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Abstract: As part of an international research project (HiPTSLAM), the development and holistic
processing of high-performance tool steels for AM is a promising topic regarding the acceptance
of the laser powder bed fusion (PBF-LB) technology for functionally optimized die, forming and
cutting tools. In a previous work, the newly developed maraging tool steel FeNiCoMoVTiAl was
qualified to be processed by laser powder bed fusion (PBF-LB) with a material density of more than
99.9% using a suitable parameter set. To exploit further optimization potential, the influence of
dual-laser processing strategies on the material structure and the resulting mechanical properties was
investigated. After an initial calibration procedure, the build data were modified so that both lasers
could be aligned to the same scanning track with a defined offset. A variation of the laser-based
post-heating parameters enabled specific in-situ modifications of the thermal gradients compared to
standard single-laser scanning strategies, leading to corresponding property changes in the produced
material structure. An increase in microhardness of up to 15% was thus obtained from 411 HV up to
471 HV. The results of the investigation can be used to derive cross-material optimization potential to
produce functionally graded high-performance components on PBF-LB systems with synchronized
multi-laser technology.

Keywords: laser powder bed fusion; process development; maraging tool steel; FeNiCoMoVTiAl;
Specialis; parameter studies; dual-laser PBF-LB; multi-laser PBF-LB; mechanical characterization;
high hardness; functionally graded

1. Introduction

The industrial usage of metal additive manufacturing (AM) is steadily increasing
in many branches and applications. For the tooling industry, the integration of internal
channel structures enables new design possibilities with increased performance due to
better heat transfer for die, forming and cutting applications [1–3]. The most common AM
technology for high-quality metal parts is the laser powder bed fusion (PBF-LB) process [4].
The PBF-LB process enables functional benefits to the part with a higher freedom of design
due to the layerwise manufacturing with metal powder as the starting material and a
laser beam as the energy source for melting. The resulting material properties differ
from conventional manufacturing routes due to the local micro-welding processes. The
solidification after melting is characterized by high cooling rates (103–108 K/s) based on
self-quenching by solidified previous layers and thus leading to fine-grained material
microstructures [5,6].
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1.1. High-Performance Tool Steels for PBF-LB

High-performance tool steels with emphasis on high hardness often contain high
amounts of carbon (≥0.4 wt%), resulting in a poor weldability due to the increased hot
cracking sensitivity. The PBF-LB processing of high-carbon steels with industrial standard
PBF-LB systems and preheating temperatures of 200 ◦C or less thus often leads to cracking
issues due to the high local stresses associated with the volumetric change during phase
transformation as well as the repetitive heating and cooling cycles [7–11].

Maraging tool steels are high alloyed steels with more than 12 wt% nickel and known
for their good mechanical properties, with a combination of high strength and toughness
as well as high temperature strength, which leads to further potential for their function-
optimized usage in the AM tooling industry [12]. Due to the low amount of carbon,
with less than 0.03 wt%, the necessary weldability for PBF-LB processes is given. The
optimization of the mechanical properties is based on the precipitation of intermetallic
phases during aging in a common temperature range from 480 ◦C to 500 ◦C for 2 h to
6 h, which results in significantly higher hardness [13,14]. Furthermore, the possibility
of short-term aging of maraging tool steels was demonstrated in a study by Marcisz and
Stępień [15] for 18Ni350, leading to an increase in hardness from 340 HV to 600 HV with a
temperature of 600 ◦C applied for only 15 s. The increased hardness was probably due to a
redistribution of the atoms before precipitation.

For the additive manufacturing of mechanically loaded tools, the most common
material in industrial PBF-LB systems is the maraging tool steel AISI 18Ni300. In the
as-printed state, the alloy has an average hardness of around 330 HV, which leads to good
machinability. The maximum hardness after heat treatment of 18Ni300 is limited in a
range of around 540 HV to 665 HV [13,16,17]. Therefore, the resulting hardness is often not
suitable for many applications in the tooling industry. Here, for example, high-speed steels
such as the AISI M2 are broadly used with a hardness of more than 700 HV [13].

