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ABSTRACT

Networks consisting of several spatially distributed sensor nodes are useful in many applications. While distributed infor-
mation processing can be more robust and flexible than centralized filtering, it requires careful consideration of dependencies
between local state estimates. This paper proposes an algorithm to keep track of dependencies in decentralized systems where
no dedicated fusion center is present. Specifically, it addresses double-counting of measurement information due to intermediate
fusion results and correlations due to common process noise and common prior information. To limit the necessary amount of
data, this paper introduces a method to partially bound correlations, leading to a more conservative fusion result than the optimal
reconstruction while reducing the necessary amount of data. Simulation studies compare the performance and convergence rate
of the proposed algorithm to other state-of-the-art methods.

COMMENT: RELATION TO PRIOR VERSIONS OF THIS PAPER

This paper is an extended version of [1], which won the Best Paper Award in the general category during the 23rd Conference
on Information Fusion. Sec. 2, 3, and 4 have been improved to provide more clarity. Further, Sec. 5.2 has been updated with
an improved implementation of the previously used consensus algorithms, and the resulting implications are discussed.

1. INTRODUCTION

Considered Problem: Sensor networks consist of several spatially distributed sensor nodes that can cooperatively perform
a variety of different tasks [2], e.g., tracking a moving target using a network of cameras. In this paper, we consider the problem
of fusing several state estimates in discrete-time linear Gaussian systems with multiple completely synchronized sensors with
linear Gaussian observations. While centralized processing of measurements can be done optimally, network topology and
communication bandwidth often forbid processing measurements in a central processing unit since nodes can only communicate
with their closest neighbors. Distributed estimation allows the processing of measurements in a local processing unit. This
local information is then communicated and fused with information from neighboring sensor nodes. It has been shown that
the distributed processing of sensor data can be more robust, flexible, and scalable [3]. However, it introduces dependencies
that need to be addressed carefully to ensure consistent fusion results.

State-of-the-Art: Within the past forty years, many algorithms [4] have been proposed to address the problems arising
in distributed estimation. This includes using the information form of the Kalman filter [5]–[7] or formulating an optimally
distributed Kalman filter [8]–[10]. Other approaches propose to use local Kalman filters and fuse their respective state estimates.
Several publications address the correlations due to common process noise and common prior information [11]–[14]. When
neglecting dependencies [15], fused estimates tend to become inconsistent as the uncertainty is underestimated. Covariance
intersection [16]–[18] aims to find a conservative fusion rule to always ensure consistent results. As these are often too
conservative, other approaches try to find closer bounds, e.g., inverse covariance intersection [19], [20]. Specifically for different
network topologies, other algorithms such as the channel filter [3], the information graph approach [21] or the information
matrix fusion [22], [23] were proposed.

Another class of algorithms aims to converge to a global estimate by iteratively exchanging information between neighboring
nodes. Prominent representatives include consensus on measurements [24], consensus on information [25], [26], or hybrid
approaches [27], [28]. Consensus methods can be regarded as suboptimal fusion rules [29] where the averaging of the
information does not represent the actual information in the network and does also not consider redundant information
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(a) Centralized (b) Hierarchical (c) Decentralized

Fig. 1: Different network topologies with sensor nodes (blue), nodes only dedicated to fusion (gray) and sensor nodes with
fusion capabilites (blue and gray).

systematically. For simpler network topologies, several approaches trying to reconstruct the cross-covariance matrix between
state estimates using ensembles, e.g., the common past invariant Ensemble KF (CPI-EnKF) [30], or using samples [31]–
[33] have been proposed. Furthermore, a reconstruction of cross-covariance matrices using square-root decompositions was
proposed by [34], [35]. The reconstruction of cross-covariances has advantageous properties as it allows optimal fusion with
consistent fusion results that are generally more accurate and do not over- or underestimate the uncertainty. Yet, it requires the
communication of additional information between sensor nodes leading to a trade-off between optimality and network capacity.

Contribution: The square-root decomposition as initially proposed in [35] considers fusion in network topologies with
only one dedicated fusion center. In this paper, we apply the decompositions to decentralized estimation tasks, where each
node may sporadically serve as a fusion center. Nodes can exchange their estimates and fuse their local estimates with the
received information. For this purpose, each node must keep track of correlations during its local processing steps. Not only
common process noise needs to be encoded in the square-root decompositions, but also double counting of information poses
a problem in decentralized network topologies and needs to be tracked. Due to the storage requirements and communication
load associated with the square-root decompositions, the nodes can reach a compromise between fusion quality and resource
demands by introducing partial bounds on the correlations.

Outline: The paper is structured as follows. In Sec. 2, we first discuss the problem of fusing several state estimates
with correlated estimation errors. In Sec. 3, we revisit the previously proposed square-root decomposition method [35] to
reconstruct the cross-covariance matrix between estimates in centralized sensor networks with only one dedicated fusion
center. Decentralized network topologies in the absence of a dedicated fusion center are studied in Sec. 4. The evaluation in
Sec. 5 studies different scenarios and also provides a comparison with consensus methods. Sec. 7 concludes the paper.

