K respectively and denote by

K p : G → K\G, pK : G → G/K and K pK : G → K\G/K

the canonical projections. We will always topologize K\G, G/K and K\G/K with the
quotient topology with respect to these projections, so that K p and pK are open, closed and
proper.While K\G andG/K are homeomorphic,wewill prefer toworkwith the left-quotient
K\G. In the sequel we will refer to K\G as a proper homogeneous space of G.

Example Recall from the introduction that a metric space (X , dX ) is called homogeneous if
its isometry group G := Is(X , d) acts transitively on X . If X is a lcsc space (hence a proper
metric space), then G is a lcsc group with respect to the topology of pointwise convergence
and for every x0 ∈ X the stabilizer K := StabG(xo) is compact [12, Lemma5.B.4].Moreover,
by the open mapping theorem, the map K\G → X , K g �→ g−1(xo) is a homeomorphism,
hence every proper homogeneous metric space is a proper homogeneous space in our sense.

Our standing assumptions on G imply that there exists a proper, continuous and right-
invariant metric on G which automatically defines the given topology on G (Struble’s
theorem, see [12, 2.B.4]). We call any such metric right-admissible. By averaging over K
we can produce a right-admissible metric on G which is moreover left-K -invariant; we call
such a metric (K , G)-admissible.

Given a (K , G)-admissible metric dG , we can define a metric on K\G by setting

d(K g, K h) := min
k∈K

dG(kg, h).

We refer to this metric as the induced metric on K\G. It is proper, continuous, G-invariant
and induces the quotient topology on K\G.

The group G acts on K\G by g.K x := K xg−1, and if d is a metric on K\G which is
induced by a (K , G)-admissible metric, then the action of G on (K\G) is by isometries.

Example Let (X , dX ) be a proper homogeneous metric space with isometry group G with
the topology of pointwise convergence. By [27, Prop. 4.4.6] a right-admissible metric on G
is given by

dG(g, h) := sup
x∈X

dX (g−1(x), h−1(x))e−dX (x,x0)

for any basepoint x0 ∈ X . If we set K := StabG(x0), then this metric is even (K , G)-
admissible [27, Prop. 4.4.4], and hence induces a metric d on K\G. Under the canonical
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identification K\G ∼= X this metric is given by

d(g−1(x0), h−1(x0)) = min
k∈K

sup
x∈X

dX (g−1 ◦ k−1(x), h−1(x))e−dX (x,x0) (g, h ∈ G).

By definition we have for all g, h ∈ G,

d(g−1(x0), h−1(x0)) ≥ min
k∈K

dX (g−1 ◦ k−1(x0), h−1(x0))e
−dX (x0,x0) = dX (g−1(x0), h−1(x0)).

Note that if f ∈ G, then since f is an isometry we have

dX ( f (x), x)e−d(x,x0) ≤ (dX ( f (x0), x0) + d(x, x0) + d( f (x), f (x0))e
−d(x,x0)

≤ dX ( f (x0), x0)e
−d(x,x0) + 2d(x, x0)e

−d(x,x0).

Applying this to f := h ◦g−1 ◦k−1 and using k−1(x0) = x0 and max{2te−t | t ≥ 0} = 2e−1

we obtain

d(g−1(x0), h−1(x0)) = min
k∈K

sup
x∈X

dX ( f (x), x)e−d(x,x0) = dX (g−1(x0), h−1(x0)) + 2e−1.

We may thus record:

Proposition 2.1 (Lifting metrics up to quasi-isometry) If (X , dX ) is a proper homogeneous
metric space with isometry group G and point stablizer K , then there exists a metric d on X
induced by a (K , G)-admissible metric dG on G such that

dX (x, y) ≤ d(x, y) ≤ dX (x, y) + 2e−1 (x, y ∈ X). (2.1)

��

2.2 Weighted Delone sets and translation boundedmeasures

Definition 2.2 (Terminology concerning weighted point sets) Let (X , d) be a lcsc metric
space and let � ⊂ X be a subset.

1. � is called discrete if every subset of� is open in�with respect to the subspace topology,
and locally finite if it is closed and discrete, or equivalently the intersection with every
pre-compact subset of X is finite.

2. � is called r-uniformly discrete for some r > 0 if for all x, y ∈ X with x �= y we
have d(x, y) > r . It is called R-relatively dense for some R > 0 if its R-neighbourhood
NR(�) in X coincides with X . It is called a (r , R)-Delone set if it is r -uniformly discrete
and R-relatively dense for some R > r > 0. These notions depend on the choice of
metric d . Any uniformly discrete set is locally finite.

3. We denote by LF(X) the collection of all locally finite subsets of X , by Ur (X) the
collection of all r -uniformly-discrete subsets of X , and by Delr ,R(X) the collection of
all (r , R)-Delone subsets.

4. A subset A ⊂ LF(X) is called uniformly locally finite if for every pre-compact subset
K ⊂ X there exists a constant C(K ) such that |� ∩ K | ≤ C(K ) for all � ∈ A .

5. If � ⊂ X is a locally finite set, then we refer to a bounded function w : � → C as a
weight function and to (�,w) as a weighted point set. It is called uniformly discrete or
Delone if the underlying set � is.
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Remark 2.3 (Weighted point sets as measures) If (X , d) is a lcsc metric space, then every
� ∈ LF(X) defines a Radon measure δ� on X , called the associated Dirac comb, by the
formula

δ� :=
∑
x∈�

δx , i.e. δ�( f ) =
∑
x∈�

f (x) for all f ∈ Cc(X).

Since � ∩ supp( f ) is finite for every f ∈ Cc(X), this is well-defined. For � = ∅ we have
δ∅ = 0 by convention. Similarly, if (�,w) is a weighted point set, then we may define

δ(�,w) :=
∑
x∈�

w(x) · δx ∈ M(X).

In the sequel we will thus often think of locally finite sets as Radon measures via the embed-
ding

LF(X) ↪→ M+(X), � �→ δ�, (2.2)

and similarly for weighted point sets.

Dirac combs of (weighted) uniformly discrete point sets in isometric G-spaces have addi-
tional properties such as the following (cf. [4]):

Definition 2.4 (Translation bounded measures) Let X be a lcsc G-space. A complex Radon
measureμ ∈ M(X) is called translation bounded with respect to G (or G-bounded for short)
if for every compact L ⊂ X we have

sup
g∈G

|μ(gL)| < ∞.

We denote the space of G-bounded measures on X by Tb(G � X).

Remark 2.5 (Translation bounded measures and uniformly locally finite orbits) If X is a G-
space and � ⊂ X is a locally finite subset, then δ� is G-bounded if and only if for every
compact subset K ⊂ X we have supg∈G |� ∩ gK | < ∞. This means precisely that the orbit
G.� of � is uniformly locally finite.

Proposition 2.6 (Uniformly discrete subsets and translation bounded measures) Let (�,w)

be a uniformly discrete weighted point set in an isometric lcsc G-space (X , d). Then δ(�,w) is
G-bounded. In particular, if � is uniformly discrete, then its orbit is uniformly locally finite.

Proof We fix a basepoint o ∈ X . Given an r -uniformly discrete set � and R > 0 we choose
x1, . . . , xn ∈ X such that BR(o) is covered by the balls Br/2(xi ). Then for every g ∈ G we
have

g.BR(o) ⊂
n⋃

i=1

gBr/2(xi ) =
n⋃

i=1

Br/2(gxi ),

and since every ball of radius r/2 contains at most one element of � we have
δ(�,w)(g.BR(o)) ≤ n · ‖w‖∞, whence δ(�,w) is translation bounded. ��

The converse implication is not true, even for X = G and the constant weight 1. A
counterexample is given by the subset � := Z ∪ {n + 1

n | n ∈ Z{0}} of R, which is not
uniformly discrete, but whose R-orbit is uniformly locally finite and whose Dirac comb is
therefore R-bounded.
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2.3 Weighted Delone sets in groups and proper homogeneous spaces

Remark 2.7 (Delone sets in groups) As explained in [7], all right-admissible metrics on G
define the same notion of uniformly discrete, respectively relatively dense subsets, and we
refer to such subsets simply as uniformly discrete, respectively relatively dense subsets of
G. Explicitly, � ⊂ G is uniformly discrete if e is not an accumulation point of ��−1 and
relatively dense if L� = G for some compact subset L ⊂ G. In particular, � ⊂ G is
uniformly discrete if ��−1 is locally finite, in which case � is said to have (right-)finite
local complexity (FLC).

The following analogous result holds in the case of proper homogeneous spaces:

Lemma 2.8 (Metric independence ofDelone sets)Let � ⊂ K\G, denote by K p : G → K\G
the canonical projection, set � := K p−1(�) and let dG be (K , G)-admissible with induced
metric d.

(i) � is relatively dense with respect to d iff � is relatively dense in G.
(ii) � is uniformly discrete with respect to d iff there exists an identity neighbourhood U in

G such that ��−1 ∩ U K ⊂ K .

In particular, these notions are independent of the choice of d.

Proof (i) Assume that for every K g ∈ K\G there exists λ = K ξ ∈ � with d(K g, λ) < R.
Then dG(g, ξ) < R+diam(K ), hence� is relatively dense in G. The converse is immediate.
(ii) � is r -uniformly discrete if and only if for all ξ, ξ ′ ∈ � we have either K ξ = K ξ ′ or
d(K ξ, K ξ ′) > r . Equivalently, for all g = ξξ ′−1 ∈ ��−1 we have either g ∈ K or
dG(k, g) = dG(kξ, ξ ′) > r for all k ∈ K . By right-invariance of the metric this means that
Br (e)(��−1\K ) ∩ K = ∅, i.e. ��−1 ∩ Br (e)K ⊂ K . ��

In view of the lemma we will refer to a uniformly discrete, relative dense or Delone set in
K\G with respect to some (hence any) metric d induced from a (K , G)-admissible metric
simply as a uniformly discrete, relative dense or Delone set in K\G. The lemma motivates
the following definition:

Definition 2.9 A subset� ⊂ G is called K -uniformly discrete if��−1∩U K ⊂ K for some
identity neighbourhood U in G.

In this terminology a subset � ⊂ G is uniformly discrete iff it is {e}-uniformly discrete.
Note that in general a K -uniformly discrete set need not be uniformly discrete.

Proposition 2.10 (Lifting Delone sets) For a subset � ⊂ K\G the following are equivalent:

(i) � is a Delone set.
(ii) There exists a K -uniformly discrete relatively dense set � ⊂ G such that K p(�) = �

(iii) There exists a K -uniformly discrete Delone set � ⊂ G such that K p(�) = �.

Proof (i) ⇒ (ii) By Lemma 2.8 we may choose � := K p−1(�).
(ii) ⇒ (iii) Let � ⊂ � be a subset, which intersects each K p-fiber of � in a single point

and fix a right-admissible metric dG on G. If � is R-relatively dense for some R > 0 with
respect to dG , then � is (R + diam(K ))-relatively dense, and � is K -uniformly discrete
as a subset of �. Finally, if δ1, δ2 ∈ � are distinct, then δ1δ

−1
2 /∈ K , and hence d(δ, δ2) =

d(δ1δ
−1
2 , e) ≥ dist(��−1\K , K ) > 0, which shows that � is uniformly discrete.
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(iii)⇒ (i) Since� := K p−1(�) contains�, it is relatively dense, and hence� is relatively
dense by Lemma 2.8. If λ1 and λ2 are two distinct points in � with respective pre-images δ1
and δ2 in �, then

d(λ1, λ2) = min
k∈K

dG(kδ1, δ2) = min
k∈K

dG(δ2δ
−1
1 , k) ≥ dist(��−1\K , K ) > 0,

hence � is uniformly discrete. ��
Remark 2.11 From Proposition 2.10 one deduces the following:

1. Every projection of a K -uniformly discrete Delone set is again Delone.
2. Every Delone set in K\G is a projection of a Delone set in G. By analogy, we will say

that a subset of K\G has FLC if it is the projection of an FLC set in G.
3. The proof of Lemma 2.8 shows that � ⊂ G is K -uniformly discrete if and only if for

every right-admissible metric dist(��−1\K , K ) > 0. This implies that every FLC set
in G is K -uniformly discrete, and hence every FLC set in K\G is uniformly discrete.

We conclude in particular, that if � ⊂ G is an FLC Delone set, then K p(�) is a Delone
set

Remark 2.12 (Application to proper homogeneous metric spaces) Let (X , dX ) be a proper
homogeneous lcsc metric space with isometry group G and point stabilizer K and let d be
a metric as in Proposition 2.1. We claim that a subset � ⊂ X is Delone with respect to dX

if and only if it is Delone with respect to d . Indeed, that relative denseness carries over is
immediate from (2.1), and this inequality also implies that any dX -uniformly discrete subset
is d-uniformly discrete with the same constant. Now assume that � is r -uniformly discrete
with respect to d , but not with respect to dX . Then there exist elements xn �= yn in � with
dX (xn, yn) ≤ 1

n . Choose gn ∈ G such that gn xn = x0; then dX (x0, gn(yn)) ≤ 1
n and thus

gn(yn) → x0. Since d is continuous this implies

d(xn, yn) = d(gn(xn), gn(yn)) = d(x0, gn(yn)) → d(x0, x0) = 0,

hence for sufficiently large n we have d(xn, yn) < r , which is a contradiction.

