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WELL-POSEDNESS FOR MAXWELL EQUATIONS WITH KERR
NONLINEARITY IN THREE DIMENSIONS VIA STRICHARTZ
ESTIMATES

ROBERT SCHIPPA

ABSTRACT. We show new local well-posedness results for quasilinear Maxwell
equations in three spatial dimensions with an emphasis on the Kerr nonlin-
earity. For this purpose, new Strichartz estimates are proved for solutions
with rough permittivity by conjugation to half-wave equations. We use the
Strichartz estimates in a known combination with energy estimates to derive
the new well-posedness results.

1. INTRODUCTION

In the following Maxwell equations in three spatial dimensions, the physically
most relevant case (cf. [2, 5]), are analyzed. These describe the propagation of
electric and magnetic fields (E,B) : R x R® — R3 x R3, and displacement and
magnetizing fields (D, H) : R x R? — R3 x R3. The system of equations is given by

OD=VxH-J, V-D =np.,
(1) OB=-VxE—Jp V-B=pn,
D(07) :DOa B(()?) :BO-

(pe, pm) : R x R® — R x R denote electric and magnetic charges and (J, J,) :
R x R? = R3 x R3 electric and magnetic currents. There is no physical evidence
for the existence of magnetic charges or magnetic currents, but we include them to
highlight a key aspect of the analysis.

The notations follow the previous work [11] on Maxwell equations in two spatial
dimensions. We denote space-time coordinates = = (20, z1,...,2") = (t,2') € R x
R" and the dual variables in Fourier space by £ = (£°,&1,...,£") = (1,¢') € RxR"™.
In this work we supplement Maxwell equations with time-instantaneous material
laws, linking F with D and H with B:

D(z) =e(z)E(x), e:RxR> = R3*3

@) B(z) = p(z)H(z), p:RxR> = R3>3,

¢ is referred to as permittivity, and p is referred to as permeability. In the follow-
ing we consider ;4 = 1. This means that the considered material is magnetically
isotropic, which is a common assumption in nonlinear optics (cf. [9]). In fact, in the
constant coefficient case this is no additional assumption (cf. [8]). u below denotes
a regularity parameter unrelated with the permeability. As in the preceding work
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2 ROBERT SCHIPPA

[11], we want to describe the propagation in possibly anisotropic and inhomoge-
neous media. We suppose that € is a matrix-valued function € : R x R3 — R3*3
with A\, A > 0 such that for any ¢’ € R? and = € R x R3

3
(3) MEP <Y e9(@)ggs < AP, (@) = ' (a).
i,j=1
Sum convention is in use, e.g.,
3

el(@)ig; = ) e (a)&iE.

ij=1

Here we focus on ¢ = diag(e1, €2, €3) because this covers the physically relevant case

(4) e(E) = (1+|B[*)1sx3
of the Kerr nonlinearity.
We denote’
0 —03 09
) B@=[a o0 -0, Pwo-= (31;.1;? oie ) .
—82 61 0 t13x3

(1) becomes

D Je V-D= Pe>
) Fi0) (H> ) (Jm> | {V-B = b
As in [11], we make use of the FBI transform and analyze the equation in phase
space. P(z,0) is conjugated to half-wave equations whose dispersive properties
depend on the number of different eigenvalues of €. This was previously analyzed
in the constant-coefficient case by Liess [6] and Lucente-Ziliotti [7]; see also [10, 8.
It was proved that for (z) = e satisfying (3) solutions to (6) with ¢ having less
than three different eigenvalues decay like solutions to the three-dimensional wave
equation. However, if € has three different eigenvalues, the decay is weakened to
the decay of the two-dimensional wave equation. We prove the first result for
variable, rough, possibly anisotropic coefficients; see Dumas—Sueur [1] for smooth
scalar coefficients. Below let

(ID]*u)(€) = [€|*a(e),  (ID'|*u)(€) = |¢'|*a(e),

d) is referred to as Strichartz pair if d € Z>o, p = d(5 — %) —=,D,q>2,

and (p, p, q,
24 =1 < 4l and (p,g,d) # (2,00,3).

P
Theorem 1.1. Let € = diag(e1,e2,¢3) : RxR3 — R3*3 be a matriz-valued function
satisfying (3). Letu = (D, H) : RxR3 — R3*xR3 with V-D = p, and V-H = p,,
and P as in (5).

If & has no more than two different eigenvalues for any x € RxR?, and ||0%&;||p~ <
pt, then we find the following estimate to hold:

1

_ _ _ 1
(1) DI Pullers S pllullcz + 17 [ Pullzz + [[1D]72 pellz + 11D~ 2 pal| 2
provided that the right-hand side is finite and (p,p, q,3) is a Strichartz pair.

n this work we denote differential operators by 0 to avoid confusion with the displacement
field, deviating from the usual notation for pseudo-differential operators.
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The theorem states that in case of small charges the dispersive properties of wave
equations are recovered. As in the two-dimensional case, note that on the one hand,
if
(®) loell, 3 ~IDl,5s lomll, s ~ 1Bl ;.
(7) follows from Sobolev embedding. Moreover, if one omits the contribution of
charges on the right-hand side in (7), we can find stationary solutions D = V¢ and
H = 0 for € = 1543, which clearly violate the Strichartz estimates.

Corresponding Strichartz estimates with additional derivative loss under weaker
regularity assumptions on ¢ follow (cf. [17, 11]). In the following, for A\ € 2% we
denote Littlewood-Paley projections by

(S\NE) = BATIOF(©),  (ShA(E) =B (L) f(©),

where
supp(B) C {¢€ e R ¢ |¢] ~ 1}, Z BT =1 for |¢] > 1,
Ae2No
supp(8) C {€ € R™ : [¢] ~ 1, G| SN Y0 BT =1for [¢] > 1, Jéol S €.