2. PROBLEM FORMULATION

We consider a discrete-time linear time-variant stochastic dynamic system with time index k and state transition matrix Ak,
state vector xk ∈ RN of state dimension N , and zero-mean white Gaussian system noise wk with noise dimension W = N
and covariance matrix Qk, i.e.,

xk+1 = Ak xk + wk ,with wk ∼ N (0,Qk) . (1)

The system is observed by a network of Ns sensor nodes. The processing and sensing times of the sensor nodes are synchronized.
Each individual node i receives measurements using the observation model Ci and covariance Ri

k according to

zik = Ci xk + vik ,with vik ∼ N (0,Ri
k) . (2)

Further, we assume that the measurement noise and the process noise are mutually independent. Each node i computes a state
estimate x̂ik|k with error covariance matrix Pi

k|k = E
[
(x̂ik|k − xk)(x̂ik|k − xk)T

]
.

2.1. Fusion of Estimates

Without loss of generality, we confine ourselves to the fusion of two estimates as multiple estimates can be fused sequentially.
In the following discussions, we also omit the time index k for the sake of clarity.

The fusion of two state estimates x̂i and x̂j can take place at an arbitrary time step k and is a linear combination with the fusion
gains Fi and Fj . Depending on the chosen fusion algorithm, the gains can be determined according to the Bar-Shalom/Campo
formulas but can also be fixed weighting matrices. The fused estimate becomes

x̂f = Fi x̂i + Fj x̂j , (3)

with Fi+Fj=I and the corresponding error covariance matrix

Pf = FiPi(Fi)T + FiPi,j(Fj)T + FjPj,i(Fi)T + FjPj(Fj)T =
[
Fi Fj

]
J
[
Fi Fj

]T
. (4)



3

The joint error covariance matrix is

J =

[
Pi Pi,j

Pj,i Pj

]
,

where Pi,j = E
[
(x̂i − x)(x̂j − x)T

]
=
(
Pj,i

)T
denote the cross-covariances and characterize the correlated estimation

errors between the state estimates. Typically, the fusion gains Fi and Fj are computed to minimize the estimation error
E
[
(x̂f − x)T(x̂f − x)

]
. In this case, we refer to x̂f as the optimal fusion result. As discussed, e.g. in [36], the optimal fusion

result can also be represented as a weighted least-squares (WLS) estimate

x̂WLS = arg min
x

[m̂−Hx]TJ−1[m̂−Hx] , (5)

with m̂ =
[
x̂i x̂j

]T
and the matrix H =

[
I I

]T
which determines how the local states map into the global state vector. The

solution to formula (5) is a gain matrix according to

K =
[
Fi Fj

]
=
(
HTJ−1H

)−1
HTJ−1 .

For two sensor nodes, the fusion gains can be calculated according to the Bar-Shalom/Campo formulas [11] by

Fj =
(
Pi −Pi,j

)(
Pi + Pj −Pi,j −Pj,i

)−1
and Fi = I− Fj . (6)

Then, the fusion rule can be written as

Pf =
(
HTJ−1H

)−1
, (7)

x̂f = Km̂ = PfHTJ−1m̂ . (8)

Further, from (5) follows that the fusion result is unbiased. This formula can only be solved optimally if the joint covariance
matrix J is available. The entries on the main diagonal are the covariances of the local filters and thus known. The entries
on the off-diagonals, on the other hand, are caused by dependent information shared between the individual sensor nodes, and
they are usually hard to keep track of.

There are several sources of correlated estimation errors in distributed state estimation problems [13], namely:
1) common prior information,
2) common process noise, and
3) common measurement information.

Common prior information occurs when the local Kalman filters are initialized with the same information, e.g., the same prior
state estimate and the same prior covariance matrix. But even with independent initialization of local filters, every sensor node
is affected by the same process noise, which leads to correlated estimation errors between state estimates. The local Kalman
filters assume conditional independence of measurements, which are then incorporated into the local state estimates. Due to
the spread of information throughout the network and further processing, measurement information can be incorporated into
several state estimates. This double-counting of sensor data causes additional correlations. Only proper treatment of these
correlations allows correct and consistent fusion results.

Optimal fusion is an essential aspect of distributed estimation, and several authors discussed the optimality of the fusion
of state estimates, e.g., [36], [37]. However, the fusion of state estimates is not equal to the minimum mean squared error
(MMSE) sense in which a central Kalman filter can utilize measurements. Therefore, we want to distinguish between a central
Kalman filter and the optimal centralized fusion in this paper.

2.2. Correlations due to Common Process Noise and Common Prior Information

In systems with a central fusion node, see Fig. 1(a), state estimates are correlated due to common process noise and common
prior information. When all processing steps are known, the cross-covariances between state estimates can be calculated
recursively [11]. During the time update, the process noise is incorporated and the cross-covariance matrix is updated leading
to the recursive formula

Pi,j
k|k−1 = E[(x̂ik|k−1 − xk)(x̂jk|k−1 − xk)T]

= E
[(

Akx̂
i
k−1|k−1 − (Akxk−1 + wk)

)(
Akx̂

j
k−1|k−1 − (Akxk−1 + wk)

)T
]

= AkE
[(
x̂ik−1|k−1 − xk−1

)(
x̂jk−1|k−1 − xk−1

)T
]
AT
k + E

[
wk(wk)T

]
= AkP

i,j
k−1|k−1A

T
k + Qk , (9)
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where Pi,j
k−1|k−1 for time step k = 1 is the common prior covariance P0|0. During the measurement update, the cross-covariance

is updated using the Kalman filter gain Ki
k by

Pi,j
k|k = E[(x̂ik|k − xk)(x̂jk|k − xk)T]

