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Abstract—Planning for robotic systems is frequently formu-
lated as an optimization problem. Instead of manually tweaking
the parameters of the cost function, they can be learned from hu-
man demonstrations by Inverse Reinforcement Learning (IRL).
Common IRL approaches employ a maximum entropy trajec-
tory distribution that can be learned with soft reinforcement
learning, where the reward maximization is regularized with
an entropy objective. The consideration of safety constraints is
of paramount importance for human-robot collaboration. For
this reason, our work addresses maximum entropy IRL in
constrained environments. Our contribution to this research area
is threefold: (1) We propose Constrained Soft Reinforcement
Learning (CSRL), an extension of soft reinforcement learning
to Constrained Markov Decision Processes (CMDPs). (2) We
transfer maximum entropy IRL to CMDPs based on CSRL. (3)
We show that using importance sampling in maximum entropy
IRL in constrained environments introduces a bias and fails to
achieve feature matching. In our evaluation we consider the
tactical lane change decision of an autonomous vehicle in a
highway scenario modeled in the SUMO traffic simulation.

Index Terms— Reinforcement Learning, Inverse Reinforce-
ment Learning, Maximum Entropy, Constraints, Safety, SUMO.

I. INTRODUCTION

The planning component of an autonomous system is often
realized as an optimal control problem or a reinforcement
learning agent. Both approaches require a cost or reward
function, respectively, which encodes not only the mission
goal but also has to weight competing objectives such as
quickly achieving the goal while at the same time moving
smoothly and with low control energy. Instead of arduously
hand-tuning the parameters of the objective function until
the desired behavior is achieved, reward functions can be
learned from human demonstrations by Inverse Reinforcement
Learning (IRL).

The dynamics of a real system are often too complex
to formulate an accurate dynamics model, especially when
they involve human interaction. For this reason, many IRL
algorithms rely on sampled behavior instead of assuming
knowledge of the dynamics model. To remain sample-efficient,
they frequently use importance sampling. As described by Finn
et al., a particularly suitable sampling policy is given by soft
reinforcement learning [1, p. 4], where the policy is regularized
with an entropy term [2].
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Figure 1: Constrained Soft Reinforcement Learning does not
allow the unsafe action of changing lane to the right for the ego
vehicle (blue). Changing to the left lane would allow driving
faster, but the trajectory entropy is higher on the center lane,
since more options remain available in the future, hence the
lane change is most likely postponed.

The planning task is aggravated by vital safety constraints
when interacting with humans which can not be adequately
captured by a reward function, e.g. how exactly would
you weight energy consumption against risking human life?
Clearly the latter should be avoided no matter what the other
reward terms are. Prior work has shown that constraining the
trained policy upon execution time is not sufficient. Instead,
the safety constraints have to be incorporated during reinforce-
ment learning [3].

To address IRL problems in environments with safety
constraints, our first contribution is Constrained Soft Re-
inforcement Learning (CSRL), illustrated in Fig. 1, which
extends previous work on constrained reinforcement learning
to soft reinforcement learning. Based on this advancement, our
second contribution is to apply CSRL to solve IRL problems
in constrained environments. In particular, we investigate the
effect of importance sampling in presence of constraints as
our third contribution.

We evaluate our algorithms in a highway driving environ-
ment, where an agent is trained to make optimal lane change
decisions. The evaluation is conducted in the Simulation of
Urban MObility (SUMO). This not only allows to compare
the results with the ground truth expert, but also to compute
the true expected value difference between the expert policy
and an agent trained on the learned reward function, which is
not available when using real world data.

II. RELATED WORK

Prior work has studied the problem of safety in rein-
forcement learning extensively. Most approaches try to avoid
collisions by penalizing them in the reward function [4]–[6].
This leads to a trade-off between safety and other reward terms



and hence does not guarantee safety. Instead, the level of safety
depends on the penalty. Another class of methods constrain the
agent’s actions upon execution time by masking unsafe actions
and thus can provide safety guarantees [7]–[10]. However, in
those approaches safety is only considered at execution time,
not during the actual learning process. Since reinforcement
learning primarily learns which action has the highest Q-value,
there is no guarantee on the order of the other Q-values. For
this reason, Kalweit et al. incorporate the constraints directly
into the Q-learning update rule to train a safe and optimal
policy [3]. In comparison, our proposed CSRL algorithm
integrates constraints into an entropy-regularized policy.