Ae2No

We have the following for C*-coeflicients:

Theorem 1.2. Let e : R xR3 — R3*3 be a matriz-valued function with coefficients
inC%, 0 < s <2, satisfying (3). Letu = (D,H) : RxR? — R3xR3 with V-D = p,
and V - B = py,. Then, we obtain the estimate

(9) ) )

IIDI=" =2 ull Loz < pllullzz + p=HIPull o + [1DI727 % pellzz + [IDI727% pral 2
provided that the right hand-side is finite, (p,p,q,3) is a Strichartz pair,
_2-s
2+

4

g , and HEinC‘S S

Moreover, by the arguments from [11], Strichartz estimates for coefficients 9%¢ €
L1 (cf. [11, Theorem 1.3]) and also the inhomogeneous equation (cf. [11, Theo-
rem 1.5]) are derived. We have the following theorem, which is important to treat
the quasilinear equation.

Theorem 1.3. Let ¢ : R x R? — R3*3 be o matriz-valued function with Lipschitz
coefficients, satisfying (3) and 0%c € L'L>™. Let u, pe, pm be as in Theorem 1.3,
and (p,p,q,3) be a Strichartz pair. Then,

1D [ ull o750y S 17 lulloe 2+ 1 | P, )ul a2
(10) +T2[D'2 pe(0) | 2qrsy + T2 1D/ 2 Bupe 1122
+ T [1D']72 i (0) | 2qesy + T2 D'~ Ol 112,
whenever the right hand-side is finite, provided that u > 1, and T||0%¢|| 1~ < p?.

The reason for additional terms ||| D’|~2,p|| ;1 2 showing up, compared to The-
orem 1.1, is that we use Duhamel’s formula in the reductions. For applying the
estimates to solve quasilinear equations, L>°L?- and L' L?-norms are needful. We
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further have to reduce the regularity of e to control ||O¢||pr1 for energy estimates.
We denote homogeneous Besov spaces by BP?" with norm

Hu”%gﬂ = Z A [Saullze La
xe2z
with the obvious modification for » = oco. For the coefficients of ¢, we use the
microlocalizable scale of space (cf. [18, 11, 19]):

[lv]|xs = sup A®||Sav]|p1pe-
€22

Theorem 1.4. Lete € X*, 0< s <2, andu= (D, H), (p,p,q,3), and o as in the
assumptions of Theorem 1.2. Then, we find the following estimate to hold:

11D~ % ull gpase S ¥ [ul| o2 + 7 [[|D]~7 Puuf 12
(1) +TH|IDI™ 77 pel 12 + TH([DI73 7 Dypel|pre
+T3|ID 725 prall o2 + TEIIDI ™25 Buprm 1112
for all w compactly supported in [0,T), and p, T verifying
T |ell3es S w*Fe.

Inhomogeneous Strichartz estimates can be derived by similar means as in [11],
which is omitted here. We record the following corollary, which becomes useful
when we treat quasilinear equations. The corollary is proved following along the
lines of [11, Corollary 1.7].

Corollary 1.5. Assume that ||0pellp2p~ S 1 and for some § € [1,2), suppose that

llellxas < 1. Let (p,p,q,3) be a Strichartz pair, and P(x,0) as in (6). Then the

solution w= (D, H) to

2 P(z,0)u = f, O1ur + Oguz + O3uz = pe,
u(0) = uo, Or1ug + Oous + Osue = pm

satisfies

(D)~ *ull oo, 109 S luwollez + £l 0,702

_1l_ga _1l_a
(13) + (D)2 pe(0)[ L2 + (D) 27 Depell L
_1l_oc _1_c
+ (D) 2% pm (0)llz2 + (D) ™27 7 Orpm | L1 2
fed _ ) — 2=5
fora>p+ S and o =0(5) = 373

Asin [11], after conjugation of P(z, d) the key ingredient in the proof of Strichartz
estimates are estimates for the half-wave equations. We use the following result,
shown in [11]:

Proposition 1.6 ([117 Proposition 1.8]). Let A € 28 X > 1, and d > 2. Assume
e = € (x) satisfies €9 € C?, ||0%||L~ < 1, and (3). Let Q(x,d) denote the pseudo-
differential operator with symbol

Q&) = ~&o + (9, (0)6&5) ">

Moreever, let u : R x RY — R decay rapidly outside the unit cube and (p,p,q,d) be
a Strichartz pair. Then, we find the estimates

(14) APlSxull e e S 1SxullL2 + [|Q(x, 8)Syul| L2
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to hold with an implicit constant uniform in \. For Lipschitz coefficients ¥ with
[02¢| L1 g < 1, we obtain

(15) )\_pHS)\u”Lqu 5 HS}\UHLOQLQ + ||Q($, 6)SAU/||L2.

The Strichartz estimates yield an improvement of the local well-posedness theory
for Maxwell equations
{ P(z,0)(D,H) =0, V-D=V-H=0,

(16) (D.H)(0) € H'(R*R),

where e 1(D) = ¥(|D|?*)13x3, and 1 : R>g — R>q is a smooth monotone increasing
function with 4(0) = 1. This covers the Kerr nonlinearity ¢ = (1 + |E|*)13x3. The
energy method (cf. [3]) yields local well-posedness for s > 5/2. We also refer to
Spitz’s works [13, 14], where Maxwell equations with Kerr nonlinearity were proved
to be locally well-posed in H3(Q) on domains. By the same means as in [11], we
obtain the following improvement over energy arguments via Strichartz estimates:

Theorem 1.7. (16) is locally well-posed for s > 13/6.

In the two-dimensional case we have shown that the derivative loss for Strichartz
estimates with rough coefficients is sharp (cf. [11, Section 7]). In the three di-
mensional case we do not have an example showing sharpness. However, the fact
that the derivative loss matches the loss for second order hyperbolic operators in-
dicates sharpness of the Strichartz estimates in the present work. We contend that
s > 13/6 is the limit of showing local well-posedness for (16) via Strichartz esti-
mates. Nonetheless, an improvement of local well-posedness might still be possible
by adapting the arguments for the proof of sharp well-posedness for quasilinear
wave equations as in [12, 4].