Together with Proposition 2.10 we deduce:

Corollary 2.13 (Lifting Delone sets, II) Let (X , dX ) be a lcsc proper metric space. Assume
that G < Is(X) acts transitively on X with point-stabilizer K . Then a subset � ⊂ X is
Delone if and only if it is the orbit of a K -uniformly discrete Delone set in G. ��
Remark 2.14 (Push-forwards of point sets and measures) Let K p : G → K\G denote the
canonical projection.

1. We have seen that if � ⊂ G is uniformly discrete, then the naive push-forward K p(�)

need not be uniformly discrete.
2. On the other hand, since K p is proper, it induces a push-forward map K p∗ : M(G) →

M(K\G), and the push-forward of a translation bounded measure will always be trans-
lation bounded, i.e. K p∗ restricts to a map K p∗ : M(G) → M(K\G). In this sense
translation bounded measures behave better under push-forward than uniformly discrete
sets.

3. Let � ⊂ G be uniformly discrete. Then the weighted push forward K p∗� of � is the
weighted point set (K p(�),w) with weight function given by w(x) = |� ∩ K p−1(x)|.
The definition is made in such a way that

δK p∗� = K p∗δ�.
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This implies in paticular that δK p∗� is translation bounded, and hence� has a a uniformly
locally finite G-orbit.

4. If w̃ is a weight function on �, then we can similarly define K p∗(�, w̃) as the unique
weighted point set such that

δK p∗(�,w̃) = K p∗δ(�,w̃).

Explicitly, the weight function w of K p∗(�, w̃) is given by

w(x) =
∑

y∈K p−1(x)

w̃(y).

Note that if � ⊂ G is an FLC Delone set, then K p(�) is a Delone set, and hence K p∗� is a
weighted Delone set.

2.4 Weightedmodel sets in proper homogeneous spaces

We now discuss the class of examples which motivated the current series of papers. In [8] we
introduced the notion of a model set in a lcsc group G. To state the definition, we recall that
a discrete subgroup � of a lcsc group G is a lattice if �\G admits a G-invariant probability
measure, and a uniform lattice if �\G is moreover compact.

Definition 2.15 1. A cut-and-project-scheme is a triple (G, H , �) where G and H are lcsc
groups and � < G × H is a lattice which projects injectively to G and densely to H . A
cut-and-project scheme is called uniform if � is moreover a uniform lattice.

2. If (G, H , �) is a cut-and-project scheme and pG : G × H → G denotes the projection
onto the first coordinate, then for every pre-compact set W ⊂ G the subset

�(G, H , �, W ) := pG(� ∩ (G × W )) ⊂ G

is called a weak model set in G with window W . A weak model set is called uniform if
� is a uniform lattice.

3. A weak (uniform) model set is called a (uniform) model set if its window W has non-
empty interior. It is called a regular model set if W is Jordan-measurable with dense
interior, StabH (W ) = {e} and ∂W ∩ pH (�) = ∅, where pH : G × H → H is the
projection onto the second factor.

Now let � ⊂ G be a model set, let K < G be a compact subgroup and K p : G → K\G
denote the canonical projection. Then theweighted push-forward K p∗� is aweightedDelone
set of the form (K p(�),w�).

Definition 2.16 The weighted Delone set K p∗� = (K p(�),w�) is called a weighted model
set in K\G, and w� is called its canonical weight function. (π(�),w�) is called a regular
(respectively uniform) weighted model set, if � has the corresponding property.

We emphasize that in our terminology, a weighted model set is not just a weighted Delone
set with underlying Delone set K p(�). Rather, when we speak of weighted model sets, we
always assume that the weight function is the canonical one.

Remark 2.17 Let � be a model set in G and K p∗� = (K p(�),w). If the weight function w

is trivial (i.e. w(x) = 1 for all x ∈ K p(�)), then we may identify K p∗� with the underlying
set K p(�). We then call K p(�) simply a model set in K\G. By definition, K p(�) is a model
set if and only if ��−1 ∩ K = {e}.
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Convention 2.18 Throughout this article, all weighted model sets (uniform or not) are
assumed to be regular.

3 Hulls of Delone sets and translation boundedmeasures

3.1 Topologies on point sets andmeasures

Remark 3.1 Let (X , d) be a lcsc metric space. We define the following topologies on the
various sets of point sets and measures defined above.

1. We equip M(X) with the weak-∗-topology with respect to Cc(X). This topology is
second-countable, since X is, and the action of G on M(X) is jointly continuous with
respect to the weak-∗-topology. Indeed, if (gn, μn) → (g, μ) in G × M(X), then for
every ϕ ∈ Cc(X) there exists a compact set K containing the supports of all of the
functions gn .ϕ. If we set C := supμn(K ), then C < ∞ and

|μn(gn .ϕ) − μ(g.ϕ)| ≤ |μn(gn .ϕ) − μn(g.ϕ)| + |μn(g.ϕ) − μ(g.ϕ)|
≤ C · ‖gn .ϕ − g.ϕ‖∞ + |μn(g.ϕ) − μ(g.ϕ)|.

Since both terms converge to 0 as n → ∞, this shows gn .μn → g.μ.
2. The set C (X) of all closed subsets of X carries a natural compact metrizable topology

called theChabauty–Fell topology. A sequence (Pn) inC (X) converges to P with respect
to this topology if and only if the following two properties hold:

(CF1) If (nk) is an unbounded sequence of natural numbers and pnk ∈ Pnk converge to
p ∈ X , then p ∈ P .

(CF2) For every p ∈ P there exist elements pn ∈ Pn such that pn → p.

From this characterization one sees immediately that the G action on C (X) is jointly
continuous with respect to the Chabauty–Fell topology.

3. For every R > r > 0 we have inclusions Delr ,R(X) ⊂ Ur (X) ⊂ LF(X) ⊂ C (X) and
we denote by τC F the restrictions of the Chabauty-Fell topology to either of these spaces.

4. We obtain another topology on LF(X) and its subspaces by pulling back the weak-∗-
topology on M(X) via the embedding LF(X) ↪→ M(X) from (2.2). We refer to this
topology as the measure topology on LF(X). The measure topology on weighted point
sets is defined accordingly.

Proposition 3.2 (Chabauty–Fell topology vs. measure topology) Let (X , d) be a lcsc metric
space. Then for every r > 0 the Chabauty–Fell topology and the measure topology coincide
on the subset Ur (X) ⊂ LF(X) and define a compact metrizable topology on Ur (X).

Explicitly this means that a sequence of r -uniformly discrete sets �n converges to � in
the Chabauty–Fell topology if and only if for every f ∈ Cc(X) we have

∑
xn∈�n

f (xn) →
∑
x∈�

f (x).

For the proof we follow roughly the same strategy as in the abelian case, cf. [4, Thm. 4]. We
need the following lemma:
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Lemma 3.3 (Convergence of uniformly discrete sets) Suppose that �n → � in Ur (X) with
respect to the Chabauty–Fell topology. Then for every p ∈ � and 0 < ε < r/2 there exists
n0(p, ε) ∈ N such that for all n ≥ n0(p, ε),

|Bε(p) ∩ �n | = 1.

Proof If p ∈ �, then by (CF2) there exist pn ∈ �n with pn → p, hence for every ε > 0
there exists n0(p) such that for all n ≥ n0 we have pn ∈ Bε(p) ∩ �n . If ε < r/2, then pn is
necessarily unique by the triangle inequality. ��
Proof of Proposition 3.2 The space (Ur (X), τC F ) is compact and second countable (see e.g.
[7]). It thus suffices to show that the embedding (Ur (X), τC F ) ↪→ M(X), � �→ δ� is
(sequentially) continuous.

Thus assume that �n → � in (Ur (X), τC F ) and let f ∈ Cc(X). Let K0 := supp( f ), and
let K1 be a compact set containing a 10r -neighbourhood of K0. Note that K1 ∩ � is finite,
say K1 ∩ � = {p(1), . . . , p(N )}. Now fix ε ∈ (0, r/2] and with the notation of Lemma 3.3
set

n0 := max{n0(p( j), ε) | j ∈ {1, . . . , N }}.
Then for all n ≥ n0 we have Bε(p j ) ∩ �n = {p( j)

n }. We claim that for all but finitely many
n ≥ n0 we have

�n ∩ K0 ⊂ {p( j)
n | j ∈ {1, . . . , N }}.

Indeed, otherwise we would find an unbounded sequence nk and elements pnk ∈ �nk ∩ K0

such that d(pnk ,� ∩ K1) > ε. Passing to a further subsequence we may assume that pnk

converges to some p ∈ X , and then p ∈ � by (CF1). Since p is not contained in K1, it has
distance at least 10r from K0. But then at most finitely many of the pnk can be contained in
K0, which is a contradiction. We deduce that for sufficiently large n we have

∣∣δ�n ( f ) − δ�( f )
∣∣ =

∣∣∣∣∣∣
N∑

j=1

f (p( j)
n ) −

N∑
j=1

f (p( j))

∣∣∣∣∣∣
≤

N∑
j=1

| f (p( j)
n ) − f (p( j))|

≤ N · sup{| f (x) − f (y)| | x, y ∈ Nr (K1), d(x, y) < ε}.
Since f is uniformly continuous on compacta, we deduce that δ�n ( f ) → δ�( f ), which
finishes the proof. ��

3.2 The hull of a translation boundedmeasure

From now on let G be a lcsc group and let (X , d) be an isometric G-space.We fix a basepoint
o ∈ X .

Remark 3.4 (C-translation bounded measures) Since every compact subset of X is contained
in some ball around o, a complex measure μ ∈ M(X) is translation bounded if and only if
for every R > 0 there exists C(R) > 0 such that for all g ∈ G,

μ(gBR(o)) ≤ C(R).
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If this holds for a fixed function C : (0,∞) → (0,∞), then we say that μ is C-translation
bounded (with respect to d and o). Given a function C : (0,∞) → (0,∞) we then denote
by TC (G � X) ⊂ Tb(G � X) the collection of all complex Radon measures on X which
are C-translation bounded with respect to d and o. By definition, the set TC (G � X) is
invariant under the natural action of G on complex Radon measures.

Lemma 3.5 (Compactness properties of translation bounded measures) For every function
C : (0,∞) → (0,∞) the subspace TC (G � X) ⊂ M(X) is a compact metrizable space,
and the G-action on TC (G � X) is continuous.

Proof By Remark 3.1, M(X) is second countable (hence metrizable) and the action of G on
M(X) is jointly continuous. It thus remains to show that TC (G � X) ⊂ M(X) is compact.
Since M(X) carries the subspace topology with respect to the embedding

M(X) ↪→
∏

ϕ∈Cc(X)

R, μ �→ (μ(ϕ)), (3.1)

where the right-hand side is given theproduct topology, this amounts to showing thatTC (G �

X) has compact image under this embedding. If ϕ ∈ Cc(X) and μ ∈ TC (G � X), then

|μ(ϕ)| ≤ ‖ϕ‖∞ · μ(supp(ϕ)),

and hence the image of TC (G � X) under the embedding is bounded in each coordinate.
Moreover, for every μ ∈ M(X) we have

μ(gBR(o)) = sup{|μ(ϕ)| | ϕ ∈ Cc(X), supp(ϕ) ⊂ gBR(o), ‖ϕ‖∞ ≤ 1}.
hence the conditionsμ(gBR(o)) ≤ C(R) are closed conditions. This shows thatTC (G � X)

is compact and finishes the proof. ��

Corollary 3.6 If μ ∈ Tb(G � X), then the orbit closure �μ := G.μ is a compact metrizable
space and the action of G on �μ is continuous. ��

Definition 3.7 (Hull of a translation-bounded measure) Given μ ∈ Tb(G � X), the orbit
closure

�μ := G.μ ⊂ M(G)

is called the hull of μ, and the TDS G � �μ is called the associated hull system.

Remark 3.8 (Hulls systems of locally finite sets) In [8] we defined the notion of a hull of a
locally finite subset of G. More generally, let X be a lcsc G-space and let � ∈ LF(X). Then
one defines the hull of � as the orbit closure �� := G.�, where the orbit closure is taken
with respect to the Chabauty–Fell topology. The associated TDS G � �� is then called the
hull system of �.

