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Abstract

Sorting is one of the most important basic algorithmic problems. Thus, it is not a surprise
that sorting algorithms are needed in a very large number of applications. These applications
are executed on a wide range of different machines—from smartphones with energy-efficient
multi-core processors to supercomputers with thousands of machines interconnected by a
high-performance network. Since single-core performance has stagnated, parallel applications
have become an indispensable part of our everyday lives. Efficient and scalable algorithms are
key to take advantage of this immense availability of (parallel) computing power. In this thesis,
we study sequential and parallel sorting algorithms aiming at robust performance for a diverse
set of input sizes, input distributions, data types, and machines.

In the first part of this thesis, we study sequential sorting as well as parallel sorting on
shared-memory machines. We propose In-place Parallel Super Scalar Samplesort (IPS*0), a new
comparison-based algorithm that is provably in-place, i.e., the amount of additional memory
does not depend on the size of the input. An essential result is that the in-place property
improves the performance of IPS*o compared to similar non-in-place algorithms. Until now,
the in-place feature has usually been associated with a loss of speed for most algorithms. IPS*o
is also provably cache-efficient and performs O (n/t logn) work per thread when executed with
t threads. Additionally, IPS*o incorporates a branchless decision tree to minimize the number
of branch mispredictions, takes advantage of memory locality, and handles many elements
with equal keys—so-called duplicated keys—by separating them into “equality buckets”. For the
special case of sorting integer keys, we use the algorithmic framework of IPS*o to implement
In-place Parallel Super Scalar Radix Sort (IPS*Ra).

We validate the performance of our algorithms in an extensive experimental study involving
21 state-of-the-art sorting algorithms, six data types, ten input distributions, four machines,
four memory allocation strategies, and input sizes varying over seven orders of magnitude. On
the one hand, the study shows that our algorithms have consistently good performance. On
the other hand, it reveals that many competitors have large performance issues: With IPS*o, we
obtain a robust comparison-based sorting algorithm that outperforms other parallel in-place
comparison-based sorting algorithms by almost a factor of three. In the large majority of the
cases, IPS*0 is the fastest comparison-based algorithm. At this point, it is irrelevant whether
we compare IPS*0 to sequential or parallel, in-place or non-in-place algorithms. IPS*o even
outperforms competing implementations of integer sorting algorithms in many cases. The
remaining cases mainly include uniformly distributed inputs and inputs with keys containing
only few bits. These inputs are usually “easy” for integer sorting algorithms. Our integer sorter
IPS?Ra outperforms other integer sorting algorithms for these inputs in the large majority of
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the cases. Exceptions are some very small inputs for which most of the algorithms are very
inefficient. However, algorithms dedicated for these input sizes are usually much slower for the
remaining range of input sizes.

In the second part of this thesis, we study sorting algorithms for distributed systems and
their robust scalability with regard to the number of processors, the input size, duplicated
keys, and the distribution of input keys to processors. Our main contributions are four robust
scalable sorting algorithms that allow us to cover the entire range of input sizes. Three of the
four are new fast algorithms that implement low overhead mechanisms to make them scale
robustly regardless of “difficult” inputs, e.g., inputs where the location of the input elements is
correlated to the key values—so-called skewed element distributions—or inputs with duplicated
keys. The fourth algorithm is simple and may be considered as folklore.

Previous algorithms for inputs of medium and large size have an unacceptably large com-
munication volume or an unacceptably large number of message exchanges. For these input
sizes, we describe a robust multi-level generalization of samplesort that represents a feasible
compromise between a moderate communication volume and a moderate number of message
exchanges. We overcome these previously incompatible goals with scalable approximate splitter
selection and a new data routing algorithm. As an alternative, we present a generalization of
mergesort with the advantage of perfect load balance. For small inputs, we design a variant of
quicksort that overcomes the problem of skewed element distributions and duplicated keys
with fast high-quality pivot selection, element randomization, and low overhead duplicate
handling. Previous practical approaches with polylogarithmic latency either have at least a
logarithmic factor more communication or only consider uniform input. For very small inputs,
we propose a practical and fast, yet work-inefficient algorithm with logarithmic latency. For
these inputs, previous efficient approaches are theoretical algorithms mostly with prohibitively
large constant factors. For the smallest inputs, we recommend an algorithm that sorts the data
while the input is routed to a single processor.

An important contribution of this thesis to the practical side of algorithm engineering
is a communication library that we call RangeBasedComm (RBC). RBC allows an efficient
implementation of recursive algorithms with sublinear running time by providing scalable and
efficient communication primitives on processor subsets. The RBC library significantly speeds
up the algorithms, e.g., one competitor even by more than two orders of magnitude.

We present an extensive experimental study involving two supercomputers with up to
262 144 cores, 11 algorithms, 10 input distributions, and input sizes varying over nine orders of
magnitude. For all but the largest input sizes, we are the only ones performing benchmarks
on these large machine instances. The study also shows that our algorithms have a robust per-
formance and outperform competing implementations significantly. Whereas our algorithms
provide consistent performance on all inputs, our competitors’ performance breaks down on
“difficult” inputs or they literally break.
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Deutsche Zusammenfassung

Sortieren ist eines der wichtigsten algorithmischen Grundlagenprobleme. Es ist daher nicht
verwunderlich, dass Sortieralgorithmen in einer Vielzahl von Anwendungen bendétigt werden.
Diese Anwendungen werden auf den unterschiedlichsten Geriten ausgefiihrt — angefangen
bei Smartphones mit leistungseffizienten Multi-Core-Prozessoren bis hin zu Supercomputern
mit Tausenden von Maschinen, die iiber ein Hochleistungsnetzwerk miteinander verbunden
sind. Spatestens seitdem die Single-Core-Leistung nicht mehr signifikant steigt, sind parallele
Anwendungen in unserem Alltag nicht mehr wegzudenken. Daher sind effiziente und skalier-
bare Algorithmen essentiell, um diese immense Verfiigbarkeit von (paralleler) Rechenleistung
auszunutzen. Diese Arbeit befasst sich damit, wie sequentielle und parallele Sortieralgorithmen
auf moglichst robuste Art maximale Leistung erzielen konnen. Dabei betrachten wir einen
groflen Parameterbereich von Eingabegrofien, Eingabeverteilungen, Maschinen sowie Datenty-
pen.

Im ersten Teil dieser Arbeit untersuchen wir sowohl sequentielles Sortieren als auch paralle-
les Sortieren auf Shared-Memory-Maschinen. Wir présentieren In-place Parallel Super Scalar
Samplesort (IPS*0), einen neuen vergleichsbasierten Algorithmus, der mit beschrankt viel
Zusatzspeicher auskommt (die sogenannte ,,in-place” Eigenschaft). Eine wesentliche Erkennt-
nis ist, dass unsere in-place-Technik die Sortiergeschwindigkeit von IPS*o im Vergleich zu
dhnlichen Algorithmen ohne in-place-Eigenschaft verbessert. Bisher wurde die Eigenschaft, mit
beschrinkt viel Zusatzspeicher auszukommen, eher mit Leistungseinbuflen verbunden. IPS*o
ist auflerdem cache-effizient und fithrt O(n/tlogn) Arbeitsschritte pro Thread aus, um ein
Array der Gré8e n mit ¢ Threads zu sortieren. Zusitzlich beriicksichtigt IPS*o Speicherlokalitit,
nutzt einen Entscheidungsbaum ohne Sprungvorhersagen und verwendet spezielle Partitionen
fir Elemente mit gleichem Schliissel. Fiir den Spezialfall, dass ausschlieflich ganzzahlige Schliis-
sel sortiert werden sollen, haben wir das algorithmische Konzept von IPS*o0 wiederverwendet,
um In-place Parallel Super Scalar Radix Sort (IPS*Ra) zu implementieren.

Wir bestatigen die Performance unserer Algorithmen in einer umfangreichen experimentel-
len Studie mit 21 State-of-the-Art-Sortieralgorithmen, sechs Datentypen, zehn Eingabevertei-
lungen, vier Maschinen, vier Speicherzuordnungsstrategien und Eingabegroflen, die tiber sieben
Groflenordnungen variieren. Einerseits zeigt die Studie die robuste Leistungsfahigkeit unserer
Algorithmen. Andererseits deckt sie auf, dass viele konkurrierende Algorithmen Performance-
Probleme haben: Mit IPS*0 erhalten wir einen robusten vergleichsbasierten Sortieralgorithmus,
der andere parallele in-place vergleichsbasierte Sortieralgorithmen fast um den Faktor drei
iibertrifft. In der iiberwiegenden Mehrheit der Fille ist IPS*o der schnellste vergleichsbasierte
Algorithmus. Dabei ist es nicht von Bedeutung, ob wir IPS*o mit Algorithmen vergleichen,
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die mit beschrinkt viel Zusatzspeicher auskommen, Zusatzspeicher in der Gréflenordnung
der Eingabe benétigen, und parallel oder sequentiell ausgefiihrt werden. IPS*o iibertrifft in
vielen Fillen sogar konkurrierende Implementierungen von Integer-Sortieralgorithmen. Die
verbleibenden Fille umfassen hauptsichlich gleichméf3ig verteilte Eingaben und Eingaben mit
Schliisseln, die nur wenige Bits enthalten. Diese Eingaben sind in der Regel ,,einfach® fiir Integer-
Sortieralgorithmen. Unser Integer-Sorter IPS*Ra iibertrifft andere Integer-Sortieralgorithmen
fiir diese Eingaben in der tiberwiegenden Mehrheit der Fille. Ausnahmen sind einige sehr kleine
Eingaben, fiir die die meisten Algorithmen sehr ineffizient sind. Allerdings sind Algorithmen,
die auf diese Eingabegrofien abzielen, in der Regel fiir alle anderen Eingaben deutlich langsamer.

Im zweiten Teil dieser Arbeit untersuchen wir skalierbare Sortieralgorithmen fiir verteilte
Systeme, welche robust in Hinblick auf die Eingabegrofie, haufig vorkommende Sortierschliissel,
die Verteilung der Sortierschliissel auf die Prozessoren und die Anzahl an Prozessoren sind.
Das Resultat unserer Arbeit sind im Wesentlichen vier robuste skalierbare Sortieralgorithmen,
mit denen wir den gesamten Bereich an Eingabegrofien abdecken kénnen. Drei dieser vier
Algorithmen sind neue, schnelle Algorithmen, welche so implementiert sind, dass sie nur einen
geringen Zusatzaufwand benétigen und gleichzeitig unabhéngig von ,,schwierigen Eingaben
robust skalieren. Es handelt sich z.B. um ,,schwierige® Eingaben, wenn viele gleiche Elemente
vorkommen oder die Eingabeelemente in Hinblick auf ihre Sortierschliissel ungiinstig auf die
Prozessoren verteilt sind.

Bisherige Algorithmen fiir mittlere und groflere Eingabegrofien weisen ein unzumutbar
grof3es Kommunikationsvolumen auf oder tauschen unverhiltnismifig oft Nachrichten aus.
Fir diese Eingabegrofien beschreiben wir eine robuste, mehrstufige Verallgemeinerung von
Samplesort, die einen brauchbaren Kompromiss zwischen dem Kommunikationsvolumen und
der Anzahl ausgetauschter Nachrichten darstellt. Wir iberwinden diese bisher unvereinbaren
Ziele mittels einer skalierbaren approximativen Splitterauswahl sowie eines neuen Datenum-
verteilungsalgorithmus. Als eine Alternative stellen wir eine Verallgemeinerung von Mergesort
vor, welche den Vorteil von perfekt ausbalancierter Ausgabe hat. Fiir kleine Eingaben entwerfen
wir eine Variante von Quicksort. Mit wenig Zusatzaufwand vermeidet sie das Problem un-
gunstiger Elementverteilungen und haufig vorkommender Sortierschliissel, indem sie schnell
qualitativ hochwertige Splitter auswihlt, die Elemente zufillig den Prozessoren zuweist und
einer Duplikat-Behandlung unterzieht. Bisherige praktische Ansitze mit polylogarithmischer
Latenz haben entweder einen logarithmischen Faktor mehr Kommunikationsvolumen oder be-
riicksichtigen nur gleichverteilte Eingaben ohne mehrfach vorkommende Sortierschliissel. Fiir
sehr kleine Eingaben schlagen wir einen einfachen sowie schnellen, jedoch arbeitsineffizienten
Algorithmus mit logarithmischer Latenzzeit vor. Fiir diese Eingaben sind bisherige effiziente
Ansétze nur theoretische Algorithmen, die meist unverhéltnismaf3ig grof3e konstante Faktoren
haben. Fiir die kleinsten Eingaben empfehlen wir die Daten zu sortieren, wihrend sie an einen
einzelnen Prozessor geschickt werden.

Ein wichtiger Beitrag dieser Arbeit zu der praktischen Seite von Algorithm Engineering ist
die Kommunikationsbibliothek RangeBasedComm (RBC). Mit RBC ermdglichen wir eine effi-
ziente Umsetzung von rekursiven Algorithmen mit sublinearer Laufzeit, indem sie skalierbare
und effiziente Kommunikationsfunktionen fiir Teilmengen von Prozessoren bereitstellt.
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Zuletzt prisentieren wir eine umfangreiche experimentelle Studie auf zwei Supercompu-
tern mit bis zu 262 144 Prozessorkernen, elf Algorithmen, zehn Eingabeverteilungen und
Eingabegrofien variierend iiber neun Gréflenordnungen. Mit Ausnahme von den grofiten Ein-
gabegroflen ist diese Arbeit die einzige, die iberhaupt Sortierexperimente auf Maschinen dieser
Grofle durchfiithrt. Die RBC-Bibliothek beschleunigt die Algorithmen teilweise drastisch -
einen konkurrierenden Algorithmus sogar um mehr als zwei Groflenordnungen. Die Studie legt
dar, dass unsere Algorithmen robust sind und gleichzeitig konkurrierende Implementierungen
leistungsmaflig deutlich tibertreffen. Die Konkurrenten, die man normalerweise betrachtet
hitte, stiirzen bei ,,schwierigen® Eingaben sogar ab.
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Chapter 1

Introduction and Overview

In this thesis, we examine how to efficiently sort data on shared-memory and
distributed-memory machines. Our target is to robustly scale sorting up to the largest
shared-memory machines and distributed systems with low overhead in theory as
well as in practice—even for “difficult” worst case inputs.

Before we address these challenges in the following chapters, we present the reader
to our motivation. Afterwards, we describe the machine models and general pre-
liminaries used in this thesis. We conclude the chapter with an overview of our
contributions.

“Many computer scientists consider sorting to be the most fundamental problem in the study of

algorithms.”
— INTRODUCTION TO ALGORITHMS [Cor+09]

Roughly speaking, sorting is the task of bringing elements in a specific generally non-
decreasing order. Sorting algorithms are very important for many applications. The applications
may inherently need a subroutine to obtain sorted data. They may also take advantage of the
property that data is sorted or that similar data is stored logically or physically close together.
Therefore, it is not surprising that reference books on sequential and parallel algorithms often
devote sorting a separate chapter [Cor+09; Kum+94; San+19]. These applications demand fast
sorting algorithms for a diverse spectrum of machine architectures as well as for a wide range
of inputs in regard to data type, input size, and distribution of key values and elements.

Nowadays, applications are executed on a wide range of different machine architectures.
About fifteen years ago, the CPU frequency stopped increasing while Moore’s law—the number
of transistors on a processor increases exponentially—still applies. Since then, the performance
of a system has mainly been improved by increasing the number of cores in CPUs, the number
of CPUs in the machines, and the number of machines in supercomputers and clusters. For
example, workstation CPUs have evolved from one core in 2015 to 64 cores in 2020 [AMD15;
AMD20]. At the same time, the number of cores of the largest supercomputers has risen
by almost two orders of magnitude to more than ten million cores assembled in the Sunway
TaihuLight supercomputer [top05; top20]. Even in everyday life, we have access to smartphones
with half a dozen cores [App20]. These improvements can satisfy the need to solve tasks faster
and process data in larger amounts. Still, efficient and scalable parallel algorithms designed
for these computer architectures are required. In this thesis, we study sequential sorting as
well as parallel sorting on shared-memory machines in Part I, and sorting on machines with
distributed memory in Part II.



1 Introduction and Overview

1.1 Sequential and Shared-Memory Sorting Algorithms

In Part I of this thesis, we study the problem of sorting an array of n elements sequentially as
well as in parallel on shared-memory machines with ¢ threads. Since sorting is considered to
be one of the most fundamental algorithmic problems, hundreds of publications have studied
how to make sorting algorithms fast. As of today’s date, more than four hundred technical
reports in the field of computer science contain the term “sort” in the title on the open-access
repository arxiv.org. Atthe first glance, this seems to be a surprise, since simple asymptotically
optimal algorithms have been known for more than 50 years, i.e., mergesort [Knu73], which
is optimal in the worst case, or quicksort [Hoa62], which is optimal with high probability
for random pivots. However, this is only the beginning in the quest for the fastest sorting
algorithm. Today’s modern machines provide plenty of opportunities for optimization and
many hardware features, such as the cache [SW04; BFV07; Fra04; BGS10; KDD17], instruction
parallelism [SW04; Cor20; HWF15; PR14], branch prediction [SW04; KS06a; EW16; Yar10;
Skal6a; BES17], multi-core [TZ03; SSP07; BGS10; Shu+12; TZ03; Rei07; Obe+19b; MG89;
HNR90; FP92; HWF15; PR14; KDD17; BES17; PR14], and virtual memory [JM14; WS11],
have been studied in the context of sorting.

On the one hand, it is somewhat surprising that quicksort is the algorithm of choice in most
libraries, e.g., in standard libraries of programming languages such as Java and C+, or in parallel
programming libraries such as TBB [Rei07]. On the other hand, even simple implementations
of quicksort are somewhat cache-efficient (it still reads each element a logarithmic number
of times), have an asymptotically optimal running time with high probability, and are in-
place—an important feature for machines with limited memory. Furthermore, quicksort
can be parallelized [SSP07; Rei07] and sophisticated implementations can reduce branch
mispredictions significantly [KS06b; EW16]. Although we have not found an implementation
of quicksort that provides all of these features, it seems difficult to beat quicksort on a similar or
larger feature set. For example, mergesort can take advantage of inputs with presorted sequences.
In the remaining cases, it turns out that mergesort is slower in practice. This is in particular the
case for in-place mergesort. Samplesort either exploits instruction parallelism and minimizes
branch mispredictions [SW04] or runs in parallel [Ble+96; BGS10; Shu+12]. Radix sorting
algorithms can exploit fast element classification, e.g., for (nearly) uniform distributed input.
However, these algorithms pay the price for accepting imbalanced buckets in the remaining
cases and only work for a limited set of data types. That said, we did not find an algorithm that
outperforms quicksort in all circumstances.

With this thesis, we contribute the cache-efficient In-place Parallel Super Scalar Sample-
sort (IPS*0) algorithm which exploits instruction parallelism and simultaneously reduces
branch mispredictions significantly. Even though we focus our study on the more general
case of comparison-based sorting, we also contribute In-place Parallel Super Scalar Radix Sort
(IPS?Ra) and compare ourselves to state-of-the-art radix sort algorithms.
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In Part I and Appendix B of this thesis, we study the problem of sorting »n input elements
evenly distributed among t processors of a distributed-memory machine. On large machines,
the network bottleneck becomes a significant issue. For the analysis, we thus have to consider
message startup latencies and communication volume on the critical execution path. On
real-world machines, the time for a message startup is significantly larger than the transfer
time for a machine word. It turns out that sorting algorithms trade off message startups and
communication volume differently. As a result, each algorithm is only suitable for a specific
range of input sizes.

Although hundreds of papers on parallel sorting have been published, there is only a small
number of practical studies that consider the largest machines with many thousands of proces-
sors (PEs). The most studied distributed sorting algorithms are single-level algorithms [Ble+96;
Var+91; KK93; SSP07; SK10; SMB13; HKS19]. Single-level algorithms select t — 1 splitters,
send them to all processors, partition the local data into ¢ pieces, and redistribute them using
an all-to-all data exchange. Since every PE receives at least the £ — 1 splitters, these algorithms
require a total input of Q(t2 / logt) elements to be efficient. In this case, each processor may
exchange Q(t/logt) messages when the data exchange algorithm sends the pieces directly to
the target processors. Thus, the constant factor of the term Q(t2 /log t) may become very large.
This makes single-level algorithms only efficient for very large inputs.

For smaller input sizes, we need faster sorting algorithms since ¢-way sorting is not efficient
and scalable enough. The task to bring “similar” data together is important for many applications
on distributed systems. For example, sorting on space filling curves [Bad13] is one approach to
partition computational domains and can be much more efficient than graph-based partitioning
algorithms [Den03]. Sorting may then become the limiting factor when scaling to thousands of
processors, e.g., when a dynamic scheduler of simulations uses space filling curves for frequent
load rebalancing. For these applications, the number of simulation steps per time step is the
important performance metric and the input per processor can be very small [LBHO07]. Thus,
fast sorting algorithms for small inputs are required—even when scalability is beyond question.
A special case for sorting small inputs is the distributed collective operation MPI_Comm_Split
which basically means sorting inputs with one element per processor [SW11].

Asymptotically optimal algorithms have been intensively studied in theory. For example,
Cole’s mergesort [Col88] algorithm sorts inputs with one element per PE in time O(logt).
However, this comes with large constant factors in practice. Simple algorithms with polyloga-
rithmic message startup latency are variants of hypercube quicksort [Wag87; LM92; SMB13]
and bitonic sort [SMB13]. However, quicksort is fast on only a narrow range of small input
sizes since it exchanges the data a logarithmic number of times. Bitonic sort even exchanges
data (’)(log2 t) times.

So-called r-level sorting algorithms [KK93; GV94; Go099; SMB13; HKS19] try to close the
gap between algorithms for very large inputs with O(t) message exchanges and algorithms for
small inputs with polylogarithmic startup latency but Q (log t) data exchanges. The lower bound
of r-level sorting algorithms is Q(rn/t + rt/ "). However, a straightforward implementation
has O(rn/t) communication volume but Q(t) message startups in the worst case [KK93].
Implementations that restrict data exchanges to communication partners sharing the same
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hypercube edge can guarantee O(rtl/ r) message startups. However, these algorithms require ¢

to be a power of two and the communication volume increases to O (rn/ t'/ 2) in the worst case—
even when the splitter elements partition the data into buckets of equal size. As a consequence,
most of these algorithms are slow or crash for “difficult” inputs, i.e., when many elements have
equal keys (duplicated keys) and when the location of the input elements is correlated to the
key values (skewed element distributions). Unfortunately, these disadvantages also apply to
variants of hypercube quicksort. As a consequence, these algorithms are mostly studied for
random inputs.

In Part II of this thesis, we consider practical massively parallel sorting algorithms for large
inputs down to inputs where the number of elements is smaller than the number of processors.
We propose four robust sorting algorithms that cover the entire range of input sizes. We
consider robustness in regard to scalability, i.e., its running time dependent on the input size and
the number of processors, and in regard to the presence of duplicated keys as well as skewed
input distributions.

1.3 Machine Models

In this section, we describe the well-known sequential machine model random access machine
(RAM) [vNeu45; SS63; CR72] as well as several parallel machine models. Parallel machine
models are further divided into models of shared-memory machines and distributed-memory
machines. The simplest shared-memory machine model used in this work is the parallel
random access machine (PRAM) [FW78]. The parallel external memory (PEM) model [Arg+08]
is an extension of the PRAM to two memory levels. The single-ported message passing model
describes a distributed-memory machine with point-to-point message exchanges. The bulk
synchronous parallel (BSP) model [Val90] is a more abstract model that exchanges messages
bulk synchronously. Sanders et al. [San+19] describe and discuss these models in detail.

1.3.1 Random Access Machine (RAM)

The RAM is a sequential machine with a single processor and uniform main memory. The main
memory is a storage with an infinite number of available machine words. The processor has
direct access to a small number of registers. The registers store machine words that are input
and output of basic operations executed by the processor. A machine word stores an integer
value whose absolute value is bounded by a polynomial in the input size of a program. This
allows a machine word to be used to index main memory that is polynomial to the input size.
The processor accesses the main memory with load and store operations. A random access
machine executes a program that is basically a sequence of basic operations, i.e., arithmetic
operations, comparison operations, logical operations, bitwise operations, (un)conditional
branches, and load respectively store operations. For each executed operation, we account
a single time step. The running time, often just called “time”, of a program is the number of
operations required until the program terminates.



1.3 Machine Models

1.3.2 The Parallel Random Access Machine (PRAM)

The PRAM is the equivalent of the RAM for shared-memory parallel computing. It consists of
t PEs sharing a common main memory. Each PE executes the same program in synchronized
time steps. The execution order of the operations executed by the PEs may vary caused by
conditional branches depending on the data, their rank, and the total number of PEs. The
RAM model is divided into several submodels. The EREW-PRAM allows exclusive reads from
and exclusive writes to the main memory. The CREW-PRAM allows concurrent reads from and
exclusive writes to the main memory. In the real world, machines support something similar to
concurrent reads, although the read value may not be the globally last written value. Exclusive
accesses to the same memory location must be coordinated, e.g., by serialization in O(t) time
or by combining the machine words in O(logt) time. The CRCW-PRAM is the most powerful
machine since it allows both, concurrent reads as well as concurrent writes. Conflict resolution
rules define the semantics of concurrent writes. For example, the resolution rule “arbitrary”
only allows writes to the same cell if all PEs writing to that cell write the same value. Another
resolution rule is the “common” semantic that writes the value of a random PE among all PEs
attempting to write to the same cell at the same time. The time measure of the PRAM model is
the asymptotic number of time steps of the PE that finishes the program at last. We call the
sequence of instructions executed by this PE the critical path.

In real world machines, access to the main memory happens in a rather asynchronous way.
This makes it difficult to coordinate concurrent memory accesses, e.g., when a single memory
access is split into several execution stages or when a series of operations shall exclusively operate
on a part of the memory without interference with other PEs. Atomic operations overcome this
problem for commonly used short series of operations. An atomic operation is executed at a
stretch. This guarantees that the required values in the main memory are accessed exclusively
by this operation, without interference.

1.3.3 The Parallel External Memory (PEM) Model

The PEM model is a cache-aware extension of the parallel random-access machine. This model
is used to analyze parallel algorithms if the main issue is the number of accesses to the main
memory. In the PEM model, each of the t PEs has a private cache of size M and access to
main memory happens in memory blocks of size B. The I/O complexity of an algorithm is the
number of parallel memory block transfers (I/Os) between the main memory and the private
caches on the critical path. In this work, we use the term cache-efficient as a synonym for
I/O-efficient when we want to emphasize that we consider memory block transfers between the
main memory and the private cache. The PEM model supports the same access policies to the
main memory as the PRAM model. Namely, we get the submodels EREW-PEM, CREW-PEM,
and CRCW-PEM. Concurrent writes can use the conflict resolution rules as proposed for the
CRCW-PRAM model. Similarly, exclusive accesses to the same memory location must be
coordinated, e.g., by serialization, which accounts to O(t) I/Os, or by combining blocks, which
accounts to O(t) 1/Os.
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For a given machine instance of the PEM model, the parameters M and B are constants.
Most of the time, however, we treat M and B as variables in our asymptotic analysis in order to
expose the effects of block size and cache limitations.

We adopt an asynchronous variant of the PEM model based on the asynchronous CRCW
PRAM by Sanders et al. [San+19, p. 38-40] (also see [Gib89]). The asynchronous variant allows
atomic instructions such as fetch-and-add on variables that are shared with other threads. In our
model, we charge ¢ I/Os if a thread atomically accesses a shared variable. We avoid additional
delays due to false sharing by allocating at most one shared variable to each memory block.

1.3.4 The Single-Ported Message Passing Model

A common abstraction of communication in supercomputers is the single-ported message passing
model. This model describes a distributed-memory machine consisting of ¢ random access
machines connected by a communication network. Each PE i executes the same program and
knows its rank i € [0..7) as well as the total number of PEs. The PEs exclusively communicate
with point-to-point communication. It takes time o + mf to send a message of size n machine
words. The parameter « defines the message startup overhead of the communication. The
parameter f3 defines the time to communicate one machine word. Multiple messages can be
transferred at the same time. However, each PE can send and receive at most one message at
the same time. For a given machine instance of the message passing model, the parameters «
and f are constants. Most of the time, however, we treat o and f3 as variables in our asymptotic
analysis in order to expose the effects of latency and bandwidth limitations. For simplicity, the
single-ported message passing model ignores network hierarchies and assumes that o > f3 > 1
where our unit is the time for executing a simple machine instruction. We also assume that the
size of a machine word is equivalent to the size of a data element.

The cost measure of this message passing model is the asymptotic number of time steps exe-
cuted by the PE that terminates last—the so-called critical path. The critical path consists of the
following measures: (1) The “local work” executed by the PE, (2) its time for the actual message
transfers, and (3) the time it spends waiting until its sending and receiving communication
partners have posted the communication requests.

In reality, the time of a message transfer may also depend on many other parameters, e.g., the
network hierarchy of the communication partners relative to each other and the communication
protocols used by the communication library. For example, the Intel MPI library 2020 provides
two protocols: The eager protocol has a small latency since it sends the message immediately
independent of the receiver status. This protocol is usually used for small messages since the
receiver has to provide interim buffers. The rendezvous protocol only starts the actual message
transfer after the receiver has acknowledged an available receive buffer. Thus, this protocol has
a large latency but can be used for arbitrary message sizes. We evaluate the performance of
the Intel MPI library 2020 on the SuperMUC-NG [Leil8] supercomputer. The computation
nodes of SuperMUC-NG are bundled into so-called islands. Within an island, the nodes are
connected by a fat tree network. At the level of islands, the overall communication bandwidth is
pruned by a factor of four. Looking at Figure 1.1 we see the running times of message transfers
with different message lengths. We obtained the measurements by performing ping-pong
message transfers between two communication partners for two seconds. Before the actual
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Figure 1.1: Running time of ping-pong benchmarks between two fixed PEs on
SuperMUC-NG.

measurements, we executed the same message transfers as a warmup. Both, the intra-island
communication as well as the inter-island communication use the eager protocol for messages
up to 32 kB and the rendezvous protocol otherwise. The two black lines in Figure 1.1 fit the
inter-island communication cost to the single-ported message passing model for both protocols
separately with linear regression. According to the fitting, the eager protocol has a latency of
2.71 ps and a bandwidth of 3.6 GiB/s whereas the rendezvous protocol has a latency of 20.73 us
and abandwidth of 11.1 GiB/s. The theoretical peak bandwidth is 12.5 GiB/s. Inter-island as well
as intra-island communication has about the same running time with the rendezvous protocol.
However, when we consider the eager protocol, we see that intra-island communication has
an 86.90 % smaller latency than inter-island communication. The fittings of the two protocols
to the single-ported message passing model predict the cost of the message transfers shown
in Figure 1.1 very precisely. For example, the two models of inter-island communication
have an error of less than 12.50 % (eager protocol) respectively 2.96 % (rendezvous protocol).
Unfortunately, a single model for inter-island communication is much less accurate, e.g., it has
an error of up to 55.45 %. When we also include intra-island communication, the single-ported
message passing model fits even less to our measurements. We also observed high fluctuations
in running time when we simultaneously exchanged data with a lot of different communication
partners on various supercomputers. For more information, we refer to Appendix B.1.

1.3.5 Bulk Synchronous Parallel (BSP) Model

Many algorithms are bulk synchronous. Such algorithms are often described in the framework
of the BSP model. Algorithms in the BSP model execute rounds of local computation each
followed by a synchronized bulk data transfer. In the local computation phase, PEs can post
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send requests. In the data transfer phase, the posted messages are then delivered to their target
PEs. This communication is typically considered as one-sided communication, meaning that
the receiving PEs do not need to post receive requests. Let BSP(h) = I + hg denote the time
needed to execute a data exchange step where no PE receives or sends more than i words in
total. The gap g defines the number of computation steps for transferring a single word. The
term [ represents the startup overhead for the data exchange algorithm and the time for its
synchronization.

1.4 General Preliminaries

We use the notation [a..b] as a shorthand for the ordered set {a,...,b}, and [a..b) for
{a,...,b—1}. Similarly, [a; ..a;] is a shorthand for {a;,...,a;}, and [a; ..a;) is a shorthand
for {ai, ..., aj_1}. We also use log x for log, x and In x for log, x. The symbol IN stands for the
natural numbers including zero. We use the notation P[] to express probabilities.

Pseudocode

We use pseudocode in the description of algorithms rather than a normal programming lan-
guage. Our pseudocode is an abstraction of imperative programming languages such as C+,
Java, and Pascal. We use mathematical formulas and symbols to present calculations in a
compact and legible way. Sometimes we simplify algorithms so much that we describe function
calls textually. For example, we may write “select a random sample of size n from set A”

Parallel algorithms are described in the single-program multiple-data programming model.
In this model, the same pseudocode is executed in parallel by multiple PEs. Each PE has access
to its index and to the total number of PEs. When we describe shared-memory algorithms, the
PEs may access shared data structures, and distributed algorithms communicate via message
passing. To increase readability, we also allow distributed algorithms to access non-local
memory. For example, PE i may execute the command

Y a@PEj
je[0..1)

that adds up the values of variable a stored on PE [0..7). We use this notation only when these
commands can be executed efficiently with a single collective operation.

Chernoff Bound

A Bernoulli experiment is a random {0, 1 }-variable X with “success” probability P[X = 1] = ¢
and “failure” probability P[X = 0] = 1 — ¢. In its most generic form, the Chernoff inequality
bounds the probability that a sequence of independent Bernoulli experiments deviates from
the expected number of successes. Here, we consider a specific Chernoff bound [MUO05] for
Bernoulli trials. A Bernoulli trial is a set of independent random variables [ X .. X, ] each having
the same success probability P[X; = 1] = t. The Chernoff inequality bounds the probability
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that the Bernoulli trial deviates from the expected number of successes nt by a factor of at least
1+ 6 foranyd > 0:

_ min(86%)mn
3

P[Y X;>(1+0)in] <e

Parallel Algorithm Analysis

Let T(n,t) be the asymptotic running time of a parallel algorithm A with an input of size n
executed by ¢ PEs. Also, let T'(n) be the running time of the fastest sequential algorithm B that
solves the same problem. Then, the absolute speedup (speedup) of A is defined by

T
S(n,t) = 01
T(n,t)
and the efficiency of A is defined by
E(n,t) - S(’;’t) .

Furthermore, we denote the total overhead function of algorithm A as
T,(t,n) =tT(n,t) - T(n) .

The isoefficiency function [Kum+94] of an algorithm A describes the relation of the input size
to the number of PEs such that the efficiency of A remains constant when the number of PEs
increases. To determine the isoefficiency function of A, we require

To(n,t) €T(n) .

Roughly speaking, we want that the total overhead of A does not dominate the asymptotic
running time of B. The Isoefficiency function I(t) then describes # as a function of ¢t such that
this requirement is fulfilled, i.e., we need T, (I(t),¢) € T(I(t)). Thus, when we use ¢’ instead
of t PEs and the speedup of A shall increase by a factor of ¢’ /¢, we must increase the input size
by a factor of I(¢')/I(t).

1.5 Contributions

In this thesis, we present contributions to the field of sequential, shared-memory, and distributed
sorting algorithms. The following list provides the main contributions to sequential algorithms
and algorithms for shared-memory systems. The contributions base on the conference article
Ref. [Axt+17c] and the technical report Ref. [Axt+20].

« Algorithm IPS%*o. The comparison-based sorting algorithm In-place Parallel Super
Scalar Samplesort provides the following features: IPS*o works sequentially as well as in
parallel, is provably in-place, cache-efficient, and has work O(n/tlogn) per thread. The
algorithm avoids branch mispredictions and is robust against a large number of equal
keys with low overhead.
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Algorithm IPS?Ra. The sorting algorithm In-Place Parallel Super Scalar Radix Sort is
a proof-of-concept implementation of most-significant-digit (MSD) radix sort [Fri56]
using the in-place partitioning framework we developed for IPS*o.

Experiments. We validate the performance in extensive experiments considering a large
part of the cross product of 21 state-of-the-art sorting codes, 6 data types, 10 input
distributions, 4 machines, 4 memory allocation strategies, and input sizes varying over 7
orders of magnitude.

Experimental results of IPS*o0. The algorithm outperforms all competing implementa-
tions in most cases. In many of these cases, the performance difference is large. For exam-
ple, IPS*o outperforms its fastest parallel non-in-place and in-place comparison-based
competitor on average by a factor of 2.00 and 2.53 respectively for 64-bit floating-point
inputs of medium and large size. When IPS*0 is slower than a competitor, this is only by
a small percentage in the overwhelming majority of cases.

Experimental results of IPS?Ra. The radix sort algorithm complements the results
obtained for IPS*0 by being even faster in the sequential case and in some cases involving
few processor cores and small, uniformly distributed keys. IPS*Ra also outperforms
other radix sorters in many cases. For example, IPS?Ra outperforms its fastest parallel
sequential and parallel radix sort competitors on average by a factor of 1.15 and 1.54
respectively for 64-bit integer inputs of medium and large size.

The following list provides the main contributions to algorithms for distributed systems. The
contributions base on the publications Ref. [Axt+15a; AS17; AWS18].

10

« Data redistribution DMA [Axt+15a]. Let t = k" with k,7 € IN be the number of PEs.

Assume that each PE has partitioned its #n/t local elements into k pieces and assume
that the total size of pieces with number i is 11/k. We implement the data redistribution
algorithm Deterministic Message Assignment (DMA) which moves pieces with number
ito PEs [it/k.. (i + 1)t/k). The calculation of the communication partners takes time
O(alogt + k). During the actual data exchange step, each PE sends and receives n/t
elements and O(r) messages.

Algorithm AMS-sort [Axt+15a]. The implementation of the r-level algorithm Adaptive
Multi-level Samplesort works for arbitrary ¢, guarantees that the PEs always have less
than (1 + €)n/t local elements with tuning parameter €, and has isoefficiency function
t'*1/7 /logt assuming a, B, r and € to be constants. In total, AMS-sort sends and receives
at most 7(1 + €)n/t elements and O(rtl/ ’) messages per PE in the data redistribution
and requires only 21" [e splitter candidates. For the case that perfectly balanced output
is required, we offer Recurse Last Multiway Mergesort (RLM-sort) with isoefficiency
function t'*'/" logt.

Algorithm RQuick [AS17]. Robust Hypercube Quicksort is an efficient and robust
variant of hypercube quicksort that incorporates a fast and accurate splitter selection
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algorithm, a low overhead measure to handle many equal keys, and input randomization
to robustly sort skewed element distributions. We conjecture an isoefliciency function
tlogt and running time

O(alogzt +Blog’t + glogn) .

Robust Hypercube Quicksort* (RQuick™), a modification of RQuick, provides a splitter
selection that is more complex, but offers splitter quality guarantees in return. For inputs
without duplicates, RQuick™ runs in time

(9(oclog2 t+plog’t + ?logn)

with high probability.

Algorithm RFIS [AS17]. Robust Fast Work-Inefficient Sorting is a simple sorting al-
gorithm a with low overheard measure to handle many equal keys and has running
time

(’)((xlogt+ﬁtl% + %log?) .

RBC library [AWS18]. For an efficient implementation of sublinear time algorithms, we
propose the lightweight library RangeBasedComm (RBC) based on MPI. RBC provides
asymptotically time optimal implementations of collective communication primitives
on range-based communicators and communicator creation in constant time without
synchronization and communication.

Speedups with RBC. We use RBC to implement our algorithm. We also applied RBC
to our competitor algorithms: RBC improves the performance of hypercube quicksort
from Sundar et al. [SMB13] by more than one order of magnitude. RBC also improved
the multi-level algorithms HykSort [SMB13] and HSS [HKS19] by a factor of more than
5 and more than two orders of magnitude respectively.

Experiments [AS17]. We compare our algorithms directly with several state of the
art implementations considered in recent studies [SW11; SMB13; HKS19], on two
supercomputers with up to 262 144 core, ten input distributions, and input sizes varying
over 9 orders of magnitude.

Input size evaluation [AS17]. The experimental results confirm our hypothesis that four
sorting algorithms for different input sizes can be used to span the entire parameter space:
AMS-sort for medium-sized and large inputs, RQuick with polylogarithmic latency for
small inputs, RFIS with logarithmic latency for very small inputs and inputs with less
elements than PEs, and a simple algorithm that sorts while data is routed to a single PE
to sort even less elements.

11
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» Robustness evaluation and algorithm comparison [AS17]. Experiments with ten in-

put distributions validate that our algorithms are robust against skewed input distribu-
tions and repeatedly occurring keys.

RQuick is for small inputs faster than hypercube quicksort from Sundar et al. [SMB13] by
more than one order of magnitude. Classical bitonic sorting [Bat68; Joh84] is somewhat
competitive only for a rather narrow range of input sizes.

AMS-sort is the overall “winner” for medium-sized and large inputs: For some large
inputs, HykSort [SMB13] is slightly faster than AMS-sort as well as HSS from Harsh
et al. [HKS19] is competitive. However, HykSort and HSS are less robust, i.e., they are
much slower than AMS-sort or even crash for skewed inputs and inputs with duplicates.