Outline of the paper. The strategy of the proofs follows [11] closely. In Section 2,
we point out how standard localization arguments reduce Theorem 1.1 to a dyadic
estimate with frequency truncated coefficients. Then, the symbol is symmetrized
to two degenerate and four non-degenerate half wave equations. We see that the
divergence conditions ameliorate the contribution of the degenerate components
as in the two-dimensional case. The estimates for the non-degenerate half-wave
equations for € having less than three eigenvalues are provided by Proposition 1.6.
Estimates for less regular coefficients (Theorem 1.2, Theorem 1.4, and Corollary
1.5) and inhomogeneous estimates follow as in the two-dimensional case. Hence,
the proofs are omitted. In Section 3 we prove Theorem 1.7.

2. REDUCTION TO HALF-WAVE EQUATIONS

The purpose of this section is to reduce (1) to half-wave equations. The Strichartz
estimates then follow from Proposition 1.6. The key point is to diagonalize the

principal symbol of
_( Odsxz  —B(9)
P(z,0) = (B(8)5_1 5’t13x3> ’

The diagonalization argument follows the two-dimensional case, but is more in-
volved. The eigenpairs had been computed in case of constant coefficients in [10].
This suffices on the level of the symbols. Further reductions are standard, i.e., lo-
calization to a cube of size 1, reduction to dyadic estimates, truncating frequencies
of the coeflicients, and we shall be brief. We start with diagonalizing the principal
symbol:
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2.1. Diagonalizing the principal symbol. Corresponding to (5), let

0 =& &
(17) BE) =& 0 &
=& &0
We find
18) e =i (@) o)

We suppose that e~ = diag(a, b,b). Let
€ =& + & +&5,  1I€l2 = b(2)€f + a(2)& + a(2)&3,
g=a/llEll,  &=&/lEll, i=123
The eigenvalues of p(z, ) are
A2 =i, Aza =il Fivb(@)IEll, Ase =il Fill¢]e
Let
d(, ) = idiag(é0, &0, &0 — V@)[€]l, &0 + VO@) €]l €0 — [1€]l- €0 + [1€]12).

We find the following corresponding eigenvectors, which are normalized to zero-
homogeneous entries. Eigenvectors to i§, are

= (0,0,0,¢1,8,6),

= (2,28 400,

Eigenvectors to i€y £ i4/b(x)||£]| are given by

= (0.~ & @2y qe ),

NG
vy = (Ovﬁ,—ﬁv—( RN R ANAA)

Eigenvectors to i€y =+ i||€||c are given by

t = (62 + 537 51521 _5153707 _53752)7

Us =
é = ( - (52 + 53%)7 51523 51533 Oa 7537 52)
Set
m(z,&) = (v1,...,06).
We find
m~(z,€) =
0 0 0 3 > &
ab&q ab&s ab&s 0 0 0
0 _VolEl _és Volel _& 1 €163 £1¢s
2[€ll- £2+¢2 2[I€lle £2+¢2 2 2(&5°+€57) 2(57+€5%)
0 VOlIEN & _ Vo]l & 1 5’15& £1€5
2lelle 3+¢2 2[[lle e2+€3 2 2(&5°+€57) 2(552-5-5/{3)
a __b&i& _ _b&i&s 0 & ||5||e lI€11=€5
2 2(34€3) 2(82+€3) 20E(EF+ER)  2MIENET+HED)
_a b&1&s b61&3 o —lel f Hf”gﬁé
2 2(€2+€32) 2(63+€2) HEGH 2[|€M (€2 +¢

2|
In the constant-coefficient case, Lucente—Ziliotti [7] used a sumlar argument but
did not give the eigenvectors. It turns out that these have to be normalized carefully



QUASILINEAR MAXWELL EQUATIONS IN 3D 7

to find uniformly LP-bounded conjugation operators. More precisely, note that the

matrix becomes singular for €2 + |£5| — 0. The remedy is to renormalize vs, . . ., vg
with
&+8):
(19) a(z,§) = (273);
(HINBE

In fact, we find by elementary matrix operations, that is adding and subtracting
the third and fourth, and fifth and sixth eigenvector, that

0 O 0 1 0 0

00 0 0 & &
detm(z. O ~: |3 0 o o o 2|~ @bty =at@e).
0& & 0 0 0

0 & & 0 0 0

This suggests renormalizing the eigenvectors from above with (19), as for the as-
sociated eigenvectors of vs/a(x, &), ..., ve/a(x, &) we can verify LP L9-boundedness.
We give the details. Let 6 = [|£]|/||€]|e. Note that

2L et (@24 1
Oé(l‘,ﬁ) — (52 +§3) = (52 "’;f&) _ ((5( 52 +£é2))§
(li€ltligll)> 02
We find
(20)
m(z,§) =
i 0 0 (OE +&)F —(6(E + &)
[ < AN 131 02618
P VBGERER)E VRO )2 (e3+€3)1/2 (E3+63)2
0 & & & 524G 3268
VBOERHER)? VB HER) (E3+63)2 (E3+6)2
g o e @)t 0 0
62 62 1~ 1~
& 0 £1€5 . £18% . _ ~5§§3 ; o ~5§§3 ;
(3P +¢2)) 2 (3(ep+ep)) (E3+6)2 &+
g o A& Ak bt et
(B(e+€))2 (35 +e)) 2 E+&)3 (E3+8)2

By Cramer’s rule, we find m(z, &)~ from m™1(x,£) by modifying the rows 3-6:

m(x,€) =

0 0 0 S! & &
ab&y abés abés 0 0 0
0 __Eshé Vishe,  _(@re? GCLL AL
2+65)2 2G3+8)2 202 2(eRHeR)? (e +E5)
0 VLEISH __ers (G2 02618 02618
- o GRSk 2Ae3+ED2 202 A +ER)? 2AeE+ER)2
a(62+€3)2 _ bé1és _ bé1és 0 _ & &
I o | oy L Zo | Fovy E 1 1
28 2063+ 205(E3+E)? 20(62+E7N)2 2062 +€R))2
_al&tE5)? birkr berds 0 _ & &
202 208346502 200(83+8)2 20(EP+ENE 20(EP+ER2

Conclusively, we find

Pz, &) = m(z,&)d(x, )m "(x,€).
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Next, we associate pseudo-differential operators with the symbols. A little care
is required when having symbols (£3 + £3 )% in the denominator. These must not be
K

separated from 0, or O3 to recover bounded operators in L?
Let 0% denote the second partial derivative with respect to coordinates i, and

= 0p((&2 +€2)%), D=0p(|¢]), D.=O0p((&&c)?).