In a previous study, the newly developed maraging tool steel alloy FeNiCoMoV-
TiAl was initially qualified within a holistic process chain for use in standard PBF-LB
systems [18]. The results showed good PBF-LB processability, with significantly higher
hardness compared to the reference material 18Ni300 of nearly 700 HV after heat treatment.

1.2. Multi-Laser PBF-LB Processing

The industrial application of multi-laser PBF-LB scanning strategies started with
the market readiness of the first commercially available multi-laser PBF-LB machines
in 2011 [19]. The accompanying multi-laser scanning strategies were mainly based on
stitching the scanning vectors of multiple lasers together in defined overlapping areas to
build larger parts more efficiently and enable larger build spaces. The resulting influence
of using multiple lasers to jointly build parts is exemplarily shown in [20].

Using multiple lasers on the same scanning track with a predefined offset is a field of
research that is relatively underrepresented. There are some early but promising results
from Abe et al. [21] that showed that the bending strength and hardness can be modified
with a dual-laser scanning strategy through slower cooling or reheating. However, follow-
ing studies mainly focused on the usage of a second laser beam for preheating the powder
bed to reduce melting fumes [22] or to influence the density and surface quality with a
very close following second laser beam [23]. Further findings in [24] based on simulations
showed the possibility of reducing the thermal gradients by using a second defocused laser
beam for post-heating. Other studies used multiple laser beams or laser diode area melting
to obtain a higher build rate than the standard PBF-LB process based on the increased
amount of energy sources applied simultaneously to the powder bed [25,26].

This paper focuses on the effects of a dual-laser processing strategy with the second
laser beam used for in-situ heat treatment by remelting a fraction of the welded tracks
with a delay of less than 10 ms. Part of the additional energy introduced by the sub-
sequent laser track heats the surrounding material structure and modifies the thermal
history. The resulting melt pool dimensions and hardness will be correlated with the
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varied process parameter sets to deepen the knowledge about the further application of
dual-laser strategies. The presented results could furthermore be used to derive PBF-LB
processing strategies for voxel-based graded material structures with maraging tool steels
and other materials. Similar results based on modified thermal gradients were shown
in [27] with directed energy deposition (DED) processes and a Fe19Ni5Ti steel designed for
laser additive manufacturing leading to a Damascus-like metallic composite.

2. Experimental Setup
2.1. Material

The maraging tool steel FeNiCoMoVTiAl, also known under the trademark Specialis®,
is based on a newly developed chemical composition, as shown in Table 1. The alloy
is designed for good PBF-LB processability and higher hardness after heat treatment
compared to other maraging steels. Other advantages of this alloy to be examined could be
increased high-temperature strength and high-temperature hardness, which is an essential
feature when using this alloy for applications in thermally stressed dies and tools.

Table 1. Chemical composition of the maraging tool steel Specialis®.

Element Fe C Ni Co Mo Ti V Al

wt% Bal. 0.02 18.33 11.39 4.44 <2 <2 <0.5

The pre-alloyed material was atomized on a small batch atomizer AU 3000 system
by BluePower Casting Systems GmbH (Walzbachtal, Germany). Further details about
the system and the associated powder production process can be found in [28,29]. The
resulting metal powder was processed according to PBF-LB powder specifications for
good powder bed density and flowability. The analysis results regarding the particle size
distribution, particle sphericity, flowability and residual moisture are shown in Table 2.

Table 2. Powder specification according to VDI 3405 Blatt 2:2013-08.

Powder Parameter Values Measurement Method

Particle size
distribution

d10,3 (µm) 19.32 Dynamic particle imaging with
Camsizer X2 by Retsch GmbH (Haan,

Germany)

d50,3 (µm) 32.30
d90,3 (µm) 54.91

Particle sphericity SPHT3 0.85

Flowability (s/50 g) 14.86 Hall flowmeter according to DIN EN
ISO 4490:2018 [30]

Residual moisture (%) <5
humimeter RH2 by Schaller

Messtechnik GmbH (St. Ruprecht an der
Raab, Austria)