The data redistribution algorithm DMA speeds up AMS-sort by up to three orders
of magnitude for “hard” inputs compared to previous data redistribution algorithms
proposed for multi-level sorting algorithms that also work with arbitrary ¢ [KK93].
Classical samplesort and related algorithms that communicate the data only once are
very slow even for rather large n/t.
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Sequential and Shared-Memory Sorting

In this part of the thesis, we study sequential and shared-memory sorting algorithms
and present two new cache-efficient in-place algorithms that outperform competing
implementations significantly in the majority of cases.

Chapter 2 introduces basic tools in Section 2.1 and discusses related work in Sec-
tions 2.2-2.5. Afterwards, we describe our new samplesort algorithm IPS*0 in Section 3.1
of Chapter 3 and our radix sort algorithm IPS*Ra in Section 3.2. Chapter 3 concludes
with an in-place, local-work, and 1/O complexity analysis in Section 3.3. We then turn to
an extensive experimental evaluation in Chapter 4. We first give implementation details
of IPS*0 and IPS*Ra in Section 4.1 and describe our statistical evaluation measures
in Section 4.2. Subsequently, we discuss the results of sequential and shared-memory
experiments in Sections 4.3-4.7. A final conclusion and an outlook on possible future
work is given in Section 4.8. Appendix A gives additional proofs, and provides further
experimental data.

References and Attributions. This part of the thesis is based on a conference arti-
cle [Axt+17c] and a technical report [Axt+20] jointly published with Peter Sanders,
Sascha Witt, and Daniel Ferizovic. Most parts of the publications were written by
the author of this thesis. He supervised the development of the sorting algorithms
presented in this thesis and he supervised Daniel Ferizovic who was at that time a
student employed at our institute. Daniel Ferizovic provided an initial implementation
of IPS*o0 which was later revised by Sascha Witt as well as extended and tuned by
the author of this thesis. Daniel Ferizovic also obtained the measurements presented
in the conference article. The extensive experimental evaluation presented in this
part of the thesis is exclusive work of the author of this thesis. He also independently
implemented the algorithm IPS*Ra (and the reference implementation PS*o0). Peter
Sanders provided the basic idea on how to make IPS*o in-place as well as important
advice for the development of IPS*0, but he was not involved in the actual imple-
mentation process. Peter Sanders and Sascha Witt were involved in the editing of the
publications and provided helpful remarks and comments to improve the presenta-
tion of the results. They also provided several notable parts of the publications. The
technical report [Axt+20] is a consolidation of the work. Part I and Appendix A is a
copy of most parts of this technical report. The report has also been submitted to the
journal ACM Transactions on Parallel Computing and is currently under revision.






Chapter 2

Overview of Sequential and
Shared-Memory Sorting Algorithms

This chapter provides important definitions, preliminary information, and related work for
sequential and shared-memory sorting algorithms. Section 2.1 describes the sorting problem,
defines the in-place property of algorithms in the sequential and parallel setting, and provides
a summary of notations used throughout Part I of the thesis. We also give a description of
samplesort and its non-in-place implementation Super Scalar Samplesort, which was the starting
point for the development of IPS*o and IPS*Ra. In Sections 2.2-2.5, we describe the relevant
related work of sequential as well as shared-memory sorting algorithms.

2.1 Definitions and Preliminaries

The input of a sorting algorithm is an array A[0..n— 1] of n elements, sorted by ¢ PEs. Table 2.1
gives an overview of the most important notation used in this chapter. We expect that the
output of a sorting algorithm is stored in the input array.

In algorithm theory, a sequential algorithm works in-place if it uses only constant space in
addition to its input. We use the term strictly in-place for this case. In algorithm engineering,
one is sometimes satisfied if the additional space is logarithmic in the input size. In this case,
we use the term in-place. In the context of in-place algorithms, we count machine words and
equate the machine word size with the size of a data element to be sorted. Note that other space
complexity measures may count the number of used bits. For the purpose of parallel in-place
algorithms, we interpret “constant” as “independent of the input size” but allow additional
space to depend on parameters of the machine model like the number of PEs. Recently, models
for parallel in-place algorithms were proposed [GOS21]. There, even in the strong variant, a
logarithmic number of machine words are allowed to be allocated on the stack by each PE. As
far as we understand it, our algorithms could be cast within that framework without resorting
to the tricks we use to become strictly in-place.

Our target machine is a real-world shared-memory machine with one or multiple CPUs.
A CPU contains one or multiple cores, which in turn contain one, two, or more hardware
threads (threads). We denote a machine with multiple CPUs as a Non-Uniform Memory
Access (NUMA) machine if the cores of the CPUs can access their “local main memory” faster
than the memory attached to the other CPUs. We call the CPUs of NUMA machines NUMA
nodes. A PE in the shared-memory machine model corresponds to a thread in our real-world
shared-memory machines.
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2 Overview of Sequential and Shared-Memory Sorting Algorithms

Table 2.1: Summary of notations

Symbol Meaning

A input array

n number of elements

t # of PEs

M fast memory size of the PEM model
B block size of PEM model
b block size within IPS*o
k distribution degree

b; i-th bucket

w; write pointer of bucket i
1 read pointer of bucket i

T[¢,r] thetasktosort A[l.r—1]

(Super Scalar) Samplesort.

The k-way S*o algorithm [SW04] starts with allocating two temporary arrays of size n—one
data array to store the buckets, and one oracle array to store the bucket indices where input
elements are placed. The partitioning routine contains three phases and is executed recursively.
The sampling phase sorts ak — 1 randomly sampled input elements where the oversampling
factor « is a tuning parameter. The splitters S = [sp .. sg—2 | are then picked equidistantly from
the sorted sample. The classification phase classifies each input element, stores its target bucket
in the oracle array, and increases the size of its bucket. Element e goes to bucket b; if s;_; <e <'s;
(with s_; = —00 and sx_1 = 00). Then, a prefix sum is used to calculate the bucket boundaries.
The distribution phase uses the oracle array and the bucket boundaries to copy the elements
from the input array into their buckets in the temporary data array.

The main contribution of S*o to samplesort is to use a decision tree for element classification
that eliminates branch mispredictions (branchless decision tree). Assuming k is a power of two,
the splitters are stored in an array a representing a complete binary search tree: a; = si/>-1,
ay = Sk/a-1> @3 = S3k/4—1> and so on. More generally, the left successor of g; is ay; and its right
successor is ay;,;. Thus, navigating through this tree is possible by performing a conditional
instruction for incrementing an array index. $*o completely unrolls the loop that traverses the
decision tree to reduce the instruction count. Furthermore, the loop for classifying elements is
unrolled several times to reduce data dependencies between instructions. This allows a higher
degree of instruction parallelism.

Bingmann et al. [BES17] apply the branchless decision tree to parallel string sample sorting
(StringPS*0) and add additional buckets for elements identical to a splitter. After the decision
tree of S*o has assigned element e to bucket b;, StringPS*o updates the bucket to introduce
additional equality buckets for elements corresponding to a splitter: Element e goes to bucket
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Decision Tree a:
‘J_[33[sl S5 50152154156‘

Sorted Splitters:
‘50151[82[83[84 S5

Figure 2.1: Branchless decision tree with 7 splitters and 15 buckets, including 7 equality
buckets. The first entry of the decision tree array stores a dummy to allow tree navigation.
The last splitter in the sorted splitter array is duplicated to avoid a case distinction.

bis1,., if i <k -1, otherwise e goes to bucket by;.! The case distinction i < k — 1 is necessary
as ay_; is undefined.

For IPS*o, we adopt (and refine) the approach of element classification but change the
organization of buckets in order to make S*o in-place and parallel. Our element classification
works as follows: Beginning by the source node i = 1 of the decision tree, the next node is
calculated by i < 2i + 1,,.,. When the leaves of the tree are reached, we update i once more
i < 2i+ 1, — k. For now, we know for e that s;_; < e < s; if we assume that s_; = —co and
that sx_; = co. Finally, the bucket of e is 2i + 1 — 1,.,. Note that we do not use the comparison
L,-s,, from StringPS*o to calculate the final bucket. The reason is that our algorithm accepts a
compare function < and StringPS*o compares radices. Instead, we use 1 — 1., that is identical
to 1., since we already know that e < s;. Also, note that we avoid the case distinction i < k — 1
from the classification of StringPS*o that may potentially cause a branch misprediction. Instead,
we set g1 = Sx_». Compared to S*o and StringPS*o, we support values of k that are no powers
of two, i.e., when we had removed splitter duplicates in our algorithm. In these cases, we round
up k to the next power of two and pad the splitter array S with the largest splitter. We note that
this does not increase the depth of the decision tree. Figure 2.1 depicts our refined decision
tree and Algorithm 1 classifies elements using the refined decision tree. Algorithm 1 classifies a
chunk of elements in one step. A single instruction of the decision tree traversal is executed
on multiple elements before the next operation is executed. We use loops to execute each
instruction on a constant number of elements. It turned out that recent compilers automatically
unroll these loops and remove the instructions of the loops for code optimization.

1We use 1. to express a conversion of a comparison result to an integer. When c is true, 1. is equal to 1. Otherwise,
it is equal to 0.
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2 Overview of Sequential and Shared-Memory Sorting Algorithms

Algorithm 1 Element classification of the first u|n/u| elements

Template parameters: s number of splitters, u unroll factor, equalBuckets Boolean value
that indicates the use of equality buckets
Input: A[0..n— 1] an array of n input elements
tree[1..s] decision tree, splitters stored in left-to-right breadth-first order
splitter[0..s] sorted array of s splitters, last splitter is duplicated
COMPARE(ey, e,) a comparator function that returns 0 or 1
ouTPUT(e, t) an output function that gets an element e and its target bucket ¢

I <log,(s+1) > Log. number of buckets (equality buckets are excluded)
k < 21 > Number of buckets
b[0.u-1] > Array to store current position in the decision tree
for j < 0 in steps of u to n — u do > Loop over elements in blocks of u
fori <~ Otou—1do
bli] <1 D> Set position to the tree root
forr < 0toldo > Unrolled by most compilers as / and u are constants
fori < Otou—1do
b[i] < 2-b[i]+ comparg(tree[b[i]],a[j +i]) D> Navigate through the tree
if equalBuckets then

for i < 0 to u — 1 do>> Assign elements identical to the splitter to its equality bucket
b[i] < 2-b[i] + 1-compaRE(a] j + i], splitter[b[i] - k/2])
fori< Otou—1do
outruT(b[i] —k,a[j +i])

2.2 Quicksort

Variants of Hoare’s quicksort [Hoa62; Mus97] are generally considered some of the most
efficient general-purpose sorting algorithms. Quicksort works by selecting a pivot element and
partitioning the array such that all elements smaller than the pivot are in the left part and all
elements larger than the pivot are in the right part. The subproblems are solved recursively.
Quicksort (with recursion on the smaller subproblem first) needs logarithmic additional space
for the recursion stack. Strictly in-place variants [Dur86; BK86; Weg87] of quicksort avoid
recursion, process the array from left to right, and use a careful placement of the pivots to find
the end of the leftmost partition. A variant of quicksort (with a fallback to heapsort to avoid
worst-case scenarios) is currently used in the C+ standard library of GCC [Mus97].

Some variants of quicksort use two or three pivots [Yar10; Kus+14] and achieve improve-
ments of around 20 % in running time over the single-pivot case. The basic principle of quicksort
remains, but elements are partitioned into three or four subproblems instead of two.

Quicksort can be parallelized in a scalable way by parallelizing both partitioning and recur-
sion [MG89; HNR90; FP92]. Tsigas and Zhang [TZ03] show in practice how to do this in-place.
Their algorithm scans the input from left to right and from right to left until the scanning
positions meet—as in most sequential implementations. The crucial adaptation is to do this in
a blockwise fashion such that each thread works at one block from each scanning direction
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at a time. When a thread finishes a block from one scanning direction, it acquires a new one
using an atomic fetch-and-add operation on a shared pointer. This process terminates when
all blocks are acquired. The remaining unfinished blocks are resolved in a sequential cleanup
phase. Our IPS*0 algorithm can be considered as a generalization of this approach to k pivots.
This saves a factor @(logk) of passes through the data. We also parallelize the cleanup process.

2.3 Samplesort

Samplesort [FM70; Ble+96; BGS10] can be considered as a generalization of quicksort that uses
k — 1 splitters to partition the input into k subproblems (from now on called buckets) of about
equal size. Unlike single- and dual-pivot quicksort, samplesort is usually not in-place, but it is
well-suited for parallelization and more cache-efficient than quicksort.

The algorithm S*o [SW04] improves samplesort by avoiding inherently hard-to-predict
conditional branches linked to element comparisons. Branch mispredictions are very expensive
because they disrupt the pipelined and instruction-parallel operation of modern processors. Tra-
ditional quicksort variants suffer massively from branch mispredictions [KS06a]. By replacing
conditional branches with conditionally executed machine instructions, branch mispredictions
can be largely avoided. This is done automatically by modern compilers if only a few instructions
depend on a condition. As a result, S*o is up to two times as fast as quicksort (std: : sort), at
the cost of O(n) additional space. BlockQuicksort [EW16] applies similar ideas to single-pivot
quicksort, resulting in a very fast in-place sorting algorithm with performance similar to S*o.

For IPS*0, we used a refined version of the branchless decision tree from S*o. S*o has also
been adapted for efficient parallel string sorting [BES17]. We apply their approach of handling
identical keys to our decision tree.

2.4 Radix Sort

As for samplesort, the core of radix sort is a k-way data partitioning routine that is recursively
executed. In its simplest way, all elements are classified once to determine the bucket sizes and
then a second time to distribute the elements. Most partitioning routines are applicable to
samplesort as well as to radix sort. Samplesort classifies an element with ®(log k) invocations of
the comparator function while radix sort just extracts a digit of the key in constant time. In-place
k-way data partitioning is often done element by element, e.g., in the sequential in-place radix
sorters American Flag [MBM93] and SkaSort [Skal6a]. However, these approaches have two
drawbacks. First, they perform the element classification twice. This is a particular problem
when we apply this approach to samplesort as the comparator function is more expensive.
Second, a naive parallelization where the threads use the same pointers and acquire single
elements suffers from read/write dependencies.

In 2014, Orestis and Ross [PR14] outlined a parallel in-place radix sorter that moves blocks
of elements in its k-way data partitioning routine. We use the same general approach for IPS*o.
However, the paper [PR14] leaves open how the basic idea can be turned into a correct in-place
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2 Overview of Sequential and Shared-Memory Sorting Algorithms

algorithm. The published prototypical implementation uses 20 % additional memory, and does
not work for small inputs or a number of threads different from 64.

In 2015, Minsik et al. published PARADIS [Cho+15], a parallel in-place radix sorter. The
partitioning routine of PARADIS classifies the elements to get bucket boundaries and each
thread gets a subsequence of unpartitioned elements from each bucket. The threads then
try to move the elements within their subsequences so that the elements are placed in the
subsequence of their target bucket. This takes time O(n/t). Depending on the data distribution,
elements may still be in the wrong bucket. In this case, the threads repeat the procedure on
the unpartitioned elements. Depending on the key distribution, the load of the threads in
the partitioning routine differs significantly. No bound better than O(n) is known for this
partitioning routine [Obe+19b].

In 2019, Shun et al. [Obe+19b] proposed an in-place k-way data partitioning routine for the
radix sorter RegionSort. This algorithm builds a graph that models the relationships between
element regions and their target buckets. Then, the algorithm performs multiple rounds where
the threads swap regions into their buckets.

To the best of our knowledge, the initial version of IPS*o [Axt+17c], published in 2017,
is the first parallel k-way partitioning algorithm that moves elements in blocks, works fully
in-place, and gives adequate performance guarantees. Our algorithm IPS*o is more general
than RegionSort in the sense that it is comparison-based. To demonstrate the advantages of
our approach, we also propose the radix sorter IPS?Ra that adapts our in-place partitioning
routine.

2.5 (Strictly) In-Place Mergesort

There is a considerable amount of theory work on strictly in-place sorting (e.g., [Fra04; FGO5;
GL91]). However, there are few—mostly negative—results of transferring the theory work
into practice. Implementations of non-stable in-place mergesort [KPT96; EKS12; EW19] are
reported to be slower than quicksort from the C+ standard library. Katajainen and Teuhola
report that their implementation [KPT96] is even slower than heapsort, which is quite slow for
big inputs due to its cache-inefliciency. The fastest non-stable in-place mergesort implemen-
tation we have found is QuickMergesort (QMSort) from Edelkamp et al. [EW19]. Relevant
implementations of stable in-place mergesort are WikiSort (derived from [KKO08]) and Grail-
Sort (derived from [HL92]). However, Edelkamp et al. [EW19] report that WikiSort is a factor
of more than 1.5 slower than QMSort for large inputs and that GrailSort performs similar to
WikiSort. Edelkamp et al. also state that non-in-place mergesort is considerably faster than
in-place mergesort. There is previous theoretical work on sequential (strictly) in-place multiway
merging [GG10]. However, this approach needs to allocate very large blocks to become efficient.
In contrast, the block size of IPS*o does not depend on the input size. Gu et al. [GOS21]
propose a method to convert parallel non-in-place algorithms meeting the Decomposable
Property into algorithms that only require O(nl_e) additional memory for 0 < € < 1. They
apply their method to merging, scan, filter, random permutation, list contraction, and tree
contraction and provide implementations for the latter five algorithms. The best practical
shared-memory mergesort algorithm we found is the non-in-place multiway mergesort algo-
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rithm (MCSTLmwm) from the MCSTL library [SSP07]. We did not find any practical parallel
in-place mergesort implementation.
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Chapter 3

Robust Scalable In-Place Sorting
Algorithms

In Sections 3.1 and 3.2, we propose the comparison-based sorting algorithm IPS*o as well
as the integer sorting algorithm IPS*Ra. Both algorithms work in-place and can be executed
sequentially as well as in parallel. In Section 3.3, we prove that the algorithms work in-place
(Section 3.3.1). Additionally, we prove that IPS*o is cache-efficient (Section 3.3.2) and that it
performs O(n/tlogn) work per thread if some constraints apply in regard to the input size,
the number of threads, and the machine parameters (Section 3.3.3).

3.1 In-Place Parallel Super Scalar Samplesort (IPS%o)

IPS*0 is a recursive algorithm. Each recursion level divides the input into k buckets (partitioning
step), such that each element of bucket b; is smaller than all elements of b;,;. Partitioning steps
operate on the input array in-place and are executed with one or more PEs, depending on their
size. If a bucket is smaller than a certain base case size, we invoke a base case algorithm on
the bucket (base case) to sort small inputs fast. A scheduling algorithm determines at which
time a base case or partitioning step is executed and which PEs are involved. We describe the
partitioning steps in Section 3.1.1 and the scheduling algorithm in Section 3.1.2.

3.1.1 Sequential and Parallel Partitioning

A partitioning step consists of four phases, executed sequentially or by a (sub)set of the input
PEs. Sampling determines the bucket boundaries. Classification groups the input into
blocks such that all elements in a block belong to the same bucket. (Block) permutation
brings the blocks into the globally correct order. Finally, we clean up blocks that cross bucket
boundaries or remained partially filled in the cleanup phase. Figure 3.1 depicts an overview
of a parallel partitioning step. The following paragraphs will explain each of these phases in
more detail.

3.1.1.a) Sampling.

Similar to the sampling in S*o, the sampling phase of IPS*o creates a branchless decision
tree—the tree follows the description of the decision tree proposed by Sanders and Winkel,
extended by equality buckets'. For a description of the decision tree used in S*o including our

'The authors describe a similar technique for handling duplicates, but have not implemented the approach for
their experiments.
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Figure 3.1: Overview of a parallel k-way partitioning step (k = 4) with ¢ PEs and blocks
of size three. Elements with the same color belong into the same bucket. The brighter the
color, the smaller the bucket index. This figure depicts the first and last stripe of the input
array, containing 7/t elements each. In the classification phase, PE i classifies the elements
of stripe i, moves elements of bucket j into its buffer block j, and flushes the buffer block
back into its stripe in case of an overflow. In the permutation phase, the bucket boundaries
are calculated and the blocks belonging into bucket j are placed in the blocks after bucket
boundary j in two steps: First, the empty blocks are moved to the end of the bucket. Then,
the misplaced blocks are moved into its bucket. The cleanup phase moves elements that
remained in the buffer blocks and elements that overlap into the next bucket to their final
positions.

refinements, we refer to Section 2.1. In IPS*0, the decision tree is used in the classification
phase to assign elements to buckets.

The sampling phase performs four steps. First, we sample ka — 1 elements of the input.
We swap the samples to the front of the input array to keep the in-place property even if the
oversampling factor o depends on n. Second, k — 1 splitters are picked equidistantly from the
sorted sample. Third, we check for and remove duplicates from the splitters. This allows us to
decrease the number of buckets k if the input contains many duplicates. Finally, we create the
decision tree. The strategy for handling identical keys is enabled conditionally: The decision
tree only creates equality buckets when there are several identical splitters. Otherwise, we
create a decision tree without equality buckets. Having inputs with many identical keys can
be a problem for samplesort, since this might move large fractions of the keys through many
recursion levels. The equality buckets turn inputs with many identical keys into “easy” instances
as they introduce separate buckets for elements identical to splitters (keys occurring more than
n/k times are likely to become splitters).

3.1.1.b) Classification

The input array A is viewed as an array of blocks each containing b elements (except possibly for
the last one). For parallel processing, we divide the blocks of A into ¢ stripes of equal size—one
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A I [ N . [ \ \ ]
——

b 2) 1)

—~
Buffer ] ] ]
b1 bg bg 3) b4

b

Figure 3.2: Classification. Blue elements have already been classified, with different shades
indicating different buckets. Unprocessed elements are green. We perform three steps in
this example. 1) The next element (in dark green) is determined to belong to bucket b;. 2)
As that buffer block is already full, we first have to write it into the array A. 3) Then, we
can write the new element into the now empty buffer.
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Figure 3.3: Input array and block buffers of the last two PEs after classification.

for each PE. Each PE works with a local array of k buffer blocks—one for each bucket. A PE then
scans its stripe. Using the search tree created in the sampling phase, each element in the stripe
is classified into one of the k buckets and then moved into the corresponding local buffer block.
If this buffer block is already full, it is first written back into the local stripe, starting at the front.
It is clear that there is enough space to write b elements into the local stripe, since at least b
more elements have been scanned from the stripe than have been written back—otherwise, no
full bufter could exist.

In this way, each PE creates blocks of b elements belonging to the same bucket. Figure 3.2
shows a typical situation during this phase. To achieve the in-place property, we do not track
which bucket each block belongs to. However, we count how many elements are classified into
each bucket, since we need this information in the following phases. This information can be
obtained almost for free as a side effect of maintaining the buffer blocks. Figure 3.3 depicts the
input array after classification. Each stripe contains full blocks, followed by empty blocks. The
remaining elements are still contained in the buffer blocks.

3.1.1.c) Block Permutation

In this phase, the blocks in the input array are rearranged such that they appear in the correct
order. From the classification phase we know; for each stripe, how many elements belong to
each bucket. We first aggregate the per-PE bucket sizes and then compute a prefix sum over the
total bucket sizes. This yields the exact boundaries of the buckets in the output. Roughly, the
idea is then that each PE repeatedly looks for a misplaced block B in some bucket b;, finds the
correct destination bucket b; for B, and swaps B with a misplaced block in b;. If b; does not
contain a misplaced block, B is moved to an empty block in b;. The PEs are coordinated by
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Figure 3.4: Invariant during block permutation. In each bucket b;, blocks in [d;, w;)
are already correct (blue), blocks in [w;, r;] are unprocessed (green), and blocks in
[max(w;,r; + 1), diy1) are empty (white).

maintaining atomic read and write pointers for each bucket. Costs for updating these pointers
are amortized by making blocks sufficiently large.

We now describe this process in more detail beginning with the preparations needed before
starting the actual block permutation. We mark the beginning of each bucket b; with a delimiter
pointer d;, rounded up to the next block. We similarly mark the end of the last bucket by, with
a delimiter pointer dj;. Adjusting the boundaries may cause a bucket to “lose” upto b — 1
elements; this doesn’t affect us, since this phase only deals with full blocks, and elements outside
full blocks remain in the buffers. Additionally, if the input size is not a multiple of b, some of
the d;s may end up outside the bounds of A. To avoid overflows, we allocate a single empty
overflow block that the algorithm will use instead of writing to the final (partial) block.

For each b;, a write pointer w; and a read pointer r; are introduced; these will be set such
that all unprocessed blocks, i.e., blocks that still need to be moved into the correct bucket, are
found between w; and r;. At the beginning of the permutation phase, w; is set to d; and r; is set
to d;41. During the block permutation, we maintain the following invariant for each bucket b;,
visualized in Figure 3.4:

o Blocks to the left of w; (exclusive) are correctly placed, i.e., contain only elements belong-
ing to b;.

« Blocks between w; and max(w; — 1,7;) (inclusive) are unprocessed, i.e., may need to be
moved.

o Blocks to the right of max(w;, r; + 1) (inclusive) are empty.

In other words, each bucket follows the pattern of correct blocks followed by unprocessed
blocks followed by empty blocks, with w; and r; determining the boundaries. In the sequential
case, this invariant is already fulfilled from the beginning. In the parallel case, all full blocks are
at the beginning of each stripe, followed by its empty blocks. This means that only the buckets
crossing a stripe boundary need to be fixed.

To do so, each PE finds the bucket that starts before the end of its stripe but ends after it.
It then finds the stripe in which that bucket ends (which will be the following stripe in most
cases) and moves the last full block in the bucket into the first empty block in the bucket. It
continues to do this until either all empty blocks in its stripe are filled or all full blocks in the
bucket have been moved.

In rare cases, very large buckets exist that cross multiple stripes. In this case, each PE will
first count how many blocks in the preceding stripes need to be filled. It will then skip that
many blocks at the end of the bucket before starting to fill its own empty blocks.
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lowed by refilling the swap buffer.

Figure 3.5: Block permutation examples. The numbers indicate the order of the opera-
tions.

The PEs are then ready to start the block permutation. Each PE maintains two local swap
buffers that can hold one block each. We define a primary bucket by, for each PE; whenever both
its buffers are empty, a PE tries to read an unprocessed block from its primary bucket. To do so,
it decrements the read pointer r;, (atomically) and reads the block it pointed to into one of its
swap buffers. If b, contains no more unprocessed blocks (i.e., r, < w)), it switches its primary
bucket to the next bucket (cyclically). If it completes a whole cycle and arrives back at its initial
primary bucket, there are no more unprocessed blocks and the whole permutation phase ends.
The starting points for the PEs are distributed across that cycle to reduce contention.

Once it has a block, each PE classifies the first element of that block to find its destination
bucket byesr. There are now two possible cases, visualized in Figure 3.5:

o Aslong as Wyest < Tdest> Write pointer wgey still points to an unprocessed block in bucket
baest- In this case, the PE increases wges, reads the unprocessed block into its empty swap
buffer, and writes the other one into its place.

o If Wyest > 7dest> N0 unprocessed block remains in bucket bgesr but wyest noW points to
an empty block. In this case, the PE increases wqes, Writes its swap buffer to the empty
block, and then reads a new unprocessed block from its primary bucket.

We repeat these steps until all blocks are processed. We can skip moving unprocessed blocks
that are already correctly placed: We simply classify blocks before reading them into a swap
buffer, and skip as needed.

It is possible that one PE wants to write to a block that another PE is currently reading from
(when the reading PE has just decremented the read pointer but has not yet finished reading the
block into its swap buffer). However, PEs are only allowed to write to empty blocks if no other
PEs are currently reading from the bucket in question, otherwise, they must wait. Note that
this situation occurs at most once for each bucket, namely when wgest and r4eq cross each other.
We avoid these data races by keeping track of how many PEs are reading from each bucket.

When a PE fetches a new unprocessed block, it reads and modifies either w; or r;. The PE
also needs to read the other pointer for the case distinctions. These operations are performed
simultaneously to ensure a consistent view of both pointers for all PEs. Figure 3.6 depicts an
example of the permutation phase with three PEs and four buckets.
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Figure 3.6: An example of a permutation phase with k = 4 buckets and ¢ = 3 PEs. The
brackets above the buckets mark the unprocessed blocks. After five permutation steps, the
blocks were moved into their target buckets. (1) The buffer blocks are filled with blocks.
(2-3) Swap buffer block with the leftmost unprocessed block of the buffer block’s buckets.
(4) PE 0 and 1 have a buffer block for the last bucket. They increase the write pointer of
this bucket concurrently. PE 0 executes the fetch-and-add operation first, the PE swaps its
buffer block with the second block (unprocessed block) of the last bucket. PE 1 writes its
buffer block into the third block (empty block) of the last bucket. After step four, PEs 1
and 2 finished a permutation chain, i.e., flushed their buffer block into an empty block.
(5) PE 0 flushes its buffer block into an empty block. PE 1 classifies the last unprocessed
block of the first bucket but this block is already in its target bucket.

3.1.1.d) Cleanup

After the block permutation, some elements may still be in incorrect positions since blocks
may cross bucket boundaries. We call the partial block at the beginning of a bucket its head
and the partial block at its end its tail.

PE i performs the cleanup for buckets [|ki/t]..|k(i + 1)/t]). PE i first reads the head of the
first bucket of PE i + 1 into one of its swap buffers. Then, each PE processes its buckets from left
to right, moving incorrectly placed elements into empty array entries The incorrectly placed
elements of bucket b; can be in four locations:

(i) Elements may be in the head of b;., if the last block belonging into bucket b; overlaps

into bucket b;,;.

(ii) Elements may be in the partially filled buffers from the classification phase.
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Figure 3.7: An example of the steps performed during cleanup.

(iii) Elements of the last bucket (in this PE’s area) may be in the swap buffer.

(iv) Elements of one bucket may be in the overflow buffer.
Empty array entries consist of the head of b; and any (empty) blocks to the right of w; (inclusive).
Although the concept is relatively straightforward, the implementation is somewhat involved,
due to the many parts that have to be brought together. Figure 3.7 shows an example of the
steps performed during the cleanup phase. Afterwards, all elements are back in the input array
and correctly partitioned, ready for recursion.

3.1.2 Task Scheduling

In this section, we describe the task scheduling of IPS*o. We also establish basic properties of
the task scheduler. The properties are used to understand how the task scheduler works. The
properties are also used later on in Section 3.3 to analyze the parallel I/O complexity and the
local work of IPS*o.

In general, IPS*0 uses static scheduling to apply tasks to PEs. When a PE becomes idle, we
additionally perform a dynamic rescheduling of sequential tasks to utilize the computation
resources of the idle PE. Unless stated otherwise, we exclude the dynamic rescheduling from
the analysis of IPS*o and only consider the static load balancing. We state that dynamic load
balancing—when implemented correctly—cannot make things worse asymptotically.

Before we describe the scheduling algorithm, we introduce some definitions and derive
some properties from these definitions to understand how the task scheduler works. A task
T[l,r) either partitions the (sub)array A[l,r — 1] with a partitioning step (partitioning task) or
sorts the base case A[l,r — 1] with a base case sorting algorithm (base case task). A partitioning
step performed by a group of PEs (a PE group) is a parallel partitioning task (parallel task) and
a partitioning step with one PE is a sequential partitioning task. Each PE has a local stack to
store sequential tasks, i.e., sequential partitioning tasks and base cases. Additionally, each PE i
stores a handle G; to its current PE-group and has access to the handles stored by the other PEs
of the PE-group.

The initial task is executed by all PEs. We now consider a subtask T[l,r) of a parallel task
that had been processed by some PEs [¢..t). To decide whether T[I,r) is a parallel task or a

sequential task, we denote t' as |It/n| and 7 as |rt/n|. T[l,r) is a parallel task when 7 - t>1.
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In this case, the task is executed by PE group [t .. 7 ). Otherwise, the task is a sequential task
and will be processed by PE [min(t,f - 1)].

We use a base case threshold 7, to determine whether a sequential task is a sequential
partitioning task or a base case task: Buckets with at most 2#1, elements as well as buckets of
a task with at most kny elements are considered as base cases. Otherwise, it is a sequential
partitioning task. We use an adaptive number of buckets k for partitioning steps with less than
k*ny elements, such that the expected size of the base cases is between 0.51y and ny while the
expected number of buckets remains equal or larger than \/k. To this end, for partitioning

steps with kng < n' < k?ng elements, we adjust k to 21 (log,(n'/n0)+1)/2] When no <n < kng, we

set k = 2Mlo&:("/m)1 This adaption of k is important for a robust running time of IPS*o. In
the analysis of IPS*o, the adaption of k will allow us to amortize the sorting of samples. In
practice, our experiments have shown that for fixed k, the running time per element oscillates
with maxima around k'n.

From these definitions, Lemmas 3.1-3.4 follow. The lemmas allow a simple scheduling of
parallel tasks and PE-groups.

Lemma 3.1 (Relationship between array position and PE index)
The parallel task T[1, 1) covers position (i + 1)n/t — 1,i € [0..t) of the input array if and only if
PE i executes the parallel task T[1,r).

Proof. WEe first prove that PE i executes the parallel task T[I,7) if T[l,r) covers position (i +
1)n/t — 1,i € [0..t) of the input array. Let the parallel task T[I,7) cover position w = (i +
1)n/t — 1,i € [0..t) of the input array. From the inequalities

i=|((i+)n/t-1)t/n]| = |lt/n]
i=[((i+ Dnft-1)t/n] < |ri/n]

w  » « _»

follows that PE i executes the parallel task T[,7). For the “>” and the “<”, we use that task
T[l,r) covers position w of the input array, i.e, I < w < r.

We now prove that a parallel task T'[1, ) must cover position (i + 1)n/t — 1 of the input array
if it is executed by PE i. Let us assume that a parallel task T[I,r) is executed by PE i. From the
inequalities

:LS
:ES

(i+1)nft-1>(t+n/t-1>1
(i+)nft—1<tnft<rg

follows that task T[1,7) covers position (i + 1)n/t — 1 of the input array. For the second “>” and
for the “<” we use the definition for the PE-group of T[I, 1), i.e., [t..£) = [|It/n]..|rt/n]). O

Lemma 3.2 (Relationship between PE of sequential task and parallel parent task)

Let the sequential task T[I;,7), processed by PE i be a bucket of a parallel task T[1,r). Then, task
T[l,r) is processed by PE i and others.

Proof. Let the parallel task T[], 7) be processed by PEs [¢..t). Task T[I,7s) is processed by
PE i = min(|lst/n],t — 1). We have to show thatt < i < ¢ holds. Indeed, inequality i =
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min(|lit/n],t — 1) < ¢ holds. The inequality i > ¢ is only wrong if |lit/n| < toriff -1 < t.
However, we have [ < [, as task T[ls, ) is a bucket of its parent task T[, 7). Thus, |It/n] >
|lt/n] = t holds as the first PE t of T[L, r) is defined as |lt/n|. Also, we have  — 1 > ¢ as task
T[l,r) is a parallel task with at least two PEs, i.e., f — ¢ > 1. i

Lemma 3.3 (Parallel subtasks are processed by subgroup of PEs)

Let the parallel subtask T|[ls, ), processed by PE i and others, be a bucket of a task T[1,r). Then,
task T[1,r) is also a parallel task processed by PE i and others.

Proof. Task T[l,r) is a parallel task if | r¢/n| — |It/n]| > 1. This inequality is true as

|rt/n] - |It/n]| = |rst/n] - |Lt/n] > 1 .

@ »

For the “>” we use that T[l},7;) is a bucket of T[], r) and for the “>” we use that T[I,, ;) is a
parallel task.

As the parallel task T[l;, r) is processed by PE i, T[l;, rs) covers position (i + 1)n/t — 1 of
the input array (see Lemma 3.1). As task T'[I;,75) is a bucket of T[1,r), the parallel task T[, )
also covers the position (i + 1)n/t — 1. From Lemma 3.1 follows that the parallel task T[1,7) is

processed by PE i. o

Lemma 3.4 (One parallel task per recursion level and PE)

On each recursion level, PE i works on at most one parallel task.

Proof. LetS!,i € [0..t) be the set of parallel tasks on recursion level j that cover the position
(i+1)n/t — 1 of the input array. From Lemma 3.1 follows that PE i processes on recursion level
j only the tasks S/. The set S/ contains at most one task as tasks on the same recursion level are
disjoint. ]

3.1.2.a) Static Scheduling

We start the description of the task scheduler by describing the static scheduling part. The idea
behind the static scheduling is that each PE executes its tasks in depth-first search order tracing
parallel tasks first. From Lemmas 3.3 and 3.4 follows, keeping the order of execution in mind,
that each PE first executes all of its parallel tasks before it starts to execute its sequential tasks.
IPS*o0 starts by processing a parallel task T[0,7) with PEs [0..t). In general, when a parallel
task T[1,r) is processed by the PE-group G = [t ..t), five steps are performed.
(i) A parallel partitioning step is invoked on A[L,7 — 1].

(ii) The buckets of the partitioning step induce a set of subtasks S.

(iii) If subtask T[l;,7s) € S is a sequential task, PE i = |min(lit/n,f — 1) | adds the subtask
to its local stack. From Lemma 3.2, we know that PE i is actually also processing the
current task T'[I, 7). This allows PEs to add sequential tasks exclusively to their own local
stack, so no concurrent stacks are required.
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0 n/t 2n/t 3n/t 4n/t 5n/t 6n/t n/t 8n/t
‘ Input array ‘

PEO..7

PEO..1

Time

—0——"1

m

Local stacks 0 1 2 3 4 5 6 7—

Figure 3.8: Example schedule of a task execution in IPS*o with 8 PEs where partitioning
steps split tasks into 8 buckets. Each rectangle represents a task in execution. The height
of a task is defined by the size of the task divided by the number of PEs assigned to this
task. For parallel tasks (green), the PEs processing that task are shown in the rectangles.
The sequential partitioning tasks (blue) are covered by the local stack that stores the task
until processing. Base case tasks are omitted for the sake of simplicity. The crosses at the
bottom of a rectangle indicate bucket boundaries. The brackets pointing downwards are
used to decide in which local stack the sequential subtasks are inserted. Tasks stored in
local stack i are executed by PE i.

(iv) Each PEi € [t..f) extracts the subtask T = T[l;, rs) from S that covers position | (i +
1)n/t| — 1 of the input array A. Also, PE i calculates t, = |Iit/n| as well as ¢, = |rt/n|
and continues with the case distinction f; —t, < 1l and t, -t > 1.

Ift; —t, < 1 orif T is an equality bucket, PE i once synchronizes with G and starts
processing the sequential tasks on its local stack.

Otherwise, T is actually a parallel task that has to be processed by the PEs [t .. ;). From
Lemmas 3.1 and 3.3 follows that the PEs [¢, ..t,) are currently all processing T'[I, s) and
exactly these PEs selected the same task T';. This allows setting up the PEs [t ..¢) for the
next parallel task T's without keeping the PEs waiting: The first PE ¢_ of task T creates
the data structure representing the task’s new PE-group G’ = [f, ..t;) and updates the
PE-group handles [G; ..G; ) of the PEs [t ..£;) to the new data structure. Afterwards,
all PEs of [¢, .. ;) synchronize with PE-group G and access their new PE-group G’ using
the updated PE-group handles. Finally, the PEs [¢,..£;) start processing task T'; with
PE-group G'.
If a PE no longer processes another parallel task, it starts processing the sequential tasks of
its stack until the stack is empty. Base cases are sorted right away. When the next task T[I, r) is
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Algorithm 2 Task Scheduler

Input: A[0..n — 1] array of n input elements, ¢ number of PEs, i current PE

T[l,r) < T[0,n) > Current task, initialized with A[1..n]
Gi[t.t) = G[0,t) D> Initialize PE-group containing PE¢ = 0 to ¢ = ¢ (excl.)
D<o > Empty local stack

ift — ¢t = 1 then D.pusHFRONT(T[I,7)) I> Initial task is a sequential, go to sequential phase
else

while true do > Execute current parallel task
[bo .. br—1] <PARTITIONPARALLEL(A[], 7 — 1], G;)I> Partitioning step; returns buckets
for [Is..75) < bx_; to by do > Handle the buckets
if (i+1)n/t—1€[l;r,) then > Update current task
Tl,r) < T[ls,7s) > It might be i’s next parallel task
if [rst/n] - [Iit/n] <1 and i = min(ls¢/n, — 1) then
D.pusa({T[ls,7s),Lr}) > PE i adds sequential task to its local stack
t<l-tfmt<r-t/n D> Range of PEs used by current task
ift -t < 1 then break > Go to sequential phase as T[l,r) is not a parallel task
ifi = t then > PE i creates the PE subgroup as it is the first PE
G; < cREATEPEGROUP([t .. t])
for j«<ttot—1do > Set subgroup for all subgroup PEs
G; < REFERENCEOF(G;)
WaritFor(t) > Wait until PE subgroup is created
JoINPEGRrROUP(G;) > Join shared data structures
while NoTEMPTY(D) do > Execute sequential tasks

{T[ls,1s),l,r} < por(D)
ifr; — I, < 2ng or r — I < kny then
PROCESSBASECASE(A[l, 75 — 1])
else
[bo .. bk_1] < PARTITIONSEQUENTIAL(A[I;, 75 — 1]) > Partitioning step—returns
buckets
for b < by_, to by do
D.pusH({T[BEGIN(b), END(b)), 5, 75 }) > Add seq. subtasks

a sequential partitioning task, three steps are performed. First, a sequential partitioning step is
executed on A[l,r —1]. Second, a new sequential subtask is created for each bucket. Finally, the
PE adds these subtasks to its local stack in sorted order. Algorithm 2 shows the steps of the task
scheduling algorithm in detail. The scheduling algorithm is executed by all PEs simultaneously.
Figure 3.8 shows an example schedule of a task execution in IPS*o.