= E
[(
x̂ik|k−1 + Ki

kz
i
k − xk

)(
x̂jk|k−1 + Kj

kz
j
k − xk

)T
]

= E
[(
x̂ik|k−1 + Ki

k(vik −Ci
kx̂

i
k|k−1)− xk

)(
x̂jk|k−1 + Kj

k(vjk −Cj
kx̂

j
k|k−1)− xk

)T
]

=
(
I−Ki

kC
i
k

)
E
[(
x̂ik|k−1 − xk

)(
x̂jk|k−1 − xk

)T
](

I−Kj
kC

j
k

)T
+ E

[
vik(vjk)T

]
= LikP

i,j
k|k−1(Ljk)T , (10)

where Lik = I − Ki
kC

i
k and E

[
vik(vjk)T

]
= 0 because the measurement noises are mutually independent. This recursive

formulation can also be rewritten explicitly as a sum of the covariances

Pi,j
k|k = Ti

0,kP0|0(Tj
0,k)T +

k∑
τ=1

Ti
τ,kQτ (Tj

τ,k)T , (11)

where at every time step τ we include the new process noise Qτ . The matrix Tτ,k denote the individual matrix transformations
that are a result of the local Kalman filters (see equations (9) and (10)). In large sensor networks, keeping track of these
correlations can be cumbersome and often infeasible as it requires full communication of all processing steps. Therefore, the
methods in [34], [35] propose the use of square-root decompositions to keep track of correlated estimation errors.

3. SQUARE-ROOT DECOMPOSITION OF COMMON PROCESS NOISE

The following section revisits our previous work about the square-root decomposition algorithm. It was originally only
formulated for the fusion in centralized sensor networks with only one dedicated fusion center. The basic idea is a sliding
window mechanism for a square-root decomposition of the track correlations. Every node updates and saves its history of
processing steps in a matrix containing all square-root decompositions of common prior information and common process
noise. During the fusion step, every node transmits its state estimate, covariance matrix, and square-root matrix. The square-
root matrix allows to reconstruct the joint covariance matrix to fuse the local estimates according to (7) and (8). The recursive
formula of (11) is reformulated as a square-root decomposition

Pi,j
k|k = Ti

0,k

√
P0|0(

√
P0|0)T(Tj

0,k)T

+

k∑
τ=1

Ti
τ,k

√
Qτ (

√
Qτ,k)T(Tj

τ )T

=

k∑
τ=0

Σi
τ,Q(Σj

τ,Q)T .

Each sensor nodes stores its square-root terms in the matrix

Sik,Q =
[
Σi

0,Q,Σ
i
1,Q, . . . ,Σ

i
k,Q

]
,

which includes all noise terms until the current time step k and has the dimension M = N ×D = N × (N + (k − 1)×W ).
The calculation of this matrix can be done recursively. At time step k = 0, it is initialized with

Si0,Q = Σi
0,Q =

√
P0 ,

and the matrix is then linearly transformed by the time update and a new noise term Σi
k,Q =

√
Qk is included. Furthermore,

the matrix is then updated using the gain matrix of the Kalman filter update Lik = I−Ki
kC

i
k

Sik,Q = Lik
[
Ai
kS

i
k−1,Q , Σi

k,Q

]
.

When the fusion step is reached, the cross-covariance matrix between node i and node j can be reconstructed as

Pi,j
k,Q =

k∑
m=0

Σi
m,Q(Σj

m,Q)T = Sik,Q(Sjk,Q)T . (12)

By including a new process noise term at every time update, the square-root decomposition matrix Sik,Q will continue to grow
linearly in size. Since communication bandwidth is limited in sensor networks, we need to find a trade-off between the optimal
decomposition of correlated estimation errors and the communication capacity.
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3.1. Limiting the Number of Square-Root Decomposition Terms for Process Noise and Common Prior Information

In order to keep the number of entries in the square-root decomposition matrix constant, the square-root matrix will be
decomposed [35] into two parts

Sik =
[
Sik,TQ , Sik,Ω

]
,

where Sik,TQ is a moving horizon square-root decomposition matrix

Sik,TQ =
[
Σi
k−TQ+1,Σ

i
k−TQ+2, . . . ,Σ

i
k] (13)

that will only include the dependent noise terms up to a user-defined time horizon TQ. The remaining noise terms will be
removed from the square-root matrix and summarized in a residual Sik,Ω. This residual has to be bounded in order to obtain
a consistent fusion result. To formulate the fusion rule, we consider the optimal joint covariance matrix

Jk =

[
Pi
k Pi,j

k

Pj,i
k Pj

k

]
.

We can now decompose this matrix into a part Pi,j
k,TQ that we can reconstruct and a part Pi,j

k,Ω that is correlated but whose
exact correlation we cannot reconstruct anymore, i.e.,

Jk =

[
Pi
k Pi,j

k,TQ + Pi,j
k,Ω

Pj,i
k,TQ + Pj,i

k,Ω Pj
k

]
.

This residual can be calculated recursively and includes all correlated noise terms not included in the square-root matrix Sik,T .
With the residual, we obtain

Sik,Ω
(
Sik,Ω

)T
= Ωi

k,Q . (14)

We now aim to find a bound according to[ 1
ωΩi

k,Q 0

0 1
1−ωΩj

k,Q

]
≥

[
Ωi
k,Q Pi,j

k,Ω

Pj,i
k,Ω Ωj

k,Q

]
.

