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Abstract. We present a practical comparison of suffix array construction
algorithms on modern hardware. The benchmark is conducted using our
new benchmark framework SACA Bench, which allows for an easy deploy-
ment of publicly available implementations, simple plotting of the results,
and straight forward support to include new construction algorithms. We
use the framework to develop a construction algorithm running on the
GPU that is competitive with the fastest parallel algorithm in our test
environment.
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1 Introduction

The suffix array (SA) [28] is one of the most versatile and well-researched full-text
indices. Given a text T of length n, the SA is the permutation of [1,n], such that
T[SA[i]..n] < T[SA[i +1]..n] for all ¢ € [1,n — 1], i.e., the starting positions of all
suffixes of the text in lexicographical order.

There exist extensive surveys on SA construction algorithms (SACAs), start-
ing with the one by Puglisi et al. [42] and ending currently with the one by
Bingmann [4, p.163-192]. However, none of these surveys address any prac-
tical results for SACAs in main memory. There are 24 main memory SACAs
that we are aware of. However, not all SACAs have been implemented. It
is generally accepted that the Divsufsort [12I33] is the fastest SACA—despite
it having a superlinear running time. Different models of computation have
also been considered for this problem: external memory, e.g., [BIOIT8ITII20/38],
shared memory, e.g., [20020/25], distributed memory, e. g., [IIG/T3IT4I20132/36],
and GPGPU, e. g., [[041/46/47].

In this paper, we first present a practical comparison of SACAs that have a
publicly available implementation. This comparison has been conducted using
our new SACA benchmark framework called SACABench, which allows for (a) an
easy comparison of SACAs including the output of the results (running time and
memory peak) in form of raw data in JSON format, as PDF, or KTEX file, (b) a
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simple way to include new SACAs, such that the features mentioned before can
be used, and (c¢) fast development of new SACAs due to a variety of building
blocks needed for SACAs (such as prefix sorting, renaming techniques, etc.). The
framework is available from https://github.com/sacabench/sacabench. It is
coded in C++17 and contains 13 SACA implementations, which are to our best
knowledge all SACAs having a publicly available implementation. See Fig. [1] for
a list (and also the historical development) of the SACAs that are included in
the framework. We then use the building blocks of SACABench to implement
a new GPU-based SACA, which is competitive with the fastest parallel (shared
memory) SACA par_DivSufSort [25]. Here, our GPU SACA achieves a speedup
between 0.93 and 1.69 compared to par_DivSufSort for inputs fitting into the
GPU’s memory.

2 SACABench: A Suffix Array Construction Benchmark

In Fig. [T] we give an overview of different SACAs in main memory. There are four
general types of SACAs: Prefir Doubling algorithms sort the length-2¢ prefixes
of all suffixes by using the length-2¢—1 prefixes as keys, and stopping when all
considered prefixes are unique. If carefully implemented, this results in a running
time of O(nlgn). Induced Copying algorithms first sample certain suffixes and
only sort those suffixes. Based on the sorted sample, the lexicographical order
of all other suffixes can be computed in a second phase, which usually has linear
running time. Depending on which algorithms are used to sort the sample,
induced copying algorithms have either linear or slightly superlinear running
time. Recursive algorithms reduce the problem size during each recursive step
until the problem is trivially solvable (e.g., when all suffixes start with unique
characters). They can achieve linear running time and are sometimes used in
induced copying algorithms in the first phase (to achieve linear running time).
Grouping is a new approach somehow similar to induced copying. Here, all
suffixes are first grouped together by presorting them according to some prefix
(in the only algorithm using grouping [3], Lyndon words determine this prefix).
Those groups are then refined using already sorted suffixes, similar to induced
copying algorithms.