Proposition 3.9 (Hulls of uniformly discrete sets vs. hulls of their Dirac combs) Let (X , d) be
an lcsc isometric G-space and let � ⊂ X be uniformly discrete. Then there is a well-defined
G-equivariant homeomorphism

�� → �δ�, �′ �→ δ�′ .
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Proof Assume that � is r -uniformly discrete. Since X is isometric, every translate g� of
� is also r -uniformly discrete, and since Ur (X) is closed with respect to the Chabauty–Fell
topology, we have �� ⊂ Ur (X). By Proposition 3.2 the map �� ↪→ Ur (X) → M(X)

given by �′ �→ δ�′ is continuous, and it is evidently G-equivariant. It thus maps the orbit
closure of � onto the orbit closure of its image. By compactness, the resulting bijection is a
homeomorphism. ��

In this sense, the hull system of a uniformly discrete set can be seen as a special case of
the hull system of a translation bounded measure. If (�,w) is a weighted point set we define
�(�,w) := �δ�,w and refer to �(�,w) as the hull system of (�,w).

Remark 3.10 (Punctured hull) Given a translation bounded measure μ ∈ Tb(G � X) we
observe that it may happen that 0 ∈ �μ even if μ �= 0. For example, if μ = δ� is the
Dirac comb of a uniformly discrete set � ⊂ G, then this happens if and only if � is not
relatively dense (see [8]). It is then convenient to remove the G-fixpoint and to consider also
the punctured hull �×

μ := �μ\{0}. By construction, �×
μ is a lcsc space, and if 0 ∈ �μ, then

�μ is its one-point-compactification.

Lemma 3.11 (Naturality of the hull under push-forward) Let X, Y be lcsc G-spaces, let
μ ∈ Tb(G � X) and let p : X → Y be a proper continuous G-equivariant map. Then p
induces continuous G-factor maps

p∗ : �μ → �p∗μ, μ′ �→ p∗μ′ and p∗ : �×
μ → �×

p∗μ, μ′ �→ p∗μ′.

Proof As in Remark 2.14 one observes that p induces a continuous G-equivariant push-
forward map p∗ : Tb(G � X) → Tb(G � Y ), since it is proper. It thus maps the orbit
closure of μ surjectively onto the orbit closure of p∗μ. This proves the first statement, and
the second statement then follows from the fact that 0 is the only pre-image of 0 under p∗. ��

As an application we can extend properties of hulls of model sets in lcsc groups from [8]
to hulls of weighted model sets in proper homogeneous spaces. We remind the reader that by
a weighted model set we always mean a projection of a model set together with its canonical
weight function (cf. Definition 2.16). We also recall from Convention 2.18 that all weighted
model sets are implicitly assumed to be regular.

Corollary 3.12 (Hulls of weighted model sets) The punctured hull of a weighted model set
in a proper homogeneous G-space K\G is uniquely ergodic with respect to the G-action. If
the weighted model set is uniform, then its hull is moreover minimal.

Proof Let� ⊂ G be amodel set and consider K p∗� = (K p(�),w) in K\G. ByLemma3.11
we have a continuous G-factor map K p∗ : �×

� → �×
K p∗�. Letμ be a probability measure on

G which is absolutely continuous with respect to Haar measure and whose support generates
G as a semigroup. It was established in [8, Thm. 3.4] that there exists a unique μ-stationary
probability measure ν on ��, which is moreover G-invariant. In particular, K p∗ν defines a
G-invariant probability measure on�×

K p∗�. Now if ν′ is any G-invariant probability measure

on �×
K p∗�, then its fiber

{ν̃′ ∈ Prob(��) | K p∗ν̃′ = ν′}
is a compact convex G-invariant set, hence contains a fixpoint under the convolution action
by μ. By uniqueness, this fixpoint must coincide with ν, and hence ν′ = K p∗ν, showing that
�×

K p∗� is uniquely ergodic. If � is uniform, then �×
� is minimal by [8, Prop. 3.3], and this

property descends to the continuous factor �×
K p∗�. ��
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Remark 3.13 (Invariant measure on the hull of a weighted model set) We record for later
reference that the unique G-invariant probability measure on �×

K p∗� is the push-forward of
the unique G-invariant probability measure on �� under the map K p∗.

3.3 Uniform local boundedness of the hull

In the next section we are going to define a periodization map for the hull of a translation-
boundedmeasure. Continuity of this mapwill depend on a property of the hull called uniform
local boundedness, which we investigate in the present section.

Recall from Remark 2.2 that, given a lcsc space X , a subset � ⊂ LF(X) is called d
uniformly locally finite, if for every pre-compact subset K ⊂ X there exists a constant
CK > 0 such that |� ∩ K | ≤ CK for all � ∈ �. Similarly, a subset A ⊂ M(X) will
be called uniformly locally bounded if for every pre-compact subset K ⊂ G there exists a
constant CK > 0 such that μ(K ) ≤ CK for all μ ∈ A . Here we are interested in conditions
on translation bounded measures which guarantee uniform local boundedness of the hull.

We first consider the situation for point sets � in an isometric lcsc G-space (X , d). By
Proposition 2.6, uniform discreteness of � is enough to ensure uniform local finiteness of
the orbit G.�, but it is not enough to ensure uniform local finiteness of the orbit closure ��.
In the case where X = G, the latter is implied by finite local complexity:

Proposition 3.14 (Uniform local finiteness of FLC hulls) Let G be a lcsc group and � ⊂ G
be an FLC set. Then the hull �� is uniformly locally finite, and more generally the hull
�(�,w) is uniformly locally bounded for every weight function w : � → [0,∞).

The proof of the proposition makes use of the following lemma from [7]. Since weworked
with left-FLC rather than right-FLC sets there, we repeat the short proof:

Lemma 3.15 Let G be a lcsc group and let � ⊂ G be a locally finite subset. Then for all
�′ ∈ �� we have �′(�′)−1 ⊂ ��−1.

Proof If �′ ∈ �� then there exist gn ∈ G such that �g−1
n → �′. By (CF2) we thus find

for every p, q ∈ �′ sequences (pn) (qn) in � such that png−1
n → p and qng−1

n → q .
By continuity of multiplication and inversion in G we obtain pnq−1

n → pq−1 and thus

�′(�′)−1 ⊂ ��−1. ��

We will apply this in the following form: .

Corollary 3.16 Let � ⊂ G be an FLC set. Then there exists an open identity neighbourhood
U ⊂ G such that |�′ ∩ Ug−1| ≤ 1 for all �′ ∈ �� and g ∈ G.

Proof Since ��−1 is locally finite, there exists an open identity neighbourhood V such that
��−1 ∩ V = {e}. Since ��−1 is closed, Lemma 3.15 then shows that �′(�′)−1 ∩ V = {e}
for all �′ ∈ ��. Now let U ⊂ G be an open identity neighbourhood with UU−1 ⊂ V .
Given g ∈ G and �′ ∈ �� we either have �′ ∩ Ug−1 = ∅ or there exist p ∈ �′ and u ∈ U
such that p = ug−1, i.e. g = p−1u. In the latter case we have

�′ ∩ Ug−1 = �′ ∩ Uu−1 p = (�′ p−1 ∩ Uu−1)p ⊂ (�′(�′)−1 ∩ V )p = {p},
hence |�′ ∩ Ug−1| ≤ 1 in either case. ��
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Proof of Proposition 3.14 Let K ⊂ G be pre-compact. ChooseU as in Lemma 3.16 and cover
K by finitely many translates of U , say K ⊂ Ug−1

1 ∪ · · · ∪ Ug−1
N . Then by the lemma we

have for every (�′, w′) ∈ ��,w,

δ�′,w′(K ) ≤ ‖w′‖∞
N∑

j=1

|�′ ∩ Ug−1
j | ≤ N · ‖w‖∞,

and this bound is independent of (�′, w′). ��
In particular, Proposition 3.14 implies that the hull of every model set is uniformly locally

finite. To extend this result to weighted model sets we are going to use:

Proposition 3.17 Let X, Y be lcsc G-spaces, let μ ∈ Tb(G � X) and let p : X → Y be a
proper continuous G-equivariant map. If μ has a uniformly locally bounded hull, then also
p∗μ has a uniformly locally bounded hull.

Proof Let L ⊂ Y be compact. Since M := p−1(L) is compact, there exists CM > 0 such
that for all μ′ ∈ �μ we have μ(M) < CM . It follows that if μ′ ∈ �μ, then

p∗μ′(L) = μ′(p−1(L)) = μ(M) < CM .

Since by Lemma 3.11 the map p∗ : �μ → �p∗μ is onto, the proposition follows. ��
Applying this to the canonical projection K p : G → K\G and using Proposition 3.14

we have arrived at the following result:

Corollary 3.18 (Hulls of weighted model sets are uniformly locally bounded) If � ⊂ G is
an FLC set and w is an arbitrary weight function on �, then the hull �K p∗(�,w) is uniformly
locally bounded. In particular, the hull of every weighted model set is uniformly locally
bounded. ��

4 Auto-correlationmeasures for translation-boundedmeasures

4.1 The periodizationmap

Let X be a lcsc G-space. The following construction generalizes the periodization map of a
locally finite set in G as introduced in [7] to the case of a translation bounded measure in X .

Proposition 4.1 (Periodization over the hull) Let μ ∈ Tb(G � X).

(i) For every f ∈ Cc(X) the function

Pμ f : �μ → C, Pμ f (μ′) :=
∫

X
f dμ′

is well-defined and continuous on �μ.
(ii) If 0 ∈ �μ, then Pμ f (0) = 0 for all f ∈ Cc(G), hence we obtain a map Pμ : Cc(X) →

C0(�
×
μ).

(iii) The map Pμ is G-equivariant.

Proof The mapPμ f is just the restriction of the evaluation map M(X) → C, μ′ �→ μ′( f ),
which is well-defined and continuous by definition of the weak-∗-topology. This shows (i),
and (ii) and (iii) are immediate from the definitions. ��
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Definition 4.2 For μ ∈ Tb(G � X) the G-equivariant map

Pμ : Cc(X) → C0(�
×
μ), Pμ f (μ′) :=

∫
X

f dμ′

is called the periodization map associated with μ.

Continuity of the periodization map depends on uniform local boundedness of the hull:
We equip Cc(X) with the direct limit topology

Cc(X) = lim→ (C(L), ‖ · ‖∞),

where L runs through all compact subsets of X . Then continuity of the periodization map
Pμ with respect to this topology means that for every compact subset L ⊂ X there exists
CL > 0 such that if f ∈ Cc(G) with supp( f ) ⊂ L , then

‖Pμ f ‖∞ ≤ CL · ‖ f ‖∞. (4.1)

Proposition 4.3 (Continuity of the periodization map) Let μ ∈ Tb(G � X). If �μ is uni-
formly locally bounded, then the periodization map Pμ : Cc(X) → C(�μ) is continuous
with respect to the Frechét topology on Cc(X).

Proof Let L ⊂ X be compact. Since �μ is uniformly locally bounded there exists CL > 0
such that for allμ′ ∈ �μ we haveμ′(L) < CL . But then for all f ∈ Cc(G)with supp( f ) ⊂ L
we have

‖Pμ f ‖∞ = sup
μ′∈�μ

∣∣Pμ f (μ′)
∣∣ = sup

μ′∈�μ

∣∣∣∣
∫

X
f dμ′

∣∣∣∣
≤ sup

μ′∈�μ

μ′(supp( f )) · ‖ f ‖∞ ≤ CL · ‖ f ‖∞.

This shows that Pμ is continuous and finishes the proof. ��
Remark 4.4 (Conditions ensuring continuity of the periodizationmap) The periodizationmap
is continuous in each of the following cases:

(i) X = G (with the action given by g.x := xg−1) and μ = δ� , where � < G is a discrete
subgroup. For this case it was established in [10] that �×

� = �\G, and the periodization
map P� : Cc(G) → C0(�\G) is given by the classical formula

P� f (�g) =
∑
γ∈�

f (γ g).

(ii) X = G (with the action given by g.x := xg−1) and μ = δ�, where � is a (right-)FLC
set in G. In this case, under the canonical identification of�×

μ with��, the periodization
map is given by the formula

P� : Cc(X) → C0(�
×
�), P� f (�′) :=

∑
x∈�′

f (x).

Up to the issue of left- vs. right-action, this is precisely our definition of the periodization
map from [7,8], hence the current definition is compatible with our previous one in this
case.

(iii) X = G and μ = δ(�,w), where (�,w) is a weighted FLC set in G (cf. Proposition 3.14).
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(iv) X = K\G is a proper G-space and � is an FLC set in X and w an arbitrary (bounded)
weight function (cf. Corollary 3.18).

In particular, we have a continuous periodization map both for model sets in a lcsc group G
(as already defined in [8]) and weighted model sets in proper homgeoneous G-space. These
are the two classes of examples in which we are most interested in the current article.

If � is a discrete subgroup of G, then by [28, Sec. 1] the image of the periodization map
P� : Cc(G) → C0(�\G) is given by Cc(�\G), hence a dense subalgebra of C0(�\G). In
the setting at hand we have the following weaker statement.

Proposition 4.5 (Almost surjectivity of the periodization map) Let μ ∈ Tb(G � X) be a
translation bounded measure with uniformly locally bounded hull.

(i) If ν ∈ �×
μ , then there exists f ∈ Cc(X) such that Pμ f (ν) �= 0.