We give the expressions for M

i
M =0, M= D 31(071 )s
€
1 1
My =0, Mis=—5-D2Ds3, Mig=—— D Dy,
D2 Dz
Moy =0, Mas = —0,(b71), Moy — —— . D25 (L
21 3 22 Dg 2 ) 23 D% € 3 b )
i 181 1 8% 110
M =—— 2_79 (_— , Mor = _ . D2 , M = — 3 ,
2 3 D23(\/5 ) » D§ Do3 2 Dg% Do3
) _ ) 1 82 1
Mz =0, Mz = —E33(b LYy, Mz = T Dz Digg(\/g ;
1 1 82 1 1 1 8123 1 1 613
M pr 2Ly My =L prdis g =L pidis
T py e Dzs( b ) % § Dos ¢ D§ Do3
{ 1 Do
My —551, My =0, Myz=-D¢ - R
1 D
Mys=—DZ - 0233’ Mus = Myg =0,
Mot = — -0y Moy =0, Msy = D3 . L2
51 =~ 750, 52 =0, 53 = —D¢ DIDy
1 o2 1 Déag ? D%aS
=_pz._12 = . =
My E 1Dy’ Mss é Dos | Mg 8 Dy
1 O
M1 = —553, Mgz =0, Mgz =—D: DiDy,’
192 i D20 i D320
2 B Mes = j'D27 Megs = — l'DQ-
D? 23 D2 23

For the diagonal symbol d(z,£) we consider

i\/b(x)D,8; +i\/b(x)D,d; +iD.,d; — iD.).

D= dlag 3,5, 8,5, 8,5
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We associate operators to ! as follows:

N1 =Nip = Ni3 =0,
Nit = i~ Nis = —iths,  Nig = —ids—
14 = ZlD, 15 = ZQD, 16 = Z3D7

. 1 . 1 . 1
NQl = —zabal—, NQQ = —Zabagﬁs, N23 = —zab83D—E,

D,
Nog = Nos = Nog = 0,
b 0 1 b O 1
N3 =0, N32:i£'73D%'T7 N33=—i£72D%' T
2 Do D2 2 Dog Dz
Doy 1 82, 1 1 2 1 1
Noy= 2 e R VAR B S
o 2D3 Ds% % 2Dy3 D3 Dé % Dy3 D3 Ds%

The remaining expressions are given by

b O 1 b O 1
N41 = 0, N42 = 71§D73D% . 5 N43 = ’L%DiD% T
23 D2 23 D2
D 1 0%, 1 1 0%, 1 1
N44:_ 221. T N45:_ L= T 1o N46__ 13 T 15
2Dz pe 2D23 D2 p2 2D33 D3 D2
a D 1 b 0? 1 b 0? 1
N51:7' 25' 1 N52:7 ;12 1 N53—7 ;13 1
2 Dz D2 2 D2 Doys D2 2 Dz Doyg 2
0 .0
N54*07 N55: 2 T D€7 56 — —1 2 1 ¢,
2 23D2 2D23D2
a D 1 b 0? 1 b 0% 1
N61:7§ 25 1 N62:7§ 112 T 1o N63:7§ ;13 1
Dz pz D=Dj3 p2 D=Dy3 D2
0 0
Nes =0, Ngs =i & - D2, Ngg=— 2 T+ Dé
2D23D2 2D23D2

After a long, but straight-forward computation we find the composite expressions
to be

1 1 1 D 1
(MDN )11 = ——=-01(a" " )8abdy — + —5 D* Dysdra—2 —,
D, D, D2 Dz D2
-1 1 1 0? 1
(MDN)12 = 781 (ail-)(atabag—) + 3 D%ngatblilz . T
D, D" pz DzDy3 pZ
(MDN )13 = 1y (a=1)0,ab0 €L + L D% Do (b- Ok i) (MDN )14 =0
13 DE 1 t SDE DE% 23Ut D%DQB DE% ) 14 )
1 1 O3 1 1 1 Os 1
(MDN )15 = —5D2DysD.———DZ2, (MDN )4 = ——5D2>Dy3D.———DZ2.
D? Dy3 Dz D2 93 D3
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1 . 1 1 10, D 1
(MDN)Ql— Dsag(b )(atab31D€)+D§D ngataD% DE%,
1 _ 1 1 105 1 d5 1
MDN )y = ——8a(b"1)Bpabdy— — — D2 —>(—= - )0 (Vb="-D7 -
( )22 D, K (07" )0a 2. T Dt Dgg(\/E et Dos
1 103 0%, 1
+—D2?229,(b—2—) —,

De% Dog D2 Dy Da%
__1 -1 1 1
(MDN)QS — D782(b )atabagﬁe + iDQ —— (% )8t7D723D2

812 8 b 8123 1
D% D23 D2 Dy D%

+

(MDN)24 = *D D 83D7

D2
03 0% 1 1 1 0% 5} 1
(MDA )y = ——pt P pda L 1 1 p3Oy 05 ph
" D} " Dy Das D3 D? DE Dis " Day3D2
5 9% 1 1 o2 ) 1
(MDN)gs = ——p %3 pdis 1 Lptdp % pi
" D3 " Doy Doy D3 DZ D2 Dss " Dy3D>
1., 1 L 3 0%, Dy 1
MDN)31 = ——083(b~ )0y (abd) —) + — D* B9,0—= - —,
(MDA = = 50067 )0uabds )+ — o D 20—
1 11 s s
D = 9y(b")abdy— + —1 DE 0 (Vb—="-D
(MDN )32 = = 5050 Jorabda -+ = DF (2= )on (Vb -
2 2
L1 D%@@(b 01 .L%

DE% D23 D%Dgg DE%
1 1 1 10 1 0
(MDN )33 = ——=3(b~1)9yabds — — — DZ > (—= )9, (Vb——D7% -

D, D. D3 Dos *\/b Dos
+ 813 at a123 . 1
D2 D23 D%Dgg D‘s%’
1 1 1
(MDN )34 = 71D6; 8,D% - —,
Dz D2
2
1 1
(MDA )5 = — D222 p3 Oz D} 1 Ols 05 _DE,