Finally, we can now formulate the new suboptimal joint covariance matrix

J̃k=

[
Pi
k−Ωi

k,Q Pi,j
k,TQ

Pj,i
k,TQ Pj

k−Ωj
k,Q

]
+

[ 1
ωΩi

k,Q 0

0 1
1−ωΩj

k,Q

]
≥ Jk, (15)

which we will use for the fusion step according to formulas (3) and (4). The weighting factors ω can be found by minimizing
the fused covariance matrix according to formula (7). Alternatively, an approximate solution such as the one proposed by [34],
[38] can be used. Although suboptimal, we used the latter approach for its simple implementation and fast execution time.
The weighting factor can be calculated by

ω =
1/tr(Ωi

Q)

1/tr(Ωi
Q) + 1/tr(Ωj

Q)
.

Afterwards the formula given in (6) yields

Fj =
(
Pi +

1

ω
Ωi
Q −Pi,j

TQ

)(
Pi +

1

ω
Ωi
Q + Pj +

1

1− ω
Ωj
Q −Pi,j

TQ −Pj,i
TQ

)−1
.

Last, the fused covariance and fused state can be calculated according to equations (7) and (8).

4. EXTENSION TO THE FUSION IN DECENTRALIZED SENSOR NETWORKS

The square-root decomposition enables the nodes to encode correlated process noise and correlated prior information in a
distributed fashion. The central node in Fig. 1(a) does not need to keep track of the correlations, processing steps, or number
of nodes as all the required information is provided by the nodes themselves. Modifications to the square-root decomposition
are necessary when nodes are organized in hierarchical network topologies as shown in Fig. 1(b), where intermediate fusion
nodes exist. Each fusion step alters the correlation structure among the nodes, which has to be encoded properly and is
discussed in Sec. 4.1. The decentralized network architecture depicted in Fig. 1(c) exhibits cycles that lead to double counting
of information. Sec. 4.2 discusses how additional data structures can be introduced to cover correlations due to double-counting
of measurements and thus correlated measurement errors.
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4.1. Hierarchical Fusion

In a hierarchical fusion architecture, nodes may fuse estimates and pass them to the upper layer for a subsequent fusion
step. Hence, such intermediate fusion nodes have to take into account correlations for the fusion but simultaneously have
to compute an updated square-root decomposition for the subsequent fusion steps. Each node i can fuse its estimate with an
estimate received from node j by using the fusion formulas (3) and (4). The required cross-covariance matrices Pi,j =

(
Pj,i

)T
are obtained by the square-root decomposition, i.e., by using (12).

For the subsequent fusion layer, the square-root decomposition needs to encode the correlation structure of the fusion result
x̂f. The cross-covariance matrix for this fusion result x̂f and the estimate x̂l of a third node l yields

Pf,l = E[(x̂f − x)(x̂l − x)T]

= E[(Fi x̂i + Fj x̂j − x)(x̂l − x)T]

= Fi Pi,l + Fj Pj,l .

The dependencies Pi,l and Pj,l are given by the corresponding square-root decompositions, i.e.,

Pi,l = SiQ
(
SlQ
)T

and Pj,l = SjQ
(
SlQ
)T

.

Hence, the fused square-root decomposition for the Pf,l has the form

Sf
Q = FiSiQ + FjSjQ , (16)

which gives Pf,l = Sf
Q(SlQ)T for any l.

For a finite horizon TQ, Sf only partially covers the correlations, and the fusion node also has to update the residual term (14).
According to the chosen weight ω in (15), the residual becomes

Ωf
Q = 1

ωFiΩi
Q

(
Fi
)T

+ 1
1−ωFjΩj

Q

(
Fj
)T

(17)

≥ FiΩi
Q

(
Fi
)T

+ FiΩi,j
Q

(
Fj
)T

+ FjΩj,i
Q

(
Fi
)T

+ FjΩj
Q

(
Fj
)T

,

which is a bound since any information about Ωi,j
Q has been discarded.

4.2. Double Counting

Double counting occurs when two nodes i and j fuse their estimates for a second time. In other words, the information sent
out by node i circles back to this node over possibly multiple hops and processing steps. Not only common process noise
then leads to correlations, but also measurements incorporated in the estimates reappear at the nodes and introduce additional
correlations. In the latter case, two estimates are to be fused that share the same information. The cross-covariance matrix
between the fused estimate x̂f and the estimate x̂i of node i yields

Pf,i = E[(x̂f − x)(x̂i − x)T]

= E[(Fi x̂i + Fj x̂j − x)(x̂i − x)T]

= Fi Pi,i + Fj Pj,i .