(ii) If ν1, ν2 ∈ �μ and ν1 �= ν2, then there exists f ∈ Cc(X) with Pμ f (ν1) �= Pμ f (ν2).
(iii) The algebra generated by the constant function 1 and the image of the periodization map

is dense in C(�μ).
(iv) The algebra generated by the image of the periodization map is dense in C0(�

×
μ).

Proof (i) and (ii) follow from the fact that a complex Radon measure is uniquely determined
by the associated integral. From (ii) we deduce that if ν1, ν2 ∈ �μ are distinct, then there
exists f ∈ Cc(X) such that Pμ f (ν1) �= Pμ f (ν2), and hence

(Pμ f − ν1( f ) · 1)(ν1) = 0, (Pμ f − ν1( f ))(ν2) = Pμ f (ν2) − Pμ f (ν1) �= 0.

Thus the algebra generated by 1 and the image of the periodization map separates points in
�μ, hence is dense in C(�μ) by the Stone–Weierstrass theorem. This shows (iii), and (iv)
follows from (iii). ��

4.2 Functoriality of periodization

Remark 4.6 (Functoriality for measures) Let X , Y be lcsc G-spaces, let p : X → Y be a
proper continuous G-equivariant map and let μ ∈ Tb(G � X). Then for all f ∈ Cc(Y ) and
g ∈ G we have

(Pμ ◦ p∗) f (g∗μ) =
∫

X
p∗ f dg∗μ =

∫
Y

f dp∗(g∗μ) = Pp∗μ f (p∗(g∗μ))

= (p∗ ◦ Pp∗μ) f (g∗μ),

and hence the following diagram commutes:

Cc(X)
Pμ

C0(�
×
μ)

Cc(Y )
P p∗μ

p∗

C0(�
×
p∗μ)

(p∗)∗

Most notably, this applies to the case, where X = G and Y = K\G is a proper homogeneous
G-space, and we will apply this in the case of (weighted) model sets below.

123



Aperiodic order and spherical diffraction...

Caveat 4.7 (Failure of functoriality for point sets) If, in the situation of the previous remark,
� is a uniformly discrete subset of X and p(�) is the naive push-forward of � to Y, then the
following diagram need not commute:

Cc(X)
P�

C0(�
×
�)

Cc(Y )
P p(�)

p∗

C0(�
×
p(�)).

(p∗)∗

In this sense, the only “natural” push-forward of an FLC set� ⊂ G to K\G via the canonical
projection K p : G → K\G is the weighted push-forward K p∗�, whereas the naive push-
forward K p(�) is not natural. This lack of functoriality for the naive push-forward is what
led us to consider translation bounded measures on, rather than point sets in, K\G.

4.3 Correlationmeasures and the auto-correlation

Throughout this section let X be a lcsc G-space and μ ∈ Tb(G � X) be a translation
bounded measure with uniformly locally bounded punctured hull �×

μ .
Note that if ν ∈ M(�×

μ), then for every n ∈ N the linear functional on Cc(X) ⊗ · · · ⊗
Cc(X) ⊂ Cc(X×n) given by

f1 ⊗ · · · ⊗ fn �→
∫

�×
μ

Pμ f1(ξ)Pμ f2(ξ) · · ·Pμ fn(ξ) dν(ξ)

is continuous by Proposition 4.3. It is thus given by integration against a Radon measure on
X×n , and we define:

Definition 4.8 Given n ∈ N the measure η
(n)
ν ∈ M(X×n) given by∫

X×n
f1(x1) · · · fn(xn)dη(n)

ν (x1, . . . , xn) =
∫

�×
μ

Pμ f1(ξ)Pμ f2(ξ) . . .Pμ fn(ξ) dν(ξ).

(4.2)
is called the nth correlation measure of ν.

From Proposition 4.5.(iv) we deduce:

Corollary 4.9 (Correlation measures determine the measure) Every probability measure ν on
�×

μ is uniquely determined by the sequence η
(1)
ν , η

(2)
ν , . . . of its correlation measures. ��

It is an interesting question whether finitely many correlation measures are enough to
determine an arbitrary (i.e. not necessarily G-invariant) probability measure on �×

μ , but we
will not pursue this here. Rather we focus on the case of a G-invariant Radon measure ν on
�×

μ . The following observation is immediate from G-equivariance of the periodization map:

Proposition 4.10 (Correlations of invariant measures are invariant) If ν is a G-invariant
Radon measure on �×

μ , then for every n ∈ N the correlation measure η
(n)
ν ∈ M(X×n) is

G-invariant. ��
As explained in Lemma A.7 in the appendix, under suitable assumptions on X and G a

G-invariant measure on X×n corresponds to a measure on the quotient G\X×n . Specifically
for the second correlation measure we obtain:
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Corollary 4.11 (Auto-correlationmeasure)Let G be a unimodular lcsc group, X be a G-space
such that X × X is strongly proper as a G-space, and let μ ∈ Tb(G � X) be a translation
bounded measure with uniformly locally bounded hull. Then for every G-invariant Radon
measure ν on �×

μ there exists a unique Radon measure η ∈ M(G\(X × X)) such that for all
f ∈ Cc(X × X),∫

X×X
f (x1, x2)dη(2)

ν (x1, x2) =
∫

G\(X×X)

(∫
G

f (gx1, gx2)dmG(g)

)
dη(G(x1, x2)).

��
Definition 4.12 In the situation of Corollary 4.11 the measure η ∈ M(G\(X × X)) is called
the auto-correlation measure of the measure ν.

Higher auto-correlation measures can be defined similarly, but we will not consider them
in the current article.

4.4 Auto-correlationmeasures in the case of proper homogeneous G-spaces

In this section we specialize to the case of a proper homogeneous G-space X = K\G. We
denote by K p : G → K\G and K pK : G → K\G/K the canonical projections. Moreover,
μ denotes a translation bounded measure on X := K\G with uniformly locally bounded
punctured hull�×

μ and ν denotes a G-invariant probability measure on�×
μ . We are interested

in describing the auto-correlation measure η of ν more explicitly.
We first consider the group case, where K = {e} and X = G with the G-action given by

g.x := xg−1. In this case, the quotient space G\(G × G) can be identified with G via the
map (g1, g2) �→ g1g−1

2 and hence we obtain an isomorphism M+(G\(G × G)) → M+(G).
In particular, we can consider the auto-correlation measure as a Radon measure on G itself.
In the case where μ was a Dirac comb of an FLC set, this measure was described in [8], and
the result carries over to our setting at hand as follows:

Proposition 4.13 (Autocorrelation formula, group case) Let μ ∈ Tb(G � G) be a trans-
lation bounded measure with uniformly locally bounded hull under the right-action of G
on itself and let ν be a G-invariant probability measure on �×

μ . Then the auto-correlation
measure η ∈ M+(G) is the unique Radon measure such that

η( f ∗ f ∗) = ‖Pμ f ‖2
L2(�×

μ ,ν)
for all f ∈ Cc(G). (4.3)

Proof Let f ∈ Cc(G). On the one hand we observe that

η(2)( f ⊗ f ) =
∫

�×
μ

Pμ f · Pμ f dν =
∫

�×
μ

Pμ f · Pμ f dν = ‖Pμ f ‖2
L2(�×

μ ,ν)
.

On the other hand, in view of the identification G\(G × G) ∼= G above the measure η ∈
M+(G) satisfies

η(2)( f ⊗ f ) = η(F),

where for g1, g2 ∈ G we have

F(g1g−1
2 ) =

∫
G
( f ⊗ f )(g1g, g2g) dmG(g) =

∫
f (g) f (g2g−1

1 g) dmG(g)

= f ∗ f ∗(g1g−1
2 ).
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We conclude that η( f ∗ f ∗) = η(F) = η(2)( f ⊗ f ), which yields (4.3).
Finally, η is uniquely determined by Formula (4.3) in view of Corollary A.13. ��
If f , g ∈ Cc(G), then it follows from (4.3) and polarization that

η( f ∗ g∗) = 〈Pμ f ,Pμg〉L2(�×
μ ,ν).

Thus if (ρn)denotes a convenient approximate identity inCc(G) as inRemarkA.12 consisting
of real-valued symmetric functions with supports contained in a fixed compact set, then

η( f ) = lim
n→∞〈Pμ f ,Pμρn〉L2(�×

μ ,ν).

We now want to given a similar characterization of the autocorrelation measure for a general
proper homogeneous space K\G. Observe first that if X = K\G, then we have a natural
identification

G\(X × X) → K\G/K , [(K g1, K g2)] �→ K g1g−1
2 K .

Wemay thus consider the auto-correlation measure η as a Radonmeasure on the double coset
space K\G/K , and hence as a linear functional on Cc(K\G/K ). We recall from Section
A.4 in the appendix that Cc(K\G/K ) carries a natural convolution structure and involution
such that K p∗

K : Cc(K\G/K ) → Cc(G, K ) becomes an isomorphism of ∗-algebras.
The canonical projection (K ) pK : K\G → K\G/K induces an embedding (K ) p∗

K :
Cc(K\G/K ) ↪→ Cc(K\G) and by abuse of notation we denote the composition

Cc(K\G/K )
(K ) p∗

K−−−→ Cc(K\G)
Pμ−−→ C0(�

×
μ).

also by Pμ. Explicitly, this means that

Pμ f (μ′) := μ′((K ) p∗
K f ) ( f ∈ Cc(K\G/K ), μ′ ∈ �×

μ).

With this abuse of notation understood we have:

Proposition 4.14 (Autocorrelation formula, general case) Let μ ∈ Tb(G � K\G) be a
translation bounded measure with uniformly locally bounded hull and let ν be a G-invariant
probability measure on �×

μ . Then the auto-correlation measure η ∈ M+(K\G/K ) is the
unique Radon measure such that

η( f ∗ f ∗) = ‖Pμ f ‖2
L2(�×

μ ,ν)
for all f ∈ Cc(K\G/K ). (4.4)

As in the group case, we can use a polarization argument to give a formula for the measure
η ∈ M+(K\G/K ): If ρn is a convenient approximate identity in Cc(K\G/K ) (cf. Remark
A.12), then

η( f ) = lim
n→∞〈Pμ f ,Pμρn〉L2(�×

μ ,ν) for all f ∈ Cc(K\G/K ).

Proof of Proposition 4.14 Let f ∈ Cc(K\G/K ) and denote by (K ) pK : K\G → K\G/K
the canonical projection. We set f† := (K ) p∗

K f so that, by definition,Pμ f = Pμ f†. Then

η(2)( f† ⊗ f†) =
∫

�×
μ

Pμ f† · Pμ f† dν = ‖Pμ f†‖2L2(�×
μ ,ν)

= ‖Pμ f ‖2
L2(�×

μ ,ν)
.

On the other hand, in view of the identification G\(X × X) ∼= K\G/K above the measure
η ∈ M+(K\G/K ) satisfies

η(2)( f† ⊗ f†) = η(F),
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where for g1, g2 ∈ G we have

F(K g1g−1
2 K ) =

∫
G
( f† ⊗ f†)(K g1g, K g2g) dmG(g) =

∫
f (K g1gK ) f (K g2gK ) dmG(g)

=
∫

G
K p∗

K f (g1g)K p∗
K f (g2g) dmG(g)

The same computation as in the proof of Proposition 4.13 (but applied to K p∗
K f instead of

f ) now yields

F(K g1g−1
2 K ) = K p∗

K f ∗ (K p∗
K f )∗(g1g−1

2 )

= K p∗
K ( f ∗ f ∗)(g1g−1

2 ) = f ∗ f ∗ (
K g1g−1

2 K
)

.

This shows that F = f ∗ f ∗ and thus η( f ∗ f ∗) = η(F) = η(2)( f† ⊗ f†), which yields
(4.4).

As in the group case, η is uniquely determined by Formula (4.4) in view of Corollary
A.13. ��

In Section A.4 in the appendix we also define a function f ∗ f ∗ ∈ Cc(K\G/K ) for a given
function f ∈ Cc(K\G). With this definition understood, the above proof actually shows that
(4.4) holds for all f ∈ Cc(K\G).

Remark 4.15 (Positive-definiteness of the auto-correlation measure) In the group case, the
auto-correlation measure η ∈ M+(G) is “positive-definite” or of “positive type” in the usual
sense, i.e. η( f ∗ f ∗) ≥ 0 for all f ∈ Cc(G). In the case of a proper homogeneous space,
the auto-correlation measure η ∈ M+(K\G/K ) has the analogous positivity property that
η( f ∗ f ∗) ≥ 0 for all f ∈ Cc(K\G/K ) for the given ∗-algebra structure on Cc(K\G/K ).
In this sense, the auto-correlation measure is positive-definite also in the case of proper
homogeneous spaces.

4.5 Naturality of correlation and auto-correlationmeasures

In this section we consider a translation bounded measure μ on G (with respect to the right-
action); we will assume that the punctured hull �×

μ is uniformly locally bounded and that
there exists a G-invariant probability measure ν on �×

μ . We also consider the push-forward
K p∗μ of μ under the canonical projection K p : G → K\G.