There have been many sampling-based IRL approaches
before, some of which use Importance Sampling (IS). Two
particularly important approaches are described in more detail
in Section III-C [1], [11]. Others use sampling in path integral
IRL, but achieve improved performance by dropping the
importance weights, similar to our findings [12], [13].

Kalweit et al. consider a similar problem setting where they
also simultaneously learn the reward and the Q-function [14].
Further they reformulate the problem to not use importance
sampling, but they employ a Boltzmann distribution with
the energy given by the optimal value function, which only
maximizes the entropy of the next action. In contrast, the
maximum entropy policy we consider, maximizes the entropy
of the whole trajectory [2, p. 3]. Additionally, Kalweit et al.
consider the case that the recovered policy has to satisfy addi-
tional constraints that have not been imposed on the expert, a
topic also investigated by Tschiatschek et al. [15]. The topic
of additionally inferring constraints from demonstrations is
considered by Scobee et al. [16].

III. PRELIMINARIES

A. Reinforcement Learning

In a typical planning problem, an agent has to choose
actions in an environment where the task is encoded in an
objective function. Such a sequential decision-making problem
can be modeled as a Markov Decision Process (MDP) and is
defined by the tuple (S,A, T , r, γ). The agent sequentially
chooses actions at ∈ A according to a policy π, where
π(at|st) denotes the probability distribution over actions when
the agent finds itself in state st ∈ S . The transition model
T (st+1|st, at) encodes the distribution over successor states
after executing an action. In each step the agent receives a
reward rt = r(st, at) and its goal is to find a policy π∗

that maximizes the expected cumulative reward (also called
return) Eat∼π∗ [

∑∞
t=0 γ

trt], where the reward is discounted
with γ < 1 in each step [17].

A trajectory τ is a finite sequence of state-action pairs
(st, at). The probability that a policy follows a specific trajec-
tory is given by π(τ) =

∏
t π(at|st) while the reward which

is collected along a trajectory is r(τ) =
∑
t r(st, at).

The optimal value function is defined as Q∗(s0, a0) =
r0 + Eat∼π∗ [

∑∞
t=1 γ

trt] and captures the expected return
when choosing action a0 in s0 and following the optimal
policy π∗ thereafter. Reinforcement learning algorithms use

interactions with the environment to sample the Bellman
optimality equation and iteratively learn π∗ [17].

In the popular Deep Q-Network (DQN) algorithm, the
value function is approximated by a deep neural network
[18]. The network parameters φ are updated to minimize the
squared error between the current value function Qφ(st, at)
and the one-step temporal difference target yt = rt +

γmaxat+1
Qφ̂(st+1, at+1). Introducing separate parameters φ̂

for the target net that are periodically updated with φ̂ ← φ
stabilizes the training process [18].

B. Soft Reinforcement Learning

For modeling human-like behavior, it can be beneficial to
induce sub-optimality by having the agent not always choose
the best action. In deterministic environments, such behavior
can be modeled with a policy where a trajectory becomes
exponentially more likely, the higher its reward is [19]

p(τ) ∼ exp(r(τ)). (1)

Another benefit of such a stochastic policy is that it implicitly
solves the trade-off between exploration and exploitation [2].
Such behavior can be achieved by maximizing not only
the expected return, but also the policy’s entropy along the
trajectory

π∗MaxEnt = arg max
π

∞∑
t=0

Eat∼π [rt + αH(π( · |st))] , (2)

where α > 0 weights between reward and entropy maximiza-
tion [2]. The optimal policy for Eq. (2) is given by π∗MaxEnt =
exp( 1

α (Q∗soft − V ∗soft), where the soft value functions can be
found by iterating the soft Bellman equation

Q∗soft(st, at) = rt + γE [V ∗soft(st+1)] , (3)

V ∗soft(st) = α log

∫
A

exp

(
1

α
Q∗soft(st, a)

)
da . (4)

Note that the conventional Bellman equation is obtained in
the limit α → 0, where Eq. (4) approaches a maximum over
actions [2].

C. Maximum Entropy Inverse Reinforcement Learning

The goal of IRL is to infer an unknown reward function
from a set of N expert demonstrations Ddemo. For now, let
us consider a reward model rθ(s, a) = θT f(s, a) given as a
linear combination of features f(s, a). In general, there exist
infinitely many weights θ that explain the demonstrations,
but a reasonable reward function can be expected to achieve
matching feature expectations

Eτ∼Ddemo
[f(τ)] = Eπθ [f(τ)] (5)

between the demonstrations and a policy πθ trained on the
learned reward rθ, where f(τ) =

∑
t f(st, at) [20]. Due to

the linear reward model, matching feature expectations imply
that the learned policy achieves the same reward as the expert.