D% Das Dys De% D2 D3 " Dy3D2

1o, 0%, 1 1 1 0%, 0 1
2 ps .~ p:Bp 2 _pi
Dys Do D3 pz  pz D2 DoyyDs

(MDN) 36 — De

L
2

~—

M o)

M o)

ol
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(MDAt =0, (MDA )y = —DZ l;??’ (\/BD)\/BgiD% A ,

w DI
1D 15, 0? 1D D
(MDA)s5 = DE 22 (VBD) (VoD - ), (MDA = ~Oy g + DI
Dz Das D2 Dz Dz
8 ,D 82, 1 1 %, 0% 1
(MDN )45 = —at 23 9,2 —, (MDN)y = —at +D28t 13 .
Dos D2 DE 2
€ E
(MDN) 1 Dz Do 1
oL D% Dos3 D2 D%7
1 D39 9%, 1
(MDN )5y = - \fD\f—D’ . - Db
D2D2 Das pz DE Dss D2 D3 2
1 1 Dzo 9% 1
(MDN) fD\fiDi 1 + 1 - 3D6b 113 1
2D2 D3 D2 D? Do Dz D3 p2
0%, 192 1
(MDN)54 = _at + DE 12 815 1
02 1 92 02, 1 1 1 05 1
(MDN)55 == —8t 2 l)2 12 8,5& . - 776t83D27
D2 D%D23 D23 D% DE% DE% D%S :
92 92 92, 1 1 1 D20 )
(MDN)SGZ_at 22 +D6 512 ti T T 1 1733t72l.D82
D2Dy3 DazDz pz  pz D2z Dy3Do
(MDN)Gl = - 11 Déa? DE D23 11 )
DE Do3 D2 D2
92 1 1 D20 9%, 1
(MDN)gz = 13 \fD\f—D’ Sy s s - R
Dz Dos Das DE DE Dos D= D3 p2
3 1 D2 2 1
(MDN)G?) = Dé 613 fo7D7 1 282 DEb (1913 1
D3 Dy Das DEE DE Dos Dz Day3 p2
6‘ 192 1 1
(MDN )4 ——at -+ D? 133 —,
D3 D2
02 1 92, 02, 1 1 1 020,
(MDN)os =~ 3 + D2 —2—0, 5% 22 9sD2

D%D23 tD23ED§ D2 D23
1 0% s 111

D2Dy3  Das D> D2 D2 Das ' Das

In Subsection 2.4 we shall prove that the difference with P, after further reductions,

is bounded in L2.

(MDN )66 = —3t

2.2. Reductions for C?-coefficients. Next, we carry out reductions as in [11] for
the proof of Theorem 1.1. Precisely, we apply the following:

e Localization to a cube of size 1,

e Reduction to dyadic estimates,

e Truncating the coefficients of P at frequency )\%,
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e Reduction to half-wave equations.

To begin with, by scaling we suppose that ||0%¢||p~ < 1 and pu = 1.

2.2.1. Localization to a cube of size 1. Let s(¢) denote a symbol supported in
B(0,2)\B(0,1/2) such that

d s =1, eRN{0}.

JEL

For A € 2N let Sy = S(D/) be the Littlewood-Paley multiplier and Sy = 1 —
>0 52 Let u = Sou+ (1—Sp)u. Asin [11, Paragraph 3.2.1], the contribution of
Sou is treated by Sobolev embedding and the Hardy-Littlewood-Sobolev inequality.
It remains to prove the claim for the inhomogeneous norm for the high frequencies:

— _1 _1
KDY Pullora S Nlullz> + 1Pull 2 + (D)2 pell L2 + (D) "% pmll 2

with (D) = Op((1 + |£[2)2) and (D) = Op((1 + |¢'[?)2). We introduce a smooth
partition of unity:

1= > x(z), x;(z)=x(x—j), suppx C B(0,2).

jezn+

By commutator estimates, we find (cf. [11, Paragraph 3.2.1])

> Ixgullze + [Pxjulie < llullZ + | Pullz:,
J

and

(D) “Pulltore S Z (D XjU”%qu-

2.2.2. Reduction to dyadic estimates. By Littlewood-Paley theory and commutator
arguments, we find that it is enough to prove

_ _1 _1
1) APUSaullzers S [1Saullze + [1PSxullze + A7 2 [|Sapellre + A7 2 [|Sxpmll 2.
Details are given in [11, Paragraph 3.2.2].

2.2.3. Truncating the coefficients of P at frequency Az, Finally, we reduce (21)‘ to
e5; having Fourier transform supported in {|¢| < Az}. Note that for A > 1, 61;;,
2

denoting the Fourier truncated coefficients, is still uniformly elliptic. The error
estimate is shown as in [11, Paragraph 3.2.3]. It is enough to show

— _1 _1
(22) A7PlSxullLrre S [[Sxullze + [[PaSxullzz + A7 2 [1SxpellLz + A7 2 [[Sxpml| L2,

where

Oilzxs  —B(9)
(23) Py = (B(a)e)\ll Oilsys | °
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2.2.4. Reduction to half-wave equations. We consider the two regions {|&o| > ||€]|}
and {|&o| < [1€]|}- The first region is away from the characteristic surface, hence, P is
elliptic in this region. The contribution can be estimated by Sobolev embedding. To
make the argument precise, we use the FBI transform (cf. [16]-[18], [11, Section 2]).
For A € 2%, we define the FBI for f € L'(R™;C) by

Tof(z) = Cu X5 [ e 29 f(y)dy, 2=z —i € T*R™ = R?™,
]Rm

m  _3m

Cp=2"727" "1,

Ty : L2(R™) — L2(T*R™) is an isometric mapping with ®(z) = e~ *¢". We write
z = x — i€ because T) f is holomorphic. T) f is related with the Fourier transform
by