From Lemmas 3.5 and 3.6 follows that the workload of sequential tasks and parallel tasks is
evenly divided between the PEs. This property is used in Section 3.3 to analyze the parallel I/O
complexity and the local work.

35



3 Robust Scalable In-Place Sorting Algorithms

Lemma 3.5 (Relationship between subarray and PE-group)

Let T[1,r) be a parallel task with PE-group [t..t) andt' =t — t PEs. Then, T[l,r) processes a
consecutive sequence of elements that starts at position | € [tnft..(t + 1)n/t — 1] and ends at
positionr € [tnft — 1..(t + 1)n/t — 1] of the input array. This sums up to @(t'n/t) elements in
total.

Thus, the size of a parallel task is proportional to the size of its PE-group.

Proof of Lemma 3.5. From Lemma 3.1 follows that T[l,+) covers position (¢ + 1)n/t — 1 but
not position tn/t — 1 of the input array. It also follows, that T[I,r) covers position tn/t — 1 but
not position (£ + 1)n/t — 1 of the input array. O

Lemma 3.6 (Relationship between PE and its sequential tasks)
PE i processes sequential tasks only containing elements from Alin/t, (i + 2)n/t — 1]. This sums
up to O(n/t) elements in total.

This lemma shows that the load of sequential tasks is evenly distributed among the PEs.

Proof of Lemma 3.6. We prove the following proposition: When a PE i starts processing sequen-
tial tasks, the tasks only contain elements from A[in/t, (i + 2)n/t — 1]. From this proposition,
Lemma 3.6 follows directly as PE i only processes sequential subtasks of these tasks.

Let the sequential subtask T[l;,7s) be a bucket of a parallel task T[I,7) with PEs [t..t).
Assume that T[l;, 7;) was assigned to the stack of PE i. We show in/t < I < r, < (i +2)n/t with
the case distinctioni <t —1landi>t - 1.

Assume i < { — 1. From the calculation of i, we know that

i =min(|Lt/n],t-1) = |Lt/n] <It/n
= I, >inft .

We show that r; < (i+2)n/t with a proof by contradiction. For the proof, we need the inequality
Is < (i + 1)n/t that is true because

i=min(|lt/n|,t-1) = |Lt/n] >lt/n-1 .

Now, we assume thatr, > (i+2)n/t. AsT[l,, ) is a sequential task, we have | rst/n|—|Ist/n] = 1.
However, this leads to the contradiction

1=|rst/n]—|lt/n]zi+2-Lt/n>@G+2)-(i+1)=1.
Thus, we limited the end of the sequential task to rs < (i + 2)n/t and its start to I; > in/t for
i<t-—1.
Assume i > t — 1. In this case, i is essentially equal to  — 1 as Lemma 3.2 tells us that a

sequential subtask of a parallel task is assigned to a PE of the parallel task. From the calculation
of PE i, we know that

i =min(|lit/n],t-1)=t-1<lt/n
=l znft(t-1) .
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The end r of the parent task can be bounded by

t=|rt/n|>rt/n-1
= r<(t+1)n/t .

We can use this inequality to bound the end r; of the sequential subtask T[l;, ;) to
re<r<(t+1)n/ft

as the subtask does not end after the parent task’s end r. Thus, we limited the end of the
sequential task to 7 < (i + 2)n/t and its start to I > in/t fori >t — 1. o

3.1.2.b) Dynamic Rescheduling

The task scheduler is extended to utilize computing resources of PEs that no longer have tasks.
We implement a simplified version of voluntary work sharing proposed for parallel string
sorting [BES17]. A global stack is used to transfer sequential tasks to idle PEs. PEs without
sequential tasks increase a global atomic counter that tracks the number of idle PEs. PEs with
sequential tasks check the counter after each partitioning step and move one task to the global
stack if the counter is larger than zero. Then, an idle PE can consume the task from the global
stack by decreasing the counter and processing the task. The algorithm terminates when the
counter is equal to ¢t which implies that no PE has a task left. We expect that we are able to
amortize the additional cost in most cases or even reduce the work on the critical execution
path: As long as no PE becomes idle, the counter remains valid in the PE’s private cache and
the PEs only access their local stacks. When a PE becomes idle, the local counter-copies of
the other PEs are invalidated and the counter value is reloaded into their private cache. In
most cases, we can amortize the counter reload by the previously processed task, as the task
has typically more than Q(kng) elements. When a PE adds an own task to the global stack, the
task transfer is amortized by the workload reduction.

3.2 In-Place Parallel Super Scalar Radix Sort (IPS?Ra)

We also use IPS*0 as an algorithmic framework to implement In-place Parallel Super Scalar
Radix Sort (IPS*Ra). For IPS*Ra, we replaced the branchless decision tree of IPS*o with a
simple radix extractor function that accepts unsigned integer keys. For tasks with less than 2!
elements, we use SkaSort as a base case sorting algorithm. For small inputs (n < 27), SkaSort
then falls back to quicksort that again uses insertion sort for n < 2°. If we refer to IPS?Ra in its
sequential form, we use the term I1S*Ra. IPS?Ra only sorts data types with unsigned integer
keys. The author of SkaSort [Skal6b; Skal6a] demonstrates that a radix sorter can be extended
to sort inputs with floating-point keys and even compositions of primitive data types. We note
that 11S*Ra can be extended to sort these data types as well.
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3.3 Analysis of IPS%0

In this section, we analyze the additional memory requirement (Section 3.3.1), the I/O com-
plexity (Section 3.3.2), and the local work (Section 3.3.3) of IPS*o. For convenience, we use the
term local work when we mean local work per PE. The analysis uses the asynchronous variant
of the PEM model introduced in Section 1.3.3. Sections 3.3.2 and 3.3.3 assume the following
constraints for IPS*o (refer to Table 2.1 for a summary of the notation):

Assumption. Minimum size of a logical data block of IPS*o: b € Q(¢B).
Assumption. Minimum number of elements per PE: n/t € Q(max(M, bt)).

Assumption. Restrict I/Os while sampling and buffers fit into private cache:
M e Q(Bklogk + bk) for some sufficiently constant of proportionality.

Assumption. Oversampling factor: a € ®(logk’) where k' is the current number of buckets.

Assumption. Restrict maximum size of base cases: 1o € Q(logk) N O(M/k).

Without loss of generality, we assume that an element has the size of one machine word. In
practice, we keep the block size b the same, i.e., the number of elements in a block is inverse
proportional to the element size. As a result, we can guarantee that the size of the buffer blocks
does not exceed the private cache without adapting k.

3.3.1 Additional Memory Requirement

In this section, we show that IPS*o can be implemented either strictly in-place if the local task
stack is implicitly represented or in-place if the tasks are stored on the recursion stack.

Theorem 3.7 (Memory usage of IPS*o without local stack)
IPS*0 can be implemented with O(kb) additional memory per PE.

Proof. Each PE has a space overhead of two swap buffers and k buffer blocks of size b (in total
O(kb)). This bound also covers smaller amounts of memory required for the partitioning
steps. A partitioning step uses a search tree (O(k)), an overflow buffer (O(b)), read and write
pointers (O(kB) if we avoid false sharing), end pointers, and bucket boundary pointers (® (k)
each). All of these data structures can be used for all recursion levels.

The classification phase stores elements only in the buffer blocks and the overflow buffer. As
each PE reads its elements sequentially into its buffer blocks, there is always an empty block in
the input array when a buffer block is flushed. When the size of the input array is not a multiple
of the block size, a single overflow buffer may be required to store the overflow. The permutation
phase only requires the swap buffers and the read and write pointers to move blocks into their
target bucket. In the sampling phase, we do not need extra space as we swap the sample to the
front of the input array. Nor do we need the local stacks (each of size O(k log, %)): Parallel
tasks are processed immediately and we can use an implicit representation of the sequential
tasks as described in Appendix A.2. ]
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Theorem 3.8 (Memory usage of IPS*o with local stack)
With a local stack, IPS*o can be implemented with (’)(k(b +tlog, %) additional memory per PE.

Proof. Each recursion level stores at most k tasks on the local stack. Only (9( log, n%) levels
of parallel recursion are needed to get to the base cases with a probability of at least 1 — ny/n
(see Theorem A.1 in Appendix A.1). In the rare case that the memory is exhausted, the algorithm
is restarted. ]

3.3.2 Parallel Complexity and I/O Complexity

The PEM model measures the parallel complexity of an algorithm by counting the number
of parallel I/O steps it performs. In particular, for external sorting algorithms, there are well-
established lower bounds. For the PEM model this bound is Q( 75 1080/5 %) [Arg+08]. We
achieve this bound when the Assumptions 1-5 are fulfilled—essentially when the input is large
enough. Since our main goal was to have both a reasonably simple algorithm and a reasonably
simple analysis, the implied size bound is probably far from the best possible.>

Apart from the local work, the main issue of a sorting algorithm is the number of accesses
to the main memory. In this section, we analyze this aspect in the PEM model. First, we show
that IPS*0 is I/O-efficient if the constraints we state at the beginning of this chapter apply. Then,
we discuss how the 1/O efficiency of IPS*o relates to practice.

Theorem 3.9 (I/O complexity of IPS*0)

IPS*0 has an 1/0 complexity of (9(% log, ﬁ) memory block transfers with a probability of at
least 1 — M /n.

Before we prove Theorem 3.9, we prove that sequential partitioning steps exceeding the
private cache are I/O-efficient (Lemma 3.10) and that parallel partitioning steps are I/O-efficient
(Lemma 3.11).

Lemma 3.10 (I/Os of a sequential partitioning task)
A sequential partitioning task with n’ € Q(M) elements transfers ®(n' |B) memory blocks.

Proof. A sequential partitioning task performs a partitioning step with one PE. The sampling
phase of the partitioning step requires ®(klogk) I/Os for sorting the random sample (As-
sumption 4). We have klogk € O(n'/B) as M € Q(Bklogk) (Assumption 3). During the
classification phase, the PE reads O(n') consecutive elements, writes them to its local buffer
blocks, and eventually moves them blockwise back to the main memory. This requires O(n'/B)
I/Os in total. As M € Q(kb), the local buffer blocks fit into the private cache. The same asymp-
totic cost occurs for moving blocks during the permutation phase. In the cleanup phase, the PE
has to clean up k buckets. To clean up bucket i, the PE moves the elements from bufter block i
and, if necessary, elements from a block that overlaps into bucket i + 1 to bucket boundary i.
The elements from these two blocks are moved consecutively. We can amortize the transfer of
full memory blocks with the I/Os from the classification phase as these blocks have been filled

2 Assumptions 1-5 imply n = Q(t3B)
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in the classification phase. We account O(1) I/Os for potential truncated memory blocks at the
ends of the consecutive sequences. For k bucket boundaries, this sums up to O(k) € O(n'/B)
asn' € Q(M) € Q(Bk) (Assumptions 1 and 3). mi

Lemma 3.11 (I/Os of a parallel task)
A parallel task with ©(t'n/t) elements and t' PEs transfers O(%) memory blocks per PE.

Proof. A parallel task performs a partitioning step. After each phase, a barrier synchronizes
the PEs taking O(t) € O( %) 1/Os (Assumption 2). The sampling phase of the partitioning step
requires O(klogk) I/Os for loading the random sample (Assumption 4). We have klogk €
O(%) asn/t € Q(Bklogk) (Assumptions 2 and 3). During the classification phase, each PE
reads O(n/t) consecutive elements, writes them to its local buffer blocks, and eventually moves
them blockwise back to the main memory. As M € Q(kb), the local buffer blocks fit into
the private cache. In total, the classification phase transfers (’)( %) logical data blocks causing
O(%) I/Os per PE.

The same asymptotic cost occurs for moving blocks during the permutation phase. In each
iteration of the main loop of the permutation phase, each PEs tries to acquire a block to be
moved. If successful, it moves this block to its destination. We account O(b/B) 1/O steps
for a successful operation and O(t) I/O steps for an unsuccessful operation. Assumption 1
implies that b/B = Q(t) so that both cases take care of the maximal possible contention for
the fetch-and-add operations involved. Since overall there are only O(t'n/tb) blocks to be
moved and since each PE will fail to acquire a block at most k times (once for each bucket),
O(n/tb-b/B + kt) = O(n/tB + kt) 1/O steps per PE suffice to finish the permutation phase.
By assumptions 3, 2, and 1 we have k = O(M/b), M = O(n/t), and b = Q(Bt), respectively.
Thus, kt = O(Mt/b) = O(n/b) = O(n/tB) so that the number of I/O steps per PE simplifies
to O(n/tB).

In the cleanup phase, t' PEs have to clean up k buckets. To clean up a single bucket, el-
ements from ¢’ + 2 buffer blocks and bucket boundaries are moved. This takes O(t'b/B)
I/Os for cleaning a bucket. We consider a case distinction with respect to k and ¢'. If k < ¢/,
then each PE cleans at most one bucket. This amounts to a cost of O(¢'b/B) € O(%) since
nft € Q(tb) (Assumption 2). If k > t/, then each PE cleans O(k/t') buckets with a total
cost of O(k/t' -t'b/B) € O(kb/B) 1/Os. We have O(kb/B) € (’)(%) since O (n/t) € Q(kb)
(Assumptions 2 and 3). ]

Now, we can prove that IPS*o is I/O-efficient if the constraints we state at the beginning of
this chapter apply.

Proof of Theorem 3.9. In this proof, we can assume that IPS*o performs O( log, %) recursion
levels until the tasks have at most M elements. According to Theorem A.1, this assumption
holds with a probability of at least 1 — M /n. We do not consider the situation of many identical
keys since the elements with these identical keys will not be processed at later recursion levels
anymore.

From Theorem 3.7 we know that IPS*o uses additional data structures that require O (kb)
additional memory. In addition to the accesses to these data structures, task T[1,7) only accesses
A[l..r —1]. As M € Q(bk) (Assumption 3) we can keep the additional data structures in the
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private cache. Thus, we only have to count the memory transfers of tasks from and to the input
array.

In the following analysis, we consider a case distinction with respect to the task type, its size,
and the size of its parent task. Each case requires at most O( 75 log, ﬁ) I/Os per PE:

Parallel tasks: IPS*o processes the parallel tasks first. Parallel tasks transfer @( %) memory
blocks per PE (see Lemma 3.11). As a PE performs at most one parallel task on each recur-
sion level (see Lemma 3.4), parallel tasks on the first (’)( log, ﬁ) recursion levels perform
O ( 15 log, %) I/Os per PE. On subsequent recursion levels, no parallel tasks are executed: After

O( log, %) recursion levels, the size of tasks is at most O(M). However, parallel tasks have
Q(M) elements. This follows from Lemma 3.5 and Assumption 2.

Large tasks (Sequential partitioning tasks not fitting into the main memory): A large task with
n' elements takes ®(n'/B) 1/Os (see Lemma 3.10). A PE processes sequential tasks covering a
continuous stripe of O(n/t) elements of the input array (see Lemma 3.6). Thus, the large tasks
of a PE transfer (9( %) memory blocks on each recursion level. This sums up to (’)( 15 log, %)
1/Os per PE for the first O( log, ﬁ) recursion levels. After O( log, ﬁ) recursion levels, the size
of tasks fits into the main memory, i.e., their size is O(M) for some sufficiently small constant
of proportionality.

Middle tasks (Sequential tasks of size Q(B) that fit into the main memory and that have a
parallel or large task as parent task): In the first step of middle tasks, the classification phase, the
PE reads the elements of the task from left to right. As the task fits into the private cache, the
task does not perform additional I/Os after the classification phase. For a middle task of size
n', we have O(|n'/B]) I/Os as n' € Q(B). Buckets of middle tasks are sequential subtasks that
again fit into the main memory. Thus, each input element is only once part of a middle task and
middle tasks cover disjoint parts of the input array. Additionally, we know from Lemma 3.6
that the sequential tasks of a PE contain O(n/t) elements. This implies that a PE transfers
O ( %) memory blocks for middle tasks.

Tiny tasks (Sequential tasks of size O(B) that have a parallel or large task as parent task):
A tiny task needs O(1) I/Os. We account these I/Os to its parent task. A parent task gets
at most O (k) additional I/Os in the worst-case, O(1) for each bucket. The parent task has
Q(tBk) elements: By definition, the parent task has (M) elements and we have M € Q(¢Bk)
(Assumptions 1 and 3). We have already accounted Q(¢Bk/B) 1/Os (Q(Bk/B) 1/Os) for the
parent task previously (see I/Os of large tasks and parallel tasks). Thus, the parent task can
amortize the I/Os of its tiny subtasks.

Small tasks (Sequential tasks with sequential parent tasks fitting into the main memory): Let
the small task T[I;, r5) processed by PE i be a bucket of a sequential task T[], s) containing
O(M) elements. When PE i processed task T[1,7), the subarray A[l..r — 1] was loaded into
the private cache of PE i. As the PE processes the sequential tasks from its local stack in depth-
first search order, A[l..r — 1] remains in the PE’s private cache until the small task T[l;,7;) is
executed. The small task does not require any memory transfers - it only accesses A[ls..7s — 1]
that is a subarray of A[l..r — 1]. i

Comparing the I/O Volume of I1S*0 and S*0.  We analyze the constant factors of the I/O vol-
ume (i.e., data flow between cache and main memory) for the sequential algorithms 11S*o (IPS*o
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Subroutine Types Reps Sum in n Bytes
Copy back r+w+wa once 16 +8
Base Case r+w once 16
Init Temp Array + Oracle w once 9

S*o Classification: Oracle W+ wa perlevel 1+1
Classification: Array r perlevel 8
Redistribution: Oracle r perlevel 1
Redistribution: Array r+w+wa perlevel 1648
Base Case r+w once 16

11S*0  Classification r+w perlevel 16
Redistribution r+w perlevel 16

Table 3.1: I/O volume of read (r) and write (w) operations broken down into subroutines
of 11S%0 and S*o. Additionally, potential write allocate operations (wa) are listed.

with t = 1) and S*o. To simplify the discussion, we assume a single recursion level, k = 256,
8-byte elements, and an oracle with 1-byte entries for S*o. Furthermore, we assume that the
input does not fit into the private cache.

We compare the first level of 11S*0 and S*o for inputs with 8-byte input elements. We assume
a oracle with 1-byte entries for S*o. Furthermore, we assume that the input does not fit into the
private cache.

Both algorithms read and write the data once for the base case—16n bytes of I/O volume.
Each level of 11S*o reads and writes all data once in the classification phase and once in the
permutation phase—32# bytes per level. Each level of S*o reads the elements twice and writes
them once only in its distribution phase—24n bytes per level.

Additionally, S*o writes an oracle sequence that indicates the bucket for each element in the
classification phase and reads the oracle sequence in the distribution phase—2#n bytes per level.
The algorithm also has to allocate the temporary arrays. For security reasons, that memory is
zeroed by the operating system—9n bytes.? If the number of levels is odd, S*o has to copy the
sorted result back to the input array—16# bytes. For now, 11S*o (S*0) has an I/O volume of
32n (26n) byte per level and 16n (41n) bytes once.

When S*o writes to the temporary arrays or during copying back, cache misses happen when
an element is written to a cache block that is currently not in memory. Depending on the cache
replacement algorithm, a write allocate may be performed—the block is read from the memory
to the cache even though none of the data in that block will ever be read. Detecting that the
entire cache line will be overwritten is difficult as S*o writes to the target buckets element by
element. This amounts to an I/O volume of up to 9 bytes per level and 8n bytes once. 11S%o
does not perform write allocates. The classification phase essentially sweeps a window of size
©®(bk) through the memory by reading elements from the right border of the window and

3In current versions of the Linux kernel this is done by a single PE and thus results in a huge scalability bottleneck
in the parallel case.
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writing elements to the left border. The permutation phase reads a block from the memory and
replaces the “empty” memory bock with a cached block afterwards. Table 3.1 shows the I/O
volume of the subroutines in detail. Overall, we get for 11S%o (S*0) a total I/O volume of 32n
(35n) byte per level and 167 (4911) bytes once—S*o with one level has a factor of 1.75 more 1/O
volume than I11S%o. This is surprising since, at the first glance, the partitioning algorithm of
[1S*o writes the data twice, whereas S*o does this only once. However, this is more than offset
by “hidden” overheads of S*o like memory management, memory page initialization, and write
allocates.

Furthermore, S*o may suffer more conflict misses than 11S*0 due to the mapping of data to
cache lines. In the distribution phase, S*o reads the input from left to right but writes element-
wise to positions in the buckets which are not coordinated. For the same reasons, S*o may
suffer more TLB misses. I1S*0, on the other hand, essentially writes elements to cached buffer
blocks (classification) and swaps blocks of size b within the input array (block permutation).
For an average case analysis on scanning multiple sequences, we refer to [MS03].

Much of this overhead can be reduced using measures that are non-portable (or hard to
make portable). In particular, non-temporal writes eliminate the write allocates and also help
to eliminate the conflict misses. One could also use a base case sorter that does the copying
back as a side-effect when the number of recursion levels is odd. When sorting multiple times
within an application, one can keep the temporary arrays without having to reallocate them.
However, this may require a different interface to the sorter. Overall, depending on many
implementation details, S*o may require slightly or significantly more I/O volume.

3.3.3 Branch Mispredictions and Local Work

Besides the latency of loading and writing data, which we analyze in the previous section,
branch mispredictions and the (total) work of an algorithm can limit its performance. In the
next paragraph, we address branch mispredictions of IPS*o and afterwards, we analyze the
total work of IPS*o.

Our algorithm IPS*0 itself has virtually no branch mispredictions during element classifica-
tion.* A branch misprediction only occurs when a bucket has to be flushed. This happens on
average after b element classifications (after blog k element comparisons). The base case has
about one misprediction per element for insertion sort. The permutation phase has a negli-
gible amount of mispredictions since it basically moves whole blocks to their target position.
The cleanup phase has mispredictions of the order of O(t + k) since the buckets are evenly
distributed to the PEs and since each PE contributes one buffer block per bucket.

We now analyze the local work of IPS*o. We neglect delays introduced by PE synchro-
nizations and accesses to shared variables as we accounted for those in the I/O analysis in the
previous section. For the analysis, we assume that the base case algorithm performs partitioning
steps with k = 2 and a constant number of samples until at most one element remains. Thus,
the local work of the base case algorithm is identical to the local work of quicksort. We also
assume that the base case algorithm is used to sort the samples.

4Unless the comparator function causes branch mispredictions.
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Actually, our implementation of IPS*o sorts the base cases with insertion sort. The reason
is that a base case with more than 2#n, elements can only occur if its parent task has between
no and kny elements. In this case, the average base case size is between 0.5#1 and ny. Our
experiments have shown that insertion sort is more efficient than quicksort for these small
inputs. Also, base cases with much more than 2n, elements are very rare. To sort the samples,
our implementation recursively invokes IPS*o.

Theorem 3.12 (Local work of IPS*0)

When using quicksort to sort the base cases and the samples, IPS*o has a local work of O (n/tlogn)
with a probability of at least 1 — 4/n.

For the proof of Theorem 3.12, we need Lemmas 3.13-3.18. These lemmas use the term
small task for tasks with at most kng elements and the term large task for tasks with at least k#ng
elements.

Lemma 3.13 (Local work of a partitioning task)

A partitioning task with n' elements and t' PEs has a local work of O(n' [t log k) excluding the
work for sorting the samples.

Proof. In the classification phase of the partitioning step, the comparisons in the branchless
decision tree dominate. Each PE classifies n/t' elements with takes O(logk) comparisons each.
This sums up to O(n'[t' logk). The element classification dominates the remaining work of
this phase, e.g., the work for loading each element once, and every b elements, the work for
flushing a local buffer.

In the permutation phase, each block in the input array is swapped into a buffer block once
and swapped back into the input array once. As each PE swaps at most ng blocks of size b,
the phase has O(n'/t) local work.

When the cleanup phase is executed sequentially, the elements of the local buffers are flushed
into blocks that overlap into the next bucket. This may displace elements stored in these blocks.
The displaced elements are written into empty parts of blocks. Thus, each element is moved at
most once which sums up to O(n') work. For the cleanup phase of a parallel partitioning step,
we conclude from the proof of IPS*0’s /O complexity (see Theorem 3.9) that the local work is
in O(n'/t"): The proof of the I/O complexity shows that a parallel cleanup phase is bounded
by (9( %) I/Os. Also, each element that is accessed in the cleanup phase is moved at most once
and no additional work is performed. We account a local work of B for each memory block that
a PE accesses. Thus, we can derive from (’)( %) 1/Os a local work of O(n'/t") for the parallel
cleanup phase. ]

Lemma 3.14 (Relationship between parallel tasks and small tasks)

At most one parallel task that is processed by a PE is a small task.

Proof. Assume that a PE processes at least two small parallel tasks p; and p,. According to
Lemma 3.4, a PE processes at most one of these tasks per recursion level. A parallel subtask of

PE i is a subtask of a parallel task of PE i and represents a bucket of this task (see Lemma 3.3).
Thus, p; and p, must be on different recursion levels, and p; processes a subset of elements
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processed by p, or vice versa. However, this is a contradiction as buckets of small tasks are
base cases. o

Lemma 3.15 (Local work of small partitioning tasks)

The local work for all small partitioning tasks is in total O(n/tlogk) excluding the work for
sorting the samples.

Proof. In this proof, we neglect the work for sorting the sample. Lemma 3.13 tells us that a
partitioning task with »n’ elements and ¢’ PEs has a local work of O(n’/t' logk). Also, parallel
tasks with ' PEs have ©(t'n/t) elements (see Lemma 3.5). Thus, we have O(n/tlogk) local
work for a small parallel task. Overall, we have O(n/tlogk) local work for small parallel tasks
as each PE processes at most one of these tasks (see Lemma 3.14).

We now consider small sequential partitioning tasks. small sequential partitioning tasks that
are processed by a single PE cover in total at most O(n/t) different elements (see Lemma 3.6).
Each of these elements passes at most one of the small partitioning tasks since buckets of these
tasks are base cases. Thus, a PE processes small partitioning tasks of size O(n/t) in total. As
small partitioning tasks with #n’ elements require O(n'logk) local work (see Lemma 3.13), the
local work of all small partitioning tasks is O(n/tlogk). o

Lemma 3.16 (Local work of partitioning tasks)

The partitioning tasks of one recursion level require O(n/tlogk) local work excluding the work
for sorting the samples.

Proof. Lemma 3.13 tells us that a partitioning task with #’ elements and ¢' PEs has a local work
of O(n'[t'logk) excluding the work for sorting the samples. Parallel tasks with ¢’ PEs have
O(t'n/t) elements (see Lemma 3.5). Thus, we have O(n/tlogk) local work on a recursion level
for parallel tasks. A PE processes sequential partitioning tasks covering a continuous stripe
of O(n/t) elements of the input array (see Lemma 3.6). Thus, we also have O(n/tlogk) local
work on a recursion level for sequential partitioning tasks. ]

Lemma 3.17 (Local work of large partitioning tasks)

All large partitioning tasks have in total O(n/tlogn) local work with a probability of at least
1 —n~! excluding the work for sorting the samples.

Proof. In this proof, we neglect the work for sorting the samples of a partitioning task. Large
partitioning tasks create between \/k and k buckets (see Section 3.1.1.a)). According to Theo-
rem A.1 in Appendix A.1, IPS*o0 performs at most ®( log ﬁ) = ®( log, kino) recursion levels
with a probability of at least 1 — kng/n until all partitioning tasks have less than kny elements.
However, this probability is not tight enough. Instead, we can perform up to (’)(logk n) recur-
sion levels and still have O(n/tlogn) local work as each recursion level requires O (n/t logk)
local work (see 3.16). In this case, Theorem A.1 in Appendix A.1 tells us that all partitioning
tasks have at most one element with a probability of 1 — n™!. This probability also holds if we
stop partitioning buckets with less than kn elements. ]
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Lemma 3.18 (Local work of base case tasks)

The local work of all base case tasks is in total O(n/tlogn) with a probability of at least 1 — n™".

Proof. Sorting O(n) elements with the base case algorithm quicksort does not exceed O(logn)
recursion levels with probability 1 — n~! [J4J00]. Thus, an execution of quicksort with O(n/t)
elements requires O (n/t logn) local work with a probability of at least 1 — n™! as it would also
not exceed O(logn) recursion levels with at least the same probability. Sorting all base cases of a
PE is asymptotically at least as efficient as sorting O (n/t) elements at once: The base cases have
in total at most O(n/t) elements (see Lemma 3.6) but the input is already prepartitioned. O

Lemma 3.19 (Local work for samples of small partitioning tasks)

The local work for sorting the samples of all small partitioning tasks is O(n/tlogn) in total with
a probability of at least 1 —n™!

Proof. Small partitioning tasks with n’ elements have O(n’/ng) buckets and a sample of size
(’)(n’ /1o log Z—;) (see Assumption 4 for the oversampling factor). The size of a sample is in
particular bounded by O(#n'). For this, we use ng € Q(logk) (Assumption 5) and k > n'/ng
from which follows that n, € Q( log Z—;) holds. Furthermore, small sequential partitioning
tasks processed by a single PE cover in total at most O(n/t) different elements (see Lemma 3.6).
Thus, the total size of all samples from small sequential partitioning tasks sorted by a PE is
limited to O(n/t). We count one additional sample from a potential small parallel task (see
Lemma 3.14). We can also limit its size to O(n/t) using Assumptions 2 and 5. We can prove
that the work for sorting samples of a total size of O(n/t) is in O(n/tlogn) with a probability
of at least 1 — ™. We refer to the proof of Lemma 3.18 for details. ]

Lemma 3.20 (Local work for samples of large partitioning tasks)

The local work for sorting the samples of all large partitioning tasks is O(n/t logn) in total with a
probability of at least 1 —n™"

Proof. A sequential large partitioning task with Q(kn) elements has Q(klogk) elements (see
Assumption 5) and a parallel large partitioning task has Q(t'n/t) elements (see Lemma 3.5)
with n/t € Q(klogk) which is a result from Assumptions 2 and 3. Thus, a large partitioning
task with ¢’ PEs has Q(t'klogk) elements.

nlogn
tklog? k
the work for sorting the samples: On the one hand, Lemma 3.17 tells us that all partitioning

tasks performed by a single PE sum up to O(n/tlogn) local work in total. On the other
hand, this sum accounts (’)(klog2 k) local work or more for a large partitioning task since
it accounts O(n'/t' logk) local work for large partitioning tasks with n' elements and ¢’ PEs
(see Lemmas 3.13 and 3.16) and since a large partitioning task has Q(¢'klogk) elements. Thus,
when we execute large partitioning tasks, each PE performs at most r sample sorting routines —
one for each task.

For the local work analysis, we consider a modified sample sorting algorithm. Instead of
using quicksort, we use an adaption that restarts quicksort when it exceeds O(k log” k) local
work until the sample is finally sorted. The bounds for the local work that we obtain from

Each PE invokes at most r = | large partitioning tasks for a constant I — excluding
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this variant also hold when IPS*0 executes quicksort until success instead of restarting the
algorithm: A restart means to neglect the prepartitioned buckets which makes the problem
unnecessarily difficult.

For the sample sorting routines of large partitioning tasks, each PE can spend O(rk log” k)

local work in total. As we restart quicksort after (9(klog2 k) local work, we can amortize
even xr (re)starts of quicksort for any constant x. We show that xr (re)starts are sufficient to
successfully sort » samples with a probability of at least 1 —n~!

We observe that one execution of quicksort unsuccessfully sorts a sample with a proba-
bility of at most p = k> log,” k as the size of the samples is bounded by O(klogk). For this
approximation, we use that sorting n elements with quicksort takes O(nlogn) work with high
probability [JaJ00]. Each execution of quicksort is a Bernoulli trial as we have exactly two
possible outcomes, “successful sorting in time” and “unsuccessful sorting in time”, and the
probability of failure is bounded by p each time. When we consider all quicksort invocations of
IPS*0, we need r successes. We define a binomial experiment that repeatedly invokes quicksort
on the sample of the first large partitioning task until success and then continues with the
second large partitioning task, until the sample of each partitioning step of a PE is sorted.
Asymptotically, we can spend xr (re)starts of quicksort for any constant x > 1 such that the
binomial experiment does not exceed O(n/tlogn) local work.

Let the random variable X be the number of unsuccessful sample sorting executions and
assume that x > 2. Then, the probability I

I=P[X>(x-1)r]

XxXre

j
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xre \ pex \/
2 e 2,0
j>(9§1)7((x_1)r) P j>()§1)r x-1

ex | (x=1)r+1

x-1

(x=1)lklogklogn

< pex ( pex ) klog? k
T \x-1-pex -1

(x=1)llog( 1’2")
S

<2130V < 1/n

defines an upper bound of the probability that xr (re)starts of the sample sorting algorithm
execute less than r successful runs. The second “<” uses ( ) < (en/k) the third “=” uses

Yo, k= 1= derived from the geometric series, the second “<” and the third “=” use 22 < 1,
« » log( £ «_»
and the last “<” uses M < —1/2 and —£Z— < 2.13. The last “<” requires x > 2 and a
og k x—1-pex
sufficiently large n. ]
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Proof of Theorem 3.12. According to Lemma 3.15, the small partitioning tasks excluding the
work for sorting the samples require O(n/tlogk) local work. For large partitioning tasks, we
have O(n/tlogn) local work with a probability of at least 1 — n™! (see Lemma 3.17). The same
holds for the base cases (see Lemma 3.18). Lemmas 3.19 and 3.20 bound the local work for
sorting the samples of small and large partitioning tasks to O (n/t logn), each with a probability
of at least 1 — n™!. This sums up to a total local work of O(n/tlogn) with a probability of at
least 1 — 4/n. mi
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Chapter 4

Experiments and Conclusion

In this chapter, we present results from ten data distributions, generated for four different data
types obtained on four different machines with one, two, and four processors and 21 different
sorting algorithms. We extensively compare our in-place parallel sorting algorithms IPS*o0 and
IPS*Ra as well as their sequential counterparts 11S*o and 11S*Ra to various competitors':

« Parallel in-place comparison-based sorting

- MCSTLbq (OpenMP): Two implementations (balanced and unbalanced) from the
GCC STL library [SSP07] based on quicksort proposed by Tsigas and Zhang [TZ03].

- TBB [Wen19] (TBB): Quicksort from the Intel” TBB library [Rei07].

« Parallel non-in-place comparison-based sorting

- PBBS [Shu+12] (Cilk): \/n-way samplesort [BGS10] implemented in the so-called
problem based benchmark suite.

- MCSTLmwm (OpenMP): Stable multiway mergesort from the GCC STL library.

- PS*0 [Axt20a] (OpenMP or std: : thread): Our parallel and stable implementation
of S*o from Section 4.1.

- ASPaS [SyN18] (POSIX Threads): Stable mergesort that vectorizes the merge
function with AVX2 [HWF15]. ASPaS only sorts int, float, and double inputs
and uses the comparator function “<”.

o Parallel in-place radix sort

- RegionSort [Obe+19a] (Cilk): Most Significant Digit (MSD) radix sort [Obe+19b]
that only sorts keys of unsigned integers. RegionSort skips the most significant bits
that are zero for all keys.

- IMSDradix [Pol14] (POSIX Threads): MSD radix sort [PR14] from Orestis and Ross
with blockwise redistribution. The implementation, published by Orestis and Ross,
however, requires 20 % of additional memory in addition to the input array and is
very explorative.

« Parallel non-in-place radix sort

- PBBR [Shu+12] (Cilk): A simple implementation of stable MSD radix sort from
the so-called problem based benchmark suite.

ISince several algorithms were implemented by third parties, we may cite their publication and implementation
separately.
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- RADULS?2 [Grol7] (std: : thread): MSD radix sort that uses non-temporal writes
to avoid write allocate misses [KDD17]. RADULS2 requires 256-bit array alignment.
Both keys and objects have to be aligned at 8-byte boundaries. We partially compiled
the code with the flag -01 as recommended by the authors. The algorithm does
not compile with the Clang compiler.

« Sequential in-place comparison-based sorting

- BlockQ [Weil6a]: An implementation of BlockQuicksort [EW16] provided by the
authors of the sorting algorithm publication.

- BlockPDQ [Pet15]: Pattern-Defeating Quicksort that integrated the approach of
BlockQuicksort in 2016. BlockPDQ has similar running times as BlockQuicksort
using Lomuto’s Partitioning [AH19], published in 2018.

- DualPivot [Weil6b]: A C+ port of Yaroslavskiy’s Dual-Pivot Quicksort [Yar10].
Yaroslavskiy’s Dual-Pivot Quicksort is the default sorting routine for primitive data
types in Oracle’s Java runtime library since version 7.

- std::sort: Introsort from the GCC STL library.
- WikiSort [McF14]: An implementation of stable in-place mergesort [KK08].

 Sequential non-in-place comparison-based sorting

- Timsort [GM14]: A C+ port of Timsort [Pet02]. Timsort is an implementation of
stable mergesort that takes advantage of presorted sequences of the input. Timsort
is part of Oracle’s Java runtime library since version 7 to sort non-primitive data
types.

- $%0S [Hiib16]: A recent implementation of non-in-place S*o [SW04] optimized for
modern hardware.

- 1S%0 [Axt20a]: Our implementation of S*o, which we describe in Section 4.1.

« Sequential in-place radix sort

- SkaSort [Skal6b]: MSD radix sort [Skal6a] that accepts a key-extractor function re-
turning primitive data types or pairs, tuples, vector, and arrays containing primitive
data types. The latter ones are sorted lexicographically.

 Sequential non-in-place radix sort

- IppRadix [Cor20]: Radix sort from the Intel® Integrated Performance Primitives
library optimized with the AVX2 and AVX-512 instruction set.

We do not compare our algorithm to PARADIS as its source code is not publicly avail-
able. However, Omar et. al. [Obe+19b] compare RegionSort to the numbers reported in the
publication of PARADIS and conclude that RegionSort is faster than PARADIS. Additionally,
RegionSort and our algorithm have stronger theoretical guarantees (see Chapter 2).

Most radix sorters, i.e., IppRadix, IMSDradix, RADULS2, PBBR, and RegionSort, do not
support all data types used in our experiments. Only the radix sorter SkaSort supports all
data types as the types used here are either primitives or compositions of primitives, which are
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Algorithm 3 Quartet comparison Algorithm 4 100B comparison

function LESSTHAN(/, ) function LESSTHAN(/, )
if L.a # r.a then fori < 0to9do
returnla<r.a if L.k[i] # r.k[i] then
else if L.b + r.b then return Lk[i] < r.k[i]
return b <r.b return False

elsereturnl.c<r.c

sorted lexicographically. All algorithms are written in C+ and compiled with version 7.5.0 of
the GNU compiler collection, using the optimization flags “-march=native -03”. We have
not found a more recent compiler that supports Cilk threads, needed for RegionSort, PBBS,
and PBBR.

Input Instances. We ran benchmarks with double (64-bit floating-points), uint64 (64-bit
unsigned integers), uint32 (32-bit unsigned integers), and Pair, Quartet, and 100B data types.
Pair (Quartet) consists of one (three) 64-bit unsigned integers as key and one 64-bit unsigned
integer of associated information. 100B consists of 10 bytes as key and 90 bytes of associated
information. The keys of Quartet and 100B are compared lexicographically. Algorithms 3
and 4 show the lexicographical compare function that we used in our benchmarks. We want
to point out that lexicographical comparisons can be implemented in different ways. We also
tested std: : lexicographical_compare for Quartet and std: : memcmp for 100B. However, it
turned out that these compare functions are (much) less efficient for all competitive algorithms.
SkaSort is the only radix sorter that is able to sort keys lexicographically. For Quartet and 100B
data types, we invoke SkaSort with a key-extractor function that returns the values of the key
stored in a std: : tuple object.

We ran benchmarks with ten different input distributions: Uniform, Exponential, and
almost AlmostSorted, proposed by Shun et. al. [Shu+12]; RootDup, TwoDup, and EightDup
from Edelkamp et. al. [EW16]; and Zipf (Zipf distributed input), Sorted (sorted Uniform
input), ReverseSorted, and Zero (just zeros). The input distribution Exponential selects for
each element a value i € [0..[logn]|] uniformly at random and uses the hash of another
value selected uniformly at random from [2°..2*!) as the key. The hash function has range
[0..2%) for keys represented by w bits. RootDup sets A[i] = i mod |\/n]|, TwoDup sets
A[i] = (i# + m/2) mod m, and EightDup sets A[i] = (i® + m/2) mod m with m being
the minimum of n and the maximum finite value representable by the key type. The input
distribution Zipf generates the integer number k € [1..10°] with probability proportional to
1/k%7>. Figure 4.1 illustrates the nontrivial input distributions RootDup, Zipf, Exponential,
TwoDup, EightDup, and AlmostSorted.