The Maximum Entropy Inverse Reinforcement Learning
(MaxEntIRL) framework solves the ambiguity in reward func-
tions by employing the soft-optimal trajectory distribution in



Eq. (1), which implicitly results in matching feature expec-
tations [19], [21]. The reward parameters θ are obtained by
minimizing the negative log-likelihood of the demonstrations

L(θ) = − 1

N

∑
Ddemo

rθ(τ) + logZ(θ), (6)

where the normalizing constant of Eq. (1) is the partition func-
tion Z(θ) =

∫
exp(rθ(τ)) dτ . Computing the gradient requires

to solve the forward problem with dynamic programming in
each iteration, which requires knowledge of the transition
model T [19].

Finn et al. developed a model-free formulation by approx-
imating the partition function with Importance Sampling (IS)
[1]. Furthermore, this enables their Guided Cost Learning
(GCL) algorithm to work on samples from a policy, that is not
yet optimally trained for the current reward model. In each
iteration they sample M trajectories Dsample from a policy
πsample and approximate the loss as

L(θ) = − 1

N

∑
Ddemo

rθ(τi) + log
∑
Dsample

exp(rθ(τj))

Mπsample(τj)
. (7)

The sampling policy is iteratively improved by training an
agent on the current reward iterate rθ.

A slightly different objective is used in Relative Entropy In-
verse Reinforcement Learning (RelEntIRL), where the relative
entropy between the trajectory distribution under a baseline
policy πb and the distribution induced by the reward function
is minimized subject to the constraint of matching feature ex-
pectations [11]. They also use IS to approximate the partition
function but sample from a uniform policy to obtain an offline
algorithm. For a linear reward model the resulting loss gradient
is given by

∂L
∂θk

= −fk +
∑
Dsample

πb(τ)
πsample(τ)

exp (rθ(τ)) fk(τ)∑
Dsample

πb(τ)
πsample(τ)

exp (rθ(τ))
, (8)

where fk = 1
N

∑
Ddemo

fk(τi) denotes the average feature
value.

IV. CONCEPTS FOR CONSTRAINED INVERSE
REINFORCEMENT LEARNING

In real-world problems, safety is often a paramount con-
straint, especially in domains where humans interact or col-
laborate with robots, such as industrial robots or autonomous
driving. Our goal is to learn a soft-optimal policy to model
the IRL problem under consideration of constraints. To this
end, we assume a Constrained Markov Decision Process
(CMDP), that is an MDP where the set of feasible actions
A(s) = {a ∈ A | ck(s, a) ≤ 0 ∀k} is restricted based on the
current state s and arbitrary constraint signals ck : S×A → R
[3]. A requirement is that at least one action is safe to choose
in each state, i.e. A(s) 6= ∅.

Commonly, safety is guaranteed by safe policy extraction
(e.g. [8]), where the policy is trained on the full action space
but restricted to safe actions at execution time. However, this
strategy can lead to undesired behavior as demonstrated by

Algorithm 1 Deep Constrained Soft Reinforcement Learning

1: load transitions into replay memory
2: randomly initialize weights φ for Qφ

3: initialize weights φ̂ φ for target Qφ̂

4: for M episodes do
5: sample random minibatch (sj , aj , rj , sj+1)1≤j≤m

6: vj+1 α log
∫
A(sj+1)

exp
(

1
αQ

φ̂(sj+1, a
′)
)

da′

7: yj rj + γvj+1

8: minimize MSE 1
m

∑
j(Q

φ(sj , aj)− yj)2 w.r.t. φ
9: soft target update φ̂← (1− τ)φ̂+ τφ

10: end for

Kalweit et al. [3]: Unsafe state-action pairs that achieved a
high Q-value during training can mislead the policy, since
those high values cannot be attained with safe policy ex-
traction. To resolve this issue, they propose to adapt the
DQN target to yt = rt + γmaxa∈A(st+1)Q

φ̂(st+1, a), i.e. the
maximum is only computed over the safe actions.