Tyf(2) = Cod T e3¢ / e 30 ) £ )y,

m

We have an inversion formula for the FBI transform by taking the adjoint mapping
in L2:
T;F(y) = Cpp A5 / e 2 F ' §(2)F(2)dade.
R2m
The FBI transform allows to conjugate rough symbols to multiplication in phase
space. We consider a(z,§) € C:C°, a(z,£) = 0 for £ ¢ B(0,2). Let ax(z,§) =
a(z,£/X) denote the scaled symbol supported at frequencies < A. Let

» L 090fa(z.&) 1
B 2 00" e (0 9"

lol+18]<s

For s <1, we have
a = a.
Define the remainder
RS . = ThAx — a3 Ty
We need the following approximation result:

Theorem 2.1 ([17, Theorem 5, p. 393]). Suppose that a € C3C°. Then,

IR alosy, S A7,
10 = MRS allzasra SA2TE.
We make further use of the following multiplier result:
Proposition 2.2 ([11, Proposition 2.2]). Let 1 < p,q < 0o, a € CECP(R™ x R™),
a(z,§) =0 for £ ¢ B(0,2), and

sup ( Z ||D§‘a(x,-)||Lé) <C.

eR™
Then, we find the following estimate to hold:
1T a(z, & )TxfllLrre < CllfllLrLa-

To estimate pseudo-differential operators, we use the following:
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Lemma 2.3 ([11, Lemma 2.3]). Let 1 < p,q < 00, and a € C3C°(R™ x R™) with
a(z,£) =0 for £ ¢ B(0,2). Suppose that

sup  »  |[Dga(, M <C.
zeR™ 0<|a|<m+1
Then, we find the following estimate to hold:
la(2,0) fllrra < ClfllLrra-

We return to the reduction to half-wave estimates: By applying Theorem 2.1, we
find

P(xz,0 1

73 (P ) — o, T Snulzy, A Sl

Denote vy = TxS\u, and we observe for [£y| > ||€'||
Ip(, €)vallzz 2 loallsa

by the diagonalization

p(x7£) = rh(xag)d(xag)m_l(x7£)) |d11‘ Z |§0| Z 1.
The claim now follows as in [11, Paragraph 3.4.3] by the L?-mapping properties of
the FBI transform and Sobolev embedding.

We handle the main contribution coming from {|&o| < ||¢'||} following along the
lines of [11]. In the following assume that the space-time Fourier transform of u is
supported in {|&| < ||€’]|}. We start with the proof of

APNSvwllprre S Sxullzz + [DSxwllre + A2 [Sxpellzz + A2 [Sapm 2,

where

D = diag(dy, 8y, 0y + iVbD, 0, — iVbD, 0, + iD., d; — iD.)
and w = SB\NSAU. SA = ng Soiy denotes a mildly enlarged version of Sj.
For the estimates of w3 to wg we invoke Proposition 1.6. For the first and second
component, we use Theorem 2.1:

| T5Saw; — [~ (2, &) TaSaulill 2 < A% [ Saullp2, i=1,2.

Denote vy = ThS\w. By 01u1 + Osug + Osug = pe, O1uq + Oaus + J3us = pp,, and
Theorem 2.1, we find

[~ (2, &) TaSaul | 12
< HLSAP L2 + HTA(aliSAUAL + 32l5,\us + 83LS>\U6) —i(&vaa + Eua s + Eune) |2
= Ip=rrm D D D : 5 T S3TA6/NLG
S A2 (|Sapmllz2 + A7 |Shull 2

The ultimate estimate is a consequence of Lemma 2.3 and the frequency localization
|€'| ~ |€]. Similarly,

[ (2, ) TaSaula| 12

1 1 1 1 - ~ ~
< HESAPeHLQ + ||TA(E315AU1 + EazsAuz + EaBAus) —i(§1oa1 +&ua2 + &uas)liLe

— 1
SATHISapellnz + A7 2 [|Sxul z.

By the triangle inequality and mapping properties of the FBI transform, we find
the estimates

_1 _ _
ISxwillze+Sxwallzz: = loaalleg +Hlvazley S A2 [SxullL2+A7" [SxpellL2+A7" [Sxpm |l 2
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This allows for an estimate of |Sxw1||Lrrs + || Sawz||Lrre by Sobolev embedding.
For details we refer to [11, Paragraph 3.4.3]. Also the conjugation with m, m~! in

phase space can be estimated as in [11].

2.3. Reductions for d2¢ € L'L>. The reduction of Theorem 1.3 to the dyadic
estimates

(24) A°(|Soullrore S [1Saullpo 2+ PxSaullpizz + A2 [Sxpellzz + A7 2 [|Sxpmll 2
is a variant of the above argument. The steps are:

e reduction to the case p =1,

e confining the support of u to the unit cube and the frequency support to

large frequencies,

e estimate away from the characteristic surface,

e reduction to dyadic estiamtes,

e truncating the coefficients at frequency Az,
For details we refer to [11, Subsection 3.4]. Since the error estimates proved in
Proposition 2.4 is valid for frequency truncated C'-coefficients, we can use the
diagonalization and Proposition 2.4 to (24) to an application of half-wave estimates
recalled in Proposition 1.6.

2.4. Error estimates. In this section we prove the following:

Proposition 2.4. Let A € 280, M, D, N with frequency truncated C' coefficients

1
Ef‘jz as in Subsection 2.1 and Py as in (23). Then, we find the following estimate
to hold:
(25) IMDNSY — PaSillr2—12 S 1.

For the proof commutator estimates for pseudo-differential operators are crucial.
We consider symbols p € C*°(R™ x R™\0), which are homogeneous in &, i.e.,
p(z,v€) = v¥p(x, ) for some v > 0 and any £ # 0, and satisfy

(26) sup 0p(z, )| Sp A 1Bl > 1.
z€R™ £€B(0,2)\B(0,1/2)

To estimate p(x,d) in L?, we use Lemma 2.3.

Furthermore, in [11, Section 2] was shown that compositions of these operators
admit an expansion as in the classical Kohn-Nirenberg theorem with suitable L?-
bounds. Recall the following:

Proposition 2.5 ([19, Proposition 0.3C]). Given P(x,d) € OPS™  Q(z,0) €

p1,01
oprPs™ o 0, SUPPOSe that

0 <63 < p <1 with p=min(p1, p2).
Then, (P o Q)(z,0) € OPSZ?gJFmQ with § = max(d1,92), and P(x,0) o Q(x,d)
satisfies the asymptotic expansion

1
(PoQ ZanPaa )(z,0) + R

where R: 8" — C is a smoothing operator and D = (—z')lalag.