By Proposition 3.17, the punctured hull �×
K p∗μ is also uniformly locally bounded, and

by Lemma 3.11 the map K p induces a continuous G-factor map K p∗ : �μ → �K p∗μ. It
follows from G-equivariance that the push-forward K p∗ν of ν with respect to this map is a
G-invariant probability measure on �K p∗μ.

We are going to compare the correlationmeasures η̂(n) of ν to the correlationmeasures η(n)

of K p∗ν and the auto-correlation measure η̂ of ν. to the correlation measure η of K p∗ν and
by η the auto-correlation measure of K p∗ν. For this we denote by K p×n : G×n → (K\G)×n

and K pK : G → K\G/K the canonical projections.

Proposition 4.16 (Naturality of the auto-correlation) The correlation measures and the auto-
correlation measure of ν and K p∗ν are related by the formulas

η(n) = K p×n∗ (̂η(n)) ∈ M+((K\G)n) and η = (K pK )∗(̂η) ∈ M+(K\G/K ).
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Proof The second statement follows from the first one (for n = 2) since the diagram

M(G × G)G

K p×2∗

M(G\(G × G)) M(G)

K p∗
K

M(X × X)G M(G\(X × X)) M(K\G/K )

commutes. The first statement follows in turn from Remark 4.6, since for all f1, . . . , fn ∈
Cc(X) we have

K p×n∗ η(n)( f1 ⊗ · · · ⊗ fn) =
∫

G×n
K p∗ f1(g1) · · · K p∗ fn(gn)dη(n)

ν (g1, . . . , gn)

=
∫

�×
μ

PμK p∗ f1(ξ)PμK p∗ f2(ξ) · · ·PμK p∗ fn(ξ) dν(ξ)

=
∫

�×
μ

K p∗PK p∗μ f1(ξ)K p∗PK p∗μ f2(ξ) · · · K p∗PK p∗μ fn(ξ) dν(ξ)

=
∫

X×n
f1(x1) · · · fn(xn) dη(n)

K p∗ν(x1, . . . , xn)

= η(n)( f1 ⊗ · · · ⊗ fn).

The proposition follows. ��

4.6 Auto-correlationmeasures of weightedmodel sets

We have seen in [8] that we can obtain an explicit formula for the auto-correlation measure
of a model set � in G. Using functoriality, we now extend this result to weighted model sets
in proper homogeneous spaces.

Since the results in [8] were stated for the left-action of G on itself, and since we prefer
to work with the right-action here, we briefly restate the relevant results in the group case in
our current notation. We fix a cut-and-project scheme (G, H , �) and consider a model set of
the form � = �(G, H , �, W ) with window W ⊂ H . We recall our convention that model
sets are assumed to be regular in this article. We also recall that the punctured hull �×

� of
� is uniformly locally finite and uniquely ergodic and denote by ν̂ the unique G-invariant
probability measure on �×

�.
By our standing assumptions on W , the characteristic function 1W is a compactly-

supported bounded measurable function on H . Since � is a uniformly discrete subset of
G × H we can define the periodization of an arbitrary compactly-supported measurable
functions F : G × H → C by the same formula as in the continuous case, i.e.

P� F(�(g, h)) :=
∑

(γ1,γ2)∈�

f (γ1g, γ2h).

With this notation, [8, Thm. 1.4] (translated from left- into right-action) can be stated as
follows:

Theorem 4.17 (Auto-correlation formula for model sets in groups) If � = �(G, H , �, W )

is a model set in G and ν̂ denotes the unique G-invariant probability measure on �×
�, then

the associated auto-correlation measure η̂ is the unique Radon measure on G which satisfies

η̂( f ∗ f ∗) = ‖P�( f ⊗ 1W )‖2L2(�\(G×H))
for all f ∈ Cc(G).
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��
Now let K p∗� denote the associated weighted model set in K\G. By Remark 3.13

the unique G-invariant measure ν on �×
K p∗� is given by the push-forward of ν̂ under the

continuous factor map K p∗ : �� → �K p∗�. Its auto-correlation measure η can thus be
obtained from the auto-correlation measure η̂ of ν̂ by the formula in Proposition 4.16. Using
the explicit formula from Theorem 4.17 for η̂ and denoting by K pK : G → K\G/K the
canonical projection we obtain the following formula for η:

Corollary 4.18 (Auto-correlation formula for weighted model sets) If ν denotes the unique
G-invariant probability measure on the weighted model set K p∗�(G, H , �, W ) and K p∗�
denotes the associated weighted model set in K\G, , then the associated auto-correlation
measure η is the unique Radon measure on K\G/K which satisfies

η( f ∗ f ∗) = ‖P�(K p∗
K f ⊗ 1W )‖2L2(�\(G×H))

for all f ∈ Cc(K\G/K ).

��
For actual computations of the auto-correlation measure, the following formula is often

the most useful one:

Proposition 4.19 (Summation formula for the auto-correlation) The auto-correlation mea-
sure η from Corollary 4.18 is the unique Radon measure on K\G/K with

η( f ∗ f ∗) =
∑

(γ1,γ2)∈�

K p∗
K ( f ∗ f ∗)(γ1) · (1W ∗ 1W−1)(γ2) for all f ∈ Cc(K\G/K ).

Proof Set ϕ := K p∗
K f and r := 1W . Since K pK is a ∗-homomorphism we have to show that

‖P�(ϕ ⊗ r))‖2L2(Y ,mY )
=

∑
(γ1,γ2)∈�

(ϕ ∗ ϕ∗)(γ1) · (r ∗ r∗)(γ2). (4.5)

Set F := ϕ ⊗ r and denote by P̃� F(g, h) := P� F(�(g, h)) the lift of P� F to a function
on G × H . We compute

∑
(γ1,γ2)∈�

(ϕ ∗ ϕ∗)(γ1) · (r ∗ r∗)(γ2) =
∑

(γ1,γ2)∈�

∫
G

ϕ(g)ϕ∗(g−1γ1)dmG(g)

∫
H

r(h)r∗(h−1γ2)dm H (h)

=
∫

G×H
ϕ ⊗ r(g, h)

∑
(γ1,γ2)∈�

ϕ ⊗ r((γ −1
1 g, γ −1

2 h)) dmG ⊗ m H (g, h)

=
∫

G×H
F(x)P̃� F(x) dmG ⊗ m H (x).

Now denote by F a fundamental domain for the left-action of � on G × H . We then have
∑

(γ1,γ2)∈�

(ϕ ∗ ϕ∗)(γ1) · (r ∗ r∗)(γ2) =
∑
γ∈�

∫
γF

F(x)P̃� F(x) dmG ⊗ m H (x)

=
∑
γ∈�

∫
F

F(γ x)P̃� F(γ x) dmG ⊗ m H (x)

=
∫
F

P̃� F(γ x)P̃� F(γ x)dmG ⊗ m H (x)

= ‖P�(ϕ ⊗ r))‖2L2(Y ,mY )
.

The proposition follows. ��
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5 Auto-correlation distributions for translation boundedmeasures in
the hyperbolic plane

5.1 The hyperbolic plane and the group SL2(R)

Throughout this section let G := SL2(R) and define elements of G by the formulas

kθ :=
(

cos 2πθ sin 2πθ

− sin 2πθ cos 2πθ

)
, at :=

(
et/2 0
0 e−t/2

)
and nu :=

(
1 u
0 1

)
.

Then the maps R → G given by θ �→ kθ , t �→ at and u �→ nu are group homomorphisms,
and we denote their images by K = SO2(R), A and N respectively. Note that K ∼= S1

whereas A ∼= N ∼= R.
Recall that the groups G acts by fractional linear transformation on the upper half-plane,

i.e. (
a b
c d

)
.z := az + b

cz + d

((
a b
c d

)
∈ G, z ∈ C, Im(z) > 0

)
,

preserving the hyperbolic metric. This action is transitive and the stabilizer of i is given by
K . We thus have G-equivariant homeomorphisms

K\G → G/K → H
2, K g �→ g−1K �→ g−1.i .

We may thus think of the hyperbolic plane as the proper homogeneous space K\G of G.
Throughout this section, μ ∈ Tb(G � K\G) denotes a translation bounded measure on

the hyperbolic plane. We assume that �×
μ is uniformly locally bounded and that there exists

a G-invariant probability measure ν on �×
μ . Under these assumptions the auto-correlation

measure η of ν can be defined and is a Radon measure on K\G/K . In particular, μ could
be a weighted model set in the hyperbolic plane and ν would then be the unique G-invariant
probabiliy measure on its hull.

We will need the following basic facts concerning SL2(R) (see [22]). Multiplication
induces a diffeomorphism A × N × K → G and thus every g ∈ G can be written uniquely
as

g = at nukθ . (5.1)

If f ∈ L1(G) and F(t, u, θ) := f (at nukθ ), then we will normalize Haar measure on G such
that ∫

G
f (g) dmG(g) =

∫
[0,1)

∫
R

∫
R

F(t, u, θ) dt du dθ.

We thus obtain a G-invariant measure dm A\G on A\G by setting∫
A\G

f (x) dm A\G(x) =
∫

[0.1)

∫
R

f (Anukθ ) du dθ ( f ∈ Cc(A\G)).

This measure is uniquely determined by the fact that for f ∈ Cc(G) we have∫
G

f dmG =
∫

A\G

∫
R

f (at x) dt dm A\G(Ax) ( f ∈ Cc(G)). (5.2)

The group A normalizes N , and we have

at nua−t = net u for all t, u ∈ R. (5.3)
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This implies in particular that for f ∈ Cc(N ) and t �= 0 we have∫ ∞

−∞
f (a−t n−uat nu) du =

∫ ∞

−∞
f
(
n(1−e−t )u

)
du = 1

|1 − e−t |
∫ ∞

−∞
f (nu) du. (5.4)

The Weyl group W = NK (A)/Z K (A) acts on A by conjugation. If we define

w :=
(

0 1
−1 0

)
,

then NK (A) = 〈w〉, Z K (A) = 〈w2〉 and watw
−1 = a−t . Thus W ∼= Z/2Z and a function

f : A → C is W -invariant if and only if it is even, i.e. f (at ) = f (a−t ). The diffeomorphism
cw : G → G given by x �→ wxw−1 descends to a diffeomorphism

cw : A\G → A\G, Ax �→ Awxw−1 (5.5)

and since Lebesgue measure on R is invariant under sign change it follows from (5.2) that
cw preserves the measure m A\G .

The inclusion A ↪→ G induces a homeomorphism W\A → K\G/K , and if we define
ι̂ : G → [1,∞) by g �→ 1

2 tr(g
T g), then ι̂ is bi-K -invariant and induces homeomorphisms

ι : K\G/K → [1,∞) and ιA : W\A → [1,∞). (5.6)

Explicitly, we have ιA({a±t }) = cosh(t) and thus ι−1
A (r) = {a± arcosh(r)}.

5.2 The Harish transform and its inverse

We recall the definition and basic properties of the Harish transform on SL2(R). Our expo-
sition follows [22], but we decided to spell out some formulas more explicitly.

Definition 5.1 Let f ∈ Cc(G). Then the Harish transform H f : A → C is given by

(
H f

)
(at ) = et/2

∫ ∞

−∞
f (at nu) du.

Lemma 5.2 (Properties of the Harish transform) The Harish transform has the following
properties:

(i) For all f ∈ Cc(G) we have H( f ∗) = (H f )∗.
(ii) H(Cc(G, K )) ⊂ Cc(A)W and H(C∞

c (G, K )) ⊂ C∞
c (A)W .

(iii) For all f1, f2 ∈ Cc(G, K ) we have H( f1 ∗ f2) = H f1 ∗ H f2.

In particular, H yields ∗-algebra homomorphisms

H : Cc(G, K ) → Cc(A)W and H : C∞
c (G, K ) → C∞

c (A)W .

Proof (i) For all f ∈ Cc(G) and t ∈ R we have by (5.3),

(H f ∗)(at ) = et/2
∫
R

f (n−ua−t ) du = et/2
∫
R

f (a−t (at n−ua−t )) du

= et/2
∫
R

f (a−t n−et u) du = e−t/2
∫
R

f (a−t nu) du = (H f )∗(at ).

(ii) It is clear from the formula that H preserves smoothness. Now let f ∈ Cc(G, K );
given t ∈ R the function ϕ̃t on G given by ϕt (x) = f (x−1at x) is left-A-invariant and hence
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descends to a function ϕt on A\G. Using bi-K -invariance of f and (5.4) we obtain for every
t �= 0 the formula

H( f )(at ) = et/2
∫ ∞

−∞

∫ 1

0
f (k−θ at nukθ ) dθ du

= et/2 · |1 − e−t |
∫ 1

0

∫ ∞

−∞
f (k−θ at (a−t n−uat nu)kθ ) du dθ

= |et/2 − e−t/2|
∫ 1

0

∫ ∞

−∞
ϕt (Anukθ ) du dθ

= |et/2 − e−t/2| · m A\G(ϕt ),

and this formula extends to t = 0 by continuity. Since a−t = watw
−1 and m A\G is invariant

under the diffeomorphism cw from (5.5) we have m A\G(ϕt ) = m A\G(ϕ−t ). Since also
|et/2 − e−t/2| is an even function, we deduce that t �→ H( f )(at ) is even.