A. Constrained Soft Reinforcement Learning

In this section we present Constrained Soft Reinforcement
Learning (CSRL), a generalization of maximum entropy rein-
forcement learning to CMDPs. To learn the soft value function
of the CMDP, we restrict the soft maximum over actions in
Eq. (4) to the safe action space A(s). For a sampled transition
(st, at, rt, st+1) the target for updating Qsoft(st, at) is then
given by

yt = rt + γα log

∫
A(st+1)

exp

(
1

α
Qφ̂soft(st+1, a

′)

)
da′, (9)

and the corresponding soft policy is

π(a|s) =


exp
(
Qsoft(s,a)

α

)
∫
A(s)

exp
(
Qsoft(s,a

′)
α

)
da′
, if a ∈ A(s),

0, else.
(10)

Note that this is consistent with the idea of avoiding unsafe
actions by using soft constraints and thus strongly punishing
unsafe actions, since a vanishing probability corresponds to
Qsoft(s, a) = −∞ in this setting. Hence, this seamlessly
integrates constraints into soft-optimal policies. Algorithm 1
presents the resulting CSRL method.

B. Constrained Maximum Entropy Inverse Reinforcement
Learning

To incorporate constraints into the MaxEntIRL framework,
we also use the trajectory distribution in Eq. (1), but restricted
to feasible trajectories. Let

C = {τ = (st, at)0≤t≤T |at ∈ A(st) ∀t} (11)

denote the set of feasible trajectories, then the partition
function for constrained MaxEntIRL is given by Z(θ) =∫
C

exp(rθ(τ)) dτ . The negative log-likelihood can be ap-
proximated by sampling from a feasible policy, i.e. a policy
resulting in a trajectory distribution q satisfying supp(q) ⊆ C.



Regarding constraints there is no difference between sampling
for the regular MaxEntIRL, GCL or RelEntIRL algorithms, as
long as the sampling policy remains feasible. As reported by
Finn et al., using soft reinforcement learning allows to recover
a suitable sampling policy [1, p. 4]. For this reason, we propose
to train a CSRL agent as a sampling policy during IRL.

In our evaluation we investigate the implications of CSRL
to sampling-based IRL algorithms building on the maximum
entropy framework. As it will turn out, using IS biases the
estimate of the partition function and therefore leads to worse
behavior in CMDPs. To resolve this issue, we propose to use
a sampling-based approximation of MaxEntIRL without IS,
which is derived in the following. The gradient of the negative
log likelihood in Eq. (6) is given by

∂L
∂θk

= − 1

N

∑
Ddemo

∂rθ(τi)

∂θk
+

∫
pθ(τ)

∂rθ(τ)

∂θk
dτ , (12)

where pθ is the maximum entropy distribution Eq. (1) cor-
responding to the current reward model rθ. This distribution
is learned by the CSRL agent, leading to the sampling-based
approximation

∂L
∂θk

= − 1

N

∑
Ddemo

∂rθ(τi)

∂θk
+

1

M

∑
Dsample

∂rθ(τj)

∂θk
. (13)

However, in our experiments it was not necessary to optimize
the policy until convergence at each step. These findings are
consistent with prior works suggesting dropping the impor-
tance weights [12], [13].

V. PROBLEM DESCRIPTION

In the following, we present the environment on which
we evaluate CSRL and the IRL algorithms. We consider the
tactical lane change decision on highways. First, the problem
is formulated as a CMDP, then we present the employed traffic
simulation and describe the training process.

A. Formulation of the CMDP

We model the lane change decision problem with three dis-
crete high level actions A = {akeep, aleft, aright} for keeping
the current lane and executing a lane change to either side.
To guarantee safety, the action space is constrained to state
specific sub-sets of safe actions A(s) ⊆ A if necessary. To
this end, a rule-based safety module such as presented in [22]
is running in the background and asserts whether the lane
change actions are safe to execute at each time instant. All
other driving tasks like lateral control during a lane change or
longitudinal control are executed by low level control modules
that ensure that the action to stay on the current lane is always
safe by following an ACC-like behavior.