Machines. We ran our experiments on the following machines (all supporting 2 hardware
threads per core):

o Machine Alx16 with 32 GiB of memory and one AMD Ryzen 9 3950X 16-core CPU
(512 KiB private L2-cache per core and 64 MiB shared L3-cache).
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Figure 4.1: Examples of nontrivial input distributions for 512 uint32 values.

o Machine AIx64 with 1024 GiB of memory and one AMD EPYC Rome 7702P 64-core
CPU (512 KiB private L2-cache per core and 256 MiB shared L3-cache).

« Machine I2x16 with 512 GiB of memory and two Intel Xeon E5-2683 v4 16-core CPUs
(256 KiB private L2-cache per core and 40 MiB shared L3-cache per CPU).

o Machine I[4x20 with 768 GiB of memory and four Intel Xeon Gold 6138 20-core CPUs
(1024 KiB private L2-cache per core and 27.5 MiB shared L3-cache per CPU).

Methodology. Each algorithm was executed on all machines with all input distributions
and data types. The parallel (sequential) algorithms were executed for all input sizes with
n = 2\, i € N*, until the input array exceeds 128 GiB (32 GiB). For n < 2% (n < 2%°), we
perform each parallel (sequential) measurement 15 times and for n > 23 (n > 23°), we perform
each measurement twice. Unless stated otherwise, we report the average over all runs except
the first one?. We note that non-in-place sorting algorithms which require an additional array
of n elements will not be able to sort the largest inputs on AIx16, the machine with 32 GiB of
memory. We also want to note that some algorithms did not support all data types because their
interface rejects the key. In our figures, we emphasize algorithms that are “not general-purpose”

2The first run is excluded because we do not want to overemphasize time effects introduced by memory management,
instruction cache warmup, side effects of different benchmark configurations, ...
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with red lines, i.e., because they assume integer keys (11S?Ra, IppRadix, RADULS2, RegionSort,
and PBBR), make additional assumptions on the data type (RADULS2), or at least because they
do not accept a comparator function (SkaSort). All non-in-place algorithms except RADULS2
return the sorted output in the input array. These algorithms copy the input back into the input
array if the algorithm has executed an even number of recursion levels. Only RADULS2 returns
the output in a second “temporary” array. To be fair, we copy the data back into the input array
in parallel and include the time in the measurement.

We tested all parallel algorithms on Uniform input with and without hyper-threading.
Hyper-threading did not slow down any algorithm compared to using half as many threads but
the same number of cores. Thus, we give results of all algorithms with hyper-threading. Overall,
we executed more than 500 000 combinations of different algorithms, input distributions, input
sizes, data types, and machines. We now present an interesting selection of our measurements
and discuss our results.

Overview. This chapter is divided as follows. Section 4.2 introduces and discusses the sta-
tistical measurement average slowdown, which we use to compare aggregated measurements.
We present the results of 11S*0 and 11S*Ra and their sequential competitors in Section 4.3. In
Section 4.4, we discuss the influence of different memory allocation policies on the running time
of parallel algorithms. Section 4.5 compares our parallel algorithm IPS*0 to its implementation
presented in our conference version [Axt+17c]. We compare the results of IPS*0 and IPS*Ra to
their parallel competitors in Section 4.6. Section 4.7 evaluates the subroutines of IPS*0, IPS?Ra,
and their sequential counterparts. Finally, we conclude our work on in-place (shared-memory)
sorting algorithms in Section 7.6.

4.1 Implementation Details

IPS*0 has several parameters that can be used for tuning and adaptation. We performed our
experiments using (up to) k = 256 buckets, an oversampling factor o« = 0.2 logn, a base case size
1 = 16 elements, and a block size of b = max(1, 2l!171°% Pl elements, where D is the size of
an element in bytes (i.e., b is about 2 KiB). Overall, the buffer blocks and the swap buffers sum
up to less than 1.1 MB for each thread and take up the majority of the space required by IPS*o.
The space for local variables and k read and write pointers is negligible. Additionally, IPS*o
needs logarithmic space for the recursion stack and each thread needs space for a decision tree
containing k elements. In the sequential case, we avoid the use of atomic operations on pointers
and we use the recursion stack to store the tasks. On the last level, we perform the base case
sorting immediately after the bucket has been completely filled in the cleanup phase, before
processing the other buckets. This is more cache-friendly, as it eliminates the need for another
sweep over the data. Furthermore, we use insertion sort as the base case sorting algorithm.

IPS*o0 (11S*0) detects sorted inputs. If these inputs are detected, our algorithm reverses the
input in the case that the input was sorted in decreasing order, and returns afterward. Note
that such heuristics for detecting “easy” inputs are quite common [Obe+19b; Rei07].

For parallelization, we support OpenMP or std: : thread transparently. If the application
is compiled with OpenMP support, IPS*o employs the existing OpenMP threads. Otherwise,
IPS*0 uses C+ threads and determines ¢ by invoking the function hardware_concurrency
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from the class std: : thread. Additionally, the application can use its own custom threads to
execute IPS*o. For that, the application creates a thread pool object provided by IPS*o, adds its
threads to the thread pool, and passes the thread pool to IPS*o.

We store each read pointer r; and its corresponding write pointer r; in a single 128-bit word
that we read and modify atomically. We use 128-bit atomic fetch-and-add operations from the
GNU Atomic library libatomic if the CPU supports these operations. Otherwise, we guard
the pointer pair with a mutex. We did not measure a difference in running time between these
two approaches except for some very special corner cases. We align the thread-local data to
4 KiB which is the typical memory page size in systems. The alignment avoids false sharing
and simplifies the migration of memory pages if a thread is moved to a different NUMA node.

We decided to implement our own version of the (non-in-place) algorithm S*o from Sanders
and Winkel [SW04]. This has two reasons. First, the initial implementation is only of explorative
nature, e.g., the implementation does not handle duplicated keys, and, the implementation is
highly tuned for outdated hardware architectures. Second, the reimplementation $*oS [Hiib16]
seemed to be unreasonably slow. We use IPS*0 as an algorithmic framework to implement
PS*o, our version of S*o. For PS*o, we had to implement the three main parts of S*o: (1)
the partitioning step, (2) the decision tree, and (3), the base case algorithm and additional
parameters of the algorithm, e.g., for the maximum base case size, the number of buckets, and
the oversampling factor. We replace the partitioning step of IPS*o with the one described by
Sanders and Winkel. For the element classification, we reuse the branchless decision tree of
IPS*o. We also reuse the base case algorithm and the parameters from IPS*o, which seem to
work very well for PS*o. As we use IPS*0 as an algorithmic framework, we can execute PS*o in
parallel or with only one thread. If we refer to PS*o in its sequential form, we use the term 1S*o.

Our algorithms are rather slow for small inputs because of significant overhead for setting up
distribution buffers and other data structures. To mitigate this effect, we also provide variants
that can amortize this overhead over many sorting operations using sorter objects. The data
structures are created when a sorter object is created. This object can then be used for many
sorting calls with the same data type. For fairness reasons, we are not using these sorter objects
in our experiments.

Our algorithms IPS*o, IPS?Ra, and PS*o are written in G+ and the implementations can
be found on the official website https://github.com/ips4o. The website also contains the
benchmark suite used for this publication and a description of how the experiments can be
reproduced.

4.2 Statistical Evaluation

Many methods are available to compare algorithms. In our case, the cross product of machines,
input distributions, input sizes, data types, and array types describes the possible inputs of our
benchmark. In this work we consider the result of a benchmark input always averaged over
all executions of the input, using the arithmetic mean. A common approach of presenting
benchmark results is to fix all but two variables of the benchmark set and show a plot for these
two variables, e.g., plot the running time of different algorithms over the input size in a graph
for a specific input distribution, data type, and array type, executed on a specific machine.
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4.2 Statistical Evaluation

Often, an interesting subset of all possible graphs is presented as the benchmark instances have
too many parameters. However, in this case, a lot of data is not presented at all and general
propositions require further interpretation and aggregation of the presented, and possibly
incomplete, data. Besides running time graphs and speedup graphs, we use average slowdown
factors (average slowdowns) and performance profiles to present our benchmark results.
Let A be a set of algorithms, let Z be a set of inputs, let S4 (Z) be the inputs of Z that algorithm A
sorts successfully, and let 7( A, I') be the running time of algorithm A for input I. Furthermore,
let (A, I, T) be the running time of an algorithm A for an input I with array type T. Note
that A might not sort I successfully i.e., because its interface does not accept the data type or
because A did not correctly sort the input. In this case, the running time of A is not defined.
To obtain average slowdowns, we first define the slowdown factor of an algorithm A € A to
the algorithms A for the input I

r(AI)/ min({r(A",I)|A' € A}) I €SA(Z), ie., A successfully sorts I
Io%) otherwise.

fai(A) = {
as the slowdown using algorithm A to sort input I instead of using the fastest algorithm for I
from the set of algorithms .A. Then, the average slowdown of algorithm A € A to the algorithms
A for the inputs T

el
saz(A)= ( I1 fA,I(A))
1€S4(T)

is the geometric mean of the slowdown factors of algorithm A to the algorithms A for the
inputs of Z that A sorts successfully.

Besides the average slowdown of algorithms, we present average slowdowns of an input
array type to compare its performance to a set 7 of array types. The slowdown factor of an
array T € T to the arrays T for the input I and an algorithm A

r(ALT)/ min({r(A,LT")|T' € T}) I €S4(Z), i.e., A successfully sorts I
fran(T) = o

otherwise.

is defined as the slowdown of using array type T to sort input I with algorithm A instead of
using the best array from the set of array types 7.

Then, the average slowdown of an array T € T to the array types T for the inputs T and the
algorithm A

Al
sa7z(T) = ( [1 fT,A,I(T))

IESA(I)

is the geometric mean of the slowdown factors of T to the arrays 7 for the inputs Z and
algorithm A that A sorts successfully.

Average slowdown factors are heavily used by Timo Bingmann [Bin18a] to compare parallel
string sorting algorithms. We want to note that the average slowdown could also be defined
as the arithmetic mean of the slowdown factors, instead of using the geometric mean. In this
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case, the average slowdown would have a very strong meaning: The average slowdown of an
algorithm A over a set of inputs is the expected average slowdown of A when an input of the
benchmark set is picked at random to the fastest algorithm for this particular input. However,
Timo Bingmann used in his work the geometric mean for the average slowdowns to “emphasize
small relative differences of the fastest algorithms”. Additionally, the geometric mean is more
robust against outliers and skewed measurements than the arithmetic mean [McG12, p. 229].
Furthermore, the arithmetic mean of ratios is “meaningless” in the general case. For example,
Fleming and Wallance [FW86] state that the arithmetic mean is meaningless when different
machine instances are compared relative to a baseline machine. In this case, ratios smaller than
one and larger than one can occur. However, combining those numbers is “meaningless” as
ratios larger than one depend linearly on the measurements but ratios smaller than one do not.
Note that the slowdown factors in this work will never be smaller than one.

We use pairwise performance profiles [DMO02] to compare the relative speed of two algo-
rithms on a set of inputs: In a plot like Figure 4.3 on Page 62, the point (x, y) for an algorithm
means that this algorithm sorts a fraction y of the inputs at most x times as slow as the other
algorithm.

Our instance sets include all machines, input distributions, and input sizes with a few excep-
tions depending on the question at hand. Since we are mostly interested in the performance
for large inputs, we exclude small inputs. We also exclude the easy instance distributions Zero,
Sorted, and ReverseSorted because including them gives an undue advantage to algorithms
that achieve large speedups by providing simple special case treatments.

4.3 Sequential Algorithms

In this section, we compare sequential algorithms for different machines, input distributions,
input sizes, and data types. We begin with a comparison of the average slowdowns of [1S*Ra,
11S%0, and their competitors for ten input distributions executed with six different data types
(see Section 4.3.1). This gives a first general view of the performance of our algorithms as the
presented results are aggregated across all machines. Afterwards, we compare our algorithms
to their competitors on different machines by scaling with input sizes for input distribution
Uniform and data type uint64 (see Section 4.3.2). Finally, we discuss the performance profiles
of the algorithms in Section 4.3.3.

4.3.1 Comparison of Average Slowdowns

Table 4.1 shows average slowdowns of sequential algorithms for different data types and input
distributions aggregated over all machines and input sizes with at least 2'® bytes. The fact that
the shown slowdowns are almost always larger than 1.0 indicates that no algorithm clearly
dominates all others even for a particular input distribution. We also see that a sorting algorithm
performs similarly well for inputs with “similar” input distributions. Thus, we divide the inputs
into four groups: The largest group, Skewed inputs, contains inputs with duplicated keys and
skewed key occurrences, i.e., Exponential, Zipf, RootDup, TwoDup, and EightDup. The second
group, Uniform inputs, contains Uniform distributed inputs. For these inputs, each bit of the
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° g o] |2 5 5 5 5 5 A &
Type Distribution Qﬁ & 3 "i 5 8 é 2 3 ‘% E P
= F 2 & E| 5 E = 2 = o &
2 = A 2] = o = ] = =
double  Sorted 1.05 1.70 2524 1.05 1290 2049 1.09 6242 281 21.83  62.61
double  ReverseSorted 1.04 171 1428 1.06 5.09 593 1.07 25.34 5.89 9.41 2522
double  Zero 1.07 177 21.20 1.10 120 1498 1.08 272 3.58 16.36  24.23
double  Exponential 1.02 113 128 127 2.30 257 423 4.04 420 1.29 1.38
double  Zipf 1.08 1.25 142 137 2.66 2.87 4.63 4.21 472 1.17 1.28
double  RootDup 1.10 1.50 1.83 1.65 1.44 230 1.32 6.01 3.12 1.90 2.69
double  TwoDup 117 1.33 137 141 2.48 2.65 296 342 3.20 1.07 1.22
double  EightDup 1.01 1.13 141 130 2.42 2.84 443 4.69 440 1.31 1.60
double  AlmostSorted 233 115 221 299 1.68 1.80 1.14 6.76  2.57 239 453
double  Uniform 1.08 1.21 122 1.28 235 243 359 298 3.58 1.08 1.29
Total 1.20 1.24 1.50 1.54 2.15 247 281 4.42  3.61 1.40 1.77
Rank 1 2 4 5 7 8 9 12 11 3 6
uint64 Sorted 1.17  1.78 23.69 1.02 1194 1996 1.11 55.40 2.88 26.64 76.86 13.33
uint64 ReverseSorted 1.03 163 1293 1.04 4.47 551 1.04 21.01 593 10.46  28.99 5.97
uint64 Zero 1.17  1.69 2143 1.06 1.14 14.02 1.11 242 374 17.40 2530 1.35
uint64 Exponential 1.06 1.22 137 137 2.28 264 452 382 451 121 1.74 1.05
uint64 Zipf 1.53 1.86 213 2.06 3.62  4.04 6.65 553 6.79 1.73 199 101
uint64 RootDup 125 1.73 2.19  2.07 1.60 2.60 1.70 6.34 391 2.08 2.88 1.13
uint64 TwoDup 1.73 207 211 217 3.56 3.88 4.54 4.65 493 1.58 2.66  1.00
uint64 EightDup 126 1.39 1.74 1.64 2.75 329 546 512 5.38 1.71 2.97 1.02
uint64 AlmostSorted 234 111 219 328 1.68 1.81 1.24 6.11 279 2.79 6.67 1.28
uint64 Uniform 1.35 1.60 1.60 171 2.85 3.02 4.62 349 4.63 120 219 1.04
Total 146 1.54 1.88 1.97 2.51 295 3.56 490 4.56 1.69 2.74 1.07
Rank 2 3 5 6 7 9 10 13 11 4 8 1
uint32 Sorted 244 389 5773 242 28,63 5353 196 139.13 6.34 46.41 4493 2991
uint32 ReverseSorted 1.40 206 17.70 147  6.09 8.37 1.03 29.37 5.57 10.08  20.92 7.28
uint32 Zero 230 371 5944 228 228 37.19 2.06 6.19 898 2429 14.03 3.05
uint32 Exponential 149 177 2.03 1.82 3.66 4.04 6.67 591 6.51 1.38 1.08 1.09
uint32 Zipf 1.82 233 275 237 497 546 8.68 7.55 881 1.41 127 112
uint32 RootDup 141 192 246 215 1.84 297 148 7.54 3.78 1.58 1.77 1.18
uint32 TwoDup 2.09 256 2,67 252 4.82 511 5.59 594 595 1.34 1.44 1.09
uint32 EightDup 1.40 1.68 2.09 176 3.67 419 647 6.23  6.45 1.35 177 1.02
uint32 AlmostSorted 3.07 145 279 424 2.15 2.58 1.06 824 297 2.66 5.45 1.51
uint32 Uniform 1.67 201 205 204 385 4.02 592 4.55 579 139  1.08 1.20
Total 1.78 1.93 239 232 3.37 393  4.09 6.47 545 1.54 167 116
Rank 4 5 7 6 8 9 10 12 11 2 3 1
Pair Sorted 1.06 1.62 16.88 1.04 9.36 14.67 1.04 34.54 230 17.51 10.48
Pair ReverseSorted 113 1.21 847 1.08 3.65 419 1.12 13.71 6.60 6.86 4.87
Pair Zero 1.09 1.61 1330 1.03 1.07 11.63 1.08 1.94 271 11.09 1.21
Pair Exponential 1.10 1.92 1.20 1.36 1.84 212 3.87 311 4.14 1.16 1.05
Pair Zipf 148 272 164 186 2.64 283 5.02 3.87 5.50 1.46 1.01
Pair RootDup 127 1.44 178 1.84 1.42 2.16 1.83 470  4.05 1.69 1.03
Pair TwoDup 1.63 281 1.69 1.92 2.71 2.84 3.62 345 435 1.41 1.01
Pair EightDup 1.27 219 145 159 214 247 450 395 481 1.56 1.00
Pair AlmostSorted 320 1.01 2.79 4.00 218 239 234 6.56 4.55 3.24 1.74
Pair Uniform 1.37 2.46 145 1.66 2.40 245 3.89 2.88 4.26 1.17 1.03
Total 152 1.97 1.66 191 215 245 340 394 450 1.57 1.10
Rank 2 6 4 5 7 8 9 10 11 3 1
Quartet  Uniform 1.14 185 1.29 149 1.89 1.86 3.14 2.15 3.52 1.02
Rank 2 5 3 4 7 6 9 8 10 1
100B Uniform 141 1.27 127 1.64 1.83 1.33 222 1.78 3.17 1.06
Rank 5 2 3 6 8 4 9 7 10 1

Table 4.1: Average slowdowns of sequential algorithms for different data types and input
distributions. The slowdowns average over the machines and input sizes with at least 28

bytes.

57



4 Experiments and Conclusion

key has maximum entropy. Thus, we can expect that radix sort performs the best for these
inputs. The third group, Almost Sorted inputs, are AlmostSorted distributed inputs. The last
group, (Reverse) Sorted inputs, contains “easy inputs’, i.e., Sorted, ReverseSorted, and Zero. For
the average slowdowns separated by machine, we refer to Appendix A.3, Tables A.2-A.5.

In this section, an instance describes the inputs of a specific data type and input distribution.
We say that “algorithm A is faster than algorithm B (by a factor of C) for some instances” if the
average slowdown of B is larger than the average slowdown of A (by a factor of C) for these
instances.

The subsequent paragraph summarizes the performance of our algorithms. Then, we
compare our competitors to our radix sorter [1S*Ra. Finally, we compare our competitors to
our samplesort algorithm 11S%o.

Summary of the Results. Overall, [1S?Ra is significantly faster than our fastest radix sort
competitor SkaSort. For example, I1S*Ra is for all instances at least a factor of 1.10 faster
than SkaSort and for even 63 % of the instances more than a factor of 1.40. The radix sorter
IppRadix is faster than 11S*Ra in some special cases. However, IppRadix is even slower than
our competitor SkaSort for the remaining inputs. Our algorithm I11S*Ra also outperforms
the comparison-based sorting algorithms for Uniform inputs and Skewed inputs significantly.
For example, 11S?Ra is faster for all of these instances and for 56 % of these instances even a
factor of 1.20 or more. Only for Almost Sorted inputs and the “easy” (Reverse) Sorted inputs,
the comparison-based algorithms BlockPDQ and Timsort are faster than I1S?Ra. For the
remaining inputs—Uniform inputs and Skewed inputs—not only our radix sorter [1S*Ra but
also our samplesort algorithm 11S*0 is faster than all comparison-based competitors (except
for one instance). For example, 11S%0 is faster than our fastest comparison-based competitor
BlockPDQ, e.g., by a factor of 1.10 and 1.20 for 25 respectively 15 out of 26 instances with
Uniform and Skewed input. 11S%0 is on average also faster than the fastest radix sorter.

Comparison to 11S?Ra. 11S*Ra outperforms SkaSort by a factor of 1.10, 1.20, 1.30, and
1.40 for respectively 100 %, 83 %, 73 %, and 63 % of the instances. IppRadix is the only non-
comparison-based algorithm that is able to outperform 11S?Ra for at least one instance, i.e.,
IppRadix is faster by a factor of 1.01 (of 1.11) for Exponential (Uniform) distributed inputs
with the uint32 data type. However, IppRadix is (significantly) slower than I1S*Ra for other
Exponential (Uniform) instances, e.g., a factor of 1.66 (of 2.11) for the uint64 data type. For
the remaining instances, IppRadix is (much) slower than I1S*Ra.

For the comparison of I1S?Ra to comparison-based algorithms, we first consider Uniform
and Skewed inputs. For these instances, I1S*Ra is significantly faster than all comparison-based
algorithms (including I1S*0). For example, [1S*Ra is faster than any of these algorithms by a
factor of more than 1.00, 1.10, 1.20, and 1.30 for respectively 100 %, 89 %, 78 %, and 56 % of the
instances. We now consider Almost Sorted inputs, which are sorted the fastest by BlockPDQ.
For all 3 instances, 11S?Ra is slower than BlockPDQ, i.e., by a factor of respectively 1.04, 1.16,
and 1.72. The reason is that BlockPDQ heuristically detects and skips presorted input sequences.
Even though BlockPDQ is our fastest comparison-based competitor, it is significantly slower
than I1S?Ra for many instances that are not (almost) sorted. For example, BlockPDQ is for 8
of these instances even more than a factor of 2.00 slower than I1S*Ra. For (Reverse) Sorted
inputs, [15?Ra is slower than at least one comparison-based sorting algorithm for all 9 instances.
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However, 11S?Ra could easily detect these instances by scanning the input array once. We want
to note that [1S*Ra already scans the input array to detect the significant bits of the input keys.

Comparison to I1S*0.  Our algorithm I1S%0 is faster than any comparison-based competitor
for 28 instances and slower for only 15 instances. However, when we exclude Almost Sorted
inputs and (Reverse) Sorted inputs, [1S*0 is still faster for the same number of instances but the
number of instances for which I11S*o is slower drops to one instance. When we only exclude
(Reverse) Sorted inputs, 11S%0 is still only slower for 5 instances.

BlockPDQ is a factor of 1.10, 1.15, 1.20, and 1.25 slower than 11S%o for respectively 100 %,
71.43 %, 42.85 %, and 28.57 % out of 21 instances with Uniform input and Skewed input.
BlockPDAQ is also much slower for (Reverse) Sorted inputs. Only for Almost Sorted inputs,
BlockPDQ is significantly faster than I1S%o, e.g., by a factor of 2.03 to 3.17. Again, the reason is
that BlockPDQ takes advantage of presorted sequences in the input.

BlockQ shows similar performance as BlockPDQ for Uniform inputs. The reason is that
BlockPDQ reimplemented the partitioning routine proposed BlockQ [EW16]. However,
BlockQ does not take advantage of presorted sequences and BlockQ handles duplicated keys
less efficiently. Thus, BlockQ is slower than BlockPDQ for (Reverse) Sorted inputs and Almost
Sorted inputs.

11S*0 outperforms SkaSort for Skewed inputs by a factor of at least 1.10 for 50 % out of 20
instances whereas SkaSort is faster by a factor of at least 1.10 for only 15 % of the instances.
11S%0 is also faster than SkaSort for all 12 (Reverse) Sorted inputs. For Almost Sorted inputs,
both algorithms are for one instance at least a factor of 1.10 faster than the other algorithm (out
of 4 instances). Only for Uniform inputs, SkaSort is the better algorithm. I.e., SkaSort is faster
by a factor of at least 1.10 on 83 % out of 6 Uniform instances whereas 1150 is not faster on
one of these instances.

As expected, 1S*0 is slower than 11S%o for all instances except (Reverse) Sorted inputs. For
(Reverse) Sorted inputs, both algorithms execute the same heuristic to detect and sort “easy”
inputs. Also, as 1S%0 is not in-place, 1S*o0 can sort only about half the input size as [1S*o can
sort. The results strongly indicate that the I/O complexity of I1S*0 has smaller constant factors
than the I/O complexity of 150 as both algorithms share the same sorting framework including
the same sampling routine, branchless decision tree, and base case sorting algorithm.

The algorithms std::sort, DualPivot, and BlockPDQ are adaptions of quicksort. However,
std::sort and DualPivot do not avoid branch mispredictions by classifying and moving blocks
of elements. The result is that these algorithms are always significantly slower than BlockPDQ.

We also compare 1150 to the mergesort algorithms Timsort, QMSort, and WikiSort. The
in-place versions of mergesort, QMSort and WikiSort, are significantly slower than 11S*o for
all instances. Timsort is also much slower than I1S*o for almost all input distributions—in
most cases even more than a factor of three. Only for Almost Sorted inputs, Timsort is faster
than I1S*0 and for (Reverse) Sorted inputs, Timsort has similar running times as 11S*o.

We did not present the results of S*0S, an implementation of Super Scalar Samplesort [SW04].
We made this decision as S$*0S is for all instances except 100B instances slower or significantly
slower than 1S*0, our implementation of Super Scalar Samplesort. For further details, we refer
to Table A.6 in Appendix A.3 that shows average slowdowns of 1S*0 and $*0S for different data
types and input distributions. We did not the present results of the sequential version of ASPa$S
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Figure 4.2: Running times of sequential algorithms of uint64 values with input distribution
Uniform executed on different machines. The results of DualPivot, std::sort, Timsort,
QMSort, and WikiSort cannot be seen as their running times exceed the plot.

for three reasons. First, ASPaS performs worse than 1S*o for all instances. Second, ASPa$S only
sorts inputs with the data type double. Finally, ASPaS returns unsorted output for inputs with
at least 2*! elements.

4.3.2 Running Times for Uniform Input

In this section, we compare [1S*Ra and 1150 to their closest sequential competitors for Uniform
distributed uint64 inputs. Figure 4.2 depicts the running times of our algorithms I1S*0 and
11S?Ra as well as their fastest competitors BlockPDQ and SkaSort separately for each machine.
Additionally, we include measurements obtained from 1S*o (which we used as a starting point
to develop 11S*0) and IppRadix (which is fast for uint32 data types with Uniform distribution).
We refer to Table A.1 in Appendix A.3 for exact running time numbers. We decided to present
results for uint64 inputs as our radix sorter does not support double inputs. We note that this
decision is not a disadvantage for our fastest competitors as they show similar running times
relative to our algorithms for both data types (see slowdowns in Table 4.1, Section 4.3.1).
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Summary of the Results. Overall, I1S?Ra outperforms its radix sort competitors on all
but one machine, and 11S*o significantly outperforms its comparison-based competitors. In
particular, 11S*Ra is 1.40 times as fast as SkaSort, and 11S*0 is 1.44 (1.60) times as fast as
BlockPDQ (18%0) for the largest input size. As expected, I1S*Ra is in almost all cases significantly
faster than I1S*0 on all machines, e.g., a factor of 1.10 to 1.52 for the largest input size. I1S’Ra
shows the fastest running times on the two machines with the most recent CPUs, A1x16 and
Alx64. On these two machines, the gap between I1S*Ra and 11S*o0 is larger than on the other
machines. This indicates that sequential comparison-based algorithms are not memory bound
in general, and, on recent CPUs, radix sorters may benefit even more from their reduced
number of instructions (for uniformly distributed inputs). In the following, we compare our
algorithms to their competitors in more detail.

Comparison to I1S*Ra.  Our algorithm I1S*Ra outperforms SkaSort on two machines sig-
nificantly (A1x16 and A1x64), on one machine slightly (I4x20), and on one machine (12x16),
I1SRa is slightly slower than SkaSort. For example, I1S*Ra is on average a factor of respectively
2.06, 2.13, 1.12, and 0.82 faster than SkaSort for n > 2'* on Al1x16, A1x64, 14x20, and 12x16.
According to the performance measurements, obtained with the Linux tool perf, SkaSort
performs more cache misses (factor 1.25) and significantly more branch mispredictions (factor
1.52 for n = 2*® on 14x20).

On machine A1x16, 12x16, and A1x64, we see that the running times of SkaSort and I1S*Ra
vary—with peaks at 2'°, 22> and 2°!. We assume that the running time peaks as these radix
sorters perform an additional k-way partitioning step with k = 256. We have seen the same
behavior with our algorithm 11S*o when we do not adjust k at the last recursion levels. However,
with our adjustments, the large running time peaks disappear for 11S*o.

We also compare our algorithm against IppRadix, which takes advantage of the Advanced
Vector Extensions (AVX). All machines support the instruction extension AVX2. 14x20 addition-
ally provides AVX-512 instructions. We expected that IppRadix is competitive, at least on 14x20.
However, IppRadix is significantly slower than 115?Ra on all machines. For example, I1S?°Ra
outperforms IppRadix by a factor of 1.76 to 1.88 for the largest input size on Alx64, Alx16,
and 14x20. On 12x16, I1S*Ra is even a factor of 3.00 faster. We want to note that IppRadix
is surprisingly fast for (mostly small) Uniform distributed inputs with data type uint32 (see
Figure A.1 in Appendix A.3). Unfortunately, IppRadix fails to sort uint32 inputs with more
than 228 elements. In conclusion, it seems that AVX instructions only help for inputs whose
data type size is very small, i.e., 32-bit unsigned integers in our case.

Comparison to 11S*0.  For most medium and large input sizes, BlockPDQ and 1S*o are
significantly slower than 11S*o. For example, on A1x16, 11S*0 is 1.29 times as fast as 1S*0 and
1.44 times as fast as BlockPDQ for the largest input size (n = 2°%). On the other machines,
BlockPDQ is our closest competitor: 11S*0 is 1.23 to 1.44 (1.29 to 1.60) times as fast as Block-
PDQ (1S%0) for n = 2*2. According to the performance measurements, obtained with the
Linux tool perf, there may be several reasons why 11S*o outperforms BlockPDQ and 1S%o.
Consider the machine 14x20 and n = 2°%: BlockPDQ performs significantly more instructions
(factor 1.30), more cache misses (factor 2.05), and more branch mispredictions (factor 1.69)
compared to 11S*o. Also, 1S*0 performs significantly more total cache misses (factor 1.79),
more L3-store operations (factor 2.68), and more L3-store misses (factor 9.71). We note that the
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Figure 4.3: Pairwise performance profiles of our algorithms 11S*o and I1S*Ra to Block-
PDQ and SkaSort for large inputs (n > 2'®) on all machines and all input distributions
excluding the “easy” ones Sorted, ReverseSorted, and Zero. Profiles with the radix sorter
11S*Ra only use inputs with with unsigned integer keys (uint32, uint64, and Pair data

types).

comparison-based competitors DualPivot, std::sort, Timsort, QMSort, and WikiSort perform
significantly more branch mispredictions than 1S*o, BlockPDQ, and BlockQ. We think that
this is the reason for their poor performance.

4.3.3 Comparison of Performance Profiles

In this section, we discuss the pairwise performance profiles® for inputs with at least 2'®
bytes. Figure 4.3 compares our algorithms I1S*0 and 115?Ra to the fastest comparison-based
competitor (BlockPDQ) and the fastest radix sort competitor (SkaSort).

Overall, I1S?Ra has a significantly better profile than BlockPDQ and SkaSort. The perfor-
mance profile of [1S%0 is slightly better than the profile of SkaSort and significantly better than
the one of BlockPDQ. Exceptions are AlmostSorted inputs for which I1S*o is much slower than
BlockPDQ.

Comparison to 118?Ra. For the profiles containing 11S?Ra, we used only inputs with unsigned
integer keys. The performance profile of [1S*Ra is significantly better than the profile of SkaSort.
[1S*Ra is much faster for most of the inputs and for the remaining inputs only slightly slower.
For example, [1S*Ra sorts 84 % of the inputs faster than SkaSort. Also, 11S?Ra sorts 91 % of the
inputs at least 1.25 times as fast as SkaSort. SkaSort on the other hand sort only 34 % of the
inputs at most a factor of 1.25 faster. The performance profile of BlockPDQ is even worse than
the profile of SkaSort. For example, I15?Ra sorts 97 % of the inputs at least 1.25 times as fast as
BlockPDQ. BlockPDQ on the other hand sort only 26 % of the inputs at most a factor of 1.25
faster.

Comparison to I1S*0. The performance profile of I1S*o is in most ranges significantly better
than the profile of BlockPDQ. For example, 115*0 sorts 79 % of the inputs faster than BlockPDQ.

3See Section 4.2 for an explanation of performance profiles.
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Also, BlockPDQ sorts only 60 % of the inputs at least a factor of 1.25 faster than 11S*o whereas
11S%0 sorts 86 % of the inputs at least 1.25 times as fast as BlockPDQ. We note that I1S*o is
significantly slower than BlockPDQ for some inputs. These inputs are AlmostSorted inputs.
The performance profile of 1150 is slightly better than the profile of SkaSort. For example,
11S*0 sorts 54 % of the inputs faster than SkaSort. Also, I1S*o (SkaSort) sorts 83 % (77 %) of
the inputs at least a factor of 1.25 faster.

4.4 Influence of the Memory Allocation Policy

On NUMA machines, access to memory attached to the local NUMA node is faster than mem-
ory access to other nodes. Thus, the memory access pattern of a shared-memory algorithm may
highly influence its performance. For example, an algorithm can greatly benefit by minimizing
the memory access of its threads to other NUMA nodes. However, we cannot avoid access
to non-local NUMA nodes for shared-memory sorting algorithms: For example, when the
input array is distributed among the NUMA nodes, the input- and output-position of elements
may be on different nodes. In this case, it can be an advantage to distribute memory access
evenly across the NUMA nodes to utilize the full memory bandwidth. Depending on the access
patterns of an algorithm, a memory layout may suit a parallel algorithm better than another. If
we do not consider different memory layouts of the input array in our benchmark, the results
may wrongly indicate that one algorithm is better than another.

The memory layout of the input array depends on the NUMA allocation policy of the input
array and former access to the array. The local allocation policy allocates memory pages at the
thread’s local NUMA node if memory is available. This memory policy is oftentimes the default
policy. Note that after the user has allocated memory with this policy, the actual memory pages
are not allocated until a thread accesses them the first time. A memory page is then allocated
on the NUMA node of the accessing thread. This principle is called first touch. The interleaved
allocation policy pins memory pages round-robin to (a defined set of) NUMA nodes. The
bind allocation policy binds memory to a defined set of NUMA nodes and preferred allocation
allocates memory on a preferred set of NUMA nodes. For example, a user could create an array
with the bind allocation policy such that the i-th stripe of the array is pinned to NUMA node i.

Benchmarks of sequential algorithms usually allocate and initialize the input array with a
single thread with the default allocation policy (local allocation). The memory pages of the
array are thus all allocated on a single NUMA node (local arrays). Local arrays are slow for
many parallel algorithms because the NUMA node holding the array becomes a bottleneck.
It is therefore recommended to use a different layout for parallel (sorting) algorithms. For
example, the authors of RADULS2 recommend to use an array where the i-th stripe of the array
is first touched by thread i (striped array). Another example is RegionSort for which the authors
recommend to invoke the application with the interleaved allocation policy. We call arrays of
those applications interleaved arrays. Orestis and Ross allocate for their benchmarks [PR14] on
machines with 1 NUMA nodes m subarrays where subarray i is pinned to NUMA node i.

We execute the benchmark of each algorithm with the following four input array types.

« For the local array, we allocate the array with the function malloc and a single thread
initializes the array.
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o For the striped array, we allocate the array with malloc and thread i initializes the i-th
stripe of the input array.

« For the interleaved array, we activate the process-wide interleaved allocation policy using
the Linux tool numactl.

o The NUMA array [Axt20b] uses a refined NUMA-aware array proposed by Lorenz
Hiibschle-Schneider?. The NUMA array pins the stripe i of the array to NUMA node i.
This approach is similar to the array used by Orestis and Ross except that the NUMA
array is a continuous array.

Table 4.2 shows the average slowdown of each array type for each algorithm on our machines.
As expected, the machines with a single CPU, A1x16 and A1x64, do not benefit from NUMA
allocations. On the NUMA machines, the local array performs significantly worse than the
other arrays. Depending on the algorithm, the average slowdown of the local array is a factor of
up to 1.49 larger than the average slowdown of the respectively best array on 12x16. On 14x20,
the local array performs even worse: Depending on the algorithm, the average slowdown of
the local array is a factor of 1.12 to 4.88 larger.

The interleaved array (significantly) outperforms the other arrays for most algorithms or
shows similar slowdown factors (+0.02) on the NUMA machines, i.e. 12x16 and 14x20. Only
ASPaS is on these machines with the striped array noticeable faster than with the interleaved
array. However, ASPa$S shows large running times in general. On 12x16, the NUMA machine
with 32 cores, the average slowdown ratios of the striped array and the NUMA array to the
interleaved array are relatively small (up to 1.12). On I14x20, which is equipped with 80 cores,
the average slowdown ratio of the striped array (NUMA array) to the interleaved array increases
in the worst case to 1.44 (to 2.83).

Our algorithm IPS*0 has almost the same average slowdowns when we execute the algorithm
with the interleaved or the NUMA array. Other algorithms, e.g., our closest competitors
RADULS2 and RegionSort, are much slower on [4x20 when executed with the NUMA array.
The reason is that a thread of our algorithm predominantly works on one stripe of the input
array allocated on a single NUMA node.

In conclusion, the local array should not be used on NUMA machines. The interleaved array
is the best array on these machines with just a few minor exceptions. The NUMA array and
the striped array perform better than the local array on NUMA machines and in most cases
worse than the interleaved array. Unless stated otherwise, we report results obtained with the
interleaved input array (restricting the interleaved allocation to the NUMA nodes participating
in the sorting task).

4.5 FEvaluation of the Parallel Task Scheduler

The version of IPS*o proposed in our conference article (IPS*oNT) [Axt+17c] uses a very
simple task scheduling. Le., tasks with more than n/t elements are all executed with ¢ threads
(so-called parallel tasks) and sequential tasks are assigned to threads greedily in descending

*https://gist.github.com/lorenzhs
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4.5 Evaluation of the Parallel Task Scheduler

Alx16 Alx64 12x16 14x20

LA JTA SA NA LA JA SA NA LA JA SA NA LA IA SA NA

ASPaS 101 100 100 1.00 1.00 1.01 1.01 1.01 122 105 101 1.02 459 111 100 1.39
MCSTLmwm 100 1.01 1.01 1.01 100 1.02 101 102 113 1.03 106 103 228 1.02 116 118
MCSTLbq 102 103 102 1.01 104 1.05 1.02 1.04 149 100 1.08 1.02 3.67 101 128 130
IPS*o 101 100 101 103 101 101 101 1.00 127 100 112 101 343 1.00 132 108
PBBS 101 1.00 100 100 101 1.00 100 1.01 1.09 100 1.03 101 147 100 117 112
PSto 101 100 101 102 1.0 100 101 101 113 100 111 104 228 1.01 119 123
TBB 102 102 101 102 102 101 101 102 110 102 109 101 112 1.03 1I2 105
IPS’Ra 101 101 1.01 102 101 100 1.01 1.02 145 1.02 114 100 488 101 145 1.04
PBBR 100 101 1.0l 1.00 1.03 1.01 101 1.02 111 1.01 103 104 233 1.01 127 144
RADULS2 100 1.01 101 110 1.08 1.09 1.09 1.00 123 1.01 103 109 480 1.01 153 286
RegionSort 100 1.01 101 1.00 1.00 1.01 101 101 128 100 107 105 418 1.04 122 136

Table 4.2: Average slowdowns of the local array (LA), the interleaved array with 4 KiB
pages (IA), the striped array (SA), and the NUMA array (NA) for different parallel sorting
algorithms on different machines. We only consider uint64 data types with at least ¢ -
22! bytes and input distribution Uniform.

order according to their size. The task scheduler of IPS*o, described in Section 3.1.2, has three
advantages. First, the number of threads processing a parallel task decreases as the size of the
task decreases. This means that we can process small parallel subtasks more efficiently. Second,
voluntary work sharing is used to balance the load of sequential tasks between threads. Finally,
thread i predominantly accesses elements from A[in/t.. (i + 2)n/t — 1] in sequential tasks and
in classification phases (see Lemmas 3.5 and 3.6). Thus, the access pattern of IPS*o significantly
reduces memory access to the nonlocal NUMA nodes when the striped array or the NUMA
array is used.

Table 4.3 compares IPS*o with IPS*oNT. On machines with multiple NUMA nodes, i.e.,
12x16 and 14x20, both algorithms are much slower when the local array is used. This is not
surprising as the input is read in this case from a single NUMA node. On machine 14x20, 12x16,
and A1x16, IPS*o shows a slightly smaller average slowdown than IPS*oNT for the same array
type. It is hard to say whether this improvement is caused by the voluntary work sharing or by a
better static scheduling. In any case, both algorithms do not execute parallel subtasks as t < k.