The cross-covariance Pj,i can be calculated as discussed in section 2.2. The matrix Pi,i represents the correlated estimation
errors of sensor node i and is equal to the covariance matrix

Pi
k|k = E[(x̂ik|k − xk)(x̂ik|k − xk)T]

= E
[(
x̂ik|k−1 + Ki

kz
i
k − xk

)(
x̂ik|k−1 + Ki

kz
i
k − xk

)T
]

= E
[(
x̂ik|k−1 + Ki

k(vik −Ci
kx̂

i
k|k−1)− xk

)(
x̂ik|k−1 + Ki

k(vik −Cj
kx̂

i
k|k−1)− xk

)T
]

= LikP
i
k|k−1(Lik)T + Ki

kR
i
(
Ki
k

)T
,

with the Kalman filter update Lik = I − Ki
kC

i
k. For this reason, each node i needs to keep track of an additional list of

measurement noise terms

Sik,Ri =
[
Σi

0,Ri ,Σi
1,Ri , . . . ,Σi

k,Ri

]
, (18)

to account for double counting of measurements. It is initialized at time step k = 1 with

Si1,Ri = Σi
1,Ri = Ki

1

√
Ri

1 ,
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where Ri
1 is the measurement covariance matrix of the first measurement (2) acquired by node i. The matrix Ki

1 is the Kalman
gain used in this measurement update. The matrix Sik,Ri is recursively updated according to1

Sik,Ri =
[
LikA

i
kS

i
k−1,Ri , Σi

k,Ri

]
(19)

with
Σi
k,Ri = Ki

k

√
Ri
k .

When two sensor nodes exchange estimates for fusion, they also pass on all the square-root matrices. These matrices need
to be kept separate from each other to trace back possible sources of double counting. Node i that receives an estimate from
node j then also keeps and manages the set Sik,Rj , which is the corresponding set (19) from node j. The own and the received
square-root matrices are updated similarly to (16) and (17) by

Sf
Ri = FiSiRi + FjSjRi ,

Sf
Rj = FiSiRj + FjSjRj .

Bookkeeping of the received Sik,Rj resembles (19). However, it differs in that it is filled with zeros during further processing
according to

Sik,Rj = Lik
[
Ai
kS

i,j
k−1,Rj , 0

]
(20)

as the measurement noise affecting node j is uncorrelated with the estimation errors at node i for the following time steps.
The square-root matrix Sik,Ri can be used in a later fusion step to retrieve the cross-covariances stemming from the previous

fusion step by

Pi,j
k,R = Sik,Ri(S

j
k,Ri)

T + Sik,Rj (Sjk,Rj )T , (21)

where Sjk,Ri is the common information with node i that has been tracked in node j. More precisely, Sjk,Ri is the corresponding
set to (20) that was generated by node j when it received information from i. The reconstructed cross-covariance matrix (21)
has to be combined with Pi,j

k,Q representing the common process noise, which finally results in the full cross-covariance matrix

Pi,j
k = Pi,j

k,Q + Pi,j
k,R .

The amount of data that need to be stored and updated by each node grows linearly over time. Especially in networks with
many sensor nodes, conservative bounding techniques can allow the nodes to surpass this burden.

4.2.1. Limiting the Number of Square-Root Decomposition Terms for Measurement Noise: Following the concept in Sec. 3.1,
we limit the number of processing steps encoded in the square-root decompositions to a fixed time horizon TR. The matrix (18)
becomes

SiR = [Σi
R,k−TR+1,Σ

i
R,k−TR+2, . . . ,Σ

i
R,k] ,

which has a constant number of entries. The remainder of the matrix is summarized in the residual term Ωi
R. When two

estimates are fused, a bound on the residual matrix as in (17) has to be computed by

Ωf
R = 1

ωFiΩi
R

(
Fi
)T

+ 1
1−ωFjΩj

R

(
Fj
)T
.

This bound also has to be combined with the residual bound (17) for the process noise.
4.2.2. Keeping Track of Uncorrelated Measurements: The treatment of correlated measurement information and double

counting can be simplified by computing a more general bound on the measurement covariance. This approach circumvents
the explicit bookkeeping (18) of the information shared through the fusion of estimates.

The local covariance matrix of sensor node i is rewritten as

Pi = PQ,TQ + PQ,Ω + PR ,

where PQ,TQ accounts for the reconstructable cross-covariance matrix using (13), PQ,Ω accounts for the residual (14), and
PR represents possibly correlated measurement noise. We further separate this into

PR = P+
R + P−R ,

where P+
R denotes correlated measurement noise and P−R uncorrelated measurement noise. We can safely assume that

measurements that have been obtained between fusion steps and thus have not been shared are uncorrelated. Therefore, only

1Note that Li
k in [1] should be inside the brackets.
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(a) Ring Topology (b) Net Topology

Fig. 2: Network topologies. Magenta nodes are using one measurement model and blue nodes the other measurement model.

the part accounting for information that has been shared with other sensor nodes before is correlated and needs to be bounded.
The uncorrelated measurement noise residual P−k,R can be calculated recursively

P−k,R = LAP−k−1,RATLT + Ki
kR

i
1

(
Ki
k

)T
.

To ensure the correctness of this assumption, P−k,R will be reset to the zero matrix when the fusion step has been executed or
the information has been shared with other sensor nodes. The correlated measurement residual is calculated by

Ωi
R = Pi − SiQ

(
SiQ
)T −Ωi

Q −P−R .

The bounded part of the joint covariance matrix becomes

Ωi
k = Ωi

k,Q + Ωi
k,R .

The rest of the fusion step is analogous to (15).

5. EVALUATION

The following section features three distinct examples to highlight the performance of the proposed algorithm under different
conditions. First, we discuss an example using only two sensor nodes that constantly exchange information, which leads to
highly correlated estimates. Second, we discuss the convergence rate of the proposed algorithm and compare it with standard
consensus algorithms. Last, a tracking example using 25 heterogeneous sensor nodes in a sparse network but with synchronized
fusion steps is analyzed.