2.1 Experimental Setup

We conducted our experiments on a computer with two Intel E5-2640v4 (10
physical cores, Hyper-Threading is disabled (per default on the cluster that can
not be changed by users), with frequencies up to 3.4 GHz, and cache sizes of
320KiB (L1I and L1D), 2.5 MiB (L2) and 25 MiB (L3)), one NVidia Tesla K40
graphics card (2880 stream processors with frequencies up to 875 MHz and 12 GB
GDDR5 SDRAM) and 64 GB of RAM. We compiled the code using g++ 8.3.0
and compiler flags 03 and -march=native. Note that Cilk support was removed
from g++ 8.0.0. Hence, we use OpenMP to express parallelism.


https://github.com/sacabench/sacabench

SACABench: Benchmarking Suffix Array Construction 3

, m

1990 1 0(n) tree |
1999 \

i [21] 23]
2000| [diffcover]“{ DC3 ] mod2 split]
2002 |

it
2003
[22]
2004 135) fixed ¥
[33] inct
2005 divsufsort Sueeme
2006 v
[ 23] ][ 139] :
he aw O(nlg|X¥
2007 cache aware (nlg|X|) -
2008 [34/40]
SAIS/SADS
2009

Prefix
2011 | Doubling @ Induced Copying

) Bl
2016 . Grouping GSACA

Recursion

(27
O(1) space

Y

[15]
2017 O(1) space

Fig. 1. Historical development of SACAs in main memory (enhanced and updated,
based on [4J42]). For each algorithm, we cite its most recent publication, and the years
on the left hand side show the year of its first publication. In some cases these years
may not match, e.g., due to a later journal publication. SACAs are marked with a grey
background (()), if they have linear running time, and a partly brown background (),
if an implementation is publicly available. All of the latter are also part of SACABench.

2.2 Evaluation of Sequential Suffix Array Construction Algorithms

For the evaluation of the sequential SACAs we use 1600 MiB prefixes of three texts.
Note that we encode each symbol of the text using one byte, as this is required
by most implementations. 1000G (o = 4,avglcp = 24, max_lcp = 353), which
is a concatenation of DNA sequences provided by the 1000 Genomes Project
(https://internationalgenome.org). We removed every character but 4, C, G,
and T. CommonCrawl (o = 242, avg_lcp = 3,995, max _lcp = 605, 632), which is a
crawl of the web done by the CommonCrawl Corpus (http://commoncrawl .org)
without any HTML tags. Here, we also removed all annotations added. Last,
Wiki (o = 209,avg_lcp = 32,max.lcp = 25,063), which is a concatenation
of recent Wikipedia dumps in XML format (https://dumps.wikimedia.org).
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Fig. 2. Running times and extra memory usage (memory required in addition to the
SA and input text) for all sequential SACAson real world inputs. The ITEX code of
the plot was generated using SACABench (legend and size slightly modified to fit in
this layout).

Here, max_lcp denotes the maximum size of a common prefix of two suffixes that
are consecutive in the SA; and avg_lcp is the average of if all these sizes (rounded
down).

We used this set of texts, as more popular corpora (e. g., Pizza & Chilihttp://
pizzachili.dcc.uchile.cl or the Lightweight corpus http://people.unipmn.
it/manzini/lightweight) do only contain one files larger than 1600 MiB and
we want to test on larger inputs.

In addition, we also tested the algorithms on highly repetitive texts that
are available from the Pizza & Chili corpus, as some suffix array construction
algorithms behave differently on this kind of input. To be precise, we use Cere
(o0 = 5,n = 461,286,644, avg_lcp = 7,066, max_lcp = 303,204), Einstein.en.txt
(o0 = 139,n = 467,626,544, avg_lcp = 59,074, max_lcp = 935,920), and Para
(0 =5,n = 429,265, 758, avg_lep = 3,273, max_lep = 104, 177).

Running time and memory usage are automatically measured by the frame-
work for each included algorithm. To this end, we use the timing functionality
of C++ and have overwritten the malloc, realloc, and free functions to track the
memory usage of all components and also already coded algorithms.