In the remainder of this section, we discuss the results obtained on machine 14x20. These
results are perhaps the most interesting: Compared to the other machines, on 14x20 tasks with
more than n/t elements occur regularly on the second recursion level of the algorithms as
the number of threads is only slightly smaller than k. Thus, both algorithms actually perform
parallel subtasks. In contrast to IPS*oNT, IPS*o uses thread groups whose size is proportional
to the size of parallel tasks. Thus, we expect IPS*0 to be faster than IPS*oNT for any array type.

We want to point out that the advantage of IPS*o is caused by the handling of its parallel
subtasks, not by the voluntary work sharing: When no parallel subtasks are executed, the
running times do not differ much. However, our experiments show that IPS*o performs much
better than IPS*oNT in cases where parallel tasks occur on the second recursion level. We now
discuss the running time improvements separately for each array type.

With the interleaved array, IPS*o reports the fastest running times. For this array, the
average slowdown ratio of IPS*oNT to IPS*0 is 1.13. For the interleaved array, we expect that
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local array interleaved array striped array NUMA array

ips*oNT ipsdo  ips*oNT ipsdo  ips*oNT ipsdo  ips*oNT ipsdo
Alxl6 107 100 (3.62) 1.06  1.00 (3.59) 1.06  1.00 (3.61) 1.05  1.00 (3.67)
Alx64 1.04 1.00 (4.47) 1.04 1.00 (4.46) 1.04 1.00 (4.47) 1.05 1.00 (4.44)
12x16 1.03 1.01 (5.65) 1.02 1.01 (447) 1.04 1.04 (5.01) 1.02 1.01 (4.52)
[4x20 151  1.09 (17.46) 113 100 (522) 184  1.00 (6.90) 254  1.00 (5.66)

Table 4.3: Average slowdown of IPS*0 and IPS*oNT to the best of both algorithms for
different array types and machines. The numbers in parentheses show the average running
times of IPS*o divided by n/tlog, n in nanoseconds. We only consider uint64 data types
with at least - 22! bytes and input distribution Uniform.

parallel subtasks oftentimes cover multiple memory pages. Thus, both algorithms can utilize
the bandwidth of multiple NUMA nodes when executing parallel subtasks. We assume that
this is the reason that IPS*oNT is not much slower than IPS*o with interleaved arrays. For the
NUMA array, the average slowdown ratio increases to 2.54—IPS*oNT becomes much slower.
The reason for this slowdown is that the subarray associated with a parallel subtask will often
reside on a single NUMA node. IPS*oNT executes such tasks with all ¢ threads, which then
leads to a severe memory bottleneck. Additionally, subtasks of this task can be assigned to any
of these threads. IPS*o on the other hand executes the task with a thread group of appropriate
size. Threads of this thread group also process resulting subtasks (unless they are rescheduled
to other threads).

Let us now compare the striped array with the NUMA array. While IPS*oNT exhibits about
the same (bad) performance with both arrays, IPS*o becomes 22 % slower when executed with
the striped array (but still almost twice as fast as IPS*oNT). A reason for the slowdown of IPS*o
might be that the striped array does not pin memory pages. Thus, during the block permutation,
many memory pages are moved to other NUMA nodes. This is counterproductive since they
are later accessed by threads on yet another NUMA node.

If a local array is used, the NUMA node holding it becomes a severe bottleneck—both
IPS*oNT and IPS*0 become several times slower. IPS*o suffers less from this bottleneck
(slowdown factor 1.09 rather than 1.51 for IPS*oNT), possibly because a thread i of IPS*o
accesses a similar array stripe in a child task T' as in a parent task T Thus, during the execution
of T, some memory pages used by T’ might be migrated to the NUMA node of i (recall that
local arrays are not pinned).

In conclusion, IPS*0 is (much) faster than IPS*oNT for any array type tested here. IPS*o
shows the best performance for the interleaved array and the NUMA array, with the interleaved
array performing slightly better. Both arrays allocate memory pages distributed among the
NUMA nodes, and, compared to the striped array, pin the memory pages to NUMA nodes.
For these arrays, the average slowdown ratio of IPS*oNT to IPS*0 is between 1.13 and 2.54.
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4.6 Parallel Algorithms

In this section, we compare parallel algorithms for different machines, input distributions,
input sizes, and data types. We begin with a comparison of the average slowdowns of IPS*o,
IPS?Ra, and their competitors for ten input distributions executed with six different data types
(see Section 4.6.1). This gives a first general view of the performance of our algorithms as the
presented results are aggregated across all machines. Afterwards, we compare the algorithms for
input distribution Uniform with data type uint64 on different machines: We consider scaling
with input sizes in Section 4.6.2 and scaling with the number of utilized cores in Section 4.6.3.
Then, we discuss in Section 4.6.4 the running times for an interesting set of input distributions
and data types, again by scaling the input size. In Section 4.6.5, we discuss the performance
profiles of our algorithms and their most promising competitors. Finally, we separately compare
IPS*o to IMSDradix, which is only implemented in a very explorative manner and thus only
works in some special cases (see Section 4.6.6).

4.6.1 Comparison of Average Slowdowns

Table 4.4 shows average slowdowns of parallel algorithms for different data types and input
distributions aggregated over all machines and input sizes with at least ¢ - 22! bytes. For the
average slowdowns separated by machine, we refer to Appendix A.3, Tables A.8-A.11. In this
section, an instance describes the inputs of a specific data type and input distribution. We say
that “algorithm A is faster than algorithm B (by a factor of C) for some instances” if the average
slowdown of B is larger than the average slowdown of A (by a factor of C) for these instances.

Summary of the Results. Overall, the results show that IPS*0 is much faster than its com-
petitors in most cases except for some “easy” instances and for some instances with uint32 data
types. IPS*0 is faster than its fastest comparison-based competitor PBBS—in most cases by
a factor of 1.5 or more. Except for some uint32 instances, IPS*o is even significantly faster than
its fastest radix sort competitor RegionSort. This indicates that parallel sorting algorithms
are memory bound for most inputs, except for data types that only have a few bytes. In most
cases, IPS*0 also outperforms our radix sorter IPS?Ra. IPS?Ra is faster for some instances with
uint32 data types and, as expected, IPS?Ra is faster for Uniform instances. IPS?Ra has a better
ranking than our fastest in-place radix sort competitor RegionSort. Thus, our approach of
sorting data with parallel block permutations seems to perform better than the graph-based
approach of RegionSort.

Comparison to IPS*0. IPS%0 is the fastest algorithm for 30 out of 42 instances. IPS*0 is
outperformed for 8 instances having “easy” input distributions, i.e, Sorted, ReverseSorted and
Zero. For now on, we consider only these instances: TBB detects Sorted and Zero inputs as
sorted and returns immediately. RegionSort detects that the elements of Zero inputs only have
zero bits, and thus, also return immediately for Zero inputs. It is therefore not surprising that
TBB and RegionSort sort easy inputs very fast. TBB (RegionSort) is for 4 (for 3) Zero instances
better than IPS*o. TBB is also better for 3 Sorted instances, i.e., with double, uint64, and Pair
data types. Also, RegionSort is faster than IPS*o for the ReverseSorted uint32 instance. Our
algorithm also detects these instances but with a slightly larger overhead.
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double  Sorted 142 1096 202 1547 1336 1.06 42.23
double  ReverseSorted 1.06 134 198 176 11.00 3.01 5.34
double  Zero 154 12.83 1.80 14.55 166.67 1.06 41.78
double  Exponential 1.00 1.82 197 260 320 10.77 4.97
double  Zipf 1.00 1.96 2.12 2.79 355 11.56 5.33
double  RootDup 1.00 1.54 222 2.52 3.88 5.54 6.28
double  TwoDup 1.00 193 1.88 245 299 552 4.44
double  EightDup 1.00 1.82 201 248 3.19 10.37 5.02
double  AlmostSorted 1.00 173 240 512 218 354 6.37
double  Uniform 1.00 2.00 1.85 2.53 2.99 9.16 4.39
Total 1.00 1.82  2.06 2.83 3.10 7.46 521
Rank 1 2 3 4 5 7 6
uint64 Sorted 145 1056 1.80 15.65 13.50 1.09 6.72 56.24 33.08 8.83
uint64 ReverseSorted 1.17 142 223 2.01 12.27 3.40 1.34 8.07 4.65 1.76
uint64 Zero 1.69 1358 1.87 15.02 171.86 1.13 1.36 51.61 32.50 1.16
uint64 Exponential 1.04 1.74  2.10 2.62 341 10.38 1.79 1.58 2.58 1.20
uint64 Zipf 1.00 1.82  2.16 2.69 3.60 10.48 1.61 16.80 6.04 1.68
uint64 RootDup 1.00 147 224 2.52 3.84 5.78 1.59 9.89 7.00 1.54
uint64 TwoDup 1.07 191 2.04 2.54 3.20 5.83 1.30  10.00 3.89 1.34
uint64 EightDup 1.02 1.69  2.06 242 3.25 9.54 1.37 1245 5.00 1.44
uint64 AlmostSorted 1.11 1.88 273 5.75 2.54 4.15 1.36 9.84 5.87 1.55
uint64 Uniform 1.13 2.10 2.14 2.80 332 9.57 1.59 1.41 1.49 1.03
Total 1.05 1.79 220 291 3.28 7.54 1.51 6.17 4.07 1.38
Rank 1 4 5 6 7 10 3 9 8 2
uint32 Sorted 1.77 10.03 2.77 11.64 14.68 191 528 7.86 4.98
uint32 ReverseSorted 1.51 1.84 246 2.03 11.96 517 122 1.44 1.17
uint32 Zero 1.59 1594 195 1935 286.17 1.18 1.50 73.11 1.20
uint32 Exponential 1.31 285 234 3.68 4.55 17.62 1.57 2.02 1.02
uint32 Zipf 1.05 2.54 2.06 3.22 4.05 15.68 133 6.39 1.41
uint32 RootDup 1.09 1.78  2.26 2.62 3.92 6.16 1.37 7.50 1.42
uint32 TwoDup 1.40 3.18 232 3.59 4.35 9.10 1.24 1.83 1.02
uint32 EightDup 1.23 2.84 226 3.41 424 16.24 1.33 1.84 1.08
uint32 AlmostSorted 1.38 2.08 2.63 5.66 3.22 4.54 1.32 1.62 1.08
uint32 Uniform 1.41 326 228 3.68 445 14.52 1.36 1.61 1.03
Total 1.26 2.59 230 3.60 4.09 10.75 1.36 2.49 1.14
Rank 2 6 4 7 8 9 3 5 1
Pair Sorted 1.39 9.38 1.82 15.05 15.50 1.03 575 20.15 52.30 8.02
Pair ReverseSorted 1.09 147  2.06 222 10.46 3.15 1.35 3.21 8.24 1.77
Pair Zero 1.66 1410 1.77 1521 118.30 1.08 121 11.71 54.52 1.16
Pair Exponential 1.12 1.77 222 2.76 3.09 6.92 1.92 1.07 9.52 1.39
Pair Zipf 1.00 1.62 2.04 2.53 2.79 6.30 1.62 7.35 9.87 1.77
Pair RootDup 1.01 1.58 2.08 2.81 3.84 4.88 1.58 4.35 11.76 1.52
Pair TwoDup 1.02 1.67  2.02 2.44 2.96 4.10 1.43 4.88 7.54 1.48
Pair EightDup 1.02 1.59  2.05 2.41 2.83 6.01 1.40 6.98 8.81 1.57
Pair AlmostSorted 1.05 1.95 2.69 5.67 3.24 3.88 1.37 4.27 1094 1.65
Pair Uniform 1.08 1.81 212 2.62 2.93 6.15 1.67 1.20 5.36 1.04
Total 1.04 1.71 2.16 2.90 3.08 5.35 1.56 3.46 8.87 1.47
Rank 1 4 5 6 7 9 3 8 10 2
Quartet  Uniform 1.01 1.29 2.08 2.40 293 4.42
Rank 1 2 3 4 5 6
100B Uniform 1.05 1.14 214 2.35 3.18 3.55
Rank 1 2 3 4 5 6

Table 4.4: Average slowdowns of parallel algorithms for different data types and input
distributions. The slowdowns average over the machines and input sizes with at least ¢ - 2%
bytes.
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In this paragraph, we do not consider “easy” instances. IPS*o is significantly faster than
our competitors for 23 out of 30 instances (> 1.15). For 3 instances, IPS*o performs similar
(+0.06) to RegionSort (AlmostSorted distributed uint32 instance and Uniform distributed
uint32 instance) and PBBR (Exponential distributed Pair instance). RegionSort is the only
competitor that is noticeably faster than IPS*o, at least for one instance, i.e., TwoDup distributed
uint32 inputs (factor 1.13). Overall, IPS*0 is faster than its respectively fastest competitor by
afactor of 1.2, 1.4, 1.6, and 1.8 for 22, 13, 8, and 5 noneasy instances, respectively. If we only
consider comparison-based competitors, IPS*o is faster by a factor of 1.2, 1.4, 1.6, and 1.8 for
29, 28, 22, and 10 noneasy instances, respectively. The values become even better when we only
consider in-place comparison-based competitors. In this case, the IPS*0 is faster by a factor of
2.15 for all noneasy instances.

IPS*0 is much faster than PS*o. The only difference between these algorithms is that IPS*o
implements the partitioning routine in-place whereas PS*o is non-in-place. We note that the
algorithms share most of their code, even the decision tree is the same. The reason why PS*o is
slower than IPS*0 is that IPS*0 is more cache efficient than PS*o: For example, PS*o0 has about
46 % more L3-cache misses than IPS*o for Uniform distributed uint64 inputs with 2?7 elements
whereas the number of instructions and the number of branch (misses) of PS*o are similar to
the ones of IPS*o. The sequential results presented in Section 4.3 support this conjecture as the
gap between the sequential versions is smaller than the gap between the parallel versions.

Comparison to IPS*Ra.  Our in-place radix sorter IPS?Ra performs slightly better than our
fastest competitor, RegionSort. IPS?Ra is faster than RegionSort for 11 out of 21 noneasy
instances. In particular, IPS*Ra is faster by a factor of 1.2, 1.4, and 1.6 for 9, 4, and 1 noneasy
instances and the factor is never smaller than 0.8.

IPS*Ra outperforms IPS*o for instances with uint32 data types and some Uniform dis-

tributed instances. For uint32 instances, IPS*Ra is faster than IPS*o by a factor of 1.37. Inter-
estingly, IPS?Ra is not much faster than IPS*o for Uniform instances with more than 32-bit
elements. This indicates that the evaluation of the branchless decision tree is not a limiting factor
for these data types in IPS*o. For the remaining instances (data types with more than 32-bit
elements and instances with noneasy distributions other than Uniform) IPS*o is significantly
faster than IPS*Ra.
From now on, we do not present results for ASPaS, TBB, PS*0, and MCSTLmwm. In regard to
non-in-place comparison-based competitors, the algorithms ASPaS, PS*0, and MCSTLmwm
perform worse than PBBS. For non-in-place comparison-based competitors, the parallel quick-
sort algorithm TBB is for noneasy instances slower than the quicksort implementation MC-
STLbgq.

4.6.2 Running Times for Uniform Input

In this section, we compare IPS*o and IPS*Ra to their closest parallel competitors for Uniform
distributed uint64 inputs. Figure 4.4 depicts the running times separately for each machine.
We refer to Table A.7 in Appendix A.3 for exact running time numbers. The results of the
algorithms obtained for double inputs are similar to the running times obtained for uint64
inputs. We decided to present results for uint64 inputs as our closest parallel competitors for
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Figure 4.4: Running times of parallel algorithms sorting uint64 values with input distri-
bution Uniform executed on different machines.

data types with “primitive” keys, i.e., RegionSort, PBBR, and RADULS2, do not support double
inputs.

We outperform all comparison-based algorithms significantly for medium and large input
sizes, e.g., by a factor of 1.49 to 2.45 for the largest inputs depending on the machine. For in-
place competitors, the factor is even 2.55 to 3.71. For small inputs, the non-in-place competitors
PBBS and PBBR are faster. Note however, that this advantage is reduced when the sorter object
described in Section 4.1 is available. Also, the performance of PBBS and PBBR significantly
decreases for larger inputs.

Exploiting integers slightly improves the performance of IPS?’Ra compared to IPS*o. The
radix sorters RADULS2 and RegionSort are only competitive for large input sizes. Still, they
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are very inefficient even for these input sizes on 14x20, our largest machine. In particular, they
are 2.72 respectively 3.08 times slower than IPS?Ra for the largest input size on this machine.

We sort twice as much data as our non-in-place competitors (PBBS, RADULS2, and PBBR),
which run out of memory for 2*2 elements on A1x16. Also, the results in Table 4.4, Section 4.6.1,
show that inputs with uint64 Uniform inputs are “best case” inputs for RADULS2. Other input
distributions and data types are sorted by RADULS2 much less efficiently.
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Figure 4.5: Speedup of parallel algorithms with different number of threads relative to our
sequential implementation 11S*o on different machines, sorting 2°* elements of uint64
values with input distribution Uniform.

4.6.3 Speedup Comparison and Strong Scaling

The goal of the speedup benchmark is to examine the performance of the parallel algorithms
with increasing availability of cores. Benchmarks with 2i threads are executed on the first i
cores, starting at the first NUMA node until it is completely used. Then we continue using the
cores of the next NUMA node, and so on. Here, we mean by cores “physical cores” that run
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two hardware threads on our machines and we use NUMA nodes as a synonym for CPUs.
Therefore, the benchmark always takes advantage of the “full capacity” of a core with hyper-
threading. Preliminary experiments indicate that this gives around 10 % additional performance
in most situations. No code is slowed down by hyperthreading. A plausible reason is that
hyperthreading helps to do latency hiding during memory accesses or conditional branches.

Figure 4.5 depicts the speedup of parallel algorithms executed on different numbers of cores
relative to our sequential implementation I11S*o on our machines for Uniform inputs.® We
first compare our algorithms to the non-in-place radix sorter RADULS2. This competitor is
fast for Uniform inputs but it is slow for inputs with skewed key distributions and inputs with
duplicated keys (see Table 4.4 in Section 4.6.1). On the machines with one CPU, Alx16 and
Al1x64, RADULS? is faster when we use only a fraction of the available cores. When we further
increase the available cores on these machines, the speedup of RADULS2 stagnates and our
algorithms, IPS*0, and IPS?Ra, catch up until they have about the same speedup. RADULS2
also outperforms all algorithms on our machine with four CPUs, 14x20, when the algorithms
use only one CPU. On the same machine, the performance of RADULS?2 stagnates when we
expand the algorithm to more than one CPU. When RADULS2 uses all CPUs, it is even a factor
of 2.54 slower than our algorithm IPS*o. We have seen the same performance characteristics
when we executed IPS*oNT on this machine. IPS*o solved this problem of IPS*oNT with a
more sophisticated memory and task management. Thus, we conclude that the same problems
also result in performance problems for RADULS2. Our algorithms IPS*o and IPS?Ra use the
memory on this machine more efficiently and do not get memory-bound—the speedup of our
algorithms increases on 14x20 linearly.

The in-place radix sorter RegionSort seems to have similar problems as RADULS2 on
14x20. Even worse, the speedup of RegionSort stagnates on three out of four machines when
the available cores increase. When all cores are used, the speedup of RegionSort is a factor
of 1.11 to 2.70 smaller than the speedup of IPS*Ra. On three out of four machines, our radix
sorter IPS*Ra has a larger speedup than our samplesort algorithm IPS*o when we use only
a few cores. For more cores, their speedups converge on two machines, even though IPS?’Ra
performs significantly fewer instructions.

On the machines with one CPU, A1x16 and A1x64, IPS*o0 has a speedup of 8.37 respectively
40.92. This is a factor of 1.46 respectively 1.85 more than the fastest comparison-based com-
petitor. On the machine with four CPUs, 14x20, and on the machine with two CPUs, 12x16,
the speedup of IPS*0 is 20.91 respectively 17.49. This is even a factor of 2.27 respectively 2.17
more than the fastest comparison-based competitor.

In conclusion, our in-place algorithms outperform their comparison-based competitors
significantly on all machines independently of the number of assigned cores. For example,
IPS*o yields a speedup of 40.92 on the machine A1x64 whereas PBBS only obtains a speedup
of 22.17. As expected, the fastest competitors for the (Uniform) input used in this experiment
are radix sorters. The fastest radix sort competitor, non-in-place RADULS2, starts with a very
large speedup when only a few cores are in use. For more cores, RADULS2 remains faster than

>Many Linux tools interpret a CPU with two hardware threads per core as two distinct NUMA nodes—one contains
the first hardware thread of each core and the other contains the second hardware threads of each core.

6The reference times of 11S*0 for 23° elements of uint64 values with input distribution Uniform are 37.88, 29.91,
76.59, and 37.23 seconds on 14x20, A1x16, 12x16, and A1x64, respectively.
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our algorithms on one machine (I2x16). On two machines (A1x64 and A1x16), the speedup
of RADULS2 converges to the speedups of our algorithms. And, on our largest machine with
four CPUs (I14x20), the memory management of RADULS2 seems to be not practical at all. On
this machine, RADULS?2 is even a factor of 2.54 slower than IPS*o. The in-place radix sort
competitor RegionSort is in all cases significantly slower than our algorithms. The speedup of
IPS?Ra is larger than the one of IPS*o when they use only a few cores of the machine. However,
the speedup levels out when the number of cores increases in most cases.

4.6.4 Input Distributions and Data Types

In this section, we compare our algorithms to our competitors for different input distributions
and data types by scaling the input size. We show results of Uniform inputs for the data types
double, Pair, and 100B. For a discussion of Uniform distributed uint64 data types, we refer to
Section 4.6.2. For the remaining input distributions, we use the data type uint64 as a convenient
example: In contrast to double, uint64 is supported by all algorithms in Figure 4.6. Additionally,
we assume that uint64 is more interesting than uint32 in practice. For Figure 4.6, we decided
to present results obtained on machine A1x64 as our competitors have the smallest absolute
running time on this machine. For more details, we refer to Figures A.2-A.5 in Appendix A.3
that report the results separately for each machine.

The in-place comparison-based MCSTLbq is significantly slower than our algorithms for
all inputs. For example, MCSTLbq is a factor of 2.46 to 3.87 slower than IPS*o for the largest
input size. We see this improvement as a major contribution of our work.

For many inputs, our IPS*o is faster than IPS*Ra. For most inputs, IPS*o (and to some

extend IPS?Ra) is much faster than RegionSort, our closest competitor. For example, IPS*o
is up to a factor of 1.61 faster for the largest inputs (1 = 2%’ /D) and up to a factor of 1.78 for
inputs of medium size (n = 22? /D). The results show that radix sorters are often slow for inputs
with many duplicates or skewed key distributions (i.e., Zipf, Exponential, EightDup, RootDup).
Yet, our algorithm seems to be the least affected by this. Our algorithms outperform their
comparison-based competitors significantly for all input distributions and data types with
n > 228/D. For example, IPS*0 outperforms PBBS by a factor of 1.25 to 2.20 for the largest
inputs. Only for small inputs, where the algorithms are inefficient anyway, our algorithms
are consistently outperformed by one algorithm (non-in-place PBBS). The remainder of this
section compares our algorithms and their competitors in detail.
The non-in-place comparison-based PBBS is slower than IPS*o for small inputs (n < 2%’ /D).
We note that all algorithms are inefficient for these small inputs. However, for inputs where
the algorithms become efficient and for large inputs, IPS*o significantly outperforms PBBS.
For example, PBBS is a factor of 1.25 to 2.20 slower than IPS*o for the largest input size. The
difference between PBBS and IPS*0 is the smallest for 100B inputs. This input has very large
elements, which are moved only twice by PBBS due to its \/n-way partitioning strategy. We
see this as an important turning point. While the previous state-of-the-art comparison-based
algorithm worked non-in-place, it is now robustly outperformed by our in-place algorithms
for inputs that are sorted efficiently by parallel comparison-based sorting algorithms.

The non-in-place radix sorter PBBR is tremendously slow for all inputs with skewed inputs
and inputs with identical keys. In particular, its running times exceed the limits of Figure 4.6
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Figure 4.6: Running times of parallel algorithms on different input distributions and
data types of size D executed on machine Alx64. The radix sorters PBBR, RADULS2,
RegionSort, and IPS?Ra does not support the data types double and 100B.
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Figure 4.7: Pairwise performance profiles of IPS*o to PBBS, MCSTLbgq, RegionSort, and
IPS?Ra for input sizes with at least ¢ - 22! bytes on all machines and all input distributions
excluding the “easy” ones Sorted, ReverseSorted, and Zero. Profiles with the radix sorters
RegionSort and IPS*Ra only use inputs with with unsigned integer keys (uint32, uint64,
and Pair data types).

for AlmostSorted, RootDup, TwoDup, and Zipf inputs. Exceptions are Uniform inputs with
Pair data type: For these inputs, PBBR is faster than our algorithms for small input sizes and
performs similarly for medium and large inputs. However, this advantage disappears for other
uniformly distributed inputs (see Table 4.4 in Section 4.6.1).

The non-in-place radix sorter RADULS?2 is a factor of 2.20 to 2.72 slower than IPS*o for
the largest input size. For smaller inputs, its performance is even worse for almost all inputs.

Even though IPS?Ra outperforms the in-place radix sorter RegionSort for almost all inputs,
IPS*0 is even faster. Thus, we concentrate our analysis on comparing RegionSort to IPS*o
rather than IPS?Ra. For input data types supported by RegionSort, i.e., integer keys, it is our
closest competitor. Overall, we see that the efficiency of RegionSort slightly degenerates for
inputs larger than n > 2*2. The performance of IPS*o remains the same for these large input
sizes. RegionSort performs the best for AlmostSorted and TwoDup distributed inputs. For
these inputs, RegionSort is competitive to IPS*o in most cases. However, RegionSort performs
much worse than IPS*o for the remaining inputs, e.g., random inputs (Uniform), skewed
inputs (Exponential and Zipf), and inputs with many duplicates (e.g., RootDup). For these
distributions, RegionSort is slower than IPS*o by a factor of 1.17 to 1.61 for the largest input
size and becomes even less efficient for smaller inputs, e.g., RegionSort is slower than IPS*o by
factors of 1.29 to 1.68 for n = 227,

IPS*0 is competitive or faster than IPS?Ra for all inputs. IPS*o and IPS?Ra perform similarly
for inputs of medium input size that are Uniform, TwoDup, RootDup, and AlmostSorted
distributed. Still, for these inputs, the performance of IPS*Ra (significantly) decreases for large
inputs (n > 232) in most cases. For inputs with very skewed key distributions, i.e., Exponential
and Zipf, IPS*o is significantly faster than IPS*Ra.
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4.6.5 Comparison of Performance Profiles

In this section, we compare the pairwise performance profiles’ of IPS*o with the (non-)in-place
comparison-based MCSTLbq (PBBS), and the radix sorter RegionSort as well as the pairwise
performance profiles of IPS?Ra and RegionSort for inputs with at least 22! bytes.. The profiles
are shown in Figure 4.7. We do not compare our algorithms to the radix sorters PBBR and
RADULS?2 as these are non-in-place and as their profiles are much worse than the profiles of
the in-place radix sorter RegionSort. Overall, the performance of IPS*o is much better than
the performance of any other sorting algorithm. When we only consider radix sorters, the
performance profile of IPS*Ra is better than the one of RegionSort.

IPS*o performs significantly better than PBBS. For example, PBBS sorts only 2.4 % of the
inputs at least at fast as IPS*0. Also, there is virtually no input for which PBBS is at least 1.50
times as fast as IPS*o. In contrast, IPS*o sorts 66 % of the inputs at least 1.50 times as fast as
PBBS.

The performance profile of MCSTLbq is even worse than the one of PBBS. IPS*o is faster
than MCSTLbq for virtually any inputs. IPS*o is even three times as fast as MCSTLbq for
almost 50 % of the inputs.

The performance of IPS*0 is also significantly better than the performance of RegionSort.
For example, IPS*o sorts 74 % of the inputs faster than RegionSort. Also, RegionSort sorts only
9 % of the inputs at least 1.25 times as fast as IPS*o. In contrast, IPS*o sorts 44 % of the inputs
at least 1.25 times as fast as RegionSort.

Among all pairwise performance profiles, the profiles of IPS*o and IPS*Ra are the closest.
Still, IPS*o performs better than IPS*Ra. For example, IPS*0 sorts 62 % of the inputs faster than
IPS?Ra. Also, IPS?Ra outperforms IPS*o for 16 % of the inputs by a factor of 1.25 or more. On
the other hand, IPS*o outperforms IPS*Ra for 31 % of the inputs by a factor of 1.25 or more.

4.6.6 Comparison to IMSDradix

We compare our algorithm IPS*o to the in-place radix sorter IMSDradix [PR14] separately as
the available implementation works only in rather special circumstances—64 threads, n > 226,
integer key-value pairs with values stored in a separate array. Also, that implementation is not
in-place and requires a very specific input array: On a machine with m NUMA nodes, the
input array must consist of m subarrays with a capacity of 1.2n/m each. The experiments in
[Pol14] pin subarray i to NUMA node i. We nevertheless see the comparison as important
since IMSDradix uses a similar basic approach to block permutation as IPS*o.

Table 4.5 shows the average slowdowns of IPS*o and IMSDradix for different input dis-
tributions executed on 12x16. We did not run IMSDradix on A1x64, 14x20, and A1x16 as
these machines do not have exactly 64 hardware threads. The results show that IPS*o is much
faster than IMSDradix for all input distributions. For example, the average slowdown ratio of
IMSDradix to IPS*0 is 7.10 for RootDup input on 12x16. Note that IMSDradix breaks for Zero
input and its average slowdown are between 35.64 and 44.58 for some input distributions with
duplicated keys (TwoDup, EightDup, and Zipf) and with a skewed key distribution (Zipf). For
Sorted input, IMSDradix is also much slower because IPS*o detects sorted inputs.

7See Section 4.2 for an explanation of performance profiles.
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. 12x16
Distribution 1 pes ) \MSDradix
Sorted 1.00 77.00
ReverseSorted  1.00 7.23
Zero 1.00
Exponential 1.00 2.31
Zipf 1.00 35.64
RootDup 1.00 7.10
TwoDup 1.00 41.03
EightDup 1.00 44.58
AlmostSorted 1.00 10.47
Uniform 1.00 1.68
Total 1.00 10.95
Rank 1 2

Table 4.5: Average slowdowns of IPS*0 and IMSDradix for Pair data types, different input
distributions, and machine 12x16 with inputs containing at least ¢ - 22! bytes. IMSDradix
breaks for Zero input.

4.6.6.a) Other Parallel Sorting Algorithms

We are aware that we compare our algorithms against a limited selection of sorting algorithms. A
detailed comparison with all existing implementations is basically impossible. However, we had
the aim to choose at least the most promising competitor from each sorting algorithm category,
e.g., (non-)in-place, (non-)comparison-based, and so on. That said, it is sometimes hard to
say which algorithms are the most promising competitors. For example, we recently became
aware of the library ParlayLib [BAD20], which provides several parallel sorting algorithms.
Preliminary experiments with Uniform distributed uint64 inputs on machine A1x16 show that
these algorithms perform similar to PBBR and PBBS. For n < 22!, the ParlayLib algorithms are,
similar to PBBR and PBBS, faster than our algorithms. For larger inputs — which we focus on
in this paper - the ParlayLib algorithms are significantly slower than our algorithms and again,
perform similar to PBBR and PBBS. For example, IPS*0 outperforms these algorithms by a
factor of at least 1.40 and 1.45 for 2%° respectively 2°* elements.

An interesting hybrid between radix sort and samplesort is LearnedSort [Kri+20; Kri20]
that uses a sample to learn a piecewise linear approximation of the cumulative key distribution
function. In principle, this combines a more robust adaptation to the input distribution than
radix sort with potentially faster classification than samplesort. However the current implemen-
tation is outperformed by both relatives. In the technical report [Axt+20] we report detailed
measurements on a version that had a performance bug when 7 is not a multiple of n = 10°.
We repeated a part of the measurements on a repaired implementation, which is, however, still
significantly slower than either 150 or the best radix sorters.
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Figure 4.8: Accumulated running time (normalized by t8nlogn) of the phases of our
sequential samplesort and radix sort algorithms (top left and top right) and their parallel
counterparts (bottom left and bottom right) obtained on machine A1x64 for uint64 values
with input distribution Uniform.

4.7 Phases of Our Algorithms

Figure 4.8 shows the running times of the sequential samplesort algorithm I1S*o and the
sequential radix sorter I1S*Ra as well as their parallel counterparts IPS*o and IPS*Ra. The
running times are split into the four phases of the partitioning step (sampling, classification,
permutation, and cleanup), the time spent in the base case algorithm, and overhead for the
remaining components of the algorithm such as initialization and scheduling. In the following
discussion of the sequential and parallel execution times, we report numbers for the largest
input size unless stated otherwise.
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Sequential Algorithms

The running time curves of I11S*Ra are less smooth than those for 11S*o because this code
currently lacks the same careful adaptation of the distribution degree k

The time for sampling in the partitioning steps of 1150 is relatively small, i.e., 7.88 % of the
total running time for n = 2°2. For I1S”Ra, no sampling is performed.

The classification phase of 11S*0 takes up about half of the total running time. The permu-
tation phase is about eight times as fast as its classification phase. As both phases transfer about
the same data volume and as the classification phase performs a factor of @(log k) more work
(logk = 8), we conclude that the classification phase is bounded by its work. It is interesting
to note that this was very different in 2004. In the 2004 publication [SW04], data distribution
dominated element classification. Since then, peak memory bandwidth of high-performance
processors has increased much faster than internal speed of a single core. The higher investment
in memory bandwidth was driven by the need to accommodate the memory traffic of multiple
cores. Indeed, we will see below that for parallel execution, memory access once more becomes
crucial. Classification and permutation phases of [1S*Ra behave similarly as for 11S*o. Since
the work for classification is much lower for radix sort, the running time ratio between these
two phases is smaller yet, with 2.43 still quite high (n = 232).

The cleanup takes less than five percent of the total running time of I1S*o and less than two
percent of 11S?Ra. The sequential algorithms spend a significant part of the running time in
the base case. The base case takes 36.71 % of the total running time for n = 232, For [1S*Ra the
base case even dominates the overall running time (70.29 % for n = 2°%) because it performs
less work in the partitioning steps and because it uses larger base cases. The overhead caused
by the data structure construction and task scheduling is negligible in the sequential case.

Parallel Algorithms

The partitioning steps of the parallel algorithms are significantly slower than the ones of the
sequential algorithms. While the permutation phase of 11S*0 is almost negligible, it takes a
significant fraction of the total running time of IPS*o. For example, the total time across all
threads needed for the permutation phase increases by a factor of 11.59 for IPS*0 and 19.88 for
IPS*Ra compared to their sequential counterparts. Since the permutation phase does little else
than copying rather large blocks, the difference is mainly caused by memory bottlenecks.

Since memory access costs now dominate the running time, the performance advantage of
radix sort over samplesort decreases when executed in parallel instead of sequentially. For other
input distributions as well as other data types, the parallel radix sort is even slower than parallel
samplesort (see Section 4.6.1). In other words, the price paid for less work in classification (for
radix sort) is more data transfers due to less accurate classification. In the parallel setting, this
tradeoft is harmful except for uniformly distributed keys and small element sizes.

When the input size is below n = 2%, the overhead constitutes a major part of the execution
time. Note that this overhead can be mostly eliminated using the sorter objects described in
Section 4.1. For example, IPS*0 becomes 1.74 times faster for n = 224,
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4.8 Conclusion

In-place Parallel Super Scalar Samplesort (IPS*0) and In-place Parallel Super Scalar Radix
Sort (IPS?Ra) are among the fastest sorting algorithms both sequentially and on multi-core
machines. The algorithms can also be used for data distribution and local sorting in distributed
memory parallel algorithms (e.g., [Axt+15a]).

Both algorithms are the fastest known algorithms for a wide range of machines, data types,
input sizes, and data distributions. Exceptions are small inputs (where cache misses are less
relevant), a limitation to a fraction of the available cores (which profit from nonportable
SIMD instructions), and almost sorted inputs (which profit from sequential adaptive sorting
algorithms). Even in those exceptions, our algorithms, which were not designed for these
purposes, are surprisingly close to more specialized implementations. One reason is that for
large inputs, memory access costs overwhelmingly dominate the total cost of a parallel sorting
algorithm so that saving elsewhere has little effect.

Our comparison-based algorithm parallel algorithm IPS*o even mostly outperforms the
integer sorting algorithms, despite having a logarithmic factor overhead with respect to executed
instructions. Memory access efficiency of our algorithms is also the reason for the initially
surprising observation that our in-place algorithms outperform algorithms that are allowed to
use additional space.

Both algorithms significantly outperform the fastest parallel comparison-based competi-
tor, PBBS, on almost all inputs. They are also significantly better than the fastest sequential
comparison-based competitor, BlockPDQ, except for sorted and almost-sorted inputs.

The fastest radix sort competitors are SkaSort (sequential) and RegionSort (parallel). Our
radix sorter is significantly faster than SkaSort and competitive to RegionSort. Also, our parallel
samplesort algorithm is significantly faster than RegionSort for all inputs. Exceptions are
some 32-bit inputs. Our parallel samplesort algorithm even sorts uniform distributed inputs
significantly faster than RegionSort if the keys contain more than 32-bits.

Radix sorters that take advantage of non-portable hardware features, e.g., IppRadix (vector
instructions) and RADULS2 (non-temporal writes), are very fast for small (Uniform distributed)
data types. IppRadix for example sorts 32-bit unsigned integers very fast and RADULS?2 is
very fast for 64-bit unsigned integers. However, the interesting methods developed for these
algorithms have little impact on larger data types and “hard” input distributions and thus, we
perform better overall.

We compare the algorithms for input arrays with various NUMA memory layouts. With
our new locality-aware task scheduler, IPS*o is robustly fast for all NUMA memory layouts.

Future Work

Several improvements of our algorithms can be considered in order to address the remaining
cases where our algorithms are outperformed. For small inputs, not in-place variants of our
algorithms with preallocated data structures, smaller values of the distribution factor k and
smaller block sizes could be faster. Also, the base case sorter becomes more relevant. Here we
could profit from several results on fast sorting for very small inputs [BMS20; Bral7; Cod+17].
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As a further practical improvement, we could speed up the branchless decision tree with vector
instructions. Preliminary results have shown improvements of up to a factor of 1.25 for I1S*o
with a decision tree using AVX-512 instructions. However, a general challenge remains how
data-parallel instructions can be harnessed for sorting data with large keys and associated
information and how to balance portability and efficiency.

With respect to the volume of accessed memory, which is a main distinguishing feature
of our algorithms, further improvements are conceivable. One option is to reconsider the
approach from most radix sort implementations and of the original super scalar samplesort
[SWO04] to first determine exact bucket sizes. This is particularly attractive for radix sorters since
computing bucket indices is very fast. Then one could integrate the classification phase and the
permutation phase of IPS*o. To make this efficient, one should still work with blocks of elements
moved between local buffer blocks and the input/output array. For samplesort, one would
approximate bucket sizes using the sample and a cleanup would be required. Another difficulty
may be a robust parallel implementation that avoids contention for all input distributions.

A more radical approach to reducing memory access volume would be to implement the
permutation phase in sublinear time by using the hardware support for virtual memory. For
large inputs, one could make data blocks correspond to virtual memory pages. One could
then move blocks by just changing their virtual addresses. It is unclear to us though whether
this is efficiently (or even portably) supported by current operating systems. Also, the output
might have an unexpected mapping to NUMA nodes, which might affect the performance of
subsequently processing the sorted array.

Our radix sorter IPS*Ra is currently a prototype meant for demonstrating the usefulness of
our scheduling and data movement strategies independently of a comparison-based sorter. It
could be made more robust by adapting the function for extracting bucket indices to various
input distributions (which can be approximated by analyzing a sample of the input). This
could in particular entail various compromises between the full-fledged search tree of IPS*o
and the plain byte extraction of IPS*’Ra. For example, one could accelerate the search tree
traversal of super scalar samplesort by precomputing a lookup table of starting nodes that
are addressed by the most significant bits of the key. One could also consider the approach
from the LearnedSort algorithm [Kri20] that addresses a large number of buckets using few
linear functions. Perhaps, approximate distribution-learning approaches can be replaced by
fast and accurate computational-geometry algorithms. Existing geometry algorithms [II86;
DP73] might have to be adapted to use a cost function that optimizes the information gain
from using a small number of piece-wise linear functions.

Adaptive sorting algorithms are an intriguing area of research in algorithms [EW92]. How-
ever, implementations [Pet02; MW 18] currently cannot compete with the best nonadaptive
algorithms except for some extreme cases. Hence, it would be interesting to engineer adaptive
sorting algorithms to take the performance improvements of fast nonadaptive algorithms (such
as ours) into account.