5.1. Two Sensor Nodes

We consider two sensor nodes A and B, which observe the discrete-time time-invariant linear stochastic system in (1) with
the parameters

A =

[
1 ∆T
0 1

]
, Q =

[
1 0
0 1

]
, ∆T = 0.1 .

Both sensor nodes draw observations using the linear measurement model (2), where every measurement is corrupted by
additive-white Gaussian noise vik with covariance matrix RA = RB = 50 and measurement matrices

CA =
[
1 0

]
, CB =

[
0 1

]
.

Both sensor nodes are initialized with P0 = 5Q and x̂0 =
[
0 0

]T
. The data exchange between the two nodes is performed

as follows
1) both sensor nodes execute a local filter update,
2) node A sends its local information to node B,
3) node B fuses information according to the selected fusion method and reinitializes its local state and covariance matrix

with new fused information,
4) both sensor nodes execute a local filter update,
5) node B sends its local information to node A,
6) node A fuses information according to the selected fusion method and reinitializes its local state and covariance matrix

with new fused information,
7) repeat from beginning.

We calculate the mean squared error (MSE) of both sensor nodes and then calculate the average. Fig. 3(a) shows the averaged
MSE of both sensor nodes for 1000 Monte Carlo Runs (MCR). The results are compared with the optimal fusion result.
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Table I: Abbreviations and parameterizations for two sensor nodes example

Method Short Parameterization
Covariance intersection [16] CI -
Naı̈ve fusion [15] Naı̈ve -
Optimal fusion [11] (central) Optimal -
Square-root decomp. (Sec. 3) SqDFno TQ = 5
Square-root decomp. (Sec. 3.1) SqDFQb TQ = 5
Square-root decomp. (Sec. 4.22) SqDFRbp TQ = 5
Square-root decomp. (Sec. 4.21) SqDFRb1 TQ = 5, TR = 5
Square-root decomp. (Sec. 4.21) SqDFRb2 TQ = 5, TR = 2
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14

16
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time steps k

M
SE

(a) Averaged MSE of both sensor nodes.

20 40 60 80 100
0.8
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1.2
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time steps k

A
N

E
E

S

(b) Averaged ANEES of both sensor nodes.

Fig. 3: Comparison of the fusion results of different algorithms for 1000 Monte Carlo Runs.

The optimal fusion result is obtained by optimally keeping track of the cross-covariance matrices between the state estimates
and performing the fusion step in one dedicated fusion center using a centralized network topology. After the fusion step is
executed, the local state estimates and covariances matrices are reinitialized with the fusion result. This approach shows the
lowest MSE as expected. The MSE of the naı̈ve fusion, which neglects the correlations between state estimates, immediately
diverges. The proposed square-root decomposition (SqDF) is shown in several configurations. The time horizon for the square-
root matrix is TQ = 5. The square-root decomposition without bounding (SqDFno) shows a relatively high MSE as it does not
account for older process noise or any correlation due to measurement noise. Bounding of process noise (SqDFQb) performs
a bit better in comparison as it does bound the process noise but also does not account for possibly correlated measurements.
Covariance intersection (CI) performs better than SqDFno and SqDFQb, but its performance is limited as it cannot account for
uncorrelated parts. Using the proposed algorithm with partial bounding of measurement noise (SqDFRbp, see Sec. 4.22) shows
better performance than covariance intersection, as it can find a tighter bound. The proposed method from Sec. 4.21 using
the limited time horizon TR for the track-keeping of correlated measurement noise is also compared to the other methods.
The square-root decomposition using a time horizon of TR = 5 (SqDFRb1) shows the lower mean squared error comparing
to all other methods. The square-root decomposition using a smaller time horizon of TR = 2 (SqDFRb2) is comparable to the
performance of CI.

Fig. 3(b) shows the averaged normalized estimation error squared (ANEES) over both sensor nodes. The ANEES is a
measure to determine whether the actual uncertainty matches the expected uncertainty [39]. An ANEES below one indicates
a conservative fusion estimate, while an ANEES above one indicates an underestimation of the actual uncertainty. Naı̈ve
fusion diverges again very fast and is therefore not included in the plot, and covariance intersection is overly conservative.
Both methods without bounding (SqDFno and SqDFQb) are inconsistent as it would be expected. The algorithm with partial
bounding is close to one, meaning that the actual MSE of the fused results matches the covariance matrix. The proposed
methods using a limited time horizon to keep track of correlated measurement noise (SqDFRb1 and SqDFRb2) are very close
to the optimal fusion result but slightly more conservative, where SqDFRb2 shows similar performance to the proposed method
with the partial bounding of correlated measurement errors (SqDFRbp).