To achieve a realistic modeling, we use a continuous state
space representation containing the positions and velocities of
the ego vehicle and the six neighboring vehicles, provided they
drive within the sensor range of the ego vehicle. Hence, the
state consists of the variables

s = (vego,1left,1right, d1,∆v1, . . . , d6,∆v6) , (14)

similar to previous work [8], [10]. Here vego denotes the ego
velocity, 1left and 1right indicate whether a neighboring lane
exists to the left and right of the ego lane, respectively. Further,
di denotes the (signed) distance and ∆vi = vi − vego the
relative velocity, where i enumerates the direct leader and
follower on each of the ego lane and the adjacent lanes in
fixed order. If there exist no vehicles within sensor range on
any of these positions, e.g. because the respective lane does
not exist, this position is filled with a ghost vehicle that drives
with the same velocity as the ego vehicle at the sensing range
limit. Additionally, all velocities and distances are normalized
with the maximum legal velocity of vmax = 24 m

s and the
sensor range of 80 m, respectively. The optimal behavior in
this environment is defined by the reward function

r(s, a) =
vego
vmax

− plc1lc(a) (15)

where 1lc(a) indicates whether a lane change was performed
and plc > 0 is the lane change penalty. Hence, the agent drives
as fast as possible while trying to avoid lane changes.

B. Simulation Environment

We perform our experiments in the traffic simulation soft-
ware SUMO [23]. Similar to previous research the ego vehicle
drives on a circular three-lane highway of 1000 m length [24].
Realistic highway traffic situations are simulated by randomly
placing 30 to 60 cars with different driving preferences in the
environment. At test time, the trained agents are simulated in
scenarios with 60 to 90 cars, to evaluate the learned behavior
in situations they have not seen during training.

C. Training Setup

Even tough the agents are trained on an infinite horizon
setup, the trajectory length is limited to reduce the curse of
horizon in IS. The IRL algorithms are supplied with 20 000
demonstrations with a length of 5 time steps each. We have
also conducted experiments with a reduced number of demon-
stration trajectories, but as our main goal is to investigate
the effect of IS on IRL algorithms, it is more important to
ensure that failing convergence does not occur due to lack
of demonstrations. After each iteration of the IRL algorithms
the agents are retrained on the latest approximation of the
reward function for 1000 iterations with CSRL. All agents
are trained online with an experience replay buffer [18]. The
relevant training parameters are listed in Table I.

A Behavior Cloning (BC) agent is trained with cross-
entropy loss on the demonstration set. This agent is used as
a baseline for the IRL agents and as the baseline policy in
RelEntIRL.

VI. RESULTS AND EVALUATION

We first evaluate our proposed CSRL algorithm to ensure its
suitability for constrained IRL as described in Section IV-B.
This is followed by an evaluation of the IRL algorithms
introduced in the previous sections. Lastly, we present a study
of the influence the reward model’s expressiveness has on the
resulting performance.



Reinforcement learning

Number input neurons 15
Number hidden layers 2
Density hidden layers µ 100
Weight initialization U(−1√

µ
, 1√

µ
)

Number output neurons 3
Activation function elu
Batch size 64
Optimizer Adam [25]
Learning rate 1× 10−4

Soft target update rate 1× 10−4

Training iterations 2× 106

Entropy weight α 0.1

Inverse reinforcement learning

Batch size 500
Trajectory length T 5
Number sampled trajectories 400
Weight decay 0.01
Learning rate 1× 10−4

Table I: Parameters used for training RL and IRL agents.

A. Validation of Constrained Soft Reinforcement Learning
We evaluate CSRL on the CMDP described in Section V-A.

As suggested in prior work, we choose a lane change penalty
of plc = 0.01 to achieve comparable results [3], [24].

Fig. 2 shows the results of CSRL trained with different
values α for weighting the entropy regularization. The perfor-
mance is benchmarked against a Constrained DQN (CDQN)
agent [3], the MOBIL lane change model [26], and two agents
doing random lane changes and no lane changes, respectively.
Results are shown for different traffic densities used during
simulation. Note that there are no safety constraint violations
by design of the algorithm.

The total reward in Fig. 2a is measured with respect to the
original reward Eq. (15), not considering the entropy reward.
For α ∈ {0.01, 0.1, 1}, the performance of CSRL matches the
performance of CDQN, it only decreases for α = 10, which
weights maximizing the entropy too much compared to the
actual reward. The advantage over CDQN is that the parameter
α can be used to tune the entropy of the resulting trajectory
distribution without decreasing the actual return, as illustrated
in Figs. 2a and 2c. Surprisingly, a higher trajectory entropy
does not lead to an increased number of lane changes. As
Fig. 2b shows, it is rather the other way around: A higher
entropy weight leads to the agent visiting states with less
expected constraints, such as following another vehicle on
the center lane. Contrarily, frequent lane changes decrease the
entropy, since more constraints are active while passing other
vehicles.