The terms can be estimated by Lemma 2.3. For the proof of Proposition 2.4 the
following commutator estimates, which follow from this expansion and Lemma 2.3,
suffice:
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Proposition 2.6. Let A € 2Yo. Suppose that pi(z,&) and pa(z,€) are symbols,
which are B1 and Ba homogeneous, respectively, and satisfy (26). Then, we find the
following estimates to hold:

11 (2, 8) o pa(x,8)Sx | L2 (m) s L2@my S AP HA2,
[p(2, 8)Sx, q(x, B)SA]| L2 (&m) s 12 (mmy S AP1HF271L,

We record the following useful special case (cf. [11, Lemma 2.5.])

Lemma 2.7. Let A, € 2V with min(\, ) < max(\, p) and o € R. Then, we find
the following estimate to hold:

(27) 1SAD2 S, 112 sr2 Sa AV @)™ for any N.
We are ready for the proof of Proposition 2.4.

Proof of Proposition 2.4. We verify the estimate componentwise and note that we
are free to include frequency localizations SS\Q between the single operators by
Lemma 2.7 and the frequency localization of ¢ and b. To denote operators bounded
in L?, we write Op2(1).

We start with the estimate for (MDN)1;: Momentarily assume that a, b are time-
independent. By Proposition 2.6, we compute

(MDN)115%
1 1 1 1 D 1
= 0(~ 1S3 (0) 1 S-S + -S4 D% DygaSh =22 —-84) + Op2(1)
e e D2 Dz D2
1 1 1 1
= 8t(_D75;al(b')alsg\D75$\ + —S\aD3; 5, — 53) + 02 (1)
€ € DE2 D€2

= 8t(—DiS&(b<9% +adi + aa%)sgDisg) +0r2(1)
= 8tS$\ + OL2(1)

For time-dependent a, b the estimate is found likewise, with additional commutator
estimates. Hence, in the following we suppose for simplicity that coefficients a and
b are time-independent. For the estimate of (MDA )13 observe

1 1 1 1
_a_i/62/i/i/82/i/
= 0( D S\b 125/\D S\ + D S) 125/\D Sy) + 02 (1)
= 0;2(1).

The estimate for (MDN)13 follows likewise. Furthermore, the estimates for (MDN )15
and (MDN )16 follow directly from Proposition 2.4. For (MDN )21 we find

1 1 1 1

= 02(1).

2Strictly speaking, they have to be slightly enlarged every time we include them, but this will
be omitted for the sake of brevity.
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For the estimate of (MDN )22 note that

1 1 1 1 02 1
MDN )28k = 0, ((— — Shad2S, —S,) — — S\ D2 S\ —2- Dz — G},
( )22 A t(( D AYY2 /\D A) Ds A /\D%d DE A

108, O 1
~S8i\D: 22 p—12 gl _—_8) +0;2(1
Dz A D23 D2D23 kDE A) r2(1)
1 03 03
=0 ((— Es;aagsgis;) DggsA B L g1002 Dg SAD S3) + O (1).

We use the identity

(28) bd? + ad? + ad2 = —D? in L?

for the last term:

3 1 1292 02

1 1
(MDN)228) = 8t(( 5308553353) " D.

1 02
*D*ESA (32+33) 5 S’\D S4) 4+ Or2(1)

= 0,55 + Op2(1).

The estimate for (MDA )a3 is found by similar means. After straight-forward ap-
plications of Proposition 2.6, we find

823

03, 1

22 g
At DZ, D.

1 1
(MDN )38 = —35-Shad3584 -4 + L spors O

D,

By plugging (28) into the last term, it follows like above
(MDN )35\ = Op2(1).
The estimates for (MDN )24 and (MDN)o5 follow directly from Proposition 2.6.
For (MDN )36 we use Proposition 2.6 to write
0103 0,02
Dgg D2
=S\ + Or2(1).

The estimate for (MDN )31 follows as for (MDN)12. For (MDN )32 we can argue
as for (MDN)a3 and for (MDN )33 as for (MDN)aa. The estimate for (MDN )3y
follows as for (MDN)a4, for estimating (MDN )35 we refer to (MDN)q6 and for
(MDN )36 to (MDN)2s.

Furthermore, the estimates for (MDA )42 and (MDN )43 follow directly from
Proposition 2.6. For (MDN )44 we note that

03
(MDN)44SS\:at( S}\‘i’DZSA

(MDN)2655 = ——57- 5% —

S+ 0r2(1)

A\) + Orz2(1)

€

W+W+W
= a2 E) 5 o)
and the claim follows because

(29) ~D?* =07 +03+093in L
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The estimates for (MDN )45, (MDN )4g, (MDN )51, and (MDN )52 are again di-
rect consequences of Proposition 2.6.

Next,

8182 8162

3, g

= —b01 Sy + Or2(1).

(MDN)535)\—b S)\-i-b S)\—‘rOLz)(l)

For (MDN)55 we find

/ 0? 0 03 03 o
(MDN)555\ = —0— S,\+8tD2 D%, Sy — (?tD—%gSA—f—OLz(l)
By (29), we can rewrite the second term to find
03 05 + 03 03 0?
(MDN 55845 = at 25\ — =2 g 3 2 SA O 0535 at D§3 SA + Or2(1)
= 8tS/\ + Op2(1).
We find by Proposition 2.6 and (29),
03 0? 93 03
(MDN)5654 = —0, 235 -+ 25,8, +8; =225} + Or2(1)
5 A t )\ D2 D2 TN\ tD%B by L
_ 035 03 + 03 933 033
— at S)\ D%P) 6238t5)\ Dgg 8tS)\ D%P) atS)\ + OLZ( )
= OLz( ).

The estimate for (MDN )g; can be carried out as for (MDN)s51. For (MDN )s2
and (MDN g3 we refer to (MDN)s3. (MDN )64 can be estimated as (MDN )5y,
and (MDN )g5 is handled as (MDN )gs and (MDN )gs as (MDN )s5.