The measurements reported in this work were performed using somewhat non-portable
implementations that use a 128-bit fetch-and-add instruction specific to x86 architectures (see
also Section 4.1). Our portable variants currently use locks that incur noticeable overheads
for inputs with only very few different keys. Different approaches can avoid locks without
noticeable overhead but these would lead to more complicated source code.
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Coming back to the original motivation for an alternative to quicksort variants in standard
libraries, we see IPS*0 as an interesting candidate for sufficiently large inputs. Together with the
variants discussed above, this might extend to the medium or even small inputs. A remaining
issue is code complexity. When code size matters (e.g., as indicated by a compiler flag like
-0s), one could use IPS*o with fixed k and a larger base case size. Formal verification of the
correctness of the implementation might help to increase trust in the remaining cases.
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Engineering Distributed Sorting Algorithms

In this part of the thesis, we study distributed sorting algorithms. Chapter 5 introduces
basic definitions and preliminaries, discusses problems and pitfalls of bulk data transfers,
and gives an overview of existing distributed sorting algorithms. In Chapter 6, we propose
new robust sorting algorithms—RFIS for very small input sizes (Section 6.1), RQuick
for small input sizes (Sections 6.2 and 6.3), and RLM-sort as well as AMS-sort for large
inputs (Sections 6.5 and 6.6). We then turn to an extensive experimental evaluation in
Chapter 7.

We also invite the reader to Appendix B. Appendix B.1 addresses the problem of running
time fluctuations caused by large message startup latencies. In Appendix B.2, we propose
the communication library RangeBasedComm (RBC) which provides scalable and
efficient communication primitives on processor subsets—an essential feature for scalable
implementations of recursive algorithms with sublinear running time.

References and Attributions. Part II of the thesis is based on the conference articles
Ref. [Axt+15a; AS17; AWS18]. The publication Ref. [Axt+15a] was jointly published
with Peter Sanders, Timo Bingmann, and Christian Schulz. The majority of the
publication has been written by Peter Sanders who also contributed the algorithmic
ideas. The schematic illustrations of the algorithms were provided by Timo Bingmann.
The author of this thesis provided the prototypical implementation of the algorithms
and presented the experimental results. The publication Ref. [AS17] is joint work
with Peter Sanders. Most parts of the publication were contributed and written
by the author of this thesis. Peter Sanders also provided several notable parts of
the publication. The implementations and the experimental evaluation presented
in the publication are exclusive work of the author of this thesis. The publication
Ref. [AWS18] is joint work with Armin Wiebigke and describes the RBC library.
An initial version of this communication library has been implemented by Armin
Wiebigke for his bachelor’s thesis. Armin Wiebigke was supervised by the author of
this thesis and publication Ref. [AWS18] has exclusively been written by the author
of this thesis. The author extended the library by fast and asymptotically optimal
communication primitives and incorporated the library into the algorithms presented
here. All implementations and experiments proposed in Part II are exclusive work
of the author of this thesis. Part II contains partial copies of the conference articles
Ref. [Axt+15a; AS17].






Chapter 5

Overview of Distributed Sorting
Algorithms

Chapter 5 introduces the reader to relevant definitions, preliminary information, and related
work for distributed sorting. In Section 5.1, basic definitions and preliminaries are provided. We
discuss problems and pitfalls of bulk data transfers in Section 5.2. Section 5.3 gives an overview
of existing distributed sorting algorithms. In Section 5.4, we emphasize publications that highly
influenced this thesis and we discuss work on sorting algorithms that we see orthogonal to the
results presented in this thesis.

5.1 Definitions and Preliminaries

We denote t as the number of PEs available to us. The input of sorting algorithms are n elements
with @(n/t) elements on each PE. The output must be globally sorted, i.e., each PE has elements
with consecutive ranks and no element on PE i is larger than any elements on PE i + 1. We also
want O(n/t) output elements on each PE. Sometimes we more concretely consider perfectly
balanced inputs and an output with at most (1 + €)1/t elements per PE for some small positive
constant e. We denote 1 + € > 1 as the imbalance factor of an algorithm. We call inputs dense
when n/t > 1 and sparse when n/t < 1. In the case that the input size is smaller than the
number of PEs, we allow O(1) local input and output elements. For simplicity, we assume that
sparse input is stored on the first O(n) PEs. Table 5.1 gives an overview of the most important
notation used in this chapter.

Table 5.1: Summary of notations

Symbol Meaning

local input array

total number of elements

# of PEs

message startup overhead

time to communicate one element

distribution degree in recursive multiway sorting
# of levels in recursive multiway sorting

SRR TS
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5.1.1 Communication Primitives

In high-performance computing, algorithms usually use the so-called message passing interface
(MPI) [For12] for communication on distributed systems. In MPI, a communicator connects a
group of PEs. An initial communicator contains all t PEs. MPI provides operations to create
sub-communicators from parent communicators. MPI only allows communication between
PEs of the same communicator. Point-to-point message exchanges are used for fine-grained
communication. MPI offers various send and receive operations for message exchanges. E.g.,
blocking operations that return after the operation has been completed and nonblocking opera-
tions that return after the operation has been posted and require a test operation to determine
completion. Point-to-point messages can be used to implement complex communication
patterns. MPI defines important distributed operations that are frequently used by distributed
algorithms. These so-called collective operations involve communication between all PEs of a
communicator. In the following, we describe the collective operations used in this work.

Broadcast. One PE provides a vector of n elements and the collective operation stores the
elements on each PE.

Gather. Each PE provides a vector of n/t elements and one PE returns the concatenation of
these vectors.

All-Gather. Each PE provides a vector of n/t elements and the collective operation stores the
concatenation of the elements on all PEs.

Reduce. Each PE provides a vector of n elements and one PE returns the partial reduction of
the vectors.

All-Reduce. Each PE provides a vector of n elements and all PEs return the partial reduction
of the vectors.

Prefix sum. Each PE provides a vector of n elements and PE i returns a vector of n elements
containing the partial reduction of the vectors provided by PEs.

All-to-all. A data exchange in which each PE sends a distinct vector of n elements to every
other PE.

In the single-ported message passing model, broadcast, (all-)gather, (all-)reduce, and prefix
sum can be implemented to run in time O(«logt + n) [Bat68; SST09] for vectors of size n on
t PEs.

Many situations require collective operations with varying amounts of data. For example, an
irregular gather operation receives different amounts of data from each PE. Another example is
the irregular all-to-all operation that exchanges messages of different sizes between pairs of
PEs. In MPI, Q(t) time is a lower bound for these operations: For the irregular gather, the root
process has to provide the input size of each PE. Still, irregular gather can be implemented in
time O(alogt + fn) [Trdl8]. For the irregular all-to-all, each PE must specify the number
of elements the PE receives from each potential communication partner and sends to it. In
Section 5.2, we discuss the cost of irregular all-to-all operations in different cost models. In
practice, it also turns out that available sub-communicator creation routines are relatively slow.
In particular, the routines of the most recent open-source implementations Open MPI 3.1 and
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Algorithm 5 Hypercube algorithm design pattern

Input: a input vector, ¢ number of PEs, i PE number

d < log,t

LOCALCOMPUTATION(a)

for j < d-1 downto 0 do >or[0..d)
¢ « i xor 2/ > Calculate communication partner

M < EXCHANGEDATAWITH(C)

3-dimensional hypercube
LOCALCOMPUTATION(a, 1)

PEO PE1 PE2 PE3  PEO PE1 PE2 PE3
O O O O O 0O 0O O
X ¥ 7 < ¥ X 3

MPICH 3.4 take time Q(t). Our experiments in Appendix B.2 indicate that this is also a lower
bound for the Intel MPI library 2020.

Hypercube Algorithms. A hypercube network of dimension d consists of t = 2¢ PEs num-
bered [0..t). Two nodes x and y are connected along dimension i if x = y @ 2. For this
work, hypercubes are not primarily important as an actual network architecture. Rather, we
extensively use communication in a conceptual hypercube as a design pattern for algorithms.
To describe and understand hypercube algorithms, we need the concept of a subcube. A
j-dimensional subcube consists of those PEs whose numbers have the same bits [j..d) in
their binary representation. More specifically, the hypercube Algorithm 5 iterates through the
dimensions of the hypercube. In iteration j € [0..d), each PE i is part of a d — j-dimensional
hypercube that is split into two subcubes of dimension d — j — 1. Assume that PE i is the k-th
PE of one of these subcubes. Then, PE i communicates in iteration j with the k-th PE of the
other subcube. Depending on how this algorithm template is instantiated, one achieves a large
spectrum of global effects [vdGei91; Kru92; HHL88]. We now give an overview of common
instantiations—a full-length description is given by Sanders et al. [San+19, Chpt. 13]. For
example, by repeatedly summing an initial local vector containing n elements, one gets an
all-reduce in time O((« + n) logt). Similarly, if we replace addition by concatenation, we
perform an all-gather operation, which runs in time O(ftn + alogt). If the vectors are sorted
sequences and we replace concatenation by merging, all PEs get the elements of all the local
vectors in sorted order using time O(ftn + alogt). We call this operation allgather-merge.
We can also use a hypercube algorithm for routing data—each PE sends a distinct vector of
size n to every other PE. In iteration j, data objects currently located on PE i and destined for
PE t are moved if t and i differ in bit j (e.g., [Lei92]). This has the advantage that we need only
O(logt) startup overheads overall. This algorithm communicates O(tnlogt) data objects on
the critical path. If every PE sends only a single object, it is known for random destination
nodes that the running time remains O(logt) [Lei92]. Unfortunately, for worst case inputs,
even if every PE sends and receives only a single object, the routing leads to severe intermediate
data imbalances. A worst case input is the bit-reversal permutation proposed by Thomson
Leighton [Lei92, Sec. 3.4.2]. This permutation stores an element destined for PE j with bit
representation [biqg; .. b ] on PE i with bit representation [by .. biog: ]. Thomson Leighton shows

that after log" ! iterations of the hypercube routing algorithm, ['/2] PEs hold | #'/? | elements each.
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Algorithm 6 Binomial-tree algorithm design pattern

Input: a input vector, ¢ number of PEs, i PE number

a < LOCALCOMPUTATION(a)

Z < TRAILINGZEROS (i) > Number of 0-bits until first 1-bit occurs

d < min([logt],)

for j«< 0 uptod - 1do
c—i+2) > Calculate communication partner
if ¢ > ¢ then break Binomial tree of order two
m' < RECEIVEMESSAGEFROM(c) PEO
a < LocALCOMPUTATION(a, m') O\Q

if i > 0 then SENDSOMEMESSAGETO(i — 2%) PE2

else return a
PE1 PE 3

The required time to route the bit-reversal permutation is ®(oc logt + pt"/ 2) and, generalized

to n local input elements, we get ®(oc logt + Bnt/ 2) time.

A k-way hypercube data exchange [Bok91] trades off klog, t startup overheads for a band-
width of O(Btnlog, t). The idea behind this approach is to split the hypercube into k subcubes
on each recursion level. Thus, for k = 2/, one iteration of the k-way exchange performs i
iterations of the ordinary hypercube algorithm. One consequence is that the k-way exchange
can also lead to a load imbalance of @(tl/ 2) for worst case inputs.

Binomial-Tree Algorithms. We construct a binomial tree T of order k as follows: Tree T’
contains one node. Tree T contains a root node and k binomial subtrees of order [0..k).
We assign PEs to the tree nodes according to an in-order traversal that recurses on subtrees
with lower order first. Algorithm 6 propagates information from each node to the root node.
The algorithm has O(logt) message startups since messages from subtrees with small order
are received first and since the height of a tree T} is k. Depending on how this algorithm
template is instantiated, one achieves a large spectrum of global effects. For example, by
repeatedly concatenating an initial local vector a, one gets the collective operation gather in
time O(Bt|a| +alogt). If the a’s are sorted sequences and we replace concatenation by merging,
the root PE gets the elements of all the local a’s in sorted order using time O(ft|a| + alogt).
We call this operation gather-merge.

5.1.2 Multiway Merging and Partitioning

Sequential multiway merging of k sequences with total length # can be implemented in time
O(nlogk). An efficient practical implementation may use tournament trees [Knu73; San00;
SSP07]. If k is small enough, this is even cache efficient, i.e., it incurs only O(n/B) cache faults
where B is the cache block size. If k is too large, i.e., k > M/B for cache size M, a multi-pass
merging algorithm may be advantageous.

The dual operation for samplesort is partitioning the data according to k—1 splitters. This can
be implemented with the same number of comparisons and similarly cache efficiently as k-way
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merging. Multiway partitioning has the additional advantage that it can be implemented without
causing branch mispredictions [SW04]. For more information on multiway partitioning, we
refer the reader to Part I of this work.

5.1.3 Multisequence Selection

In its simplest form, given sorted sequences dj, ... ,d; (not necessarily of equal length) and a
rank r, multisequence selection asks for finding an element x with rank r in the union of these
sequences. If all elements are different, x also implicitly defines positions in the sequences such
that there is a total number of 7 elements to the left of these positions.

There are several algorithms for multisequence selection, e.g. [Var+91; KK93; SSP07; SK10].
Here we use a particularly simple and intuitive method based on an adaptation of the well-
known quick-select algorithm [Hoa61; SMO08]. This algorithm may be folklore. See also [HS16].
The algorithm has also been on the publicly available slides of Sanders’ lecture on parallel
algorithms since 2008 [San08b]. The base case occurs if there is only a single element (and r = 1).
Otherwise, a random element is selected as a pivot. This can be done in parallel by choosing the
same pseudorandom number between 1 and ), |d;| on all PEs. Using a collective prefix sum over
the sizes of the sequences, this element can be located easily in time O(alogt). Where ordinary
quickselect has to partition the input doing linear work, we can exploit the sortedness of the
sequences to obtain the same information in time O(log D) with D := max; |d;| by doing binary
search in parallel on each PE. If items are evenly distributed, we have D = ®( h ), and thus only
time O(log }) for the search that partitions all the sequences into two parts. Deciding whether
we have to continue searching in the left or the right parts needs a collective reduce operation
taking time O (alogt). The expected depth of the recursion is O(log Y'; |d;|) = O(logn) as in
ordinary quickselect. Thus, the overall expected running time is O( (alogt + log 7)log n).

In our application, we have to perform k simultaneous executions of multisequence se-
lection on the same input sequences but on k different rank values. The involved collective
communication operations will then get a vector of length k as input and their running time
using an asymptotically optimal implementation is O (kf + alogt) [Bal+95a; SST09]. Hence,
the overall expected running time of multisequence selection becomes

O((alogt + kB +klog?)logn) . (5.1)

5.2 Delivering a Bulk of Data

In this work, we use the term message assignment to describe the problem of moving a bulk of
data from sending PEs to receiving PEs. More specifically, the message assignment determines
for each pair of PEs (i, j) the message that has to be delivered from PE i to PE j. In the most
general version, the messages may be of arbitrary size and may even be empty. A data exchange
step then executes the message assignment and routes the messages from the senders to the
receivers.

We first consider a regular data exchange. The message assignment of a regular data exchange
transfers the same number m of elements between each pair of PEs. The data exchange on
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a hypercube takes time (« + Smt) logt. For large m delivering data directly is cheaper. E.g.,
the 1-factor algorithm from Sanders and Triff [ST02] exchanges in round i € [0..t) messages
between the PE pairs (u, (i —u) mod t), u € [0..t)) summing up to time O (mtf} + tx).

Many bulk synchronous algorithms perform irregular data exchanges. We denote a data
exchange as an irregular data exchange if it performs a message assignment that has arbitrary
message sizes. The cost of an irregular data exchange depends on the message assignment and
the algorithm that performs the actual data exchange. It is not clear how to implement these
irregular data exchanges efficiently on a realistic parallel machine. In particular, the irregular
data exchanges of the most recent open-source implementations Open MPI 3.1 and MPICH 3.4
send the data directly using up to ¢ startups. For massively parallel machines, this is not scalable
enough. A hypercube data exchange may only be efficient for small inputs as it moves the input
logt times and as it may have huge intermediate load imbalances. Unfortunately, the BSP model
only considers the bottleneck communication volume hg and “hides” the startup overheads in
the term [ that is independent of the actual message assignment. Thus, sending t messages of
size h/t has the same cost as sending t'/2 message of size h/t'/2. The BSP* model [BDadH95]
takes this into account by imposing a minimal message size. However, it also charges the cost
for the maximal message size occurring in a data exchange for all its messages and thus, the
BSP* model would still be too expensive for our sorting algorithms.

We therefore use our own generalization of the BSP model: We consider a black box data
exchange function Exch(t, 1, k) that tells us how long it takes to perform the data exchange step
of a message assignment in a compact subnetwork of t PEs, with no PE receiving and sending
more than h words, and k messages. Note that all three parameters of the function Exch(t, b, k)
may be essential, as they model locality of communication (the subnetwork could be a rack of
fully connected PEs), bottleneck communication volume (see [Bor13; SM13]), and startups
respectively. Sometimes we also write EXch(¢, h, k) as a shorthand for (1 + o(1))Exch(t, h, k)
in order to summarize a sum of Exch(-) terms by the dominant one. We will also use that to
absorb terms of the form O(«logt), O(pk), and Exch(t, k, k).

When comparing algorithms in different models, we can exploit that Exch(P, h, k) <BSP(h)
and BSP(h) > Exch(t,h,t). In this work, we present a message assignment algorithm for
multi-level sorting algorithms with k < ¢. In contrast to our model, the BSP model would treat
these assignments the same. Compared to the single-ported message passing model we get
Exch(P, h, k) > hf3 + ko when data is delivered directly. There are reasons to believe that a data
exchange algorithm comes close to this but we are not aware of actual matching upper bounds.
There are offline scheduling algorithms that can deliver the data using time /48 when startup
overheads are ignored (using edge coloring of bipartite multi-graphs). However, this chops
messages into many blocks and also requires us to run a parallel edge-coloring algorithm.

5.3 Sorting Algorithms from Tiny to Huge Inputs
We now outline a spectrum of parallel sorting algorithms (old and new), analyze them, and
use the result to compare their performance for different values of n and ¢. Table 5.2 summa-

rizes the results, roughly going from algorithms for small inputs to ones for larger and larger
inputs. We only give the cost terms with respect to latency («) and communication volume
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(B) per PE because the relevant local work of the algorithm is (9(? log n) or dominated by the
communication volume. We now compare the algorithms with regard to running time and
robustness.

5.3.1 (All)gather-Merge-Sort

Gathering-based sorting algorithms do not fulfill our requirement of sorted output (i.e., O(n/t)
local output elements), but may be of general interest. We assume the algorithms described
here to be folklore. When we sort the input locally and then perform a binomial-tree gather-
merge (see Section 5.1.1), the root PE stores the global input in sorted order. We denote
this operation gather-merge-sort. When we sort the input of a hypercube locally and then
perform the collective operation allgather-merge (see Section 5.1.1), the global input is stored
in sorted order on each PE. We denote this operation as hypercube allgather-merge-sort. We also
get an allgather-merge-sort operation when we combine the binomial tree gather-merge-sort
with a broadcast operation. In any case, the gathering-based sorting algorithms require time
(’)(oclogt + pn + % log ?) when n € Q(t). The running time also applies for sparse inputs
when we use the binomial tree gather-merge. When n < t, the input is stored on the first n
PEs and the root PE has received the input of PE [1..2") after i recursion steps. Hypercube
allgather-merge-sort requires a more complex placement of the input.

5.3.2 Fast Work-Inefficient Rank

A simple but fast ranking algorithm for small inputs is Fast Work-Inefficient Ranking (FIR). The
algorithm has been on the publicly available slides of Sanders’ lecture on parallel algorithms
since 2008 [San08a] (also see [Ble+96]). In its simplest form, FIR may already have been
considered as folklore before. It arranges n* PEs as a square matrix using PE indices from
[1..n]x[1..n]. Input element i is assumed to be present at PE (3, 1) initially. First, the elements
are broadcast along rows and columns. Then, PE (i, j) computes the result of comparing
elements i and j (0 or 1). Summing these comparison results over row i yields the rank of
element i. In total, the algorithm requires time O(«logt).

The lecture [San08a] also proposes a generalized version of FIR for n € Q(¢). The PEs
are arranged in an array of size O(t"/2) x O(t'/?) and each PE has O(n/t) elements as input.
FIR first sorts the elements locally in time O(% log %) Then each PE allgather-merges the
elements of PEs in the same row as well as the elements of PEs in the same column. As each
column and each row has O(n/t'/?) elements evenly distributed to the PEs, the allgather-
merges take time O(alogt + ffn/t'/?). Afterwards, every PE has the elements of all PEs in its
row and column respectively, stored in a sorted way. Then the PEs rank each element received
from their column in elements received from their row in time O(n/t'/?). Finally, FIR sums
up the local ranks in each column with a collective all-reduce operation. The result is that
each PE knows the global rank of all input elements in its row. The all-reduce operation with
O(n/t'/?) ranks per column PE again takes O((xlogt + ,Btl%) time. In total, the algorithm
requires time O(alogt + B.75 + 7 log}) for n € Q(t). This bound does in general not apply
for n € o(t)—depending on the distribution of input elements to PEs, the allgather-merge
operations can take more than O(alogt + Bn/t'/?) time. We did not come up with a simple
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and practical distribution pattern that guarantees the running time we devise for n € Q(t) also
for the case that n € o(t).

In theory, FIR is a very good algorithm for n = t'/2 since it only takes logarithmic delay.
However, since all other sorting algorithms need Q(log® t) startup overheads, the generalized
version of FIR is even interesting for n € O( %tl/ 2log’t).

In Section 6.1 we refine FIR to run in time O(alogt+ B 7 + % log ¥ ) for any input size. Also,
our version calculates unique ranks [0..n) without any additional element or lexicographic
comparison—FIR computes the same rank for identical elements. We also show how to convert
its output to a classical sorted permutation of the input with the same asymptotic guarantees.

5.3.3 Bitonic Sort

Bitonic sort [Bat68; Joh84] first sorts locally and then performs (’)(log2 t) pairwise exchange
and merge operations. While the original bitonic sort only works when the number of PEs is a
power of two, simple adaptions, e.g., [Lan06], allow an arbitrary number of PEs with the same
asymptotic running time guarantees.

For small inputs, this running time is dominated by log®  startup overheads. This gives
it a similar running time as the parallel quicksort algorithms to be discussed next. However,
for n = w(te/P) the term B% log> t dominates—all the data is exchanged log”  times. This
makes it unattractive for large inputs compared to quicksort and other algorithms designed for
these input sizes. Indeed, only for 1 superpolynomial in t (1 = Q(#1°")), bitonic sort eventually
becomes efficient. But for such large inputs, algorithms like samplesort are much better since
they exchange the data only once.

5.3.4 Parallel Quicksort

Since quicksort is one of the most popular sorting algorithms, it is not surprising that there
are also many parallel variants. For distributed memory, a variant using the hypercube com-
munication pattern is attractive since it is simple and can exploit locality in the network. A
recursive subproblem is solved by a subcube of the hypercube. The splitter is broadcast to all
PEs. Elements smaller than the pivot are moved to the 0-subcube, i.e., to the PEs whose least
significant distinguishing bit is 0, and elements larger than the pivot are moved to the 1-subcube,
i.e., to the PEs whose least significant distinguishing bit is 1. Since this hypercube quicksort
obliviously splits the PEs in half, the imbalance accumulating over all levels of recursion is
a crucial problem. For worst case inputs, the intermediate load increases to n/t'/>—even in
the case of perfect splitters. For a detailed discussion, we refer to Section 5.1.1. In its simplest
original form by Wagar [Wag87], PE 0 uses its local median as a pivot. This is certainly not
robust against skew and even for average case inputs it only works for rather large inputs. One
can make this more robust—even in a deterministic sense—by using the global median of the
local medians [LM92]. However, this introduces an additional St term into the communication
complexity and thus defeats the objective of having polylogarithmic execution time. The most
recent implementation of hypercube quicksort that we have found has been proposed by Sundar
et al. [SMB13]. They pick a random sample and use its median as a splitter. However, their
approach is slow in practice even for random input: They pick a relatively large sample, the
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sample is gathered in time ®(« + f3t), and they use the operation MPI_Comm_Split to create
sub-communicators whose current implementations need time Q(ft). The implementation by
Sundar et al. is also not robust with respect to duplicated keys. Therefore we propose a robust
version of hypercube quicksort in Section 6.3. Robust hypercube quicksort turns worst case
inputs into average case inputs and uses a median selection algorithm that is both fast and
accurate.

Non-hypercube distributed memory quicksort is also an interesting option. It allows us
to adapt the number of PEs working on a recursive subproblem to its problem size. However,
it leads to more irregular communication patterns and has its own load balancing problems
because we cannot divide PEs fractionally. For a more detailed discussion, we refer to our work
on perfectly balanced quicksort [AWS18]. Siebert and Wolf [SW11] exploit the special case
n =t where this is no problem.

5.3.5 Multiway Sorting Algorithms

For large inputs, it is a disadvantage that quicksort exchanges the data at least logt times. We
can improve that by partitioning the input with respect to k — 1 pivots at once. This decreases
the number of times data is moved to (’)(logk t). However, the price we pay is latency Q(ak)
for delivering data from k partitions to k different PEs. This gives us a lower bound of

Q(? logn) + ﬁ? log, t + aklog, t

for running generalized quicksort. We call these generalizations multiway sorting algorithms.
However, getting an algorithm with a matching upper bound is not easy. We have to find
pivots that partition the input in a balanced way and we have to execute the more complex data
exchange problems efficiently.

The Single-Level Case. Many multiway algorithms have been devised for the special case
k = t. We denote these algorithms as single-level algorithms. Single-level samplesort [Ble+96] is
perhaps most well known because it is simple and effective. It achieves the above bound if a
sample of size S = Q(tlogn) is sorted using a parallel algorithm. Then, every S/k-th sample is
used as a splitter. The algorithm achieves the desired bound for n = (’)(t2 /log t). Solomonik
and Kalé [SK10] describe single-level histogram sort which scales to 2'° PEs for large inputs.
Single-level histogram sort uses an iterative sampling-based algorithm for finding high-quality
approximate splitters. Histogramming is a compromise between the single shot algorithms used
in samplesort and the exact (but slower) algorithms used for mergesort. Thus, histogram sort
can be viewed as a hybrid between multiway mergesort and samplesort. It can also be seen as a
generalization of multisequence selection. Single-level histogram sort overlaps data exchange
and merging of the received data to minimize running time. Solomonik and Kalé do not provide
performance bounds on histogramming for the approximate case. When we transfer the bounds
of splitter selection with perfect histogramming [KK93]—no imbalance is allowed—to single-
level histogram sort, it achieves the desired bound for n = O(t2 log t). Indeed, several multiway
mergesort algorithms [Var+91; SSP07] that achieve perfect partitioning by finding optimal
splitters have been proposed for the single-level case. This again requires n = O(t2 log t) for
achieving the desired bound.
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Allowing Multiple Levels. So-called recursive multiway algorithms sort the input recursively
on r recursion levels while performing a k-way data exchange on each level. Recursive multiway
algorithms pursue two different approaches for the data transfer. One approach uses a multiway
hypercube data exchange that routes the elements deterministically to the target PEs. The other
approach is more general and works for arbitrary . On each recursion level, the approach
calculates a message assignment depending on the local bucket sizes. A bulk data transfer then
performs an irregular data exchange with point-to-point messages.

Kalé and Krishnan [KK93] propose recursive multiway histogram sort with perfect median
selection and a bulk data transfer with direct message exchanges on each recursion level.
This algorithm was implemented in the CHARM parallel programming system and does not
run on today’s supercomputers. Gerbessiotis and Valiant [GV94] develop recursive multiway
samplesort. Goodrich [G0099] gives communication efficient sorting algorithms based on
recursive multiway merging. Both algorithms are developed for the BSP model and are not
implemented in practice. However, these algorithms need a significant constant factor more
communication per element than our algorithms. Moreover, bulk data transfers in the BSP
model allow arbitrarily fine-grained communication at no additional cost. In particular, an
implementation of the global data exchange primitive of BSP that delivers messages directly
has a bottleneck of t message startups for every global message exchange. Also, see Section 6.4
for a discussion on why it is not trivial to adapt the BSP algorithms to a more realistic model
of computation—it turns out that for worst case inputs, one PE receives data from ¢t PEs. We
have not found a recursive multiway sorting algorithm for arbitrary ¢ that is not affected by this
problem.

While the latter sorting algorithms work for arbitrary ¢, we now consider (recursive) mul-
tiway hypercube sorting algorithms which require that t = k™ where r is the number of levels.
Sundar et al. [SMB13] develop and implement the multiway hypercube algorithm HykSort, a
generalization of hypercube quicksort. On each recursion level, HykSort selects k splitters with
the approximate histogramming algorithm proposed for single-level sorting by Solomonik and
Kalé [SK10] and redistributes the data to k subcubes. Similar to this single-level algorithm,
HykSort overlaps data exchange and merging of the received data to minimize running time.
The authors of HykSort also do not prove performance bounds on the approximate histogram-
ming algorithm. However, when we transfer the bounds of splitter selection with perfect
histogramming [KK93] to HykSort, it achieves the desired bound for n = O(t”l/ *logt) on
uniformly distributed random keys. Unfortunately, HykSort and similar multiway hypercube
sorting algorithms can lead to severe data imbalances in the worst case (see Section 5.1.1).
The publication from Sundar et al. [SMB13] mentions measures for solving this problem, but
does not analyze, implement, or evaluate them. Furthermore, HykSort uses the operation
MPI_Comm_Split to create sub-communicators whose current implementations need time
Q(ft). HykSort is also not robust with respect to duplicated keys.

In 2019, Harsh et al. [HKS19] refined the approximate splitter selection algorithm of
histogram sort and propose histogram sort with sampling (HSS). The authors propose two
versions of HSS—single-level HSS and multiway hypercube HSS. When we consider the
allowed imbalance of the sorted output as a constant, HSS has an isoefliciency function
of O(t”l/ k/log t)—the same isoefliciency as our recursive multiway samplesort algorithm
AMS-sort proposed in 2015 (see Section 6.6 for a description of AMS-sort). HSS is the best
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scaling single-level competitor we have seen so far and scales to 2! PEs for relatively large
inputs. Hypercube-based HSS uses HykSort as an algorithmic framework and replaces the
splitter selection routine of HykSort by histogramming with sampling. Hypercube-based HSS,
however, faces the same problems as HykSort.

Tie-Breaking. Many multiway sorting algorithms are not robust against the case of many
equal elements [SK10; KK93; SMB13]. In regard to recursive multiway sorting, we have not
found any algorithm that handles duplicates. A naive approach to generate unique keys appends
unique identifiers to the elements [GV94; Go099; Ble+96]. Then, lexicographic ordering makes
the keys unique. However, this approach makes sorting considerably more expensive due to
higher communication volume and more expensive comparisons. In Part I, we propose a low
overhead measure that arranges elements equal to splitters into equality buckets.

Related Multiway Shared-Memory Approaches. Liand Sevcik [LS94] propose parallel sort-
ing by overpartitioning for shared-memory multiprocessors. Their overpartitioning approach
picks much more pivots than available PEs and the buckets are sorted in order of decreasing
bucket sizes. However, their approach is not scalable enough to the largest machines since
sample sorting is centralized and since a master-worker load balancer heuristically distributes
buckets among all PEs. As a result, the output is not globally sorted and an additional data
exchange step would be required to fulfill our output requirements. The overpartitioning
algorithm from Section 6.6, which we propose for AMS-sort, is fully parallelized and optimally
assigns consecutive ranges of buckets to consecutive PE-groups.

For more information on sequential and shared-memory sorting, we refer to Chapter 2.
Some ideas of shared-memory algorithms, e.g., recursive multiway sorting [CR10; BGS10]
for cache-oblivious shared memory models, may be interesting starting points for sorting
on distributed machines. However, translating them to a distributed memory model seems
nontrivial and is likely to result in worse bounds.

5.4 More Related Work

This thesis was highly influenced by two landmark papers. 25 years ago, Blelloch et al. [Ble+96]
carefully studied a large number of algorithms, selected three of them (bitonic sort, radix sort,
and samplesort), and compared them experimentally on up to 2'> PEs. Most other publications
are much more focused on one or two (more or less) new algorithms sometimes missing the
big picture. We felt that it was time again for a more wide view in particular because it became
evident to us that a single algorithm is not enough on the largest machine and varying n/t.
Helman et al. [HBJ98]—concentrating on samplesort—took robustness seriously and made
systematic experiments with a wide variety on input distributions, which form the basis for our
experiments. They also propose initial random shuffling to make samplesort robust against
skewed input distributions (this was already proposed in [SH97]).

There has been a lot of work on making sorting fast on small systems exploiting SIMD,
GPU, and shared memory parallelism. We view these results as largely orthogonal to ours.
However, it should be noted that large performance gains due to exploiting low-level hardware
properties are mostly observed when sorting unrealistically small objects like 32-bit numbers.
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Also, since the communication inevitably becomes the bottleneck for very large machines,
other optimizations become less and less important.
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Chapter 6

Robust Scalable Distributed Sorting
Algorithms

We propose four robust sorting algorithms for different input sizes which can be used to
span the entire parameter space. The first algorithm sorts while data is routed to a single PE.
This algorithm, gather-merge-sort, is already described in Section 5.3.1 since we assume the
algorithm to be folklore. The second algorithm is a simple yet fast work-ineflicient algorithm
with logarithmic latency (RFIS). The third algorithm is an efficient variant of parallel quicksort
with latency (’)(log2 t) (RQuick). The fourth algorithm is based on recursive multiway sample-
sort and has latency O(rtl/ r) when we allow data to be moved r times (AMS-sort). The output
of the latter algorithm has an imbalance of 1 + €. For the case of perfectly balanced output, we
additionally propose recursive multiway mergesort (RLM-sort). For both multiway algorithms,
we propose a new message assignment algorithm (DMA) that bounds the number of incoming
and outgoing messages of the data exchanges to O(tl/ r).

6.1 Robust Fast Work-Inefficient Ranking and Sorting (RFIS)

We propose Robust Fast Work-Inefficient Sorting (RFIS) for sparse and very small local input
sizes. We first perform our Robust Fast Work-Inefficient Ranking (RFIR) algorithm that com-
putes the rank of each element in the global data. Then, optionally, a data exchange routine
sends the elements to the appropriate PEs according to their ranks. RFIR refines the idea of
FIR (see Section 5.3.2). In contrast to FIR, RFIR works for any input size and generates unique
ranks—even in the case of duplicate elements. This is crucial as the data exchange routine only
works without significant load imbalances if the ranks are unique.

Our generalization works for any number of elements n and a quadratic a x a grid of PEs.
Initially, there are n elements uniformly distributed over the PEs. More precisely, each PE
provides O(n/t) input elements if n > ¢. Otherwise, the elements are evenly distributed to the
first n PEs. Figure 6.1 provides pseudocode. The algorithm performs six steps.

(i) On each PE-column, we perform a collective allgather-merge-sort operation. This oper-

ation takes time O(oc logt + [J’ﬁ + 7 log %), even for sparse inputs (recall Section 5.3.1).

Now, each PE stores the elements of its column in sorted order.

(i) PE (r,c) (the PE in row r and column c) exchanges its sorted column elements with
PE (c,r). As aresult, PE (r,c) stores two sequences—the sorted column elements of
column r respectively c. We charge O(a + fn/t"/?) time.

(iii) PE (r,c) computes the ranks of the sorted elements C. from column c in the sorted
elements C, from column r. More precisely, for each element e in C,., we count the
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Figure 6.1: Robust fast work-inefficient ranking on a 3 x 3 PE-grid with five elements.

number of smaller elements in C,. This can be done in time O(1 + n/t'/?) by merging
these two sequences. For tie-breaking, we consider a case distinction with respect to r
and c. If ¢ < r, we consider an element e, € C, to be smaller than eife, <e. If c > r, we
consider an element e, € C, to be smaller than e if e, < e. If ¢ = r, we set the rank of
the i-th element to i. This schema applies tie-breaking by implicitly handling the m-th
smallest element of column ¢, i.e., the element C,[m], as the triple (C.[m], c,m).

(iv) Collectively reducing the “local ranks” of column ¢ at PE (0,¢) with the operation
“addition” yields the global rank of the element in C,. We charge O(«logt + pn/t'/?)
time.

Roughly spoken, RFIS performs an allgather-merge-sort operation to obtain sorted column
input on each PE (i). The result of a transpose operation is that PE (r,c) stores the input of
column 7 and c (ii). Step (iii) then ranks the elements of column c into the elements of column
r using a simple tie-breaking approach and step (iv) calculates global ranks. In contrast, the
initial version of FIR [AS17] (also see Section 5.3.2) performs an allgather-merge-sort operation
on each PE-row and each PE-column. Compared to RFIS, the disadvantage of this approach is
that these operations require complicated distributions of input elements to PEs in order to
become efficient.
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If desired, the global ranks can then be used for routing the elements in such a way that a
globally sorted output is achieved. Le., the element with rank i will be routed to PE |it/n]. We
first broadcast the global ranks of C, from PE (0, ¢) to all PEs of column c. If n < ¢ we send the
elements directly to the target PEs. This takes time O(«) since each PE sends and receives a
constant number of elements—each PE of column ¢ must send only a constant fraction of C..
If n > ¢, the data exchange problem is solved locally in each row. We now exploit the fact that
each PE-row stores the complete ranked input. We thus can afford to discard all elements that
are not mapped to the same row without losing any element. For routing the elements to their
correct column, we can use the hypercube algorithm from Section 5.1.1 if the grid length a is a
power of two. While routing the elements, we maintain their local order. The total number
of elements in the row is n/a. After loga message exchange steps of the hypercube algorithm,
each PE of the row will have n1/a? elements. In the i-th iteration of this algorithm, n/(a2*!)
elements have to be delivered to each of the two subcubes—the subcubes have size a/2*!. Even
if all these elements are concentrated on the same PE, this requires at most « + Sn/ (£22') time.
Summing this over all iterations yields overall time O (alogt + fn/t'/?).

If the grid length is not a power of two, we can use the index algorithm by Bruck et al.
[Bru+97] for the data exchange. The index algorithm works similar to the hypercube algorithm.
The main difference is that the PE-group in the i-th iteration has up to [a/2'] (non-adjacent)
PEs and [loga] iterations are performed. With the same argumentation as for hypercube
quicksort, we get the same overall time O(alogt + fn/t'/?). Indeed, the asymptotic running
time is the same for just ranking or ranking plus data exchange.

Either way, we get the overall execution time

O(alogt + B +2log?) . (6.1)

Note that for # polynomial in ¢ this bound is O(alogt + n/t'/?). This restriction is fulfilled
for all reasonable applications of this sorting algorithm.

6.2 Building Blocks for Hypercube Quicksort

In this section, we describe building blocks that we need for robust hypercube quicksort in
Section 6.3.

6.2.1 Bound for the Balls into Bins Problem

We consider the balls into bins problem [JK77]. This problem throws m balls independently
and uniformly at random into b bins. The number of balls thrown into a bin is synonymous to
the number of successes in a Bernoulli trial with m experiments and a success probability of
1/b. Here, we modify the balls into bins problem by allowing to scale m and b.

Lemma 6.1 (Scaled balls into bins problem)

Lett = 2% > 2 with x being a natural number and let i € [0.. logt). Furthermore, let n/2' balls
be thrown into t/2' bins. Then, the probability that all bins have O(n/t + logt) balls each is
> 1 - min(n¢,t7°) for any constant ¢ > 0.

103



6 Robust Scalable Distributed Sorting Algorithms

Proof. We first consider a fixed bin and n > 13t In¢. Let X be the random variable determining
the number of elements assigned to this bin. The number of elements in this bin is the result of
a balls into bins problem with m = n/2’ balls and b = ¢/2' bins. We bound the probability of
having at least (2 + ¢)n/t balls in the bin to
(1+c)n (1+c)nlnn (1+c)n
P[X = (2+¢c)nft] < e o U <

13(1+c)tnt
<y In@Bh) < p”

(6.2)

c—1

for any ¢ > —1. The first “<” uses the Chernoff inequality from Section 1.4 with § = 1 + ¢, the
second “=” uses """ = 5, the second “<” uses the assumption # > 13tInt, and the third “<”
uses % >1forallt >2.

For now, we have bounded the number of balls in a fixed bin. Applying this bound to all
bins, no bin has w(n/t) balls with probability > 1 — n™° since the probability that at least one of

the ¢/2" bins gets assigned at least (2 + ¢)n/t balls can be bound by
/2" P[X>(2+c)n/t]<t/2'-n " <n®

since we assume #n > t.

We now consider the case n < 13t Int. When we pad the elements to a total of n’ = 13t In¢
elements, the maximum load of the bins is at most (2 + ¢)13 In ¢ with probability > 1 — '~ for
¢ > 0. By removing the padding elements, this probability bound also holds for the initial n
input elements. ]

6.2.2 Randomized Shuffling on Hypercubes

It is a folklore observation (e.g., [SH97]) that data skew can be removed by shuffling the input
data randomly. This is implemented for the samplesort algorithm of Helman et al. [HB]98]
by directly sending each element to a random destination. Note that this incurs an overhead
of about o« min(t,n/t) + Sn/t. We propose a simple technique for small inputs where we need
logarithmic startup latency. This can be achieved by routing the data according to a hypercube
communication pattern—sending each element to a random side in each communication
step. Here, we first communicate along dimension 0 and go up to dimension logt — 1. Each
communication step performs two operations. First, the PEs split their local elements into two
random halves. Each element is assigned to one half with probability 1/2. Second, each PE
sends one half to its communication partner, keeps one half, and receives one half from its
communication partner.

