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The moving particles method for reliability estimation: recent advances
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In the following, recent advances of the moving particles method are highlighted. A multi level version of the estimator
is introduced that balances the statistical error and the numerical approximation error by computing a telescoping sum of
estimates for the number of moves. An extension to general model classes in the sense of a multi fidelity method is obtained
based on the estimation of bivariate Poisson distributions for censored data. Finally, the local sensitivity of the reliability
estimate with respect to the parameters of the probability characteristics of the model input is considered. It is shown how to
obtain estimates of the local sensitivity without any additional function evaluations.
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1 Introduction

Structural reliability analysis is concerned with the computation of the failure probability

PF =

∫
Ig(x)<0(x)p(x, θ)dx, (1)

where the real valued function g(x), x ∈ Rn, denotes the performance function of the structure, p(x, θ) is the probability
density function of those structural parameters that are assumed to be random variables and θ contains the parameters of the
probability distributions. The indicator function Ig(x)<0(x) is given by

Ig(x)<0(x) =

{
1, if g(x) < 0,

0, otherwise.
(2)

The limit state function g(x) = 0 separates the safe domain {x ∈ Rn : g(x) > 0} from the failure domain F = {x ∈ Rn :
g(x) < 0}. In engineering applications, the failure probability is small and direct Monte Carlo simulation for its estimation
requires a huge number of evaluations of the performance function and thus a large computational effort.

The moving particles algorithm [1] yields an estimate of PF . It starts with an initial Monte Carlo simulation (MCS) with
Nm samples. These initial samples are then moved to the failure region by the following procedure: The values g(θj),
j = 1, ..., N , of the N samples are ranked. The sample with the maximum value of the performance function is moved: a
Markov chain Monte Carlo simulation (MCMC) is carried out starting from one of the remaining samples and the final state
of the Markov chain is accepted, if the value of the performance function could be reduced. Otherwise, the sample is simply
replaced by the initial value of the Markov chain.

Each move of a particle gives rise to a subset Fi = {x ∈ Rn : g(x) < gi}, i = 1, ...,MT , where gi = max1≤j≤N g(x
(i)
j ),

i = 1, ...,MT , denotes the maximum value of the performance function of the N particles x(i)j , j = 1, ..., N , when carrying
out the ith move. For the conditional probability Pi = P (G < gi|G < gi−1), where for simplicity, the random variable g(X)

is abbreviated by G, one finds the estimator P̂i = N−1
N , because only one particle is moved per each iteration step of the

algorithm. With F0 = Rn the failure probability is obtained as

PF =

MT∏

i=1

P (Fi|Fi−1) =
MT∏

i=1

Pi. (3)

The number of moves to get an initial sample into the failure region follows a Poisson distribution with parameter λ =
− logPF . The estimator for the parameter of the Poisson distribution is obtained from λ = E[M ] as

λ̂ =

∑N
j=1Mj

N
=
MT

N
, (4)

where Mj , j = 1..., N denotes the number of moves until the initial sample j reaches the failure state.
The coefficient of variation for the failure probability estimated with the moving particles algorithm is given by

δmp =

√
− logPF

N
, (5)
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and the average number of function evaluations is

Nmp = N(1− T logPF ), (6)

where the first term accounts for the initial Monte Carlo simulation and the second term for the Markov chain samples (with
burn-in period T ).

2 Multi level extension

For the moving particles algorithm, denote by Ml the number of moves when an approximation gl(θ) of the performance
function is applied. The estimator for the Poisson distribution parameter at level L and thus for− logPFL

, where PFL
denotes

the failure probability computed with the approximated performance function gL(θ) at approximation order L is obtained
from

E[ML] = E[M0] +

L∑

l=1

E[Ml −Ml−1] (7)

and reads

M̂M
L =

1

N0

N0∑

i=1

M
(i)
0 +

L∑

l=1

1

Nl

Nl∑

i=1

(M
(i)
l −M

(i)
l−1). (8)

Making use of the fact that Ml are Poisson distributed random variables, it can be shown that the multi level estimator for the
failure probability is more efficient in terms of computational cost than the single level version [2].

Example. Stochastic heat equation with random heat source. Consider the linear stochastic partial differential equation

du =
∂2u

∂x2
dt+ θudt+ σdWt (9)

with parameters θ and σ, where dW are the increments of a standard cylindrical Wiener process

Wt =

∞∑

k=1

W k
t sin(kπx), (10)

and W k
t are standard independent Brownian motions.

The boundary conditions are u(x = 0, t) = u(x = 1, t) = 0 and the initial condition reads

u(x, 0) =
√
2
∞∑

k=1

sin(kπx), (11)

so that the solution of the stochastic partial differential equation decouples and can be written as

u(x, t) =
√
2

∞∑

k=1

uk(t) sin(kπx), (12)

where the coefficients uk(t) are described by the linear stochastic ordinary differential equations

duk = (−π2k2 + θ)ukdt+ σdW k
t . (13)

Their solutions at time t are

uk(t) = exp((−π2k2 + θ)t) + ξkt , (14)

where ξkt is a normal random variable with mean zero and variance

σ2(1− exp(2(−π2k2 + θ)t))

2(π2k2 − θ) . (15)

Failure is assumed to occur if u(x = 0.5, t = T ) is larger than a given threshold. In the following, θ = 1, σ = 1, T = 1/50
were set.
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The solution of the stochastic partial differential equation (9) is approximated by truncating the solution at k = kmax. In
addition, time integration is applied in order to solve the stochastic ordinary differential equations (13). The approximation
parameters for this problem are the truncation parameter kmax and the time step.