(iii) For all f1, f2 ∈ Cc(G, K ) and t ∈ R we have

H( f1 ∗ f2)(at ) = et/2
∫
R

( f1 ∗ f2)(at nu) du

= et/2
∫
R

(∫
[0,1)

∫
R

∫
R

f1(aτ nvkξ ) f2(k
−1
ξ n−1

v a−τ+t nu) dτ dv dξ

)
du

= et/2
∫
R

(∫
R

∫
R

f1(aτ nv) f2(n
−1
v a−τ+t nu) dτ dv

)
du

= et/2
∫
R

(∫
R

∫
R

f1(aτ nv) f2(a−τ+t
(
a−(−τ+t)n

−1
v a−τ+t

)
nu) dτ dv

)
du

Since by (5.3) for all τ, t, v ∈ R we have a−(−τ+t)n−1
v a−τ+t = n−e−(−τ+t)v , we deduce that

H( f1 ∗ f2)(at ) = et/2
∫
R

(∫
R

∫
R

f1(aτ nv) f2(a−τ+t nu−e−(−τ+t)v) dτ dv

)
du

= et/2
∫
R

(∫
R

∫
R

f1(aτ nv) f2(a−τ+t nu−e−(−τ+t)v) du dv

)
dτ

= et/2
∫
R

(∫
R

∫
R

f1(aτ nv) f2(a−τ+t nu) du dv

)
dτ

=
∫
R

H f1(aτ ) H f2(a−τ+t ) dτ

= (
H f1 ∗ H f2

)
(at ).

This finishes the proof. ��
To see that the morphism H : C∞

c (G, K ) → C∞
c (A)W is actually an isomorphism and

describe its inverse explicitly, it is convenient to relate the Harish transform to the more
classical Abel transform. The homeomorphisms ι and ιA from (5.6) induce isomorphisms

ι∗ : Cc([1,∞)) → Cc(G, K ) and ι∗A : Cc([1,∞)) → Cc(A)W .

Under these isomorphisms, both C∞
c (G, K ) and C∞

c (A)W are mapped onto the subspace
C∞

c ([1,∞)) ⊂ Cc([1,∞)) consisting of fuctions in C∞
c (R) with support contained in

[1,∞).
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Remark 5.3 (Harish transform vs. Abel transform) The Abel transform

A : C∞
c ([1,∞)) → C∞

c ([1,∞)), Aϕ(r) :=
∫ ∞

−∞
ϕ(r + u2/2) du

is related to the Harish transform by the commutative diagram

C∞
c (G, K )

H
C∞

c (A)W

C∞
c ([1,∞))

ι∗

A
C∞

c ([1,∞)).

ι∗A

Indeed, since ι(at nu) = cosh(t) + 1
2 (uet/2)2 we have for all ϕ ∈ C∞

c ([1,∞)) and t ∈ R

H(ι∗ϕ)(at ) = et/2
∫ ∞

−∞
ϕ(cosh(t) + (uet/2)2/2) du =

∫ ∞

−∞
ϕ(cosh(t) + u2/2) du = ι∗AA(ϕ)(at ).

Lemma 5.4 (Inversion of the Abel transform) The Abel transform is a linear isomorphism
with inverse given by

A
−1ψ(r) = −1

2π

∫ ∞

−∞
ψ ′(r + v2/2) dv (ψ ∈ C∞

c [1,∞)).

Proof For all r ∈ [1,∞) the substitutions

{
u = R cos θ

v = R sin θ

}
and ξ = R2/2 yield

A(A−1ψ)(r) = −1

2π

∫ ∞

−∞

∫ ∞

−∞
ψ ′(r + u2/2 + v2/2) du dv = −1

2π

∫ 2π

0

∫ ∞

0
ψ ′(r + R2/2)R d R dθ

= −
∫ ∞

0
ψ ′(r + ξ)dξ = − ψ(r + ξ)|∞0 = ψ(r) − lim

ξ→∞ ψ(r + ξ) = ψ(r),

where the last equality holds since ψ has compact support. ��

Corollary 5.5 (Invertibility of the smooth Harish transform) The Harish transform yields an
isomorphism of ∗-algebras H : C∞

c (G, K ) → C∞
c (A)W with inverse given by H

−1 =
ι∗ ◦ A

−1 ◦ (ι−1
A )∗. ��

Note that we can write out the formula for the inverse Harish transform explicitly as follows:
If ψ = (ι−1

A )∗(ϕ), then ψ(r) = ϕ({aarcosh(r)}), and hence

ψ ′(r) =
d
dr ϕ(a± arcosh(r))√

r2 − 1
.

We conclude that

H
−1(ϕ)(g) = −1

2π

∫ ∞

−∞

d
dr ϕ

(
aarcosh(r+u2/2)

)
√

(r + u2/2)2 − 1
du

∣∣∣∣∣
r= 1

2 tr(g�g)

.
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5.3 The inverse Harish transform on distributions

Given a smooth manifold M we equip C∞
c (M) with the topology of uniform convergence

of all derivatives on compacta. We then denote by D(M) the space of distributions on M ,
i.e. the space of continuous linear functionals on C∞

c (M). We claim that the inverse Harish
transform induces a map

(H−1)∗ : D(G)K×K → D(A)W ,

(H−1)∗ξ( f ) := ξ(H−1 f ) (ξ ∈ D(G)K×K , f ∈ C∞
c (A)W ).

This amounts to showing that the inverse Harish transform is continuous. In view of Corollary
5.5 this is equivalent to continuity of the inverse Abel transform A

−1 : C∞
c [1,∞) →

C∞
c [1,∞). We will establish the following more precise estimate:

Lemma 5.6 (Continuity of the inverse Abel transform) For every n ≥ 0,

‖A
−1ϕ(n)‖∞ ≤ 2

√
2

π
· max{‖ϕ(n)‖∞, ‖ϕ(n+1)‖∞} (ϕ ∈ C∞

c [1,∞)).

Proof For ψ ∈ C∞
c [1,∞) the substitution v := u2/2 yields

A
−1ψ(r) = −1

2π
· 2

∫ ∞

0
ψ ′(r + u2/2) du = −1

2π
· 2

∫ ∞

0
ψ ′(r + v)

dv√
2v

= −√
2

2π

∫ ∞

0

ψ ′(r + v)√
v

dv.

Now, on the one hand,∣∣∣∣
∫ 1

0

ψ ′(r + v)√
v

dv

∣∣∣∣ ≤ ‖ψ ′‖∞ ·
∫ 1

0

dv√
v

= 2 · ‖ψ ′‖∞,

and on the other hand by partial integration∫ ∞

1

ψ ′(r + v)√
v

dv = ψ(r + v) · 1√
v

∣∣∣∣
∞

1
−

∫ ∞

1
ψ(r + v) · −1

2v3/2
dv,

hence ∣∣∣∣
∫ ∞

1

ψ ′(r + v)√
v

dv

∣∣∣∣ ≤ ‖ψ‖∞ + 1

2
‖ψ‖∞

∫ ∞

1

dv

v3/2
= 2‖ψ‖∞.

We deduce that

‖A
−1ψ‖∞ ≤

√
2

2π
· (2‖ψ ′‖∞ + 2‖ψ‖∞) ≤ 2

√
2

π
max{‖ψ‖∞, ‖ψ ′‖∞},

and applying this to ψ := ϕ(n) yields the lemma. ��

5.4 The auto-correlation as a positive-definite distribution

Recall that η ∈ M+(K\G/K ) denotes the auto-correlationmeasure of ν. Given f ∈ C∞
c (A),

we define fW ∈ C∞
c (A)W by

fW (at ) := f (at ) + f (a−t )

2
.
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Then H
−1( fW ) ∈ C∞

c (G, K ) and thus K (H−1( fW ))K ∈ Cc(K\G/K ). We may thus
apply the measure η to this function and define

ξ( f ) := η(K (H−1( fW ))K ).

Proposition 5.7 The map ξ : C∞
c (A) → C has the following properties:

(i) ξ is W -invariant and continuous, hence defines a distribution ξ ∈ D(A)W .
(ii) ξ is evenly positive-definite in the sense that ξ( f ∗ f ∗) ≥ 0 for all f ∈ C∞

c (A)W .
(iii) ξ determines the auto-correlation measure η uniquely.

Proof (i) W -invariance holds by construction, and continuity follows from Lemma 5.6. (ii)
follows fromRemark 4.15 and the fact thatH−1 is a ∗-homomorphism, since for f ∈ Cc(A)W

we have

ξ( f ∗ f ∗) = η(K (H−1( f ∗ f ∗))K ) = η(K (H−1 f )K ∗ (K (H−1 f )K )∗) ≥ 0.

(iii) follows from the fact that H
−1 is onto C∞

c (G, K ) and the latter is dense in Cc(G, K ). ��
Definition 5.8 The evenly positive-definite distribution ξ ∈ D(A)W is called the auto-
correlation distribution of ν.

To summarize, we can consider the auto-correlation associated with a translation bounded
measure in the hyperbolic plane either as a positive-definite Radon measure on K\G/K or
equivalently as a evenly positive-definite distribution on A ∼= R.

Remark 5.9 (Non-temperedness of the auto-correlation distribution) Recall that a distribution
ξ ∈ D(R) is called tempered if it can be extended to a continuous linear functional on the
Schwartz space S (R). In general there is no reason why the auto-correlation distribution
would be tempered. The problem is that uniform model sets in the hyperbolic plane grow
exponentially, and hence to define the periodization of a function over the hull of a weighted
model set, one needs some form of exponential decay. While the inverse Harish transform
does map the Schwartz space to the Schwartz space, the Harish transform of a Schwartz
function will only be super-polynomially (rather than exponentially) decaying, and thus
cannot be periodized.

An important tool in the study of positive-definite distributions onR is given by the Fourier
transform. For tempered distributions there is Fourier inversion theorem which implies that a
tempered distribution is uniquely determined by its real Fourier transform. There is no such
inversion theorem for non-tempered distributions, and we will see in the sequel to the present
article that in order to fully determine the auto-correlation distribution we need to work with
a suitable complex Fourier transform, which in the present case turns out to be related to the
spherical Fourier transform associated with the Gelfand pair (G, K ).

5.5 Beyond SL2(R)

We have used the Harish transform to transform the auto-correlation measure into an evenly
positive-definite distribution on R. The underlying argument is not specific to the case of
SL2(R) but applies in a much wider context:

If G is any semisimple Lie group with finite center, then G admits an Iwasawa decom-
position G = N AK with K < G maximal compact and A ∼= R

n , and there is a Harish
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transform, which defines an isomorphism of ∗-algebras H : C∞
c (K\G/K ) → C∞

c (A)W ,
where theWeyl groupW = Z K (A)/NK (A) is a finite reflection group.One can verify that the
inverse Harish transform is continuous, and hence descends to (non-tempered) distributions.

Consequently, if μ is a translation bounded measure in the Riemannian symmetric space
K\G whose hull �×

μ is uniformly locally bounded and admits a G-invariant probability
measure ν with auto-correlation measure η ∈ M+(K\G/K ), then one obtains an evenly
positive-definite distribution ξ ∈ D(A)W by the formula

ξ( f ) := η(K (H−1( fW ))K ),

where

fW (a) := 1

|W |
∑
w∈W

f (w(a)).

As in the SL2(R)-case, the auto-correlation measure is uniquely determined by this distribu-
tion, which justifies calling ξ the auto-correlation distribution of ν. Since A ∼= R

n we can
view this distribution as an evenly positive-definite distribution on R

n with respect to a finite
reflection group.

Actually, the story does not end here. There is a version of the Harish transform for
semisimple algebraic groups over non-Archimedean local fields, called the Satake transform,
and thus auto-correlation distributions can also be defined in the non-Archimedean setting.

We plan to return to both classes of examples in future work.

6 Approximation of the auto-correlation for weighted regular model
sets

Throughout this section let � = �(G, H , K , �) be a regular model set (not necessarily
uniform) in G and let K p∗� be the corresponding weighted model set in K\G. We denote
by ν the unique G-invariant probability measure on �×

K p∗� and by η ∈ M+(K\G/K ) its
auto-correlation measure.

6.1 Reminder of the amenable case

Assume first that the group G is amenable. We recall from Proposition 4.16 that the auto-
correlation measure η satisfies

η(K fK ) = η̃( f ) ( f ∈ Cc(G, K )),

where η̃ is the auto-correlation measure of the unique G-invariant probability measure on
�×

�. In view of this formula, [8, Cor. 5.4] yields the following formula for η:

Corollary 6.1 (Approximation formula in the amenable case) Assume that G is amenable.
Then for every weakly admissible left-Følner sequence (Ft ) in G the auto-correlation measure
η is given by the sampling limit

η(K fK ) = lim
t→∞

1

mG(Ft )

∑
x∈�∩Ft

∑
y∈�

f (xy−1) ( f ∈ Cc(G, K )).