2.2. Machine

The experiments were conducted on the PBF-LB system SLM 280 1.0 Twin 400 W with
gas flow upgrade by SLM Solutions Group AG (Lübeck, Germany). The optical system
consisted of two water-cooled 400 W fiber lasers of 1070 nm wavelength (YLR-400-WC)
by IPG Laser GmbH (Burbach, Germany), with each laser connected to an air-cooled
and digitally controlled galvo system with varioSCAN by SCANLAB GmbH (Puchheim,
Germany). The two laser systems were calibrated to work separately on their assigned
half of the build plate and furthermore using stitching operations to produce larger parts
within a predefined overlapping area of 280 mm × 30 mm (see Figure 1). A build volume
reduction of 100 mm × 100 mm was used in this study to lower the amount of metal
powder needed for a certain build height. To enable the synchronized switching and
movement operations of both laser beams within the overlapping area, the two SCANLAB
RTC®5 control cards were connected for synchronized clock rates in a master–slave mode.
According to SCANLAB, a reproducible time lag of around 0.16 µs could be achieved [31].
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While the standard machine control software (SLM MCS 2.3 Build 78) with a build processor
exported file could not use the synchronization features, a special version of the MCS was
provided by SLM Solutions Group AG. With this software update, the parameters for each
scanning and jumping vector of the lasers could be defined individually by importing a
specific formatted csv-table for a behavior analogous to G-code programming.
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Figure 1. Illustration of the PBF-LB system configuration to achieve dual-laser processing.

2.3. Double-Laser Exposure Strategy

The disadvantage of using the modified MCS with csv-file input lies in the inability
to change the exposure strategy during the manufacturing process. The initially defined
scanning and jumping vectors will be repeated within each layer and the common rotation
of the scanning strategy for reducing the resulting material defects and thermally induced
residual stresses cannot be implemented. Therefore, an exposure strategy was derived to
enable a stable and reproducible manufacturing process to produce volumetric sample
parts with two laser beams scanning the same vectors with a predefined offset. The
exposure strategy is exemplarily shown in Figure 2. The offset between the two laser
beams was regulated by a longer approach path for the start vector of one laser beam and
remained constant during manufacturing due to the synchronized clock rates of the optical
systems. Furthermore, an orientation angle of 45◦ regarding the recoater and gas flow
direction was determined to eliminate negative impacts by recoating or melting parallel to
the scanning vectors. With the shown exposure strategy, the resulting melting fumes of
laser 1 should not lead to a negative influence of laser 2 as long as both laser beams are not
working with an offset of one or multiple scanning vector lengths.
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2.4. Calibration Procedure

Both optical systems and the associated controlling units of the two lasers must be
calibrated to minimize the spatial and temporal deviations. For the spatial calibration, a
simple pattern according to Figure 3 was created on multiple positions of a build plate
within the reduced overlapping area of 100 mm × 30 mm. The possible deviations for
X-axis and Y-axis were measured by microscopy. The optical systems were adjusted within
the MCS so that all measured deviations were reproducibly smaller than 5 µm on both axes
for a melt pool width of approximately 120 µm.
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The temporal calibration was validated to some extent by creating the intersecting
pattern according to Figure 4 on a build plate. Both laser beams were scanning along the
respectively associated vectors, with one laser delayed at the start due to an extended
vector. This delay will theoretically be compensated after scanning half of the vectors by
a faster scanning speed. During analysis of the intersection points via microscopy, the
subsequent laser beam could be identified by the overlying melt pool. The theoretical time
lag of 0.16 µs was difficult to prove with this calibration approach because of the melting
and solidification inertia consequently leading to merging melt pools if the two laser beams
were intersecting in close succession. As a result, a reproducible time lag variation of
0.6 ms as a maximum could be derived regarding the used measurement approach. To
determine this value, the vector length between the two intersection points with change
in overlying melt pool was divided by the scanning velocity. We expected a significantly
smaller variation in the time lag than the proven 0.6 ms because of the high reproducibility
of measurement results during the test series.
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2.5. Experimental Design