The running times and the additional memory required are shown in Fig.
It is easy to see that DivSufSort is the fastest sequential SACA running in main
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Fig. 3. Running times and extra memory usage (memory required in addition to the
SA and input text) for all sequential SACAs on highly repetitive inputs. The WTEX
code of the plot was generated using SACABench (legend and size slightly modified to
fit in this layout).

memory on all input texts. Also, it is among the SACAs that require nearly
no memory in addition to the space for the SA and the input text. Overall,
DivSufSort is 1.3, 1.61, and 1.63 times faster than the second fastest SACA
on DNA, CommonCrawl, and Wiki. SAIS-LITE, which also does not require
additional memory, is the second fastest SACA on DNA and CommonCrawl. It
is noteworthy that both DivSufSort and SAIS-LITE have been coded by Yuta
Mori. On Wiki, Deep Shallow is the second fastest SACA, but it is just 0.01
seconds faster than BPR and 0.04 seconds faster than SAIS-LITE. Those two
SACAs (BPR and Deep Shallow) are also the third and fourth fastest algorithm
on CommonCrawl and the fourth and third fastest on DNA. BPR is the only
algorithm among the fast ones that requires an extensive amount of additional
memory. More than 13 GiB for an input of size 1600 MiB. BPR, DC3, GSACA,
and MSufSort require more additional memory than the size of the input.

For the highly repetitive texts, we have similar results regarding the running
time and memory peaks. We show the results of our experiments in Fig.
Surprisingly, SAIS-LITE is faster than DivSufSort on this kind of inputs. On
Cere it is 24.11 % faster, on Einstein.en.txt it is 9.1 % faster, and on Para it is
8.78 % faster. All this while requiring the same memory as DivSufSort.
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Fig. 4. Running time of the parallel (shared memory on 20 cores and GPU) SACAs on
200 MiB texts. The IXTEX code of the plot was generated using SACABench (legend
and size slightly modified to fit in this layout).

3 Suffix Array Construction on the GPU

Next to the well tuned SACAs compared above, SACABench also contains many
experimental SACA implementations. The best performing one is a parallel prefix
doubling algorithm that runs on GPUs and is based on Osipov’s GPU SACA [41],
p.44-51]. The main idea is similar to the general prefiz doubling approach as used
by Manber/Myers [28] and Larsson/Sadakane [26]. In iteration i, we consider
the length-2¢ prefixes of all suffixes and group equal (using the prefix as key)
suffixes together into buckets. To refine the new buckets in the next iteration, we
use the bucket numbers of the suffixes starting 2°~! text positions to the right.
This allows us to compute the new buckets without additional access to the text.
A bucket is sorted if it contains only a single suffix. Larsson and Sadakane [26]
added a clever mechanism to ignore already sorted buckets, which is a practical
improvement. However, this can lead to load imbalance when parallelizing the
algorithm. Our implementation combines techniques from both approaches such
that sorted buckets can be ignored, but load imbalance is avoided by marking
sorted groups and making heavy use of parallel prefix sums to compute the
number of smaller groups for each group.

The prefix doubling technique has proven to be effective in other models of
computation, e.g., distributed memory [6II3I14] and external memory [9].

3.1 Evaluation of Parallel Suffix Array Construction Algorithms

We compare our GPU SACA with three shared memory parallel SACAs. We
could not compare our algorithm with the most recent GPU-algorithm by Wang
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et al. [47], we could only run it successfully for inputs smaller than 100 KiB for
our text collection. (To test their code, they use somehow meaningless random
input texts, which we could get to work in our test environment for sizes up to
170 MiB. However, even if we reduced the alphabet size of our real world texts to
match the alphabet size of the random texts, we could not get this algorithm to
work with inputs larger than 100 KiB.) Likewise, we could not compare against
Osipov’s CPU-SACA [41], as it does not have publicly available code and the
author seems to be have left research and did not reply to our code requests. We
are also aware of parallelKS, parallelRange that are available from the Problem
Based Benchmark Suite [45], however we were not able to make them compute
the correct suffix array on short notice for the final version of this paper.