Let us recall the relevant definition of a weakly admissible sequence:
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Definition 6.2 We say that a sequence (Ft )t>0 of compact subsets of G is weakly admissible
if each (Ft ) has positive Haarmeasure and there are continuous functions α, β : [0, 1) → R+
with α(0) = 0 and β(0) = 0 such that

(Ft )δ ⊂ Ft+α(δ) and sup
s

mG(Fs+δ)

mG(Fs)
= 1 + β(δ),

for all t, δ > 0. (Ft ).

This is a weakening of the notion of an admissible sequence from [14].

6.2 An approximation theorem for non-amenable groups

We would like to establish a version of Corollary 6.1 also for certain non-amenable groups.
Since these groups do by definition not admit any Følner sequences, we need to find a
different set of assumptions concerning G and (Ft ). We are going to work in the context of
Howe–Moore groups in the sense of the following definition:

Definition 6.3 The lcsc group G is called a Howe–Moore group if it is non-compact and for
every unitary G-representation (V , π) with V G = {0} and all u, v in V we have

〈π(g)(u), v〉 → 0 as g → ∞.

Many non-amenable groups of interest have this property:

Example 1. SLn(R) and SLn(Qp) are Howe–Moore groups.
2. More generally, if G is a semisimple algebraic group over a local field k, then G(k) is a

Howe–Moore group [20]. In particular, every semisimple Lie group with finite center is
a Howe–Moore group.

3. Finite (and also restricted infinite) products of Howe–Moore groups are Howe–Moore
groups. In particular, products of real and p-adic semisimple algebraic groups and adelic
semisimple algebraic groups are Howe–Moore groups.

4. If G is the automorphism group of a regular tree, then G is not a Howe–Moore group.
However, G contains a unique topologically simple subgroup G0 of index 2, which can
be defined as the subgroup preserving any bi-partite coloring of the vertices (see [29]),
and this group is a Howe–Moore group [23].

5. Similarly, automorphism groups of Bruhat–Tits buildings have a finite-index Howe–
Moore subgroup.
We will be interested in the following property of Howe–Moore groups:

Remark 6.4 (Relative Howe–Moore property) Let Y := �\(G × H) and denote by L2
0(Y )

the orthogonal complement of the constants in L2(Y ) so that the unitary representation
π : G → U (L2

0(Y )) has no invariant vectors. Moreover, let (Ft ) be a weakly-admissible
sequence in G and define βt := 1

mG (Ft )
· 1Ft ∈ L1(G). We say that G has the Howe–Moore

property relative (Y , K , (Ft )) if

〈π(βt )u, v〉 → 0 for all u, v ∈ L2
0(Y )K . (6.1)

Note that ifG is aHowe–Moore group, then it has this property for any choice of (Y , K , (Ft )).

In order to obtain an approximation theorem, we will impose an additional condition on
the pair (G, K ). This condition is not strictly necessary to obtain an approximation theorem,
but it is satisfied in all our examples of interest and simplifies the proof considerably.
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Definition 6.5 The pair (G, K ) is called a Gelfand pair and K\G is called a commutative
space if the Hecke algebra Cc(G, K ) is commutative under convolution.

Example In developing the current theory we had the following examples of Gelfand pairs
(G, K ) and commutative spaces X = K\G in mind (cf. [30]):

1. G is abelian and K = {e} so that X = G. This is the classical setting of quasi-crystals.
2. G = R

n
� O(n), K = O(n) so that X = R

n and Cc(G, K ) can be identified with radial
functions on Euclidean space. This setting is implicitly studied in [2].

3. G = SL2(R) and K = SO2(R). In this case, X can be identified with the hyperbolic
plane and Cc(G, K ) can be identified with radial functions on the hyperbolic plane.

4. G = SL2(Qp) and K = SL2(Zp). In this case, X can be identified with the vertex set
of a (p + 1)-regular tree, and Cc(G, K ) can be identified with radial functions on the
vertices of the tree.

5. Generalizing (3), choose G to be any semisimple Lie group with finite center and K < G
a maximal compact subgroup. In this case, X is a Riemannian symmetric space.

6. Generalizing (4), choose G = G(k) and K = G(ok) where G is a semisimple algebraic
group over a non-Archimedian local field k and ok ⊂ k is its valuation ring. In this case
X can be identified with an orbit of special vertices in the Bruhat–Tits building of G.

7. Another generalization of (4) is given as follows: Let G be the automorphism group of
a regular tree T and let K be the stabilizer of a vertex; in this case, X is the vertex set of
T .

8. Let H be the (2n + 1)-dimensional Heisenberg group. The group U(n) acts on H by
automorphisms fixing the center, and we can choose K to be any subgroup of U (n)

containing a maximal torus and set G := K � H . Then X can be identified with the
Heisenberg group. If K = U(n), then Cc(G, K ) corresponds to radial functions on the
Heisenberg group, and if K is a maximal torus, then Cc(G, K ) corresponds to polyradial
functions on the Heisenberg group.

9. One can consider finite products (and even restricted infinite products) of all of the pairs
above. This includes in particular S-adic and adelic semisimple groups.

Note that in all of these examples, either G is amenable or G has a finite index subgroup
which is a Howe–Moore group.

We can now formulate a version of the approximation theorem for non-amenable groups:

Theorem 6.6 (Approximation formula for Howe–Moore Gelfand pairs) Assume that G is a
Howe–Moore group and that (G, K ) is a Gelfand pair. Then for every weakly admissible
sequence (Ft ) of bi-K -invariant subsets in G the auto-correlation measure η is given by the
sampling limit

η(K fK ) = lim
t→∞

1

mG(Ft )

∑
x∈�∩Ft

∑
y∈�

f (xy−1) ( f ∈ Cc(G, K )).

As we will see, the theorem still holds if G is not necessarily a Howe–Moore group, but has
the Howe–Moore property relative to (Y , K , (Ft )).

6.3 Proof of the approximation theorem

Throughout this sectionwe assume that G, K , (Ft ) satisfy the assumptions of the approxima-
tion theorem (Theorem 6.6).We denoteY := �\(G×H) andβt := 1

mG (Ft )
·1Ft ∈ L1(G, K ).
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By a standard argument, the (relative) Howe–Moore property implies the mean ergodic the-
orem, which we can formulate as follows:

Lemma 6.7 (Mean ergodic theorem) Let σ be a K -invariant probability measure on Y which
is absolutely continuous with respect to mY with square-integrable density. Then for every
ϕ ∈ Cb(Y ),

β̌t ∗ σ(ϕ) → mY (ϕ).

Proof By assumption, σ = u dmY with u ∈ L2(Y )K . For every ϕ ∈ Cb(Y ),

(β̌t ∗ σ)(ϕ) =
∫

G
β̌t (g)(g.σ )(ϕ) dmG(g) =

∫
G

βt (g)σ (g.ϕ) dmG(g)

=
∫

G
βt (g)

( ∫
Y

ϕ(g−1.y) dσ(y)
)

dmG(g) =
∫

G
βt (g)〈πY (g)ϕ, u〉 dmG(g)

= 〈π(βt )ϕ, u〉
Since βt is K -invariant, we have 〈π(βt )ϕ, u〉 = 〈π(βt )ϕ

K , u〉, where ϕK denotes the projec-
tion of ϕ onto L2(Y )K . If we write ϕK = mY (ϕ)+ϕo and u = 1+ uo with ϕo, uo ∈ L2

o(Y ),
then

(β̌t ∗ σ)(ϕ) = 〈π(βt )ϕ
K , u〉 = mY (ϕ) + 〈π(βt )ϕo, uo〉,

and since G has the Howe-Moore property with respect to (Y , K , (Ft )), the last term tends
to zero as t → ∞. ��

The work of Gorodnik and Nevo [14–18] investigates in great generality under which
conditions one can sharpen mean ergodic theorems for (possibly non-amenable) groups into
pointwise statements. In many cases a pointwise statement can be derived without assuming
commutativity of Cc(G, K ). However, since commutativity of Cc(G, K ) holds in essentially
all examples of interest to us, we confine ourselves to this case, in which there is a particularly
simple proof. Recall that the vague topology on bounded measures on Y is the weak-∗-
topology with respect to C0(Y ), and that the subset of sub-probability measures is compact
in this topology.

Proposition 6.8 (Pointwise ergodic theorem) In the situation of Theorem 6.6 we have vague
convergence

β̌t ∗ δy → mY for every y ∈ Y .

Proof Since the space of sub-probability measures on Y is vaguely compact, it suffices to
show that every limit point ν = limn→∞ β̌tn ∗ δy of (β̌t ∗ δy) coincides with mY . To show
this, let ρ = ρ1 ⊗ ρ2 ∈ Cc(G × H) be a probability density such that ρ1 ∈ Cc(G, K ) is
bi-K -invariant. Since β̌t and ρ1 commute, we then have

ρ ∗ ν = lim
n→∞ ρ ∗ (β̌tn ∗ δy) = lim

n→∞ ((ρ1 ∗ β̌tn ) ⊗ ρ2) ∗ δy

= lim
n→∞ ((β̌tn ∗ ρ1) ⊗ ρ2) ∗ δy = lim

n→∞ β̌tn ∗ (ρ ∗ δy).

Now let σ := ρ ∗ δy . We claim that σ = ψ · mY is absolutely continuous with respect to mY

with uniformly bounded density ψ . For the proof we may assume without loss of generality
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that y = �. If F ∈ Cc(Y ), then there exists f ∈ Cc(G × H) such that F = P� f , and thus

σ(F) =
∫

G

∫
H

∑
(γ1,γ2)∈�

ρ(g, h) f ((γ1g, γ2h)) dmG(g)dm H (h)

=
∫

G

∫
H

∑
(γ1,γ2)∈�

ρ(γ −1
1 g, γ −1

2 h) f (g, h) dmG(g)dm H (h)

=
∫

G

∫
H
P�ρ(�(g, h)) f (g, h) dmG(g)dm H (h)

=
∫

Y
ψ(y)F(y)dmY (y),

where ψ := P�ρ. This proves that σ = ψ · mY , and to see that this density is bounded, we
observe that

|ψ(�(g, h))| ≤ ‖ρ‖∞ · | supp(ρ) ∩ �(g, h)|
Since the orbit of � is uniformly locally finite and supp(ρ) is compact, the claim follows.
We may thus apply Lemma 6.7 to obtain

ρ ∗ ν = lim
n→∞ β̌tn ∗ (ρ ∗ δy) = lim

n→∞ β̌tn ∗ σ = mY .

Nowwe can choose ρ
(n)
1 to be a convenient approximate identity inCc(G, K ) and ρ

(n)
2 to be a

convenient approximate identity in Cc(H) and set ρ(n) := ρ
(n)
1 ⊗ρ

(n)
2 . Since ν is K -invariant

by construction we then obtain

ν = lim
n→∞ ρ(n) ∗ ν = lim

n→∞ mY = mY .

This finishes the proof. ��
We observe that by a standard approximation argument the convergence

β̌t ∗ δy( f ) → mY ( f )

holds not only for f ∈ C0(Y ), but also for any compactly supported bounded function f
on Y , which is Riemann integrable with respect to mY . Theorem 6.6 now follows from this
pointwise statement and our previous work in [8]:

Proof of Theorem 6.6 In [8, Thm. 3.1] we introduced a parametrization map for the hull of a
regular model set. Taking into account our change in convention from left- to right-actions,
this map yields a G-equivariant surjection of the form β : �×

� → Y , where Y = �\(G × H)

as before, which induces an isomorphism

β∗ : L2(Y ) → L2(��),

where both L2-spaces are with respect to the respective unique G-invariant measures. By [8,
Thm. 4.11 and Lemma 4.12] we have for all f ∈ Cc(G) and for mG -almost every g ∈ G,

P� f (�) = P�( f ⊗ 1W )(β(g.�)). (6.2)

In particular, if we abbreviate y0 := β(�), then for all f ∈ Cc(G) and for mG -almost every
s ∈ G we have

P� f (s−1�) = P�( f ⊗ 1W )(β(s−1�)) = P�( f ⊗ 1W )(s−1y0).
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Now let f1, f2 ∈ Cc(G, K ). We observe that the bounded measurable function

h(y) := P�( f1 ⊗ 1W )(y)P�( f2 ⊗ 1W )(y),

has compact support. Indeed, if F denotes a fundamental domain of � in G × H , then the
supports of the functions f j ⊗1W intersect only finitelymany translates ofF , each of them in
a compact set. Moreover, since W is Jordan measurable, the function h is Riemann integrable
with respect to mY . Then (6.2) yields

η( f1 ∗ f ∗
2 ) = 〈P� f1,P� f2〉 = 〈P�( f1 ⊗ 1W ),P�( f2 ⊗ 1W )〉 = mY (h).