A summary of all used abbreviations and parameterizations of the used methods can be found in Table I.
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Table II: Abbreviations and parameterizations for consensus example

Method Short Parameterization
Covariance intersection [16] CI -
Naı̈ve fusion [15] Naı̈ve -
Optimal fusion [11] (central) Optimal -
Square-root decomp. (Sec. 4.22) SqDFRbp TQ = 11
Square-root decomp. (Sec. 4.2) SqDFOpt TQ = 11, TR = 10
Square-root decomp. (Sec. 4.21) SqDFRb1 TQ = 11, TR = 5
Square-root decomp. (Sec. 4.21) SqDFRb2 TQ = 11, TR = 2
Consensus on Measurements [24] ConsM Metropolis weights
Consensus on Information [26] ConsM Metropolis weights
Hybrid consensus filter [28] DHIWCF Metropolis weights

5.2. Consensus between States

In the following example, we discuss how fast the proposed algorithm convergences towards a global consensus. Consensus
problems have been intensively studied in many different contexts [24]. Instead of accounting for dependencies within the
network, consensus algorithms average the information of neighboring nodes iteratively until all sensor nodes converged
asymptotically to a global estimate [29]. While finding a consensus is usually not the goal of fusion algorithms, it is an
interesting problem to investigate the effect of double-counting in sensor networks. This section demonstrates that the careful
consideration of dependencies improves the convergence rate towards a global consensus. We define the averaged consensus
estimate error (ACEE) that indicates the degree of consensus among estimates from all nodes in the network (see also [28])

ACEE =
1

Ns

Ns∑
i=1

(
x̂i − x̄

)
, x̄ =

1

Ns

Ns∑
i=1

x̂i .

We consider a network of ten sensor nodes with ring topology (see Fig. 2(a)). The system description is similar to the one in
Example 1, but the measurement covariances are reduced to RA = RB = 0.2 and to decrease oscillation. The sensor nodes
alternate between the measurement model of node A and node B, which can also be seen in the figure. The sensor nodes first
perform ten filtering steps independently and then communicate their local information towards their neighbors multiple times.
The fusion algorithms are also compared with consensus algorithms, specifically consensus on measurements [24] (ConsM),
consensus on information [26] (ConsI) and a hybrid consensus method called DHIWCF [28], which performs a consensus on
measurement on the first iteration and a consensus on information afterwards. All consensus methods are performed using
Metropolis weights. We would like to point out that many consensus algorithms have been proposed in recent years and
that the utilized algorithms may not be best tailored to the considered problem. A summary of all used abbreviations and
parameterizations of the used methods can be found in Table II.

Fig. 4(a) shows the convergence rate of the state estimates. Covariance intersection and naı̈ve fusion show very similar
convergence rates. All consensus methods converge only slightly slower. The hybrid consensus algorithm DHIWCF lies
between consensus on measurements and consensus on information. Furthermore, we see that the square-root decomposition
of the measurement noise improves the convergence rate. Keeping track of all measurements (SqDFOpt) leads to the fastest
convergence, followed by the square-root decomposition with a time horizon TR = 3 (SqDFRb1) and using a time horizon
TR = 1 (SqDFRb2). Therefore showing that even a short time horizon for the measurement noise might make a huge difference.
The time horizon of the square root matrix keeping track of the process noise is TQ = 11. Therefore, process noise and common
prior information are fully tracked.

For further comparison, we computed the mean squared error (MSE) for all sensor nodes and showed the averaged MSE
in Fig. 4(b). Compared with all other fusion methods, the optimal track keeping of correlations achieves the lowest MSE
fastest and almost approaches the centralized optimal fusion result. The square-root decomposition with a smaller time horizon
SqDFRb1 and SqDFRb2 also performs well but converge more slowly. Consensus on information does not show any performance
improvements in comparison to the other fusion methods. On the other hand, consensus on measurements converges slightly
slower but outperforms all other methods after 18 time steps. The hybrid method DHIWCF shows slightly lower performance.
Both consensus methods reach a lower average mean squared error because the utilization of measurement information is more
effective than the exclusive fusion of state estimates.

Lastly, in Fig. 4(c), it can be seen that the average ANEES over all sensor nodes in the network is close to the optimal
fusion result for SqDFRb1, SqDFOpt, and SqDFRb2. All square-root decomposition-based algorithms that bound the measurement
partially or fully are very close to the performance of covariance intersection and, therefore, overly conservative. Consensus
on information shows similar performance as covariance intersection but performs slightly worse because Metropolis weights
do not minimize the trace or determinant of the fused covariance matrix. The performance of consensus on measurements
depends on the utilized correction weights to mitigate the averaging of measurements [40]. We chose the correction weight as
2 in the first consensus step when only two measurements are available to the sensor node. Then we increment the correction
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Fig. 4: Convergence of state estimates towards a common consensus and mean squared error for ring topology with 200 MCR.

weight by one in every consensus step until 10 to account for the ten measurements once a consensus is reached. Because
of the averaging characteristics, the ANEES will start to rise as some measurements have higher weights than others during
the averaging, leading to double counting. Once the consensus is approached, the ANEES will converge towards 1 again,
meaning that the method will be consistent after a certain amount of time. DHIWCF shows slightly less conservative results
than covariance intersection. This means that it can reach a relatively low mean squared error while still achieving consistent
results, which is an interesting finding. Yet, the best trade-off between convergence rate, mean squared error, and consistency
can be achieved using the proposed method.