B. The Effect of Importance Sampling in Constrained IRL
In the following, we use a CSRL agent with plc = 1

to generate expert demonstrations for the IRL algorithms.
This increased penalty forces the agent to weight speed gain
against lane changes more carefully. To compare the different
algorithms we first consider the class of reward models

rθ(s, a) = θspeed ·
vego
vmax

+ θlc · 1lc(a) (16)

w(τ) f
w
speed f

w
lc

unweighted mean f 0.72 0.069
MaxEntIRL 1 0.72 0.069
RelEntIRL (expert) exp(r(τ)) 0.85 0.061
RelEntIRL (BC) πBC(τ)

πsample(τ)
exp(r(τ)) 0.86 0.059

GCL exp(r(τ))
πsample(τ)

0.89 0.18

Table II: Feature weights and weighted mean feature values
used by the algorithms.

with parameters θspeed, θlc, which contains the ground truth
reward Eq. (15). This linear reward model allows to directly
observe artifacts of the IRL algorithms due to IS and to
measure the error in matching feature expectations.

The resulting behavior of a policy trained on the learned
reward rθ is evaluated in Fig. 3. The average values of the
two features are illustrated in Figs. 3b and 3c for different
traffic densities. Furthermore, Fig. 3a shows the performance
of the policy with respect to the ground truth reward function
to assess the expected value difference between the learned
agent and the expert.

The MaxEntIRL-agent (blue) not only achieves the same
performance as the expert (turquoise), but also achieves close
feature matching in all traffic densities. The GCL-agent (red)
also performs well in terms of reward, but when evaluating
the feature values, its behavior is far off the expert with
less average velocity and reduced lane change frequency.
The RelEntIRL-agent (green) on the other hand achieves a
slightly higher velocity than the expert, but at the cost of
a very high number of lane changes, which leads to a very
low overall reward. Since the RelEntIRL-agent depends on
the baseline policy, which is learned with BC (purple), its
performance could potentially be influenced by the suboptimal
performance of the BC-agent. For this reason, we train an
additional RelEntIRL-agent, supplied with the true expert
policy as baseline policy (yellow), which achieves a lower
number of lane changes but also a lower average velocity,
leading to a reward comparable with the RelEntIRL-agent
using BC.

This can be explained by examining where the objectives of
the different algorithms converge. To this end, the loss gradient
of the considered algorithms defined by Eqs. (7), (8) and (13)
is written as

∂L
∂θk

= −fk +

∑
Dsample

w(τj)fk(τj)∑
Dsample

w(τj)
= −fk + f

w

k , (17)

where the algorithms differ in the sampling policy and in the
weights w(τ) they use for weighting the trajectories. That is,
the loss gradient is the difference between the average feature
values fk of the demonstrations and the weighted average
feature values f

w

k of the samples. Table II summarizes the
form of the weights used by each algorithm.

At convergence, the loss gradient vanishes. Eq. (17) illus-
trates that only the MaxEntIRL loss achieves an unbiased
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Figure 2: Performance of CSRL for varying values of entropy weight α.
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Figure 3: Performance of learned reward models.

feature matching at convergence. The GCL and RelEntIRL
losses are biased by the weights of self-normalized IS [27].

To evaluate this bias, we computed the weighted average
features and compared them with the unbiased average feature.
To this end, we assumed ideal prerequisites as they would
occur at convergence, i.e. that all three algorithms were able
to sample from the expert policy and have access to the
ground truth reward function. The resulting weighted average
features f

w

speed and f
w

lc are shown in Table II. It can be
concluded that the MaxEntIRL-agent finds a reward that best
explains the expert’s behavior, as it only converges upon
true feature matching. Using importance sampling, the other
algorithms weight trajectories higher that obtain high rewards
and therefore have more extreme feature values than the
average trajectory, which leads to an overestimation of these
feature values. These algorithms converge to reward functions
that induce weighted feature values that coincide with the
expert’s feature values. As Table II shows, those are not the
true average feature values, such that the algorithms are unable
to recover the true expert policy.