Now if we set βt := 1
mG (Ft )

· 1Ft the pointwise ergodic theorem (Proposition 6.8) yields

η( f1 ∗ f ∗
2 ) = mY (h) = lim

t→∞ β̌t ∗ δy0(h)

= lim
t→∞

1

mG(Ft )

∫
Ft

P�( f1 ⊗ 1W )(s−1.y0)P�( f2 ⊗ 1W )(s−1.y0)dmG(s)

= lim
t→∞

1

mG(Ft )

∫
Ft

P f1(s
−1�)P f2(s−1�) dmG(s).

In view of [8, Theorem 5.3] this implies the theorem. ��
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Appendix A: Convolution structures on double coset spaces

A.1: Convolution algebras and representations

Recall that Mb(G) denotes the Banach space of bounded complex Radon measures on the
lcsc group G.

Remark A.1 (Mb(G) as a Banach-∗-algebra) Mb(G) is a Banach-∗-algebra with convolution
product and involution respectively given by

μ ∗ ν( f ) =
∫

G

∫
G

f (xy)dμ(x)dν(y) and
∫

G
f dμ∗ =

∫
G

f (x−1)dμ(x) ( f ∈ Cc(G)).

For general μ, ν in M(G) the convolution μ ∗ ν is not well-defined, but if one of them has
compact support, then μ ∗ ν can be defined by the same formula. Similarly, the involution ∗
can be extended by the same formula to all of M(G).
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Remark A.2 (L1(G) as aBanach-∗-algebra)Our choice ofHaarmeasure yields an embedding
L1(G) ↪→ Mb(G), f �→ f · mG . Under this embedding L1(G) is a Banach-∗-subalgebra,
and for f , g ∈ L1(G) we have

f ∗ g(x) =
∫

G
f (y)g(y−1x)dmG(y) and f ∗(x) = f (x−1) (x, y ∈ G).

By the same formula we obtain a convolution action of L1(G) on L p(G) for all 1 ≤ p ≤ ∞
so that ‖ f ∗ g‖p ≤ ‖ f ‖1‖g‖p . If f ∈ L1(G) and g ∈ L∞(G), then f ∗ g is continuous.

Remark A.3 (Extending representations) If π : G → U (V ) is a unitary representation of G
on a Hilbert space V , then we obtain a ∗-representation of the algebra L1(G) by the formula

π : L1(G) → B(V ), π( f )(u) :=
∫

G
f (g)π(g)u dmG(g),

where the integral can be interpreted in the weak sense.

Example If πL : G → U (L2(G)) denotes the left-regular representation, then for f ∈
L1(G) and u ∈ L2(G) we have

πL( f )(u)(x) =
∫

G
f (g)πL (g)u(x) dmG(g) =

∫
G

f (g)u(g−1x) dmG(g) = f ∗ u(x),

i.e. πL is the action by left-convolution.

Example If πR : G → U (L2(G)) denotes the right-regular representation, then for f ∈
L1(G) and u ∈ L2(G) we have

πR( f )(u)(x) =
∫

G
f (g)πR(g)u(x) dmG(g) =

∫
G

f (g)u(xg) dmG(g)

=
∫

G
u(g) f (x−1g) dmG(g) =

∫
G

u(g) f̌ (g−1x) dmG(g) = u ∗ f̌ (x),

i.e. πR( f ) acts by right-convolution by f̌ .

A.2: Convolution algebras of bi-K-invariant functions

Remark A.4 (Subalgebras of bi-K -invariant functions and measures) The group G acts on
functions on G by Lg f (x) := f (g−1x) and Rg f (x) := f (xg), and dually on measures.
We denote by Mb(G, K ) ⊂ Mb(G) and L1(G, K ) ⊂ L1(G) the Banach-∗-subalgebras
consisting of measures and function classes which are bi-K -invariant. The spaces M(G, K ),
C(G, K ), L p(G, K ) etc. are defined similarly,

Definition A.5 The dense ∗-subalgebra Cc(G, K ) := L1(G, K )∩Cc(G) is called the Hecke
algebra of the pair (G, K ).

Note that if K pK : G → K\G/K denotes the canonical projection, then pullback induces
a bijection K p∗

K : Cc(K\G/K ) → Cc(G, K ). By transport of structure, Cc(K\G/K )

thus inherits the structure of a ∗-algebra from the Hecke algebra. We are going to describe
this structure explicitly in Sect. A.4, using a canonical measure on K\G/K . To define this
measure we need a variant ofWeil’s formula concerning integration on homogeneous spaces,
which we will recall in the next section.
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A.3: AWeil formula for strongly proper actions

Let H be a unimodular lcsc group. We fix a Haar measure m H on Y .

Definition A.6 A lcsc H -space Y is called a strongly proper H-space if the action of H on
Y is proper and the quotient H\Y is Hausdorff and paracompact with respect to the quotient
topology.

The following version of Weil’s formula can be found e.g. in [21, Thm. 2.2].

Lemma A.7 (Weil formula for strongly proper actions) Let Y be a strongly proper H-space
and let η be an H-invariant Radon measure on Y . Then there exists a unique Radon measure
η on H\Y such that for all f ∈ Cc(Y ),

∫
Y

f (y)dη(y) =
∫

H\Y

(∫
H

f (hy)dm H (h)

)
dη(H y).

��
The formula stated in [21, Thm. 2.2] is actually more involved, but under our standing

assumption that H be unimodular it simplifies to the form above. We emphasize that η

depends on our choice of Haar measure m H on H .

A.4: Measures and convolutions on double coset spaces

Recall that K denotes a compact subgroup of our lcsc group G with Haar probability measure
mK . Since the left-action of K onG is strongly proper andpreservesmG ,we can applyLemma
A.7 with Y := G and H := K . We deduce that there exists a unique Radon measure mK\G

on K\G such that for all f ∈ Cc(G),∫
G

f (g) dmG(g) =
∫

K\G

(∫
K

f (kg)dmK (k)

)
dmK\G(K g).

Similarly, there exists a unique Radon measure mG/K on G/K such that for all f ∈ Cc(G),∫
G

f (g) dmG(g) =
∫

G/K

(∫
K

f (gk)dmK (k)

)
dmG/K (gK ).

Now observe that also the (K × K )-action on G given by (k1, k2).g := k1gk−1
2 is strongly

proper and preserves mG . Applying Lemma A.7 with Y := G and H := K × K thus yields
a unique Radon measure mK\G/K on K\G/K such that for all f ∈ Cc(G),∫

G
f (g)dmG(g) =

∫
K\G/K

(∫
K

∫
K

f (k1gk2)dmK (k1)dmK (k2)

)
dmK\G/K (K gK ).

Definition A.8 Let f1, f2 ∈ Cc(K\G/K ). Then the convolution of f1 with f2 is defined as
the function f1 ∗ f2 ∈ Cc(K\G/K ) given by

( f1 ∗ f2)(K gK ) =
∫

K\G/K
f1(K hK )

(∫
K

f2(K h−1kgK )dmK (k)

)
dmK\G/K (K hK ).

There is no natural convolution structure on Cc(K\G) or Cc(G/K ), but we can define a
convolution operation Cc(K\G) × Cc(G/K ) → Cc(K\G/K ):
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Definition A.9 Let f1 ∈ Cc(K\G) and f2 ∈ Cc(G/K ). Then the convolution of f1 with f2
is defined as the function f1 ∗ f2 ∈ Cc(K\G/K ) given by

( f1 ∗ f2)(K gK ) =
∫

K\G
f1(K h)

(∫
K

f2(h
−1k−1gK )dmK (k)

)
dmK\G(K h),

Also note that on Cc(K\G/K ) we have a natural involution given by

f ∗(K gK ) := f (K g−1K ) ( f ∈ Cc(K\G/K )).

Similarly,wehavemutually inverse isomorphismsCc(K\G) → Cc(G/K ) andCc(G/K ) →
Cc(K\G) given by

f ∗
1 (gK ) := f1(K g−1) and f ∗

2 (K g) := f2(g−1K ) ( f1 ∈ Cc(K\G), f2 ∈ Cc(G/K )).

Remark A.10 (Relation to convolution in Cc(G)) Let us denote by K p : G → K\G, pK :
G → G/K and K pK : K\G/K the canonical projections. We also denote by Cc(G)L(K )

and Cc(G)R(K ) the spaces of left-, respectively right-K -invariant functions in Cc(G) so that
Cc(G, K ) = Cc(G)L(K ) ∩ Cc(G)R(K ). Since K is compact we have bijections

K p∗ : Cc(K\G) → Cc(G)L(K ), p∗
K : Cc(G/K ) → Cc(G)R(K )

and K p∗
K : Cc(K\G/K ) → Cc(G, K ).

We recall that Cc(G, K ) is a ∗-subalgebra of the convolution algebra Cc(G). Moreover, con-
volution induces amapCc(G)L(K )×Cc(G)R(K ) → Cc(G, K ), and the involution∗onCc(G)

exchanges Cc(G)L(K ) and Cc(G)R(K ). Under the bijections above, these structures corre-
spond to the convolution structures and involutions just defined: For f1, f2, f ∈ Cc(K\G/K )

we have

K p∗
K ( f1 ∗ f2) = K p∗

K f1 ∗ K p∗
K f2 and (K p∗

K ( f ))∗ = K p∗
K ( f ∗),

and for f1 ∈ Cc(K\G) and f2 ∈ Cc(G/K ) we have

K p∗
K ( f1 ∗ f2) = K p∗ f1 ∗ p∗

K f2 and p∗
K ( f ∗

1 ) = (K p∗ f1)
∗ and K p∗( f ∗

2 ) = (p∗
K f2)

∗.

In particular, the ∗-algebras Cc(K\G/K ) and Cc(G, K ) are isomorphic under K p∗
K .

A.5: Approximate identities for the Hecke algebra

Remark A.11 (Canonical retractions) Define a map M(G) → M(G, K ), μ �→ μ� by∫
G

f (x)dμ�(x) =
∫

G

∫
K

∫
K

f (k1xk−1
2 )dmK (k1)dmK (k2)dμ(x) ( f ∈ Cc(G)),

For all μ ∈ M(G) and f ∈ Cc(G, K ) we then have μ( f ) = μ�( f ), i.e. μ and μ� restrict to
the same linear functional onCc(G, K ). Themapμ �→ μ� restricts to a retraction of Banach-
∗-algebras Mb(G) → Mb(G, K ) of norm 1, and further to algebra retractions L1(G) →
L1(G, K ) and Cc(G) → Cc(G, K ). Explicitly, for f ∈ L1(G) we have

f �(x) =
∫

K

∫
K

f (k1xk2)dmK (k1)dmK (k2). (A.1)

The same formula also yields retractions L p(G) → L p(G, K ) for 1 ≤ p < ∞, and we
obtain continuous convolution actions of L1(G, K ) on L p(G, K ) such that ( f ∗g)� = f �∗g�.
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Remark A.12 (Convenient approximate identities) Let Un be a nested sequence of pre-
compact identity neighbourhoods in G with

⋂
Un = {e} (which exists since G is second

countable). We choose ρ̃n ∈ Cc(G) with the following properties:

ρ̃n ≥ 0, ρ̃∗
n = ˇ̃ρn = ρ̃n, supp(ρ̃n) ⊂ Un and

∫
G

ρ̃n dmG = 1.

Then ρ̃n ∗ f and f ∗ ρ̃n converge to f in the following sense [13, Prop. 2.44]:

• If 1 ≤ p < ∞, then convergence holds in L p .
• If f ∈ Cc(G), then convergence holds uniformly, and hence if f ∈ C(G), then conver-

gence holds uniformly on compacta, and in particular pointwise.

Now set ρn := ρ̃
�
n . Then we have convergence ρn ∗ f → f � and f ∗ ρn → f � in the

same sense. In particular, (ρ̃n) is a two-sided approximate identity in Cc(G) and L1(G), and
(ρn) is a two-sided approximate identity in Cc(G, K ) and L1(G, K ). We refer to these as
convenient approximate identities. Via the isomorphism Cc(K\G/K ) ∼= Cc(G, K ) we also
obtain a convenient approximate identity on Cc(K\G/K ) with analogous properties.

Lemma A.13 (i) The subset { f ∗ f ∗ | f ∈ Cc(G)} ⊂ Cc(G) spans a dense subspace.
(ii) The subset { f ∗ f ∗ | f ∈ Cc(G, K )} ⊂ Cc(G, K ) spans a dense subspace.
(iii) The subset { f ∗ f ∗ | f ∈ Cc(K\G/K )} ⊂ Cc(K\G/K ) spans a dense subspace.

Proof The span of { f ∗ f ∗ | f ∈ Cc(G, K )} contains all elements of the form f ∗ g∗ with
f , g ∈ Cc(G, K ) by polarization. Choosing a convenient approximate identity for g then
yields (ii) and hence (iii), and (i) follows from (ii) by choosing K := {e}. ��
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