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Integral jump conditions for singular problems – applied to Debye-layer
phenomena
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In numerical simulations boundary layers can be treated as jump conditions inheriting detailed physical effects that emerge
inside the thin layer. The presented approach, first applied by Class et al. [3], is used to determine such jump conditions in
integral form. It is applied to an electro-hydrodynamic problem with a Debye-layer in direct vicinity to a charged solid wall.
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1 An integral method for boundary layers

A wide range of fluid-dynamic boundary layer problems have been the subject of ongoing investigations, such as boundary
layers near a solid surface as well as thermal, gasdynamic or electro-hydrodynamic boundary layers. These problems are gen-
erally described as sets of nonlinear differential equations whose highest derivative is multiplied by a perturbation parameter
δ. Their solutions change rapidly within the small layer whose thickness becomes zero for δ → 0. [2]

The purpose of the presented method is to make a numerical treatment of boundary layer problems possible. The compu-
tational domain is therefore decomposed into two smaller domains, separated by the boundary layer. Then, both sub-domains
can be coupled using a jump condition for the normal flux through the discontinuity surface. For each physical parameter (and
equation) of interest we can find one jump condition which replaces the detailed treatment of all effects inside the layer.

The objective is to derive time-dependent jump conditions for the normal flux emerging at boundary layers of arbitrary
shape. Tensor notation and asymptotics have first been applied by Class et al. for the description of flames. [3] Here, the
method is applied to electro-hydrodynamic (EHD) double layers emerging at the interface between charged solids and fluid
electrolyte. For each physical parameter φ

(
xj , t

)
we can formulate a transport equation of the generic contravariant form

∂t (
√
g φ) + ∂xj

(√
g Jj (φ)

)
=
√
g S (φ) , (1)

including the generic fluxes Jj (φ) and the source term S (φ). Furthermore, we assume that the surface can at each point be
described by the contravariant metric gij

(
xj , t

)
. We define x1 as the normal coordinate so that the metric can be specified by

g11 = 1 and giα = 01. From the metric we find the volume element
√
g
(
xj , t

)
= 1/det

(
gij

) which appears in the generic
transport equation (1). We can now define two models, the detailed and the hydrodynamic model. In the detailed model all
parameters, denoted by capital letters Φ, are continuous and all physical effects are considered. The hydrodynamic model
consists of the same equations but is lacking at least one term, usually a source term. The missing terms are then taken into
account in form of the jump conditions of the parameters φ at the discontinuity surface.

In order to find the desired jump conditions that we define as
[
J1 (φ)

]
= J1 (Φ) − J1 (φ) we consider the difference

between both model’s transport equations integrated over the normal derivative

∫ x1
r

x1
l

∂t (
√
g (Φ− φ)) dx1+

√
g
∗ [
J1 (φ)

]
+

∫ x1
r

x1
l

∂xα (
√
g (Jα (Φ)− Jα (φ))) dx1 =

∫ x1
r

x1
l

√
g (S (Φ)− S (φ)) dx1.

(2)

The integration is performed from a position x1l sufficiently far "left" from the discontinuity surface (which we define at
x1 = x1∗) to a position sufficiently far "right" that the differences between both models vanish. Thus, if x1l → −∞ and
x1r → ∞ the integrals are still determined. The following steps are similar to classical boundary layer theory [2, 5]. The
normal coordinate is stretched by the perturbation so that we find the stretched coordinateX = x1/δ. Both models’ parameters
are expanded in terms of the Taylor series and the solutions for the leading order(s) are determined. Finally, these solutions
are employed into equation (2) written in terms of the stretched coordinate

√
g
∗ [
J1 (φ)

]
=

∫ ∞

−∞

(√
g
∗

(S (Φ)− S (φ))− ∂t
(√
g
∗

(Φ− φ)
)
− ∂xα

(√
g
∗

(Jα (Φ)− Jα (φ))
))

dX (3)

which results in the jump of the normal flux.
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2 of 2 Section 9: Laminar flows and transition

2 Application to streaming-potential phenomena

We apply the described method to a class of stationary streaming-potential phenomena, which was discussed before by [4,6,7].
The dimensionless thickness of the Debye-layer in vicinity to a charged surface is supposed to be small and therefore used
as perturbation parameter δ. We use the same reference dimensions as described in the flow-driven problem in [7], with the
Péclet-number Pe ∼ O

(
δ−2
)
, the Hartmann number λ ∼ O (1) and the Schmidt number Sc� 1 sufficiently small so that the

transient and convective terms of the momentum equation can be neglected. The flow problem is defined by the momentum
and incompressible continuity equations while the Poisson-Nernst-Planck system describes the distribution of charges and
electric potential. The coupling emerges in form of the Maxwell stress tensor in the momentum equations and the convective
term in the Nernst-Planck equations.

Now, we define the EHD model as the detailed model. In Poisson’s equation it includes the charge density which is
neglected in the hydrodynamic model with jumping parameters. The jump condition for the electric potential ψ can be
found easily using the Gouy-Chapman solution of the 1D-problem at leading order [7]. With the charge density S (Ψ) =
− sinh (Ψ) +O (δ) and S (ψ) = − sinh ζ for X ∈ [0, X∗] and S (ψ) = 0 for X ∈ [X∗,∞) we can adapt equation (3) to find

[
J1 (ψ)

]
=

∫ ∞

0

S (Ψ)− S (ψ) dX = (−2 sinh ζ/2 +X∗ sinh ζ) +O (δ) . (4)

In case of a solid wall right next to the discontinuity surface the lower limit for integration is the wall, defined as x1wall = 0.
The zeta-potential was utilized as boundary condition Ψ (X = 0) = ζ. The position X∗ at which the outer term jumps can be
chosen such that the integrals can be solved easily. For the charge density we can derive a similar jump condition

[
J1 (q)

]
= − 1/√g∗(0)∂xα

(√
g
∗
(0) (Jα (Q)− Jα (q))

)
dX (5)

= Pe(−2)D
∫ ∞

0

X
(
Q(0) − q(0)

)
dX = Pe(−2)D

(
ζ + sinh ζ

(
1/2(X∗)2 +X∗

))
+O(δ).

The sum of the (convective) tangential fluxes Jα (Q) has been transformed using the continuity equation to obtain a result
depending on the normal velocity V 1

(2) = D/2X2. This procedure as well as the choice of the parameter D is the same as
in [7]. For the flow problem we obtain four jump conditions. For the pressure we obtain

[
J1 (p)

]
= δλ(0)g

αβ∂xαϕ (2X∗ sinh ζ/2− ζ) lβ +O(δ2). (6)

The other results for the flow also contain the Smoluchowski slip velocity vslip = ζλ(0)g
αβ∂xαϕ lβ which depends on the

outer potential ϕ and the tangential vector lβ . They can be derived in a similar way from the continuity equation and the
momentum equation in tangential direction.

3 Conclusion

The presented approach allows the numerical treatment of singular problems through the use of jump conditions. Thereby, the
jump conditions inherit the detailed modelling of the phenomena responsible for the emergence of the double layer.
As an example we applied the method to a stationary EHD problem which has been discussed in literature by different authors.
Our leading order solutions are in accordance with Yariv et al. [7]. The derived integral form of the jump conditions shall be
applied for numerical simulations in the future. Furthermore, the stationary model will be extended to consider instationary
effects. This makes only sense using a hybrid approach of asymptotic and numeric computations as the leading order solution
has to be computed numerically as well.
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