As inputs we use the Pizza € Chili corpus, as it offers a variety of smaller
text that have size at least 200 MiB: DNA (o = 16, max_lcp = 14, 836), English
(o = 225, max_lcp = 109, 394), Sources (o = 230, max_lcp = 71,651), Proteins
(0 = 25, max_lcp = 45,704), and (dblp.)XML (¢ = 96, max_lcp = 1,084). More
characteristics of the texts are available from http://pizzachili.dcc.uchile.
cl. Again, max_lcp denotes the maximum size of a common prefix of two suffixes
that are consecutive in the SA. We only use inputs of 200 MiB due to the memory
requirements of our algorithm. On the given hardware it cannot compute the
suffix array for larger inputs.

The results of our experiments are shown in Fig. [d] where par_DivSufSort
denotes the fully parallel version of DivSufSort by Labeit et al. [25]. The partially
parallel DivSufSort is Mori’s [33] implementation of DivSufSort, where only the
first phase is be parallelized. The GPU Prefiz Doubler is the algorithm presented
in this paper. The CPU Prefix Doubler is the same as the GPU one but it only
uses the CPU, which we included as sanity check to see the speedup of the GPU.
The running time of prefix doubling SACAs is O(n lgmax_lcp).

Our new algorithm is the fastest on DNA, Proteins, and XML, where max_lcp
is comparatively small. Here, we are 1.58 (DNA), 1.69 (Proteins), and 1.15 (XML)
times faster than par_DivSufSort. On English and Sources, par_DivSufSort is
1.03 (English) and 1.07 (Sources) times faster than our GPU Prefix Doubler on
inputs with large max_lcp. Hence, it is only slightly faster.

We also included the in-memory version of the external memory suffix array
construction algorithm pSAscan [I8] in our framework. The available implemen-
tation could not handle all inputs by design, as it cannot handle text that contain
the character 255, which occurs in English and Sources. It is 2.25 times, 1.67
times, and 1.46 times slower than our GPU Prefix Doubler.

Although a fair comparison against [41] is difficult due to the problems men-
tioned above, we hypothesize the following: Osipov [4I] used an NVidia Fermi
GTX 480 graphics cards with 480 and 1.5 GB RAM and an Intel i7 920 CPU with
4 cores and frequencies up to 2.93 GHz, where they achieved a speedup of at most
5.8 against partially sequential DivSufSort in the best case, but often a speedup
of only around 2.5. Our speedup against the partial parallelized DivSufSort.
varies between 1.45 (English) and 3.14 (DNA). Given that the ratio between the
GPU and CPU cores is nearly the same in both setups (120:1 in their experiment
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and 144:1 in ours), but that our CPU cores have a higher frequency, we speculate
that our implementation is of similar speed as Osipov’s original one.

4 Conclusion

We presented a framework for SACAs that allows for an easy comparison of SACAs
regarding time and memory consumption during construction. The result of this
comparison is an empirical proof that DivSufSort is still the fastest SACA. It
also has (in practice) optimal space requirements, as the additional memory only
depends on the size of the alphabet. In addition, new algorithms can effortless
be included in the framework allowing all features of the framework to be used.
We also presented a GPU SACA that is the fastest parallel SACA, but is limited
by the memory size of the graphics card, and part of the framework.

Recently, linear time SACAs that require only a constant number of computer
words in addition to SA and the input text have been presented [15J27], which
is optimal. Now, the only open question regarding SACAs in main memory is:
is there a SACA faster than DivSufSort, which is the fastest since 20067 And if
there is a faster algorithm than SAIS-LITE for highly repetitive texts, as it is
even faster than DivSufSort on those.

Acknowledgment. We would like to thank the anonymous reviewer who pointed
us to additional parallel suffix array construction algorithms that we had not
previously included in the framework.
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