Figure 1 displays the variance of the single level and the multi level estimator for the number of moves in dependence of a
single approximation parameter h, where h is computed by comparing the exact and the approximate failure probability. The
threshold value for failure has been set to 1.5. It can be seen that the variance of the multilevel estimator is smaller than that
of the single level estimator and that it decreases with decreasing discretization parameter h, while the variance of the single
level estimator is nearly independent of h. As the number of moves is a Poisson distributed random variable, the same result
holds for the mean values.
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Fig. 1: Variance of Mhl and Mhl −Mhl−1

3 Multi fidelity extension

Consider without loss of generality the bilevel situation with a high fidelity and a low fidelity model. Mh and Ml denote the
random variables for the moves of the particles related to the high-fidelity and the low-fidelity model, respectively. As the
low fidelity model is assumed to be computationally more efficient, suppose that samples Mli , i = 1, ..., N , are generated for
particles with the low-fidelity models and pairs of samples (Mli ,Mhi

), i = 1, ...,M that were obtained with both the low and
the high fidelity model , where M � N . The objective is to estimate the parameters λl and λh of the two dependent Poisson
distributed random variables Mh and Ml. To this end, three independent Poisson distributed random variables are introduced
and the parameters of the three Poisson distributions are estimated by maximum likelihood estimation via the expectation
maximization algorithm [3].

Example. Consider again the stochastic heat equation with random heat source. In this example only the truncation order
kmax has been varied. The moving particles method has been applied with 1000 initial samples (particles). For the bifidelity
method described above, only ten particles were considered, for which the number of moves to reach the failure region were
computed with both the low- and high-fidelity model. Figure 2 summarizes the results for the single level and the bifidelity
method. For low truncation order, the multiplicative bifidelity method reduces the relative error compared to the single level
method. Moreover, due to the maximum likelihood estimation via expectation maximization, also the standard deviation of
the estimator is considerably reduced. This demonstrates the advantages of the bifidelity method over the single level moving
particles algorithm.
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Fig. 2: Relative error and standard deviation for the single level estimator and the bifidelity method with multiplicative information fusion.
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4 Extension to local sensitivity analysis

Applying the product rule to equation (3), one finds for the partial derivative of the failure probability with respect to θ:

∂PF
∂θ

= PF

MT∑

i=1

1

Pi

∂Pi
∂θ

, (16)

where

Pi = P (G < gi|G < gi−1) =
∫
Ig<gi(x)

Ig<gi−1
(x)p(x)

P (G < gi−1)
dx (17)

and

P (G < gi−1) =
∫
Ig<gi−1

(x)p(x)dx. (18)

The partial derivative of the conditional probability Pi is given by

∂Pi
∂θ

=
∂

∂θ

∫
Ig<gi(x)

Ig<gi−1(x)p(x)

P (G < gi−1)
dx

=

∫
Ig<gi(x)

Ig<gi−1(x)

P (G < gi−1)
∂p(x)

∂θ
dx−

∫
Ig<gi(x)

Ig<gi−1(x)p(x)

P (G < gi−1)2
∂P (G < gi−1)

∂θ
dx

=

∫
Ig<gi(x)

1

P (G < gi−1)
∂p(x)

∂θ
dx−

∫
Ig<gi(x)

p(x)

P (G < gi−1)2
∂P (G < gi−1)

∂θ
dx,

(19)

as gi < gi−1 and thus Ig<gi(x)Ig<gi−1(x) = Ig<gi(x). The last expression can also be written as

∂Pi
∂θ

= EG<gi−1
[Ig<gi(x)

∂ ln p(x)

∂θ
]− Pi

P (G < gi−1)
∂P (G < gi−1)

∂θ
. (20)

The expression in the last term involves the partial derivative of the probability related to a set with larger bound, namely
Fi−1. Analogously to equation (16), we find the expression

∂P (G < gi−1)
∂θ

= P (G < gi−1)
i−1∑

j=1

1

Pj

∂Pj
∂θ

(21)

for this partial derivative. Thus, the expression for the partial derivative of the conditional probability Pi with respect to θ
reads

∂Pi
∂θ

= EG<gi−1
[Ig<gi(x)

∂ ln p(x)

∂θ
]−

i−1∑

j=1

1

Pj

∂Pj
∂θ

. (22)

Inserting this expression into equation (16) and observing that P̂1 = P̂2 = ... = P̂MT
yields a telescoping sum, such that the

estimator for the sensitivity of the failure probability is obtained as

ˆ∂PF
∂θ

=

(
N − 1

N

)MT−1

 1

N

N∑

j=1

Ig<gMT
(x

(MT )
j )

∂ ln p(x)

∂θ

∣∣∣∣
x=x

(MT )

j


 . (23)

Thus, the score function ∂ ln p(x)
∂θ is evaluated and averaged for the remaining N − 1 particles before the move of the last

particle into the failure domain, which does not involve any additional evlauations of the performance function g(x).
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