To investigate the influence of the dual-laser exposure strategies, a variation in post-
heating parameters was used to produce volumetric samples for comparison with a stan-
dard single-laser and remelting strategy. In Figure 5, the main characteristics of the three
production conditions regarding the energy input and resulting melting, solidification
and in-situ heat treatment zones are shown. The elaborated dual-laser exposure strate-
gies shown in Figure 5b were used to extend the time period of in-situ heat treatment
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compared to the single-laser processing in Figure 5a, with the goal of influencing the
resulting mechanical properties of the maraging tool steel. If the offset distance between
the two laser beams is substantially extended and the material has already a homogeneous
temperature level when the second laser beam is approaching, an approximation of well-
known remelting process conditions shown in Figure 5c should be obtained. Due to a
less penetrating melt pool depth of the following laser beam in the dual-laser modes, the
main approach is to eliminate the direct effects such as the melt pool boundaries of the
remelted zones by the first laser during the following layer. Thus, a comparable material
structure for all examined process conditions regarding the resulting melt pool patterns
should be obtainable.
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The parameter windows for single-laser exposure strategies are mainly described in
the literature by laser power Plaser1, focal spot diameter dlaser1, scanning speed vscan, hatch
distance dhatch and layer thickness dlayer. For expansion of these well-examined parameter
windows, the second and following laser beam bring in additional degrees of freedom
for adjusting the process conditions. As additional parameters in this study regarding the
second laser beam, the laser power Plaser2, the focal spot diameter dlaser2 and the offset
distance between the laser beams ∆offset were used.

Based on preliminary single-bead studies on FeNiCoMoVTiAl bulk material to derive
optimized parameter sets for the PBF-LB processing, resulting melt pool dimensions for
different process parameter sets were obtained. Due to the uniform exposure strategy,
a sufficient overlapping of the melt pools for the first laser is necessary to reduce the
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occurrence probability of a lack of fusion defects according to Figure 6a. A good fitting
parameter set was identified with Plaser1 of 200 W, dlaser1 of approximately 85 µm, vscan of
800 mm/s, dhatch of 0.85 mm and dlayer of 40 µm. The resulting melt pool based on the
single-bead studies was characterized by a melt pool width W1 of around 85 µm and a
melt pool depth D1 of around 120 µm. Furthermore, two different process parameters for
the post-heating laser beam were identified to obtain a melt pool depth each of around
40 µm, which corresponded to the layer thickness. The first parameter set was defined with
Plaser2 of 125 W and dlaser2 of around 85 µm, as shown in Figure 6b. The second dual-laser
parameter set used the possibility to defocus the laser beam to dlaser2 of around 170 µm by
the SCANLAB varioSCAN system to meet the melt pool depth limit of 40 µm despite an
increased Plaser2 of 200 W, as shown in Figure 6c.
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The summarized process parameter variations for the dual-laser parameter study are
shown in Table 3. The influence of the subsequent laser beam will be investigated in an
offset distance range from 1 mm to 4 mm. For ∆offset below 1 mm, strong negative effects
on the process stability with delamination issues on the surface layer occurred during
preliminary tests. A ∆offset of 2400 mm for DLR-125 and DLR-200 resulted from a 3 s time
delay until the surface layer was remelted. In addition to the already defined process
conditions, the dimensions of the volumetric test samples were specified to be 10 mm
along the scanning vectors, 7 mm wide and around 8 mm high. The build plate preheating
was turned off to exclude any influence by a potentially inhomogeneous heat distribution
across the build plate surface. Furthermore, the time difference between the exposure
processes of two successive layers was set to be 40 s, consisting of 30 s minimum exposure
time and 10 s duration for powder recoating.

Table 3. Overview of parameter sets for the specimen manufacturing.

Parameter Set Acronym Plaser2 (W) dlaser2 (µm) ∆offset (mm)

Reference single-laser SL 0 - -
Double-laser 125 W DL-125 125 85 1, 1.5, 2, 2.5, 3, 4

Reference remelting 125 W DLR-125 125 85 2400
Double-laser 200 W DL-200 200 170 1, 1.5, 2, 2.5, 3, 4