5.3. Large-Scale Sparse Network

In our last example, we consider a simple tracking example featuring 25 sensor nodes in a sparse network as depicted
in Fig. 2(b). Nodes always receive information from the three closest sensor nodes. The movement of the tracked object is
described by

xk+1 = Ax + wk with wk ∼ N
(
0,Q

)
,

A =


1 0 ∆T 0
0 1 0 ∆T
0 0 1 0
0 0 0 1

 , Q = 0.1


1
3∆T 0 1

2∆T 0
0 1

3∆T 0 1
2∆T

1
2∆T 0 ∆T 0

0 1
2∆T 0 ∆T

 , ∆T = 0.1 .
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Table III: Abbreviations and parameterizations for large scale network example

Method Short Parameterization
Covariance intersection [16] CI -
Naı̈ve fusion [15] Naı̈ve -
Optimal fusion [11] (central) Optimal -
Square-root decomp. (Sec. 3) SqDFno TQ = 5
Square-root decomp. (Sec. 3.1) SqDFQb TQ = 5
Square-root decomp. (Sec. 4.22) SqDFRbp TQ = 5
Channel filter [21] ChF
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(b) Averaged ANEES of all 25 sensor nodes.

Fig. 5: Comparison of the fusion results of different algorithms for 100 Monte Carlo Runs.

Referring again to Fig. 2(b), the blue nodes observe the bearing towards a moving target and the red nodes the range. Their
observation is described by a nonlinear measurement function

yi
k

= hi(xk) + vk ,

where nodes alternate between measuring the bearing or the range towards a moving target

hi(xk) =

atan2
(
xy,k − P iy , xx,k − P ix

)
if i is odd,√(

xx,k − P ix
)2

+
(
xy,k − P iy

)2
if i is even,

with measurement noise

Ri =
(

2π
180

)2
if i is odd, or Ri = 0.01 m2 if i is even

at the sensor nodes position P i = [P ix, P
i
y]T.

The nodes are placed at random on a 10 m×10 m field. They perform a synchronized fusion step every 5th time step.
Since the most recent five measurements are hence uncorrelated, a square-root decomposition of the measurement noise is not
needed as only older measurements are correlated and their influence is increasingly becoming weaker. Therefore, we will
utilize the additional information about uncorrelated measurements for the fusion. A summary of all used abbreviations and
parameterizations of the used methods can be found in Table III. Fig. 5(a) shows the average mean squared error over all 25
sensor nodes. The time horizon for keeping track of process noise is TQ = 5. The results of the partial bounding SqDFRbp and
the square-root decomposition without accounting for correlated measurements SqDFQb have the lowest MSE. As expected,
the partial bounding SqDFRbp is more conservative than SqDFQb as indicated by the ANEES (see Fig. 5(b)). We also observe
that SqDFQb is even consistent, i.e., the ANEES is close to one, which can be due to correlations that cancel each other out
because of symmetries within the considered setup.

We also compared our proposed algorithm to the channel filter (ChF) [21], [41], which can be seen as a first-order
approximation of the information graph technique. While the channel filter is suboptimal because it does not account for
all common information, it might be only slightly suboptimal if the time between the occurrence of correlated estimation
errors and the current fusion step is large enough. Further, it requires very little additional computation and communication.
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Fig. 5 shows that the channel filters mean squared error is very close to the fusion result using CI. Yet, the ANEES indicates
that the fusion result is consistent.

6. RESULTS AND DISCUSSION

The second example shows that the convergence rate is improved when cross-covariances can be reconstructed accurately.
However, the fusion can lead to numerical issues when sensor nodes are highly correlated since the joint covariance matrix
cannot be inverted properly. While the additional square-root decomposition of the measurement noise is beneficial, it leads to
additional communication that grows with the number of sensor nodes. It might be possible to discard parts of these square-
roots when they traveled too far from their source. Therefore, correlations would only be tracked within a particular region of
interest around a sensor node, which might improve the scalability of the algorithm. The choice of the time horizon determining
the number of encoded dependent noise terms highly depends on the application and needs thorough consideration.

7. CONCLUSION

This paper aims at solving the problem of fusing multiple state estimates in different network topologies with unknown
correlations. The proposed method utilizes the square-root decomposition of correlated noise covariances. The advantage of
this approach is that every node can keep track of its local processing steps independently, and thus, no dedicated fusion center
is necessary to manage the sensor nodes or their communication with each other.

The results show that the fused estimate remains consistent in arbitrary network topologies and that the fusion results of
several sensor nodes converge faster towards a consensus than other fusion methods while yielding more consistent results than
consensus methods. The downside of this method is the increased amount of additional information that needs to be shared and
constantly updated. Therefore, the choice of the right time horizon might be crucial for the performance in many applications.

The findings of this paper make several contributions to the current literature. First, the modification of cross-covariances
between state estimates due to intermediate fusion steps is discussed. Second, the additional dependency due to the double-
counting of measurement information is examined. The provided method can be tailored to the needs of the application by
tuning the time horizon for the number of tracked correlated noise covariances to meet the bandwidth requirements. Further,
the time horizon for common prior information and common process noise can be chosen independently from the time horizon
for common measurement information. This allows to only keep track of correlated estimation errors that contribute the most
to the cross-covariance. By choosing a shorter time horizon, the fusion result becomes more conservative while still being a
tighter bound than most other conservative fusion methods. In addition, the time horizon can be adjusted within the sensor
network to provide more accuracy in certain areas where it is needed while allowing for rougher estimates in others.

Because of its flexibility, the method can even be utilized in low-cost sensor networks. An exciting application is the
cooperative localization of robots, where many sources of correlated estimation errors occur, which are usually only addressed
in a conservative fashion.
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