The proof is complete. g

3. IMPROVED LOCAL WELL-POSEDNESS FOR QUASILINEAR MAXWELL EQUATIONS

The purpose of this section is to improve the local well-posedness for

{ P(z,0)(D,H) =0, V-D=V -H=0,

(30) (D.H)(0) € H*(R*R),

where e71(D) = ¥(|D|?), where 1 : R>o — Rxq is a smooth, monotone increasing
function with ¢(0) = 1. Energy arguments give local well-posedness for initial data
in H%(R3), s > 5/2. We shall use the previously derived Strichartz estimates to
lower the regularity to s > 13/6. The proof follows the argument from [11] closely.
Let A = supgey < ||Ju(t’)||zes and B(t) = ||V u(t)| < and suppose that smooth
solutions - : ‘
= (D,H):[0,T] x R® - R* x R?

exist locally in time.

The argument to prove local well-posedness for s > 13/6 consists of three steps:

e Showing energy estimates for solutions u to (30):
(31) B (u(t)) S 7N PO B2 (u(0)),

where E*(u) ~4 ||lu| gs for s > 0.
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1

e Proving L2-Lipschitz bounds for differences of solutions v = u! — u?, where

u® solves (30) for i =1,2:
(32) lo(®)132 < e o By (0)3,

where A = supg<pr < [[ua () || Lo +supg << 2 ()|, B(t) = [[Varua (8l Lo+
IVarua(t)] Lo
e Inferring continuous dependence using frequency envelopes (cf. [15, 3]).
Up to modifying the definition of the energy norm in three dimensions, the proof
follows [11]. Hence, we only give the proof of the energy estimate.

Proposition 3.1. Let s > 0. Then, we find (31) to hold. Moreover, for uy € H®,
s > 13/6, we find that there is T = T(||luo| ps) with T lower semicontinuous, such
that

sup |[u(t)]| e < [luoll e
t€[0,T]

Proof. We consider energy norms as in [11]:
lullZe = (D) u, C(u){D")*u) = |[ull3-.
To determine C(u), we rewrite dyu = A7 (u)d;u. For j = 1,2,3, we find
J
1

; 0 A1 (u) ;
Iu)y={ Af, e RS,
A7 (u) <A§(u) 0 ) ) 12 €
It holds
(A{)mn = —E€imn,
where ¢ denotes the Levi-Civita symbol. Furthermore,
0 0 0 0 0 0
Ay =2¢'(u)- | D1Ds  DyDjs D3 + {0 0 ¥(u) |,
—D1D2 —D% —D2D3 0 —’lﬁ(u) 0
7D1D3 7D2D3 7D§ 0 0 *QZJ(U)
AZ =29/ (u) - 0 0 0 + 0 0 0 ,
D? DDy D;Ds Y(u) 0 0
DlDQ D% D2D3 0 1,[)(114) 0
Ag = Qw’(u) . 7D% 7D1D2 7D1D3 + - (U) 0 0
0

0 0 0

2 ., we Tequire

To cancel the top-order term in the time derivative of ||u|
(33) Al (u)*C (u) = C(u).A? (u).

A suitable choice is found with the ansatz

C(u) = (%1 1;13) .

A straightforward computation then shows that C' with
(Ch)ij =2¢" - DiDj + - 6y

satisfies (33). It remains to verify E*(u) ~4 ||ul|%.. For this it is enough to show
that

(€,Ci8) ~a e, El=1.
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The boundedness from above is clear. For the boundedness from below, we compute
(€,C18) = v - [ + 20" - (DY|&1]* + D3|&f” + Dilés]?)
+ 49" - (D1D2&1&5 + D1 D3séiés + DaD3éals)
= ¢- 6 +2-¢" (D& + Dabs + Dsés)?),

which suffices by the monotonicity of ¢ and ¢(0) = 1. For any s > 13/6, we can
choose § > 0 such that due to Strichartz estimates provided by Corollary 1.5

(D) 2 ull 245 0,130%) SJowell 2 po0.T 1H0]lL2
holds. We use the previous estimate to prove
(34) IVarullpz+s 0,100y S lluol|m

for s > 22 and § = 6(s). By smoothness of solution, we require that ||V ul p2+s 0,7, p0) <
K for fixed K > 0 and maximally defined Ty > 0. Take T € (0,T}) with

0zellL2(0,7;15) < T§,||am5||L2+5(O,T;L°°) SAT"K <1
and [|0yel| L1 (0.1:n) Sa TEHK < 1.
This yields uniform constants in the energy inequality (31)
(35) B (u(t)) £ "5 PO B2 (u(0))
and in the Strichartz estimate
(36) D)™ *wllLeo,1;09) S llwollzz + | P(z, 0)w|| L1 12

for a > p+ é from Corollary 1.5 with § = 1 for dyw; + Ows + 3wz = 0 and
O 1wy + Oaws + d3we = 0. For low frequencies, Bernstein’s inequality and (35) yield

1
1S5, Vartl| g2ss poe S T g -

For high frequencies, we consider the auxiliary function v = (D’)*u, which still
satisfies the divergence condition. Moreover,

(37) P, u, 0)o(t)||2 = [I[P(2,u,0), (D) Ju(®)]| 2 Sa [IVul®)l|Les lu(®)] -,

where P(x,u,0) has coefficients e(u)~!. For the Strichartz pair (1+¢,2 + 4§, 00, 3),
estimate (34) yields

1851 Vorullparspoe S (D) vl p2vsroe < llvollze + 1P (2, u, O)v]pa e

~

since we can choose € and § small enough such that s > 2+¢+ 3(#5) By (37) and

(35), we conclude
1551 Varull posspoo Sa lluollms + | Verullprpos lull e s
Salluollsre(1+ T | Varul|p2sa o).
At this point the argument follows the proof of [11, Proposition 6.1]. a

The L2-Lipschitz bounds for differences of solutions follow with the definition
of the energy norm from above as in [11], which allows to conclude the proof of
Theorem 1.7 using frequency envelopes. We omit the details to avoid repetition.
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