Reference remelting 200 W DLR-200 200 170 2400

2.6. Evaluation Method

The plane for evaluation of the produced test samples was aligned, according to
Figure 7, vertically to the scanning direction, with an offset of 2 mm to the as-build surface
to eliminate edge effects. The cross-sections were ground, polished and analyzed regarding
the material density three times in one layer by optical analysis with a Stemi 508 doc
stereomicroscope by Carl Zeiss Industrielle Messtechnik GmbH (Oberkochen, Germany)
and a 50× magnification. The area of the pores and cracks identified via a constant
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threshold of the gray value was related to the total area to determine the material density.
For the measurements of the resulting melt pool dimensions in the top layer, the cross-
sections were etched for 10–20 s with V2A etchant until the surface tarnished. Afterwards,
the analysis was performed with the same microscope and a 500× magnification. The
width and the depth of the melt pools for laser 1 and laser 2 were determined with
9 measurements each on different melt pools.
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Figure 7. Illustration of resulting cubic test specimen and the preparation plane for further examina-
tions of material density, melt pool structure and hardness.

For microhardness testing within the melt pool centers from the surface layer down-
wards, a Q30A+ by ATM Qness GmbH (Mammelzen, Germany) was used. The Vickers
hardness impressions were conducted for 10 s to maintain HV0.1 according to DIN EN
ISO 6507-1:2018-07 [32]. For standard-compliant measurements, the distances between
the roughly 65 hardness indentations were set to every second layer, which resulted in
approximately 80 µm each.

3. Results and Discussion
3.1. Effect on Material Density

The measured material density values of the different process parameter sets are
illustrated in Figure 8. The results show a good overall material density of more than
99.69% for all analyzed samples. In particular, the reference parameter sets SL, DLR-125 and
DLR-200 shown in Figure 9a–c have a very high density of more than 99.92%, concluding
stable process conditions for the sample manufacturing. There is even a slight material
density improvement noticeable on a high level by remelting and thereby eliminating small
accumulations on the weld tracks, which could lead to poorer powder deposition on the
following layer. The material density determined for DL-125 is nearly constant on a high
level of more than 99.89% for all examined offset distances. In comparison, the drop in
the material density for DL-200 and ∆offset between 1 mm and 3 mm below 99.90% could
be explained by more unstable process conditions due to the instant remelting process
with a defocused 200 W powered laser beam. The second laser affects the topography
of the surface layer by elevated weld tracks resulting from a higher temperature level
and thus the following powder layer deposition as well as melting processes. Due to
the layerwise repeated exposure strategies with identical scanning vectors, a buildup of
unstable process conditions could occur. The resulting effect could be seen in Figure 9f,
with noticeable surface-layer waviness and the tendency to have a higher porosity with
larger voids for smaller ∆offset due to the higher amount of laser energy applied in the
given time period. This explanation could be supported by the difference in material
density between DL-125 with 99.90% and DL-200 with 99.70% for ∆offset of 1 mm. With
200 W laser power, the energy input is around 60% higher in just 1.25 ms after the melting
process of the first laser. For ∆offset of 4 mm, also the DLR-200 shown in Figure 9g leads to
a comparably high material density of 99.94% due to the longer cooling time between the
two laser energy inputs.
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3.2. Effect on Melt Pool Dimensions

For obtaining a better understanding of the melting and cooling behavior during
the dual-laser PBF-LB processing, the resulting melt pool dimensions of the etched cross-
sections were measured in the top layer. Width W1 and depth D1 of the melt pools are
shown in Figure 10 for SL, DL-125 and DLR-125. For DL-200 and DLR-200, only D1 could
be measured because of the overlapping melt pools of laser 2. As a reference for the melt
pool dimensions of laser 1, the parameter set SL can be used. The measured values for D1
of 144 µm and W1 of 150 µm show a significant increase in the melt pool size compared
to the preliminary single-bead studies. This increase could be explained by the higher
temperature level of the part during the layerwise manufacturing process and therefore
the lower energy input needed for reaching the melting temperature. While D1 is almost
constant for all process parameter sets as expected, W1 shows some irregularities. The
increased W1 for DL-125 and ∆offset of 4 mm could be explained by the approach of laser
1 to laser 2 on the previous scanning vector. Therefore, a higher temperature level on the
surface is expected, which leads to an expansion of the upper region of the melt pool.
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Figure 9. Resulting cross-sections for material density measurements of the parameter sets (a) SL,
(b) DLR-125, (c) DLR-200, (d) DL-125 with ∆offset of 1 mm, (e) DL-125 with ∆offset of 4 mm (f) DL-
200 with ∆offset of 1 mm and (g) DL-200 with ∆offset of 4 mm.
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Figure 10. Measured melt pool dimensions ((a) width W1 and (b) depth D1) in top layer resulting
from laser 1 for the examined process parameter sets.