Lemma 6.2 (Distribution of elements in randomized shuffling)

After each communication step, each element is stored on a random PE of its subcube.

Proof. We consider a random element e. Let e be input on PE j where [by .. biog: ) is the binary
representation of j. In order to prove Lemma 6.2, we show the following proposition. After

communication along dimension i € [0.. logt), element e is stored on a PE whose i + 1 least
significant bits are distributed uniformly at random and the log p — i — 1 most significant
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bits are [biogs—i-1 . biogt). We prove this proposition by induction over the communication
steps. The base case is i = 0. In the first communication phase, the communication partner
of j differs in the least significant bit. The base case is true since e is randomly routed to j
or to its communication partner. We now consider communication along dimension i + 1:
By the induction hypothesis, we know that e is stored on a PE j whose i least significant bits
are distributed uniformly at random and the logt — i most significant bits are [biog—; .. biog: )-
Again, the binary representation of PE j and its communication partner only differ in bit i + 1.
Since e is randomly routed to j or its communication partner, the proposition also holds after
communication along dimension i + 1. |

Lemma 6.3 (Bound load of randomized shuffling)

After each communication step, each PE stores O(max(n/t,logt)) elements with probability
> 1 - min(n¢,t7°) for any constant ¢ > 0.

Proof. After communication step i € [0..t), each subcube has O(2*!n/t) elements in total. We
consider a random subcube C. According to Lemma 6.2, the elements stored in C are randomly
distributed to its PEs. Thus, the number of elements on the PEs of C can be described by the balls
into bins problem with (’)(2”171 / t) balls and 2/*! bins. From Lemma 6.1 in Section 6.2.1 follows
that each PE of C stores at most O(n/t + logt) elements with probability > 1 — min(n™¢,¢7°).
This probability bound also holds for all subcubes since the hypercube has only 2¢-1 subcubes. O

Lemma 6.4 (Running time of randomized shuffling on hypercubes)

The running time of our randomized shuffling algorithm with O(n/t) elements per PE on a
hypercube of size t is

O(alogt + fmax(n/t,logt)logt)
with probability > 1 — min(n™°,t~°) for any constant ¢ > 0.

Proof. From Lemma 6.3 follows each PE communicates O(max(n/t,logt)logt) elements. We
additionally account O(alogt) for communication startups. ]

A naive approach labels each element with a random destination. Then, a hypercube
algorithm redistributes the data. This approach increases the communication volume by a
factor of two.

6.2.3 Approximate Median Selection with a Single Reduction

Siebert and Wolf [SW11] consider parallel quicksort for the case where n = t. They propose
to select splitters using ternary remedian, an estimator to approximate the median of an input
sequence initially introduced by Rousseeuw and Bassett [RB90]. Remedian uses a ternary tree
whose leaves are the input elements. At each internal node, the median of the children elements
is passed upward. Lemma 6.5 from Dean et al. [DJW14] shows that for randomly permuted
inputs and a balanced tree this is a good approximation of the median.
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Figure 6.2: Comparison of ternary remedian and binary remedian with k = 2.

Lemma 6.5 (Ternary remedian)

Let S be a random sample from any probability distribution that supports efficient sampling (e.g.,
elements stored in an array). For each constant ¢ > 0, there exists an n' for which the ternary
remedian algorithm selects from n > n' randomly shuffled sample elements S a splitter element of
rank [n/2(1 - 2n7°36%) . n/2(1 + 2n~%3%%)] within the probability distribution with probability
> 1 —n ° when n is a power of three.

But Siebert and Wolf [SW11] do not permute randomly. Even when t is a power of two, their
method does not produce a completely balanced tree such that their implementation remains a
heuristic.

We fix these restrictions by using a binary remedian and working with randomly per-
muted inputs: Consider a tuning parameter k (even). Assume that the local data is a sorted
sequence a[l..m] and that m is even. Each PE is a leaf of the binary tree and forwards
a[m/2 —k/2+1..m/2 + k/2] up the tree—a local approximation of the elements closest to the
median. Undefined array entries to the left are treated like a very small key and undefined entries
to the right as very large keys. Ifm is odd, we flip a coin whether a[|m/2]|-k/2+1..|[m/2|+k/2]
ora[[m/2]-k/2+1..[m/2]+k/2] is forwarded. Internal nodes merge the received sequences
and use the result as their sequence a analogously to the leaves. At the root, we flip a coin
whether a[k/2] or a[k/2 + 1] is returned. Note that in most MPI implementations, this algo-
rithm can be implemented by defining an appropriate reduction operator. The overall running
time is O(alogt). For randomly permuted local inputs of size n/t, it is easy to show that our
scheme yields a truthful estimator for the median, i.e., we get a result with expected rank n/2.
We conjecture that similar quality bounds as from Dean et al. [DJW14] can be shown for our
scheme even with k = 2, i.e., that we get rank n/2(1 + cn™") with high probability for some
constant ¢ and y.
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6.3 Robust Quicksort on Hypercubes

Algorithm 7 Robust Hypercube Quicksort*

Input: A[1..n/t] data elements, t = 2¢ number of PEs, PE number i

A « randomly redistribute A > See Section 6.2.2

for j < d -1 down to 0 do B> Iterate over cube dims
s < calculate splitter performing {%1 iterations of parallel ternary remedian [> See text
if ISEMPTY(s) then return A > No elements in cube
split A into L- R > See text
i'—i®2/ > Communication partner
if i’ <ithen

send L to i’ and receive R’ from i’
A < concatenate R and R’
else
send R to i’ and receive L' from i’
A < concatenate L and L'
SorT(A)
return A

We experimentally evaluate the median approximations of our binary remedian with k = 2
and the ternary remedian. We show that the binary remedian gives better median approxima-
tions than the ternary remedian and the rank can also be bounded by 1/2(1 + cn™") with better
constants ¢ and y. Our benchmark runs both selection algorithms on uniformly distributed
random integers in the range [0,2°* — 1] of up to 2?° elements. The input into the binary
remedian is a power of two with nodes having two elements as input whereas the input into the
ternary remedian is a power of three with nodes having three elements as input. We execute
both algorithms 2 000 times for each input size. We measure the rank  for each output element
and calculate the rank error

n-1 2

r 1 ‘

Figure 6.2a shows the worst observed rank error. Compared to the ternary remedian, the binary
remedian shows a smaller maximum rank error over 2 000 runs for all input sizes. Moreover,
the rank error of the binary remedian is bounded by 1.44n~%* while the rank error of the
ternary remedian is only limited by 2rn~%3¢°, Figure 6.2b depicts the variance of the rank error
for the binary remedian and the ternary remedian. For small input sizes, the variance of the
binary tree median approximation is by a factor of two smaller. For large inputs, the difference
in the variance even increases to a factor of three.

6.3 Robust Quicksort on Hypercubes

Previous implementations of hypercube-based quicksort (e.g., [Wag87; LM92; SMB13]) have
three major drawbacks. First, they are not robust against duplicates as no tie-breaking is
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6 Robust Scalable Distributed Sorting Algorithms

performed. Second, the algorithms do not consider non-uniform input distributions. For
hypercube-based routing algorithms, it is well known that skewed inputs exist where the
intermediate imbalance factor increases to |t'/?| (see the discussion in Section 5.1.1). This
bound even applies to unique input keys and true medians as a global splitter. Third, previous
algorithms do not provide a fast high-quality splitter selection with median approximation
guarantees. This is essential because, otherwise, quicksort gets impractical for large t as the load
imbalance accumulates or the splitter selection dominates the running time for small inputs.
Previous quicksort implementations use one of three different approaches to calculate the
splitter. The first approach [Wag87] selects a random PE that just broadcasts its local median.
The second approach [LM92] gathers the local median of each PE and calculates the median of
medians. The third approach [SMB13] uses the median of a relatively large random sample.

In this section, we propose two versions of hypercube quicksort that overcome these prob-
lems. The first, robust hypercube quicksort* (RQuick™), has a running time of O(% logn +

B7 logt + alog® t) with high probability. The second version, robust hypercube quicksort
(RQuick), is a much simpler version for which we conjecture the same running time guarantee.

RQuick*

Algorithm 7 provides pseudocode of RQuick®. First, RQuick* randomly redistributes the input
(see Section 6.2.2). The main loop goes through the dimensions i € [0, ...,logt — 1] of the
hypercube, highest dimension first. In the splitter selection step, we approximate the median
of the data in each i + 1-dimensional subcube. The splitter selection performs the following six
=
Let t' be the subcube size ¢/2° rounded up to the next power of three. Select t' samples with the
parallel random sampling algorithm from Sanders et al. [San+18]. (2) Each sample element is
sent to a random PE of the subcube with a direct message. (3) The elements are shuftled locally.
(4) Enumerate the sample elements using a collective prefix sum. (5) Send the sample with
rank j to PE | j/3] of the subcube with a direct message. (6) Use the shuffled samples as input
to the ternary remedian algorithm by Rousseeuw and Bassett [RB90] (also see Section 6.2.3)
to obtain a median approximation. In the splitting step, each PE partitions its local elements
according to the splitter. In the last step, the communication step, PEs differing in bit j of their
PE number exchange their data so that the PE with the 0-bit gets the elements smaller than s
and the PE with the 1-bit gets elements larger or equal to s. For robustness against repeated
keys, we use a low overhead greedy tie-breaking schema: Suppose that the 0-bit PE holds the
sorted sequence a of the form a = a; - s* - a, and the 1-bit PE holds the sorted sequence b of the
form b = by - sV - by, i.e., the splitter s appears u respectively v times locally. We split a and b
into four subsequences ay - s*, s*7* - a,, by - s"77, and s” - b, with

phases | ] times and returns the best median approximation as the splitter candidate. (1)

x = min(s*, max((|a] + |b])/2 — ag — b),0)

and

y = min(s’, max((|a| +|b])/2 — a, - b,),0))
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and send s*7* - a, respectively b, - s"™” to the communication partner. This minimizes the load
of the two PEs after the data exchange while simultaneously minimizing the communication
volume between these PEs.

Theorem 6.6 (Running time of RQuick*)
RQuick* runs in time O(% logn + B% logt + alog® t) with probability > 1 — t~° for any constant
¢ > 0 and inputs without duplicated keys.

The proof of Theorem 6.6 is structured as follows. First, we consider the imbalance intro-
duced by the median approximation. This starts with Lemma 6.7 that limits the imbalance
introduced by splitting the data of a subcube. Lemma 6.7 leads to Lemma 6.8 bounding the
maximum load of subcubes. Second, we limit the load of PEs within subcubes. Here, the
initial random shuffling is crucial. A result of the random shuffling is that the elements of each
subcube are randomly distributed to its PEs, independent of the splitter quality. This is shown
in Lemma 6.9. Lemma 6.10 uses this property and the bounded imbalance between subcubes
(see Lemma 6.7) to limit the individual load of the PEs. Finally, we prove Theorem 6.6 with
Lemma 6.10. In the case the splitter element occurs repeatedly, Lemma 6.9 also helps our simple
local tie-breaking heuristic—each PE has a random sample of the global data of its subcube
and, hence, our local balancing approximates a global balancing.

For the proof of Theorem 6.6, we oftentimes consider an algorithmic property that is valid
with probability > 1 — ¢t~ for any constant ¢ > 0. In this case, we say that the property is valid
with probability 1 — t~(¢), Note that we can use O(t) different properties that are each valid
with probability 1 — t~*(), All these properties are then again valid with probability 1 — ¢=?(<),
For simplicity, we assume that # > t. For the proof, we assume that the input does not have any
duplicated keys.

Lemma 6.7 (Quality of the splitter selection)

With probability 1 — =¥, there exists a constant j € N for which no subcube of dimension i > j
of RQuick* introduces an imbalance factor of more than 1 + 273

Proof. First, we consider the splitter selection of an i-dimensional subcube. Let j € IN be
an appropriate large constant and let i > log j. We denote the execution of a single ternary
remedian run as failed if the data of the subcube is split into two buckets with an imbalance
factor larger than 1+ 27" for y = —0.369. For the proof, we use 2 rather than the actual sample
size. This is an underestimate of the sample size and thus, the splitter quality. According to
Lemma 6.5, the failure probability is > 27 for any constant ¢ > 0 and a sufficiently large

number of PEs. Let j be this number. Thus, the size 2’ of the current subcube is sufficiently

: logt . te . .
large. Since we execute [ £~ ] remedian repetitions, at least one remedian execution does not

fail with probability

<1- (z—ci)[h%gt] <1- (z—ci)bf-gt -1- ((zi)logt)

Thus, the subcube does not introduce an imbalance factor of more than 1+ 27" with probability
1-¢790),

£
i

S (f) T e1-
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With probability 1 — (), no subcube of dimension i > j introduces an imbalance factor
of more than 1 + 27" since the sorting algorithm has only ¢t — 1 subcubes. m]

Lemma 6.8 (Maximum load of subcubes in RQuick™)

With probability 1 — t=X), there is no i-dimensional subcube of RQuick* that has more than
O(2' max(%,logt)) elements.

Proof. After the initial shuffling, each PE stores O(max(n/t,logt)) elements with probability
1-t7%() (see Lemma 6.3 in Section 6.2.2). Thus, with the same probability, each i-dimensional
subcube stores O(2' max(n/t,logt)) elements. We now show that the additional load imbal-
ance introduced by each step of the main loop can be limited by a constant factor.

According to Lemma 6.7, the last O(1) iterations of the main loop only introduce a constant
imbalance. Since these iterations introduce a constant imbalance, we only have to consider
the remaining iterations. With probability 1 — ~*(°), the imbalance factor introduced by an
i-dimensional subcube is bounded by 1 + 27" with y = 0.369 for the remaining iterations (also
see Lemma 6.7). Now we can bound the imbalance factor I of the remaining iterations to

I< T (1+27)= ¢ icioge (1427

i<logt

— eZi<logt1n(1+2_yl) < ezi<logt2_y1
Ay J
= i) cem = O(1) .

« _»

The first “<” is used since we consider all iterations, the second “<” uses the Taylor series
development of In, and the third “<” uses a geometric sum. |

Lemma 6.9 (Placement of elements in a subcube of RQuick*)

Before step i of RQuick™ s main loop, the elements of a PE-subcube are randomly distributed to its
PEs.

Proof. Consider an arbitrary input element e. Let e be stored on PE j of a subcube C with ¢ /2
PEs before step i. Then, e had to be stored on a PE j’ € [j2.. (j + 1)2') when the main loop of
RQuick* started. Since the initial random shuffling had moved e to a random PE j’ € [0..t)
(see Lemma 6.2 in Section 6.2.2), PE j must also be a random PE of subcube C. O

Lemma 6.10 (Maximum load of PEs in RQuick")

Each PE has O(max(n,tlogt)/t) elements after each step of the main loop of RQuick* with
probability 1 — t~(©),

Proof. Each subcube stores O(max(logt,n/t)/2*!) elements with probability 1 — t~*(¢) after
stepi € [0.. logt) of the main loop (see Lemma 6.8). The subcubes contain ¢/2"*! PEs each.
Lemma 6.9 tells us that the elements of a subcube are randomly distributed among the PEs with
probability 1 -, Thus, the number of elements on the PEs of a subcube can be described by
the balls into bins problem with O(max(tlogt,7)/2"*!) balls and ¢/2"*! bins. From Lemma 6.1
in Section 6.2.1 follows that each PE of a subcube has at most O(max(logt,n/t)) elements with
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Algorithm 8 Robust Hypercube Quicksort

Input: A[1..n/t] data elements, t = 2¢ number of PEs, PE number i

A < randomly redistribute A > See Section 6.2.2
SORT(A)
for j < d—-1 downto 0 do D> Iterate over cube dimensions
m < median of A
s < calculate splitter with binary remedian using m > See Section 6.2.3
if ISEMPTY(s) then return A > No elements in cube
split A into L - R according to splitter s > See text
i'—i®2 > Communication partner
if i’ <ithen
send L to i’ and receive R’ from i’/
A < merge R with R’
else

send R to i’ and receive L' from '
A < merge L with L'

return A

probability 1 — t~*(), This probability bound also holds for all subcubes since the hypercube
has only 2t — 1 subcubes. o

We finally come back to Theorem 6.6, i.e., the total running time
(9(? logn + [5? logt + alog’ t) .

Proof of Theorem 6.6. The first term covers the time for local sorting. The second and third
term is an upper bound for the random shuffling (see Lemma 6.4 in Section 6.2.2). For this
bound, we use that log”t € O(alog®t). The second and third term is also an upper bound

for the main loop of RQuick*: In step i of the main loop, RQuick" executes [1;23;1 -] rounds
of splitter refinement. In each round, the sampling, the sample shuffling, and the collective
prefix sum require time O(«(log p —i)) each (see Lemma 6.1 for an upper bound for the
sample shuffling). Additionally, Lemma 6.10 tells us that the local load of the main loop of
RQuick™ is O(max(n,tlogt)/t). Thus, the data exchange and the partitioning runs in time
O(Bn/tlogt + alog’t). Again, we use that Slog’t € O(alog’t). All bounds hold with

probability 1 — t~*() since each bound holds with probability 1 — ¢~?(), ]

The startup overhead «log p for shuffling is a lower order term compared to O(log2 p) for
the main loop. Additionally, the cost of data transfer and local work for the shuffling phase is
covered by the startup overhead of the main loop for n € O(a/Bplog p). For larger inputs, the
cost of data transfer and local work for shuftling is still a logarithmic factor smaller compared
to the cost of bitonic sort.
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Figure 6.3: Distribution of the random shuffling (Shuffle), RQuick’s and RQuick*’s mea-
sured imbalance factors obtained from 2'® runs each.

RQuick

For RQuick, we use the binary remedian, which we conjecture to be more accurate than
the ternary remedian algorithm used by RQuick®. Additionally, we take advantage of the
observation that in each iteration of the main loop of RQuick™, the local data of the PEs is a
random sample of their subcube’s data (see Lemma 6.9). This is a consequence of the initial
random shuftling. The idea now is to use the medians of the PEs’ local data as input to the
binary remedian since these medians are already very good approximations of the global
median, especially compared to the samples used in RQuick™. In return, RQuick only executes
one round of median approximation. Overall, the splitter selection overhead for RQuick is
significantly smaller than for RQuick™ since the splitter selection of RQuick boils down to
propagating two elements from the leaf PEs of a binomial tree to its root and one element back
to the leaves.

Algorithm 8 provides pseudocode for RQuick. First, RQuick randomly redistributes the
input (see Section 6.2.2). Then the data is sorted locally. The main loop goes through the
dimensions of the hypercube, highest dimension first. In each j-dimensional subcube, we use
the binary remedian algorithm from Section 6.2.3 with k = 2 to calculate a splitter element s.
Each PE provides its local median as input to the selection algorithm. In a communication step,
PEs differing in bit j of their PE number exchange their data so that the PE with the 0-bit gets
the elements smaller than s and the PE with the 1-bit gets elements larger or equal to s. These
two sequences are then merged. For robustness against repeated keys, we use the low overhead
greedy tie-breaking schema from RQuick™.

Now, we evaluate the imbalance factor of the random shuffling, RQuick, and RQuick*
experimentally. The imbalance factor of a run is denoted as the maximum output imbalance
of the PEs relative to the average load n/p. The imbalance of RQuick and RQuick* is induced
by the splitter selection quality—the better the median approximation quality, the smaller the
imbalance between subcubes. After the last iteration of the main loop, we have one PE per
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(a) Simple Message Assignment

PE9 PE 10

(b) Deterministic Message Assignment

PE1 PE2 PE3 PE 4 PES5 PE6 PE7 PE 8
[ 1a M [ 24 [2)B 35 (4] 45 | [5a] 5 [[6a] 65 |[7] 75 [ 84 8
group 1 distribute small pieces group 2 ‘
Y Y Y N Il | |
distribute large pieces
BaZal 1a | [4a[1a[24][5a [24[84] [ 6a [ 84 \H\lb\ 35 | [2] 45 1B 55 [65][68] 75 |

Figure 6.4: Illustration of the different message assignments.

subcube and the highest imbalance between subcubes. We see the intermediate imbalance
factor of the initial random shuffling as the base line for the sorting algorithms. The box
plot in Figure 6.3 depicts the distribution of the imbalance factors obtained by experiments
with different numbers of PEs and 10t logt elements. According to Figure 6.3, the imbalance
factor distribution of initial random shuftling and RQuick are about the same. However, the
imbalance of RQuick is always significantly smaller than the imbalance of RQuick*, regardless
of the measures minimum, maximum, median, first quartile, and third quartile. Thus, we
conjecture that RQuick and RQuick* have the same asymptotic running time since the running
time of RQuick™ is already the lower bound for hypercube quicksort.

Conjecture 6.11 (Running time of RQuick)

RQuick runs in time O(? logn + % logt + «log’® t) with probability > 1 -t~ for any constant
¢ > 0 and inputs without duplicated keys.

6.4 Delivering k Data Partitions to k PE-Groups

In the recursive multiway sorting algorithms considered here, we face the following data
redistribution problem: Each PE has partitioned its 11/t local elements into k pieces. The total
size of pieces with number i is n/k. Pieces with number i have to be moved to PE-group i that
consists of PEs [it/k.. (i + 1)t/k). Each PE in a group should receive the same amount of data
except for rounding issues. To simplify the discussion, we describe the algorithm for the case
that every PE receives exactly n/t elements. We now want to compute a message assignment
that minimizes the number of incoming and outgoing messages.
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Algorithm 9 Computation of the Simple Message Assignment

Input: i current PE, t PEs, k PE-groups, m = {my, ..., my_; } number of elements for
each group, a array of local elements
t,1,s € N¥
tj < Yeo.rymj@PEx 1> Global number of elements for group j (collective all-reduce)
lj < Yefo.ymj@PE x > Number of elements for group j on preceding PEs
(collective excl. prefix sum)
forw e [0..k) do > Calculate messages for PEs in group w
0 < [tyk/t] > Maximum number of elements received by PEs of group w
if m,, = 0 then
continue > No elements for group w
b<l,/o D> First PE of group w that gets a message from PE i
e« (ly+my—1)/o > Last PE of group w that gets a message from PE i

forge [b..e]do
Assign elements a[max (0,0t — 1) ..min((t + 1)o - l,,my,)) to PEwt/k + ¢t

Simple Approach. We begin with a simple message assignment (SMA) [KK93; GV94; SW11]
and then refine the assignment in order to handle bad cases. Algorithm 9 provides pseudocode.
The basic idea is to compute a prefix sum over the piece sizes—this is a collective prefix sum
with vector length k. As a result, each piece is labeled with a range of positions within the group
it belongs to. Positions are numbers between 0 and n/k — 1. An element with number j in
group i is sent to PE it/k + | jt/n|. This way, each PE sends and receives exactly n/t elements.
Moreover, each piece is sent to one or two target PEs responsible for handling it in the recursion.
Thereby, each PE sends at most 2k messages for the data exchange. Unfortunately, the number
of received messages, although the same on average, may vary widely in the worst case. There
are inputs where some PEs have to receive @(t) very short messages. This happens when many
consecutively numbered PEs provide only very small pieces of data (see PE 9 in the top of
Figure 6.4a). The SMA algorithm takes O(« + k) time and the data exchange step needs
Exch(t,n/t,t) time in the worst case.

Reduce Message Transfers. We propose the deterministic message assignment (DMA), an
assignment that limits the number of sent and received messages to O (k). Figure 6.4b illustrates
the process. The basic idea is to distribute small and large pieces separately. We consider a piece
to be small if it contains less than 71/(2tk) elements. Otherwise, the piece is large. Algorithm 11
provides pseudocode for the calculation of the message assignment.

The message assignment algorithm performs four steps. In step one, the description of the
pieces is sent to their target group: For each group, we enumerate the small pieces respectively
large pieces with two collective prefix sums. Overall, this takes O (e logt + Sk) time. The result
is a global ranking of the pieces. Then, PE i sends the description of its large respectively small
piece with rank g destined for group j to PE | g/k| respectively PE (g mod k) of that group.
This can be done in time Exch(¢, O(k), k). Also, each PE receives at most k small pieces. In
the next two steps, each group independently produces an assignment of the received pieces.
In step two, each PE assigns the small pieces to itself and subtracts the piece sizes from its
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Algorithm 10 DMA compare function

function LESSTHAN(], 1)
if ISEQUALPIECETYPE(], 7) then
return [.i < r.i
else if IsSRESIDUALPIECE(]) then
return b <r.b
else
returnlb<r.b

initial capacity n/t. This way, all small pieces are assigned without having to split them—each
PE sends at most k small pieces and each PE receives at most k small pieces. Also, no receiving
PE gets assigned more than half of its final load. In step three, the large pieces are assigned
taking the residual capacity of the PEs into account. The assignment of large pieces to group
j is collectively calculated by the PEs of that group. After step three, each PE has calculated
O(k) assignments. Also, the pieces that have been initially delivered by a PE were assigned to
O(k) PEs. In step four, the assignments are sent back to the initial PEs. This can be done in
time Exch(t, O(k), k). In the following, we describe step three, the assignment process of large
pieces for a single group.

Conceptually, we enumerate the unassigned elements of the large pieces on the one hand
and the unassigned element slots provided by the residual capacities on the other hand and
then map element i to slot i.! To implement this, we compute a collective prefix sum of the
residual capacities of the receiving PEs on the one hand and the sizes of the unassigned large
pieces on the other hand. This yields two sorted sequences C and U respectively. On the one
hand, each group PE i contributes to C one residual piece (i,b,e) = ¢; which indicates that this
PE provides slots [b...e). On the other hand, the i-th large piece (j,b,e) = u; of U indicates that
the source PE j of this piece will send elements with indices [b..e). The sequence C is then
merged into sequence U. Our merge operation guarantees that the pieces from U remain on
their PEs. Algorithm 10 depicts the comparator function. Roughly speaking, a residual piece ¢
is smaller than a large piece u if and only if the first slot of ¢ is smaller than or equal to the first
element index of u. In the merged sequence, a subsequence of the form (c,-, Ujs ..o s Ujprs Citls z>
induces the following element assignment: The source PE of large piece u € [u;..uj,,] has
to send |[u.b..u.e) N [¢;.b..c;.e)| elements to group PE i. Piece j + r may also wrap over to
PE i+ 1, and possibly to PE i + 2 if z = ¢;;5. No further wrapping over of large piece u,, is
possible since no piece can be larger than n/t and since every PE has a residual capacity of at
least n/(2t). Thus, large pieces are assigned to a constant number of group PEs. Similarly,
no PE gets assigned more than 7 - 2tk/n = 2k parts of large pieces since large pieces have at
most size n/t and since each PE has a residual capacity of at least n/(2t).

Before we calculate the message assignment of large pieces as described above, residual
piece ¢; must be available on the PEs that store large pieces [u; .. t4j.,—1]. Also, residual pieces
Ci» Ci+1»> and possibly z must be available on the PE that stores large piece u;,,. We show that it

1A similar approach to data redistribution is described in [HS16]. However, here we can exploit special properties
of the input to obtain a simpler solution that avoids segmented gather and scatter operations.
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is sufficient to greedily send each residual piece to the preceding PE and the two succeeding
PEs. This operation only requires time O(«). In order to make the desired residual pieces
available on the particular PEs, we take advantage that we merged sequence C into sequence
U and that the pieces from U remained on their PEs. From this follows that residual pieces
ci1 and ¢;4, may need to be sent back to the preceding PE since piece u j+r s either stored on
the PE holding these two residual pieces or on the preceding PE. Also, piece ¢; may have to
be forwarded to the next two PEs since pieces [u;..1j.,1 ] can only be stored on the PE that
holds piece ¢; and on the two succeeding PEs. This is due to two reasons: On the one hand, the
number of slots of piece ¢;, and thus the total size of the pieces [u; .. uj,,_1], is at most n/t. On
the other hand, step one of the DMA algorithm guarantees that the left PEs of a PE-group store
k large pieces each of size > n/(2kt), followed by one PE that stores up to k pieces, followed by
potential PEs without any large pieces.

The difficult part is to merge sequence C into sequence U efficiently. Here one can adapt and
simplify the work efficient parallel merging algorithm for EREW PRAMs from Hagerup and
Riib [HR89]. Essentially, one first merges the t/k pieces of C with a compressed representation
of U—each PE fuses its local large pieces of U into a single super piece. This merging operation
can be done in time O(«log(t/k)) using Batcher’s merging network [Bat68] since each PE
provides two pieces. Then each residual piece e of C has to be merged into < k large pieces
of U on one particular PE to obtain the merged sequence of C and U: For each piece e, we
determine its particular PE by counting the number of super pieces to the left of e in the merged
sequence. The counts can be obtained with a prefix sum in time O(alog(t/k)). We then
route the residual pieces to the particular PEs. Note that each PE will have to merge only O(k)
residual pieces since it is impossible that the local large pieces (of total size < kn/t) fill more than
2k PEs (each providing residual capacity > n/(2t)). We also note that each PE sends at most
two residual pieces. Thus, we can transfer the residual pieces to the appropriate PEs in time
Exch(t, O(k), O(k)). We now have everything at hand so that the PEs can merge the residual
pieces into their large pieces. This can be done using local merging in time O(k) if we sort the
received residual pieces with counting sort [Knu73]. In other words, the special properties of
the considered sequences make it unnecessary to perform the contention resolution measures
that make the algorithm from Hagerup and Riib [HR89] somewhat complicated. Overall, we
get the following deterministic result.

Theorem 6.12 (Data redistribution with the deterministic message assignment)

Data redistribution of k x t pieces to k groups can be implemented to run in time
Exch(r, ; oK) .

Proof. We first consider the time to calculate the message assignment. Summing up the time
we have accounted for the message assignment algorithm, we get time Exch(¢, O(k), O(k)).
Recall from Section 5.2 that Exch(t, -, k) absorbs terms of the form O(«logt + k).

We now consider the time for the actual data exchange. Each PE sends and receives n/t
elements since each PE provides n/t input elements and an initial capacity of n/t. The message
assignment splits each large piece into at most three messages—small pieces are not split at
all. This sums up to O (k) outgoing messages per PE. Each PE gets assigned at most k small
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pieces of total size < n/(2t) in step two of the message assignment. In step three, a maximum
of 2k + 1 large pieces is assigned to each PE to cover its residual capacity—one piece may wrap
over from the previous PE, followed by pieces of size > n/(kt), and a final piece may wrap over
to the next PE. Thus, the data exchange can be done in time Exch(t, 7, O(k)).

Overall, the data redistribution takes time Exch(t, 7, O(k)) (recall from Section 5.2 that

Exch(t, -, k) absorbs terms of the form Exch(t, k, k)). o

For applications with slightly imbalanced data like AMS-sort, some groups may receive
up to (1 + €)n/t elements, some groups may receive much less than #n/k elements, and k may
not divide t evenly. We address this by adjusting residual capacities of all PEs to (1 + €)n/t,
ensuring that all PE-groups have a size of |¢/k| or [¢/k], and by carefully implementing corner
cases. The data redistribution then takes time Exch(t, (1 + €) 2, O(k)).
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Algorithm 11 Deterministic Message Assignment

procedure DMA(n, t, k,m, 1)

Input: » total input size, ¢ PEs, k PE-groups, m = [m, ..m ) number of elements for
each group, i my PE index within my PE-group

7T < ENUMERATESMALLPIECES(D) > Vectorized exclusive collective prefix sum
IT < ENUMERATELARGEPIECES(D) > 7,11 € NF
for j € [0..t/k) do > Route pieces to PE-groups in time Exch(t, O(k), O(k))

if m; < n/(2tk) then Send small piece of size m; to PE | 77;/k| of group j
else Send large piece of size 1 to PE (IT; mod k) of group j

(S,L) < RECEIVESMALLANDLARGEPIECES() D> Pieces store source PE and size
a < CALCULATEASSIGNMENTTOGROUP (1, 1,k, S, L,1)
Send assignment a to requesters > Exch(t, O(k),O(k))
return RECEIVEASSGINMENT()
procedure CALCULATEASSIGNMENTTOGROUP(n, 1, k, S, L, 7) > Executed by PE-group
a < AssIGNPIECESTOMYSELE(S) > Returns assignment of small pieces
c<nft—7Y gSIZE(s) > Own residual capacity
¢« Zj‘:o c@PE j D Residual capacity of preceding PEs (collective excl. prefix sum)
C <« (i,c,c' +¢) > Residual piece
u < Y, s1ze(l) D> Total size of local large pieces
Y~ Z;}) u@PE j B> Collective exclusive prefix sum over large piece sizes
S« (i, ph + Y yep S1ZE(D)) > Create super piece
foreach! ¢ Ldo > Create prefix representation of large pieces
U « U U (source(]), y, p + s1ze(l))
p < p+s1ze(l)
(X,Y) < pisTRIBUTEDMERGE(C, S) > Merge sorted residual and super pieces

y < couNTSUPERPIECES(X,Y)
0« Z;;h y > Number of super pieces on preceding PEs (collective excl. prefix sum)
if ISRESIDUALPIECE(X) then > Bring residual pieces and large pieces together
Send Xto PE[o-1..0+2]
if ISRESIDUALPIECE(Y) then Send Y to PE [0..0 + 3]

else

if ISRESIDUALPIECE(Y) then Send Y to PE [0 - 1..0 + 2]
C <+ RECEIVERESIDUALPIECES() > Exch(t, O(k), O(k))
return a U CREATELARGEPIECEASSIGNMENT(C, U) > Merge pieces and calculate

intersections
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6.5 Generalizing Multiway Mergesort (RLM-sort)

In this section, we describe Recursive Last Multiway Mergesort (RLM-sort). RLM-sort is the
first recursive multiway sorting algorithm that we propose in this thesis. Compared to our
second recursive multiway algorithm AMS-sort, which we describe in the next section, RLM-
sort simplifies several discussions since RLM-sort guarantees perfect load balancing. RLM-sort
subdivides the PEs into “natural” groups of size t' on which it to recurses. Asymptotically,
k := t/t' around 7 is a good choice if we want to execute r levels of recursion. However,
we may also fix ¢’ based on architectural properties. For example, in a cluster of many-core
machines, we might choose ¢’ as the number of cores in one node. Similarly, if the network
has a natural hierarchy, we will adapt ¢’ to that situation. For example, if PEs within a rack are
more tightly connected than inter-rack connections, we may choose t' to be the number of
PEs within a rack. Other networks, e.g., meshes or tori have less pronounced cutting points.
However, it still makes sense to map groups to subnetworks with nice properties, e.g., nearly
cubic subnetworks. For simplicity, we will assume that ¢ is divisible by ¢', and that k = ®(t1/ r).

There are several ways to define recursive multiway mergesort. We describe a method
we call “recurse last” (see Figure 6.5) that needs to communicate the data only r times and
avoids problems with many small messages. Every PE sorts locally first. Then each of these ¢
sorted sequences is partitioned into k pieces in such a way that the sum of these piece sizes is
n/k for each of these k resulting parts. In contrast to the single-level algorithm, we run only
k multisequence selections in parallel and thus reduce the bottleneck due to multisequence
selection by a factor of ¢'.

Now we have to move the data to the responsible groups. We refer to Section 6.4 which
shows how this is possible using time EXch(t, 7, (’)(tl/’)).

Afterwards, group i stores elements that are no larger than any element in group i + 1 and
it suffices to recurse within each group. However, we do not want to ignore the information
already available—each PE does not store an entirely unsorted array but a number of sorted
sequences. This information is easy to use though—we merge these sequences locally first
and obtain locally sorted data, which can then be subjected to the next round of splitting.
Algorithm 12 provides pseudocode of the RLM-sort algorithm.

Theorem 6.13 (Running time of RLM-sort with O (1) recursion levels)

RLM-sort with r = O(1) levels of recursion can be implemented to run in time

O((oclogt+t1/r B+t log % + %)IOgl’l)‘F

% Exch (£, m,0(8)) . (6.3)

Proof. (Outline) Local sorting takes time (’)(% logn). For r = O(1) multiselections we get the
bound (’)(((x logt + kB +klog %) log n) from Equation (5.1). Summing the latter two contri-
butions, we get the first term of Equation (6.3).

In level i of the recursion we have k' independent groups containing t/k’ = t/t!/" = t'=//
PEs each. An exchange within the group in level i costs Exch(t!7//7, 5 O(tl/ r)) time. Since all
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PE1 PE2 PE3 PE 4
\ | | | | | | | p=4
sort locally
\ < | | < | | < | | < |
k-way parallel multi-select with k = @(pY/7) = 41/,
g | < | | < | | < | | < ]
g Exch(p, 5, O(k))
Tl < Tl < [T <] < 1T < | K< < ]
group 1 merge locally group 2
\ < | | < 1|1 < | | < |
recurse on % items with % PEs recurse on 7 items with % PEs

Figure 6.5: Algorithm schema of Recurse Last Parallel Multiway Mergesort.

independent exchanges are performed simultaneously, we only need to sum over the # recursive
levels, which yields the second term of Equation (6.3). O

Equation (6.3) is a fairly complicated expression but using some reasonable assumptions
we can simplify the equation. If all communications are equally expensive, the sum becomes
rExch(t, 7, O(tl/ r)), i.e, we have r message exchanges involving all the data but we limit
the number of startups to O(tl/ ’). On the other hand, on mesh or torus networks, the first
(global) exchange will dominate the cost and we get EXch(t, 7, o(t/ ")) for the sum. If we
also assume that data is delivered directly, Q(¢/") startups hidden in the Exch() term will
dominate the (’)(log2 t) startups in the remaining algorithm. We can assume that # is bounded
by a polynomial in t—otherwise, a traditional single-phase multiway mergesort would be a
better algorithm. This implies that logn = ®(logt). Furthermore if n = w(t'*"/"logt) then
n/t = w(t+ logt) and the term Q( [3?) hidden in the data exchange term dominates the term
(’)( ﬁt% log n) Thus Equation (6.3) simplifies to (’)(f log n) (essentially the time for internal
sorting) plus the data exchange term.

If we also assume a and /3 to be constants and estimate Exch-term as O( h ), we get execution
time

O(tl/r log’ t + g logn) .

From this, we can infer O(t”l/ "logt) as isoefficiency function.

6.6 Adaptive Multi-Level Samplesort (AMS-sort)

A good starting point is the recursive multiway samplesort algorithm by Gerbessiotis and
Valiant [GV94]. However, they use centralized sorting of the sample and their data redistribu-
tion may lead to some PEs receiving Q(¢) messages (see also Section 6.4). We improve this
algorithm in several ways to achieve a truly scalable algorithm. First, we sort the sample using
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Algorithm 12 RLM-sort

Input: A[1..n/t] data elements, t PEs, k PE-groups
A' < SoRrT(A)
return RLM-RECURSIVE(A', t, k)

function RLM-RECURSIVE(A, t, k)
Input: A[1..n/t] data elements, t PEs, k PE-groups
L € N* « temp. array of local bucket sizes induced by equidistant ranks
G € NF « temp. array of global bucket sizes induced by equidistant ranks
ift = 1 then
return A
fori < [1..k) do vectorized
L[i] < MULTISEQUENCESELECTION(A, n/k - i) I> Select splitter by global rank n/k - i

Gli] < n/k-i
M < MESSAGEASSIGNMENT(L, G, k) > Assign local (sub)buckets to PEs of PE-groups
M' < DATAEXCHANGE(A, M) > Send messages M and receive messages M’
A’ <~ MERGE(M') > Merge received messages

return RLM-RECURSIVE(A', t/k, k)

fast parallel sorting. Second, we use the advanced data exchange algorithms described in Sec-
tion 6.4, and third, we give a scalable parallel adaptation of the idea of overpartitioning [LS94]
in order to reduce the sample size needed for good load balance and a smaller memory footprint
on the nodes. We state the lemmas and theorems in this section without proofs. For details, we
refer to our initial publication of AMS-sort [Axt+15a].

But back to our version of recursive multiway samplesort (see Figure 6.6). As in RLM-sort,
our intention is to split the PEs into k groups of size t’ = t/k each, such that each group processes
elements with consecutive ranks. To achieve this, we choose a random sample of size abk
where the oversampling factor a and the overpartitioning factor b are tuning parameters. The
sample is sorted using a fast sorting algorithm. We assume the fast inefficient algorithm from
Section 6.1. Its execution time is O(“—lt’k log ‘L‘t'k + ‘t‘% +alog t).

From the sorted sample, we choose bk — 1 splitter elements with equidistant rank. These
splitters are broadcast to all PEs. This is possible in time O(Bbk + alogt). Then every PE
partitions its local data into bk buckets corresponding to these splitters. This takes time
O(% log(bk)).

Using a collective all-reduce, we then determine global bucket sizes in time O( bk + alogt).
These can be used to assign buckets to PE-groups in a load-balanced way: Given an upper
bound L on the number of elements per PE-group, we can scan through the array of bucket
sizes and skip to the next PE-group when the total load would exceed L. Using binary search
on L, this finds an optimal value for L in time O(bklogn) using a sequential algorithm.