Theoretically, this is compensated for by the importance
weights also weighting unlikely trajectories higher. However,
in the environment considered this leads to problems due to
the constraints: In low traffic density, the agent can typically
achieve a high reward, since it can drive very fast. However,

since most of the time all actions are feasible and all share a
similar expected return, the individual trajectories each have
a relatively low probability. On the contrary, in high traffic
density, the agent gets stuck in traffic jams frequently, which
reduces the overall velocity and thus the reward. Since the
action space is frequently constrained in such situations, the
individual trajectories have a higher probability than those in
low traffic density. Hence, the two effects of high reward and
high probability do not balance out but amplify the effect,
leading to very high or very low importance weights. In
summary, the weighted average features reflect only trajec-
tories in low traffic density, since they have high rewards as
well as a low individual trajectory probability. This clearly
illustrates, that only the unbiased MaxEntIRL algorithm can
be expected to achieve feature matching. In particular, if
considering the RelEntIRL-agent using the expert policy, high
reward trajectories are weighted exponentially higher as can
be seen in Table II.

The argument is further supported by the empirical mean
feature values of the converged policies in Table III. The
MaxEntIRL agent achieves by far the least deviation from the
expert feature counts.
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Figure 4: Performance of learned reward models.

f speed f lc
µ σ η µ σ η

Expert 15.29 1.64 0.0% 0.057 0.018 0.0%
MaxEntIRL 15.34 1.56 0.3% 0.059 0.017 3.1%
RelEntIRL 15.52 1.61 1.5% 0.110 0.028 93.0%
GCL 14.70 1.45 −3.9% 0.040 0.014 −30.0%

Table III: Empirical average feature values for learned agents
in terms of the mean µ and standard deviation σ averaged
over all traffic densities and the relative deviation η from the
expert’s feature values.

C. Learning Nonlinear Reward Models

Even though the ground truth reward is linear in its param-
eters, we investigate the effect of learning a nonlinear reward
model. In this section we try to answer the question how
well rewards can be learned with an increasingly complex
parameterization of the reward model. To this end, we compare
the following reward structures:

• The ground truth reward model in Eq. (16),
• a linear combination of all state-action features,
• neural networks with one (shallow NN) and two (deep

NN) hidden layers, respectively.

Since the previous discussion revealed issues with using IS
in CMDPs, we only consider the MaxEntIRL-agent in the
following.

As Fig. 4b illustrates, the closest feature matching with
respect to the lane change frequency is achieved by the
linear and the shallow network rewards. However, the average
velocity (not shown) and the resulting performance in terms
of average ground truth reward in Fig. 4a are nearly identical.

Nevertheless, we would like to emphasize that feature
matching can only be expected in the case of a linear re-
ward model. For a nonlinear reward model, this translates
to matching the features in the last hidden layer of the
neural network. In particular, the networks might learn totally
different features, and hence cannot be expected to match
in the velocity and lane change frequency features. For this
reason, the Kullback-Leibler-divergence between the expert

policy and the learned policies was evaluated. Fig. 4c shows
that the shallow network policy is closest to the expert policy.

These results indicate, that it can be beneficial to train a
reward model with higher complexity than what is theoreti-
cally necessary. Even tough the ground truth reward could be
exactly represented by the simplest reward model used, the
increased number of parameters of the shallow network lead
to a policy closer to the expert policy. A possible explanation
is that this allows to capture long term reward more easily.
However, the performance can also easily degrade when using
too many parameters, as can be seen for the network with two
hidden layers.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we presented the Constrained Soft Reinforce-
ment Learning algorithm, an extension of soft reinforcement
learning to constrained MDPs. This allowed us to model the
concept of a maximum entropy trajectory distribution, which
is commonly assumed in MaxEntIRL algorithms, also within
constrained environments. This is particularly relevant for
reinforcement learning in human-robot collaboration, where
safety constraints are of the uttermost importance, We exem-
plarily demonstrated the utility of our approach for a high-level
planning module of an automated vehicle.

Our findings indicate, that IRL algorithms using importance
sampling are not well suited for constrained environments.
Furthermore, we have shown that IRL can benefit from a
reward model which is more complex than necessary: Even
though the ground truth reward used in our experiments can
be exactly represented by the linear reward model, it turned
out to be beneficial to learn a more complex reward structure
like a small neural network.

Promising directions for further research include incorpo-
rating long term constraints as suggested in [3] into CSRL.
Moreover, it is an interesting question to further narrow down
the requirements for importance sampling to work well in
IRL algorithms. An orthogonal future research direction is to
investigate our approach in other environments where robots
have to safely interact with humans such as industry or
healthcare robots.
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