When it comes to the analysis of the melt pool dimensions for laser 2, shown in
Figure 11, the influence of the defocused but higher-power parameter set DL-200 could be
clearly seen in the increased W2 compared to DL-125, especially for ∆offset of 4 mm. For
smaller ∆offset of 1 mm to 3 mm, W2 was more difficult to measure for DL-200 because of the
already described surface-layer waviness resulting from more unstable process conditions.
For DL-125, a slight trend could be obtained for a decreased W2 as ∆offset increases due to
the longer cooling time between the laser energy inputs. In contrast to W2, the D2 values for
DL-200 and DL-125 are nearly constant, resulting from a constant sub-surface temperature
based on the laser 1 energy input and slower heat dissipation within the material.
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Figure 11. Measured melt pool dimensions ((a) width W2 and (b) depth D2) in top layer resulting
from laser 2 for the examined process parameter sets.

When analyzing the etched cross-sections in Figure 12, only minor differences between
the melt pool structures of the different parameter sets could be identified. Most of the
resulting material structure was apparently only melted by laser 1 and only differed in the
thermal history during the layerwise dual-laser PBF-LB processing. This shows a good
implementation of the originally intended dual-laser exposure strategy, even though the
resulting melt pool dimensions increased compared to the originally intended dimen-
sions due to the higher energy input and associated temperature level of the part during
PBF-LB processing.
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Figure 12. Melt pool cross-sections for measurements of the melt pool dimensions and material
structure analysis of the parameter sets (a) SL, (b) DLR-125, (c) DLR-200, (d) DL-125 with ∆offset of
1 mm, (e) DL-125 with ∆offset of 4 mm (f) DL-200 with ∆offset of 1 mm and (g) DL-200 with ∆offset of
4 mm.
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3.3. Effect on Micro Hardness

In Figure 13, an exemplary hardness profile is shown for SL, which is typical for all
evaluated hardness results. A significant drop in the hardness within an area of around
400 µm below the surface layer could be seen for all samples until the hardness values
ranged around a stable hardness level of 441 HV. The reason for this drop could be seen
in the process-related temperature history and the need for multiple heating and cooling
cycles on a higher temperature level for receiving the respective hardness. In order not
to influence the following evaluations too strongly by the effect near the surface, only
measured values below the 400 µm distance are considered.
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The mean values and standard deviations for the microhardness examination of the
different process parameter sets and offsets are shown in Figure 14. The hardness level of SL,
with around 441 HV0.1, can be seen as a reference value for the evaluation of the dual-laser
and remelting parameter sets. For the dual-laser processing with offset distances between
1 mm and 4 mm, the results show a significant trend to a higher microhardness, with values
up to 471 HV0.1 for DL-125 and DL-200. Although DL-125 sets the overall maximum
hardness with ∆offset of 1 mm, the DL-200 parameters show a more constant hardness
level between 462 HV and 470 HV. Due to the microhardness testing, the slightly lower
porosity of the DL-200 parameter sets below ∆offset of 4 mm has no detectable influence on
the hardness. For ∆offset from 1.5 mm to 4 mm, the hardness level for DL-125 drops down
to a minimum value of 440 HV, with an almost continuous progression. The assumption is
thus that the energy input for DL-125 is only sufficient to trigger the significant hardness
increase effects such as short-term aging in the material for very short ∆offset values below
approximately 1.5 mm. In the case of DL-200, this more stable hardness increase effect can
be explained by the higher energy input and the associated longer holding time at a higher
temperature level in the in-situ heat treatment zone. Due to the slower heat dissipation
processes below the surface, the DL-200 parameter sets appear to be more independent
of variation of ∆offset. The examination of the remelting parameter sets shows DLR-200 at
a comparable hardness level with SL. For DLR-125, the hardness significantly decreases
below the hardness of SL to around 411 HV0.1. Obviously, there is a material-specific
effect discovered for ∆offset between 4 mm and 2400 mm that leads to a decreased hardness.
Possibly, a solution annealing process is started due to the time-delayed reheating of the
in-situ heat treatment zones leading to this effect.
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parameter sets.

All these detected changes in hardness levels for the different process conditions could
be related to material-specific effects based on the different temperature histories during the
manufacturing process. Shorter distances and higher energy inputs of the subsequent laser
beam lead to harder materials and remelting parameters lead to softer material properties
compared to standard single-laser process parameters.

3.4. Observed Potential for Functionally Graded Materials by Double-Laser PBF-LB Processing

To reach the full potential of voxel-based manufacturing in PBF-LB, applicable pro-
cessing strategies and suitable materials must be qualified. The needed PBF-LB systems
for using multiple laser beams at least in a certain overlapping area are already commer-
cially available and the further strategy of the system OEMs already tends towards larger
systems with more lasers. The identified changes in hardness related to different process
parameter sets and the resulting thermal histories could be used for an intentionally graded
modification in the mechanical properties of additively manufactured parts. Due to the
consistent melt pool structure for all considered parameter sets, no negative effects are
assumed if the parameter sets are changed on certain regions during part production.
This could be one of the main advantages for the specific adjustment of the in-situ heat
treatment parameters with a subsequent laser beam compared to modified single-laser
parameters with significant changes in melt pool geometries during part manufacturing.
In particular, when using a material for tooling applications, such as the newly developed
maraging FeNiCoMoVTiAl alloy, a functionally graded material structure could be used
to produce parts with hard and wear-resistant outer surfaces in conjunction with ductile
core regions. As the hardness changes are derived from material-specific effects due to the
different thermal histories while processing, there is furthermore a chance of maintaining
these graded properties even through a subsequent aging heat treatment process of the
part. However, a further solution heat treatment will eliminate the discovered hardness
changes by dissolving the characteristic PBF-LB microstructure.

4. Conclusions

The results show the feasibility of dual-laser PBF-LB processing of the maraging tool
steel FeNiCoMoVTiAl by using a second laser beam for post-heating and remelting a
fraction of the previously welded tracks for the modification of in-situ heat treatment
conditions. A sufficient calibration procedure and minor hardware modifications are
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needed to build volumetric parts with a uniform exposure strategy based on a G-code-like
vector dataset. Furthermore, the main results for the different evaluation methods are
listed below:

1. A material density of more than 99.69% was obtained for all tested parameter sets. The
best density results were determined for single-laser and remelting parameters with
more than 99.92%. The dual-laser parameters with the subsequent 125 W laser beam
resulted in a material density of more than 99.89% due to the more stable processing
conditions in comparison to the dual-laser parameters with 200 W.

2. Significant changes in the resulting melt pool dimensions regarding the parameter
variations of the subsequent laser beam were measured on the surface layer. As a
result of the elaborated exposure strategies, a consistent melt pool structure was still
obtainable for all tested parameter sets.

3. The modified dual-laser process parameter sets led to a significant hardness change
compared to single-laser PBF-LB processing with around 441 HV0.1. An increase by
around 30 HV0.1 was obtained by using the dual-laser exposure strategies. A higher
laser power as well as a shorter offset distance of the subsequent laser beam appear
to have hardness-increasing effects on the resulting material structure. Possibly,
short-time aging effects of the in-situ heat treatment zone could be the reason for
the hardness increase. A hardness decrease by around 30 HV0.1 compared to the
single laser parameter was determined by a remelting strategy with 125 W laser
power. Solution annealing effects within the heat-affected zone could be a possible
explanation for this.

4. The adjustable hardness levels for the different dual-laser parameter sets in com-
bination with no significant changes in the resulting melt pool structure open new
possibilities to produce functionally graded material structures by dual-laser PBF-
LB processing.

Further research will be conducted regarding the necessary heat treatment after dual-
laser PBF-LB processing to receive the material-specific properties of maraging tool steels.
Ideally, a heat treatment process can be identified that also preserves the functionally
graded effects when several processing conditions are combined in one component. This
would enable the pursuit of industrial application of the results.
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