Lemma 6.14 (Optimality of overpartitioning)
The above binary search scanning algorithm indeed finds the optimal L.
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PE1 PE2 PE3 PE 4
\ | | | | p=4
pick abk samples and perform fast work inefficient sort
partition locally by (bk)-1 splitters si, s, 53 with k = ®(p1/’) =412,
§ L& < ¢ ] [« < < ] [55¢ | [ & 4]
g S1 L) S3 S1 Sy S3 $182 S3 S1 S S3
§ select group boundaries using binary search
S T f t [ f < ] [ [ —
group 1 === KgroupZ@(}Z%(l*f)’o(k»
LTI T 10 [ L] 1 I [
recurse on % (1 - ¢) items with % PEs recurse on % (1 + ¢) items with £ PEs

Figure 6.6: Algorithm schema of AMS-sort.

The binary scanning algorithm finds arbitrarily good splitters with high probability for
appropriate a and b.

Lemma 6.15 (Imbalance bound of AMS-sort for one recursion level)

We can achieve L = (1 + &) with high probability choosing appropriate b = Q(1/e) and
ab = Q(logk).

We improve the assignment of buckets to PE-groups to O (bklog bk) and, using paralleliza-
tion, even to O(bk + alogt). The first observation for improving the binary search algorithm
is that a PE-group size can take only C’)((bk)z) different values since it is defined by a range
of buckets. We can modify the binary search in such a way that it operates not over all con-
ceivable group sizes but only over those corresponding to ranges of buckets. When a scanning
step succeeds, we can safely reduce the upper bound for the binary search to the largest PE-
group actually used. On the other hand, when a scanning step fails, we can increase the lower
bound: during the scan, whenever we finish a PE-group of size x because the next bucket of
size y does not fit (i.e., x + ¥y > L), we compute z = x + y. The minimum over all observed
z-values is the new lower bound. This is safe since a value of the scanning bound L less than
z will reproduce the same failed partition. This already yields an algorithm running in time
O(bklog((bk)?)) = O(bklog(bk)).

The second observation is that only values for L in the range [[n/r — 1] .. (1 + O(1/b))n/k]
are relevant (see Lemma 6.15). Only O(bk) bucket ranges will have a total size in this range.
To see this, consider any particular starting bucket for a bucket range. Searching from there to
the right for range end points, we can skip all end buckets where the total size is below n/k. We
can stop as soon as the total size leaves the relevant range. Since buckets have an average size
of O(n/b), only a constant number of end points will be in the relevant range on the average.
Overall, we get O(bk) - O(1) = O(bk) relevant bucket ranges. Using this for initializing, the
binary search speeds up the sequential algorithm by a factor of about two.

Using all ¢ available PEs, we can do even better: in each iteration, we split the remaining
range for L evenly into ¢ + 1 subranges. Each PE tries one subrange end point for scanning and
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Algorithm 13 AMS-sort

Input: A[1..n/t] dataelements, ¢ PEs, k PE-groups, a oversampling factor, b overpartitioning
factor
I € N%F « temp. array of local bucket sizes induced by splitters
g € N « temp. array of global bucket sizes induced by splitters
L € N* « temp. array of local bucket sizes induced by grouped buckets
G € N¥ « temp. array of global bucket sizes induced by grouped buckets
ift = 1 then
A" < sorT(A) return A’

S < CHOOSERANDOMSAMPLE(A, abk) > |S| = abk
R < FASTWORKINEFFICIENTRANKING(S)

E < cHOOSEEQUIDISTANT(S, R, bk — 1) > |E| =bk -1
E' < ALLGATHERMERGE(E)

! < LoCALPARTITION(A, E") > Partition local data into bk buckets
g < ALLREDUCE(]) > Determine global bucket sizes (collective all-reduce)

(L,G) <« rASTBUCKETGROUPING(], g)

M <« MESSAGEASSIGNMENT(L, G, k) > Assign local (sub)buckets to PEs of PE-groups
A" < DATAEXCHANGE(A, M) > Exchange data according to messages M
return Ams-sort(A’, t/k, k, a, b) > Recurse on PE-groups

uses the first observation to round up or down to an actually occurring size of a bucket range.
Using a collective reduce operation we find the largest L-value Ly, for a failed scan and the
smallest L-value Ly, for a successful scan. When Ly,.x = Ly, we have found the optimal value
for L. Otherwise, we continue with the range [ Liax .- Lmin |- Since the bucket range sizes in the
feasible region are fairly uniformly distributed, the number of iterations will be log,, , O(bk).
Since t > k, this is O(1) if b is polynomial in k. Indeed, one or two iterations are likely to
succeed in all reasonable cases.

The data splitting defined by the bucket group is then the input for the data exchange
algorithm described in Section 6.4. This takes time Exch (¢, (1 +0(1))L, (2 + o(1))k)).

We recurse on the PE-groups similar to Section 6.6. Within the recursion it can be exploited
that the elements are already partitioned into bk buckets.

We get the following overall execution time for one level:

Lemma 6.16 (Running time of single-level AMS-sort)
One level of AMS-sort works in time

0(?1og§+ﬁ§)+Efa1(t,(1+s)g,0(k)) . (6.4)

Compared to previous implementations of samplesort, including the one from Gerbessiotis
and Valiant [GV94], AMS-sort improves the sample size from O(tlogt/e?) to O(t(logk + 1/¢))
and the number of startup overheads in the Exch-term from O(t) to O(k). In 2019, Harsh
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et al. [HKS19] improves these results to a total of O( plog k’%”) samples in O(log IO%P) rounds
of histogramming.
In the base case of AMS-sort, when the recursion reaches a single PE, the local data is

sorted sequentially. Algorithm 13 provides pseudocode of AMS-sort.

Theorem 6.17 (Running time of AMS-sort with r recursion levels)
Adaptive multi-level samplesort (AMS-sort) with r levels of recursion and an imbalance factor
(1 + ¢) in the output can be implemented to run in time

2.1/r r

rt )+ 3 Eeh (¢4, (1+6)5, 0(¢'7))

0(;logn+ﬁ

€
ifr = O(logt/loglogt) and 1 = O(n'/").

Using a similar argument as for RLM-sort, for constant r and &, we get an isoefficiency
function of t'+1/"/logt for k = t'/7. This is a factor log” t better than for RLM-sort and an
indication that AMS-sort might be the better algorithm—in particular, if some imbalance in
the output is acceptable and if the inputs are rather small.

Another indicator for the good scalability of AMS-sort is that we can view it as a generaliza-
tion of parallel quicksort that also works efficiently for very small inputs. For example, suppose
n = O(tlogt) and 1/e = O(1). We run r = O(logt) levels of AMS-sort with k = O(1)
and ¢’ = O(r/e). This yields running time (9(log2 tloglogt + alog’t). This does a factor
O(loglogt) more local work than an asymptotically optimal algorithm. However, this is likely
to be irrelevant in practice since we expect that e > loglogt for most cases. Also the factor
loglogt would disappear in an implementation that exploits the information gained during
bucket partitioning.

Robustness

In this work, we tested two tie-breaking approaches. The first approach turns inputs with
duplicates into inputs without duplicates. Each element e is implicitly represented as a tuple
(e,i,m) where i is the index of the source PE and m is the position in the local input of PE i.
The partitioning step compares the local elements to the splitters lexicographically. An explicit
representation of the tuples is only required for the splitters. Depending on the i- and m-values
of elements and splitters, we break ties by either using the comparator function < or by using
the comparator function <. As all local elements share the same i-value and as elements that
are close together have similar m-values we can apply the same comparator function to a large
precalculated range of elements. Thus, the overhead is very small. However, this approach has
two disadvantages. First, to become cache-efficient, we perform multiple partitioning passes if
the number of partitions is large. This makes the tracking of the i- and m-values somewhat
complicated. Second, this approach does not give us any flexibility in distributing duplicated
elements to different PEs for the sake of low imbalance.

For AMS-sort, we propose a different approach. We partition the local elements into buckets
and add additional equality buckets for elements corresponding to a splitter. To break ties, we
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Figure 6.7: Scanning algorithm examples with bound L. L is a lower bound in the left
example and an upper bound in the right example.

refine the algorithm that assigns buckets to PE-groups. To verify a bound L, we scan through
the array of bucket sizes and skip to the next PE-group when the total load would exceed
L. Equality buckets are allowed to overlap one or multiple PE-groups. Our binary search
should not operate over all conceivable group sizes but only over those corresponding to ranges
of buckets. Thus, we adjust L before we continue the binary search algorithm of the bucket
assignment. If the scanning algorithm was not able to assign all buckets, we can safely increase
L until the scanning algorithm moves a bucket to a prior PE-group. Otherwise, we decrease L
until a bucket would have to be moved to a subsequent PE-group.

We first consider the case that the scanning algorithm failed. Let g be the residual capacity
of PE-group i, let w be the capacity of the first bucket assigned to PE-group i + 1, and let x be the
number of PE-groups prior to PE-group i whose last bucket overlaps with its successor. Note
that we can track x for all PE-groups in O(r) time when we process the PE-groups in ascending
order. For PE-group i we compute z; = L + (w — g)/(x + 1). The minimum over all observed
z-values is the new lower bound. To understand that this is safe, we consider the z;’s from
previous PE-groups j € [0..7). On the one hand, PE-group i needs w — g additional residual
capacity. On the other hand, an increase of L by (w — g)/(x + 1) increases the total capacity of
PE-group i by (w — g)/(x + 1) and adds additional residual capacity of x(w — g)/(x + 1) to
PE-groups [i — x..1). This additional residual capacity must be pulled back by these PE-groups
using their overlapping equality buckets to create w— g additional residual capacity on PE-group
i. Thus, z; is a lower bound required to move the first bucket of PE-group i + 1 to PE-group i. If
minje[o..jy X; < 2;, this lower bound is already undercut by previous PE-groups and we do not
have to consider z; at all. If minjc[o. ;) x;j > z;, the value z; is also an upper bound required to
move the first bucket of PE-group i + 1 to PE-group i since PE-groups j € [i — x..1) are actually
able to pull back enough elements using their overlapping equality buckets.
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When the scanning algorithm succeeds, we use a similar algorithm to update L. The idea
is that we allow PE-groups to push parts of their equality buckets to subsequent PE-groups
as long as the equality buckets do not wrap over to another PE-group. Figure 6.7 depicts two
examples of the scanning algorithm. In one example, the bound L is a lower bound and we
increase L by the minimum of the z-values (here z, respectively z3). In the other example, the
bound L is an upper bound and we decrease L by the minimum of the z-values (here zy).

Compared to the first tie-breaking approach, we can exploit equality buckets to decrease
the load imbalance and simplify the partitioning algorithm. For example, we can use the
partitioning step from Section 3.1 to partition the local input and to create equality buckets
efficiently. A disadvantage is that the assignment of buckets to PE-groups becomes more
complicated.
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Chapter 7

Experiments and Conclusion

In this chapter, we present extensive experimental results from 11 different sorting algo-
rithms, ten data distributions, and two supercomputers with up to 262 144 cores. On the one
hand, we compare our algorithms to their competitors for a wide spectrum of inputs. On the
other hand, we consider each algorithm separately and push their robustness to the limits with
publicly available data distributions but also with our own worst case input distributions. To
better understand which algorithmic measures have an impact under which circumstances we
examine different implementation stages of our algorithms.

Algorithms. We included the following implementations in our benchmark set:
o GatherMsort: Our simple binomial-tree gather-merge-sort from Section 5.3.1.
o RFIR: Our robust fast work-ineflicient ranking from Section 6.1.
« RFIS: Our robust fast work-inefficient sorting from Section 6.1.
o RQuick: Our robust hypercube quicksort from Section 6.3.
« BitonicSort: Our bitonic sort for arbitrary values of ¢ from Section 7.1.
o AMS-sort: Our recursive multiway samplesort algorithm from Section 6.6.

« Minisort: Our reimplementation of distributed quicksort from Siebert and Wolf [SW11]
for the case n = t (also see Section 7.1).

o RLMS-sort: Our MPI reimplementation of single-level histogram sort with sampling
from Harsh et al. [HKS19] (again see Section 7.1).

« HykQuick: Hypercube quicksort from Sundar et al. [SMB13].
« HykSort: Multiway hypercube mergesort from Sundar et al. [SMB13].

o HSS: Multiway hypercube histogram sort with sampling from Harsh et al. [HKS19].

We do not present results of allgather-merge-sort from Sections 5.1.1 and 5.3.1 since allgather-
merge-sort was slower than RFIS and GatherMsort for any input size we have tested.

Input Distributions. We ran benchmarks with ten input distributions of 64-bit floating-point
elements. We report results for seven input distributions proposed by Helman et al. [HB]98],
i.e., Uniform (independent random values), BucketSorted (locally random, globally sorted),
DeterDupl (only logt different keys), Staggered (hypercube-like routing with perfect splitters
would have a load imbalance factor of 2), g-Group with g == t'/2, Zero (all elements are equal),
and RandDupl (32 local buckets of random size, each filled with an arbitrary value from
[0..32)). We do not present results for the input distribution Gaussian by Helman et al. [HB]98]
since all algorithms sort this distribution as fast as Uniform input. The input distribution
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BucketSorted is meaningless for n < t? and the input distribution g-Group is meaningless
for n < t*/2. Additionally, we included the input distributions AllToOne and Mirrored. The
first n/t — 1 elements of AllToOne on PE i are random elements from the range [t + (¢t -
i)(22 —t)/t..t+ (t—i+1)(2° —t)/t] and the last element has the value ¢ —i. At the first level
of a naive implementation of recursive multiway samplesort, the last min(¢,7/t) PEs would
send a message to PE 0. The input of the distribution Mirrored on PE i are random numbers
between 2°!( )/t and 2*' (j + 1)/t where the integer bit representation of j is the reverse bit
representation of i. Mirrored is a generalization of the bit-reversal permutation by Thomson
Leighton [Lei92, Sec. 3.4.2] to arbitrary n. For naive hypercube-based sorting algorithms, this
distribution has an intermediate imbalance of |11/t'/? | elements in the case of perfect splitters.
We refer to Section 5.1.1 for more details.

Supercomputers. The results of our sorting experiments were obtained on two supercomput-
ers. The first supercomputer, SuperMUC-NG [Leil8], is a distributed system with a two-level
hierarchical network. The computation nodes of SuperMUC-NG are bundled into eight so-
called islands, each equipped with 788 nodes. Each node has two Intel Skylake Xeon Platinum
8174 24-core CPUs with a standard frequency of 3.1 GHz and 96 GByte of memory. A fat tree
network topology connects the nodes within an island for highly efficient communication using
the Intel OmniPath Interconnect network technology. Computation nodes are connected to the
fat tree by Intel OPA100 adapters. At the level of islands, the overall communication bandwidth
is pruned by a factor of four. When we allocate a job on SuperMUC-NG, we always allocate
full islands to minimize running time fluctuations caused by other jobs on the same island. The
maximum number of islands available to us was four. However, we used only two instead of
four islands since we measured large running time fluctuations for small inputs on four islands.

The second supercomputer, JUQUEEN [SD15], is an IBM BlueGene/Q based system of 56
so-called midplanes, each equipped with 512 compute nodes. Each compute node has one IBM
PowerPC A2 16-core CPU with a nominal frequency of 1.6 GHz and 16 GByte of memory.
A 5-D torus network with 40 GB/s and 2.5 us worst case latency connects the nodes. Each
midplane connects its compute nodes with a 4x4x4x4x2 torus. The user can specify the number
of midplanes per torus dimension. In our experiments, we configured the tori such that the
size of the dimensions is as equal as possible. The maximum number of midplanes available to
us was 32. The JUQUEEN has been switched off in 2018.

We also executed preliminary experiments on SuperMUC Phase 1 and Phase 2 [Leil5].
However, the running time of the algorithms fluctuated a lot on these machines for large t. In
Appendix B.1, we discuss these fluctuations measured on the SuperMUC supercomputers in
more detail.

Overview. This chapter is divided as follows. We give implementation details in Section 7.1
and describe our parameter tuning in Section 7.1.2. In Section 7.2 we define the methodology
of our experiments. Section 7.3 presents results for our algorithms and our closest competi-
tors HykSort and HSS for eight input distributions on SuperMUC-NG with 2'¢ cores and on
JUQUEEN with 2'8 cores. In Section 7.4, we compare our robust algorithms to their nonrobust
versions and their competitors. In Section 7.5, we discuss the efficiency of RFIS, RQuick, and
AMS-sort in terms of weak and strong scaling. Finally, we summarize our work on robust and
scalable distributed sorting algorithms in Section 7.6.
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7.1 Implementation Details

In our publication [AWS18] we propose the lightweight library RangeBasedComm (RBC)
based on MPI (also see Appendix B.2). RBC provides routines to create RBC communicators
of consecutive PE ranges, (non)blocking collective operations, and (non)blocking point-to-
point communication. RBC provides the option to switch back to MPI communicators and
collectives if desired. All algorithms that were implemented in this work use the RBC library.
We also implemented RBC versions of our competitors HykQuick (hypercube quicksort from
Sundar et al. [SMB13]), HykSort (multiway hypercube mergesort from Sundar et al. [SMB13]),
and HSS (multiway hypercube histogram sort with sampling from Harsh et al. [HKS19]) by
replacing the MPI routines with their counterparts of RBC.

Our binomial-tree gather-merge-sort implementation GatherMsort performs three steps.
First, the PEs calculate the total input size of its subtree by sifting down the input sizes to the
root node. Second, each PE allocates a temporary array that will store the data from its subtree.
Finally, the actual binomial-tree gather-merge-sort algorithm gathers the input on the root
node in sorted order.

Sundar et al. [SMB13] propose a distributed bitonic sort algorithm. However, it turned
out that the bitonic sort implementation is not practical, i.e., it requires the same input size
on each PE, it does not perform all routines in parallel when executed with multiple threads,
and it is slowed down by unnecessary shared-memory code in the sequential case. Thus, we
decided to compare our algorithms to BitonicSort, an own robust implementation of bitonic
sort. BitonicSort allows arbitrary values of t [Lan06]. To minimize message startups, each
pairwise data exchange of BitonicSort transfers all local elements and the PEs keep the left
respectively the right half of the merged sequence. We also tested a version of BitonicSort with
multisequence selection (see Section 5.1.3) to minimize the communication volume. However,
this approach was significantly slower for small inputs where startup overheads matter and for
large inputs, one would consider other algorithms anyway. In order to support an arbitrary
number of local input elements, we determine the maximum local input size m of BitonicSort
with a collective all-reduce. After each merge operation, we then split the result into one
part containing the first [#/2] elements (if available) and one part containing the remaining
elements.

The implementation of AMS-sort borrows the partitioning step from IPS*o which already
supports equality buckets. To become more cache-efficient, we limit the number of splitters in
a partitioning step to k = 256 and perform multiple levels if required. For the data exchange
step of AMS-sort, we extended the 1-factor data exchange algorithm [ST02] to send and
receive messages using multiple connections simultaneously. For more details, we refer to the
discussion on irregular data exchanges in Section 5.2. To guarantee a maximum imbalance
factor of 1+€ = 1.1 we configure AMS-sort as follows: On each recursion level, r-level AMS-sort
accepts an additional imbalance factor of 1 + €’ = (1 + €)'/". Thus, we use an overpartitioning
factor b = 5 and an oversampling factor of a = max( 3, 13log, t)/b. In our experiments, the
imbalance of AMS-sort was always smaller than 0.1 (except for n/t < 16). If ¢ is not a power of
k, AMS-sort creates k PE-groups with |t/k| respectively [¢/k] PEs. The merging step of our
deterministic message assignment algorithm uses the merge operation of BitonicSort.
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We provide our own implementation of Minisort, a distributed quicksort algorithm from
Siebert and Wolf [SW11] for the case n = t, as the source code used in their experiments is not
available anymore.

On the authors’ recommendation, we use our own implementation (1LHSS) of single-level
histogram sort with sampling from Harsh et al. [HKS19] as the original implementation uses
the communication framework Charm++ instead of MPL. In each round of histogramming,
1LHSS adds each element to the sample with probability 5k/n. We stop histogramming as soon
as the imbalance factor is below 1.1. 1LHSS uses a fast tournament tree implementation [SSP07;
Bin18b] for efficient multiway merging.

All algorithms use the sequential version of IPS*o for local sorting. Our implementations,
i.e., GatherMsort, RFIS, RFIR, RQuick, BitonicSort, AMS-sort, and 1LHSS, are in general
capable of sorting all inputs (including the case in which some PEs do not have any local input
elements) for arbitrary £. When ¢ is not a power of two, RQuick routes the elements stored on
the additional PEs to the embedded hypercube.

The algorithms are written in C+ and communicate with MPI. On SuperMUC-NG, we com-
piled with version 19.0 of the Intel compiler, using the full optimization flags -xCORE-AVX512
and -03. For inter-process communication, we use the Intel MPI library 2020. On JUQUEEN,
the algorithms were compiled with version 4.8.1 of the GNU compiler collection, using the
optimization flag -02. For inter-process communication, we used the IBM MPI library mpich2
version 1.5. The implementation of our algorithms AMS-sort, RFIS, RFIR, and RQuick as
well as the reimplementations 1LHSS and BitonicSort can be found on the official website
https://github.com/MichaelAxtmann/KaDiS. The implementation of GatherMsort is part
of the RBC library published at https://github.com/MichaelAxtmann/RBC.

7.1.1 The k-way Data Exchange

We describe the implementation of the data exchange routine represented by the cost function
Exch(a,b,c) used by AMS-sort and RLM-sort. We know that each PE receives at most b
elements. Also, our data exchanges do not require a specific ordering of the incoming messages.
Thus, we can receive messages in any order and we can preallocate sufficient storage at the
receiving PEs. However, we need a technique that exchanges data without initially knowing
the incoming messages at the receiving side—each PE only knows its outgoing messages. We
use an implementation of the data exchange algorithm NBX [HSL10]. NBX posts all send
operations in a bulk and receives incoming messages once available. It combines a nonblocking
barrier with synchronous send operations to identify when all messages have been successfully
received. NBX is designed for data exchanges with O(logt) messages per PE and thus, can
efficiently send the messages in a bulk. We use a refined version of NBX since our k-way sorting
algorithms exchange O (k) messages. The value k is usually much larger than O(logt), e.g., our
recursive multiway algorithms with three levels use k = t/* groups. Our implementation limits
the number of incoming and outgoing messages to a maximum of m. We first create m slots
for send respectively receive operations and post the first 71 send operations determined by the
1-factor algorithm. Then we continuously fill vacant send slots with the next send operation
and vacant receive slots with a receive operation once an incoming message is ready for pickup.
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7.2 Methodology

Since version 2.1, the MPI library MPICH uses a similar technique to limit the number of
simultaneous message transfers in irregular data exchanges.

7.1.2 Parameter Tuning

We performed extensive parameter tuning on JUQUEEN and SuperMUC-NG. Each algorithm
has a range of input sizes where it is designed to be the fastest. We optimized each algorithm to
run as fast as possible in this input range. All recursive multiway algorithms in the benchmark
portfolio are attractive for relatively large inputs (i.e., n/t > 2'? on SuperMUC-NG and n/t > 2!
JUQUEEN) as they come with large overheads for small inputs. We tested all recursive multiway
algorithms with these input sizes and Uniform input distribution. AMS-sort, HykSort, and
HSS were executed with k = 16, 32, 64, 128. For each algorithm, we select the k for which they
performed best on average for large inputs: On SuperMUC-NG, the algorithms sorted large
inputs the fastest with k = 64. On JUQUEEN, AMS-sort and HykSort performed best with
k = 64 respectively k = 32. The HSS algorithm had not yet been published at that time we
ran the experiments on JUQUEEN. AMS-sort does not provide shared-memory parallelism.
HSS and HykSort were significantly slower on SuperMUC-NG with more than one thread.
On JUQUEEN, HykSort was slightly faster with eight instead of one thread. For the sake of
consistency, we present results for all algorithms with one thread per process. More levels speed
up the recursive multiway algorithms for smaller inputs (up to 50%) but slow them down for
large inputs. Fewer levels slightly speed up the algorithms for very large inputs.

7.2 Methodology

In our experiments, we always execute one MPI process per core. For the sake of consistency,
we continue to use the term PE, which from now on is also a synonym for MPI process.
Unlike stated otherwise, we use 65 536 cores on SuperMUC-NG respectively 262 144 cores on
JUQUEEN and the input distribution Uniform.

Before each measurement, we invoke a global barrier to synchronize the PEs. We then
measure the local wall times and use the maximum wall time as the running time of the
run. On JUQUEEN we repeat each measurement five times (1 < 2!7) respectively two times
(n > 2'8) and average over runs. We do not show error bars since the ratio between the
maximum execution time and the average execution time is consistently less than a few percent.
On SuperMUC-NG we noticed fluctuations in running time while warmup as well as while
executing sparse data exchanges with non-deterministic communication partners. We study
these issues in Appendix B.1. As a consequence, we decided to sort each input repeatedly
until the running time exceeds two seconds, but at least twice, and average over runs. This
experimental setup compensates for fluctuations in the running time of quickly sorted (small)
inputs and limits the time of expensive (large) inputs. Overall, we spent more than twenty
million core-hours on JUQUEEN and SuperMUC-NG.

We benchmark algorithms in separate jobs since the running time of some algorithms
influenced the running time of another algorithm executed in the same job. Our competitors
HykSort and HSS suffer from deadlocks on some small inputs and some large input distributions
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with duplicates. As a consequence, we sort small inputs first and we submit multiple jobs for
each of these algorithms—the jobs separate input distributions and inputs with n/t < 27 and
nft>27.

The algorithms were executed for dense inputs with n/t = 2/, i € [0..22] and sparse inputs
with sparsity-factors 3%, i € [1..5]. Sparse inputs with a sparsity-factor t/n mean that only the
first n PEs hold an input element. Dense inputs are evenly distributed among the PEs.

Unless stated otherwise, we executed the algorithms as follows: On SuperMUC-NG and
JUQUEEN, our implementations GatherMsort, RFIR, RFIS, RQuick, BitonicSort, AMS-sort,
and Minisort used RBC for communication. On SuperMUC-NG, we benchmarked our com-
petitors HykQuick, HykSort, and HSS with RBC as well. On this supercomputer, our com-
petitors were much slower with pure MPI—even when we excluded the time for commu-
nicator splitting. We refer the reader to Appendix B.2 for a detailed performance compari-
son of HykQuick, HykSort, and HSS with pure MPI and with RBC on SuperMUC-NG. On
JUQUEEN, we benchmarked our competitors HykQuick, HykSort, and HSS with pure MPI
since the collective communication operations provided by MPI were extremely fast on this
supercomputer. When we execute our competitors with MPI collectives, they also require the
MPI sub-communicators. Unfortunately, the MPI communicator creation was also slow on
this supercomputer. Thus, we decided to exclude the time for communicator splitting when we
report results of our competitors obtained on JUQUEEN. We argue that the communicators
could be stored and reused in a sorting object over many runs with arbitrary inputs. Thus, we
view the overhead for MPI communicator splitting as a precomputation.

7.3 Input Size Analysis and Algorithm Comparison

Motivation. In this section, we present the results of our sorting algorithms GatherMsort,
BitonicSort, RFIS, RQuick, AMS-sort, and competitors HSS respectively HykSort. We exclude
the competitor Minisort from the discussion in this section as Minisort is not competitive
for any input distribution (see Section 7.4.2). We expect to need multiple algorithms to sort
the entire parameter space of input sizes as fast as possible. The reason is that the algorithms
trade off startup overheads and communication volume differently. Our asymptotic analysis
suggests that algorithms with small overhead sort small inputs the fastest whereas for larger
inputs, algorithms with larger overheads benefit from less communication volume. Besides
the algorithm comparison for inputs with a sparsity-factor of 243 to 2?2 elements per PE, we
examine their robustness for eight input distributions—the input distributions from Helman
et al. [HBJ98] and the distribution Mirrored.

Experimental Results. Figures 7.1 and 7.3 show the running times obtained on the super-
computers SuperMUC-NG and JUQUEEN. Figures 7.2 and 7.4 give running time ratios of
each algorithm compared to the fastest algorithm. We do not present the results of our com-
petitor HykSort obtained on SuperMUC-NG as HSS (HykSort with a refined splitter selection
algorithm) turned out to be faster in all situations. On JUQUEEN, we have to compare our
results to HykSort as HSS had not yet been published when JUQUEEN was decomposed.
GatherMsort sorts very sparse inputs (1/t < 372) up to 1.8 times as fast as the other sorting
algorithms on JUQUEEN. On SuperMUC-NG, the performance is slightly better as we use
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fewer PEs on this supercomputer. Remember that GatherMsort does not fulfill the balance
constraint of sorted output.

For all input distributions, RFIS is the fastest sorting algorithm when 373 < n/t < 4 on
JUQUEEN. For example, RFIS sorts Uniform sparse inputs up to 3.6 times as fast as its com-
petitors and a single element per PE more than twice as fast as RQuick and BitonicSort. On
SuperMUC-NG, RFIS is the fastest sorting algorithm on a rather narrow range of input sizes.

On JUQUEEN, RQuick sorts small (n/t = 23 to 2'*) Uniform inputs up to 3.4 times as fast
as any other algorithm (more than 8 times if we exclude our algorithm AMS-sort). RQuick
sorts these small inputs up to 3.3 times as fast as on SuperMUC-NG. In general, the running
times of RQuick for Uniform inputs do not differ much from the running times for other input
distributions. There is no need for BitonicSort: When the running time of RQuick is bound by
its message startups, BitonicSort has a similar performance. However, for these input sizes, one
would prefer RFIS in most cases. For larger input sizes, RQuick is in most cases at least twice as
fast as BitonicSort. Thus, even when ¢ is not a power of two, we expect RQuick to outperform
BitonicSort.

AMS-sort is more efficient than the multiway hypercube algorithms HSS and HykSort
for small inputs. Also, HSS and HykSort crashed on input sizes of distributions DeterDupl,
RandDupl, and Zero. Apart from that, AMS-sort, HykSort, and HSS are the fastest algo-
rithms for large inputs (more than 2'° elements per PE on JUQUEEN and more than 2!
elements per PE on SuperMUC-NG). For example, RQuick is for the largest input between
2.08 (Uniform) and 12.35 (Zero) times slower than RQuick. We now compare AMS-sort to
HSS on SuperMUC-NG: AMS-sort is faster than HSS for all large input instances. For Uniform,
BucketSorted, and g-Group inputs, HSS is almost as fast as AMS-sort. Also, AMS-sort sorts
the skewed input Staggered up to 2.69 times as fast as HSS (more than 8 times if we consider
Mirrored, which is hard for nonrobust hypercube algorithms). Finally, we compare AMS-sort to
HykSort on JUQUEEN: AMS-sort is always faster for 2!> to 2!7 elements per PE. For n/t > 2'7,
the situation becomes more distribution-dependent. For uniform inputs, HykSort is up to 1.10
times as fast as AMS-sort. However, HykSort sorts Staggered inputs up to 1.70 times slower
than AMS-sort. This slowdown is caused by the skewed input distribution. Mirrored input is
even harder for HykSort. Le., HykSort sorts Mirrored input 9.24 times slower (n/t = 2'®) than
AMS-sort and crashed for n/t > 2'6. We want to note that we use a refined version of HSS that
uses our RBC library for communication. For more information, we refer to Appendix B.2
which illustrates that the refinements speed up the original version by up to a factor of 101.

Conclusion. GatherMsort is the fastest algorithm for very sparse inputs. For sparse and very
small inputs one would prefer RFIS. One would choose RQuick for medium-sized inputs.
And, AMS-sort seems to be a good compromise between robustness and performance for large
inputs. Note that AMS-sort sorts inputs on arbitrary supercomputer sizes but HykSort and
HSS require that t = k" where r is the number of levels. HykSort and HSS are competitive to
AMS-sort for some input distributions but sort other distributions slowly or even crash. Due
to the robustness of our sorting algorithms, their running time is not sensitive to the input
distribution. As a result, one could once execute a performance test for Uniform inputs on a
supercomputer instance and then choose the appropriate algorithm only depending on the
input size.
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7.4 Robustness Analysis

We now have a closer look at the impact of various algorithmic measures to improve the
robustness of our algorithms and discuss the robustness of our competitors. We consider three
major issues with respect to the robustness of a massively parallel sorting algorithm: (1) Its
scalability, i.e., its running time as a function of n and ¢, (2) how the algorithm behaves with
respect to skewed input distributions, and (3) how it handles repeatedly occurring keys. We
show results for a selection of input distributions: Uniform for randomly distributed input,
DeterDupl for inputs with duplicates, and Staggered as well as Mirrored input for skewed
respectively very skewed input. For the robustness experiments of AMS-sort, we also show
results for the skewed input distribution AllToOne, which is a hard input for some recursive
multiway algorithms.

We executed the robustness experiments on SuperMUC-NG and on JUQUEEN. However,
we present results obtained on SuperMUC-NG in most cases. The reasons are manifold: First,
the results on SuperMUC-NG were very similar to the results on JUQUEEN. Second, the non-
robust versions of the algorithms have an advantage on SuperMUC-NG as this supercomputer
is equipped with more local memory and the number of PEs is lower. Third, SuperMUC-NG
is currently listed at position 15 of the TOP500 list (November 2020) whereas JUQUEEN has
already been decomposed. Finally, algorithms that initially seemed to be robust on JUQUEEN
were not robust on SuperMUC-NG. An example is the routing of the ranked elements to their
final PEs in RFIS. For n/t < logt it should be more efficient to route an element with rank r to
PE rn/t with a single point-to-point message. However, on SuperMUC-NG these sparse data
exchanges caused running time fluctuations and we achieved much more reliable results when
we use a hypercube data routing algorithm. For a more detailed experimental analysis, we refer
to Appendix B.1.

Overview. InSection7.4.1, we examine the robustness of RFIS for different input distributions
and compare its performance to the performance of different gather-based sorting approaches.
Section 7.4.2 extensively evaluates the robustness of RQuick compared to the nonrobust version
of RQuick for different input distributions. In this section, we also compare RQuick to quicksort
for the special case n/t = 1 (Minisort from Siebert and Wolf [SW11]) and to HykQuick, a
hypercube quicksort implementation from Sundar et al. [SMB13]. In Section 7.4.3, we discuss
the robustness of our competitors HykSort and HSS. Finally, we extensively compare AMS-sort
to nonrobust AMS-sort in Section 7.4.4. In this section, we also compare the performance of
AMS-sort to the performance of the single-level sorting algorithms 1ILAMS-sort and 1LHSS.

7.4.1 Robustness of Logarithmic Latency Algorithms

Motivation. In this section, we examine the robustness of algorithms with logarithmic mes-
sage startups in three parts. First, we compare the running time of GatherMsort to much
simpler gathering-based sorting algorithms and test the robustness of these simple algorithms
in terms of scalability and efficiency. Second, we compare the cost of the ranking algorithm
RFIR to the cost of converting the ranked elements to sorted output (RFIS). Finally, we study
the robustness of RFIS to skewed inputs and inputs with duplicates.
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Sorting by Gathering. We compare our GatherMsort algorithm to GatherS, a simplified
version of GatherMsort that sorts the whole input on the root PE, and MPIGatherS, a collective
gather with MPI collectives (MPI_Allgather for the message size exchange and MPI_Gatherv
for the actual element gathering) followed by local sorting of the result. Figure 7.5a depicts the
running times for Uniform input. MPIGatherS is up to two orders of magnitude slower than
GatherMsort and GatherS for small inputs. The reason is that MPI_Gatherv requires the local
input sizes on each PE to handle arbitrary input sizes on each PE. These sizes are distributed
with an MPI_Allgather operation that has a communication volume linear to t. In contrast,
GatherMsort and GatherS only need log t message startups since they propagate the sizes with
a binomial-tree operation to the parent PEs. For all inputs, GatherMsort is faster than GatherS,
e.g., more than a factor of two for n/t > 1. The reason is that GatherMsort sorts the input
locally and merges the elements while routing in parallel.

Overall, we have seen very poor scalability of the gathering-based sorting algorithms. In
particular, the running time of MPIGathersS increased rapidly when we sorted sparse inputs
on more than a hundred PEs. The fact that GatherMsort outperforms all algorithms for the
smallest input comes with the price that it needs O(n) local memory. Therefore it was not
surprising that gathering-based sorting ran out of memory for n/t > 28 on JUQUEEN.

From Ranking to Sorting. Figure 7.5a shows the running time of RFIS and RFIR. For very

small inputs, RFIS is up to a factor of two slower than RFIR as the redistribution of the elements
requires O (logt) startup overheads. For larger inputs, these overheads are dominated by the
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time for the actual data transfer and the local work. It turned out that the reduce operation,
which calculates the final ranks, dominates the running time for large inputs. Thus, RFIS and
RFIR have similar running times for these inputs.

Fast Work-Inefficient Sorting. Figure 7.5b compares the running time of RFIS for differ-
ent input distributions. The time for routing the elements to their final PEs is limited by
O(oc logt + pn/t'/ 2). While input of some input distributions come close to this upper bound,
other distributions need much less element transfers. For example, uniformly distributed inputs
only need O(alogt + Sn/t) with high probability. Thus, RFIS sorts large Uniform inputs up to
1.26 times as fast as DeterDupl and Mirrored inputs in our experiments. We see some running
time fluctuations for sparse inputs (factor of < 1.25). These seem to be random overheads
caused by the machine or the MPI library as they occurred randomly over multiple runs. On
JUQUEEN, we did not see these fluctuations.

7.4.2 Robustness of RQuick

Motivation. In this section, we study the robustness of our algorithm RQuick by comparing
its running time and imbalance to other quicksort algorithms. First, we compare RQuick to a
variant of RQuick without redistribution and tie-breaking (NRQuick) to illustrate the quality of
these robustness measures. Then, we compare RQuick to HykQuick from Sundar et al. [SMB13],
a simple implementation of hypercube quicksort that selects splitters by gathering and locally
sorting a random sample. We expect that the approximate median selection of RQuick selects
high-quality splitters while still being much faster than the splitter selection of HykQuick—even
for random input. We want to note that we compare RQuick to an already refined version of
HykQuick that uses our RBC library for communication. For more information, we refer to
Appendix B.2 which illustrates that the refinements speed up the original version by up to a
factor of six. Finally, we compare our algorithm to Minisort, which sorts inputs with one element
on each PE. Minisort sorts inputs for arbitrary t by adjusting the PE-groups for the recursive
calls depending on the splitter rank in the global input. However, we assume this approach to
be slower than RQuick for two reasons: First, the number of recursion levels of Minisort will
be larger. Second, the non-deterministic PE-groups cause communication between alternating
communication partners. Preliminary experiments on several supercomputers have shown
that those non-deterministic communication patterns are significantly slower when the main
bottleneck is caused by message startups. For a detailed discussion, we refer to Appendix B.1.

Imbalance of RQuick and HykQuick. Figure 7.6a illustrates the maximum imbalance of
RQuick for different input distributions and sizes. Inputs without duplicates have a very small
imbalance, e.g. the maximum output size is 1.07n/t for n/t = 212 for Mirrored, Staggered, and
Uniform. However, we also see considerable imbalances for almost all DeterDupl distributed
inputs. An exception are large inputs for which the imbalance converges to the imbalance of
the other input distributions. We want to note that we see the distribution DeterDupl as a
worst case distribution for the tie-breaking algorithm of RQuick: Assuming a perfect splitter
selection algorithm, a perfect splitter e would split the elements of a subcube into two parts
of equal size on each recursion level—one part with elements smaller than e and one part
with elements equal to e. The tie-breaking algorithm would then either perfectly balance the
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Figure 7.6: Average running time ratios of RQuick to NRQuick on SuperMUC-NG (a)
and on JUQUEEN (b). Maximum imbalance ratio of RQuick (c) and NRQuick (d).

elements between two communication partners (in case the majority of the elements are equal
to e) or the algorithm would move more than half of the elements to the communication partner
with the smaller index (in case the minority of the elements are equal to e).

Looking at Figure 7.6b, we see that the imbalance of NRQuick (RQuick without tie-breaking
and redistribution) deteriorates tremendously. Inputs with duplicates (DeterDupl) and very
skewed inputs (Mirrored) come with huge imbalances and run out of memory for large inputs.
Staggered sorts all input sizes but has an imbalance of around four. Uniformly distributed
inputs (i.e., Uniform inputs) were the only inputs for which the imbalance of NRQuick was as
low as the imbalance of RQuick.

Running Time Comparison of RQuick and HykQuick. Figure 7.6c-d depicts the running
time ratio of RQuick over NRQuick on SuperMUC-NG and on JUQUEEN. The price of
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(2) RQuick and Minisort on SuperMUC-NG (b) RBC-HykQuick on SuperMUC-NG
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Figure 7.7: Running times of RQuick and Minisort (a) as well as RBC-HykQuick (b) for
different input distributions on SuperMUC-NG. The red crosses indicate breaks due to
memory overflow.

robustness for simple input distributions such as Uniform is an additional data redistribution.
For large Uniform inputs, this slows down RQuick by a factor of up to 1.71. On the other
hand, RQuick sorts skewed input distributions such as Staggered and Mirrored robustly. Thus,
the redistribution makes RQuick robust against skewed inputs. Compared to NRQuick, it
decreases the total running time by a factor of up to 9 (n/t = 2'°) on JUQUEEN. Figure 7.6c
does not provide running times for skewed input distributions for n/t > 2%* (Staggered input)
respectively n/t > 2!7 (Mirrored input) as NRQuick runs out of memory for these input sizes
on SuperMUC-NG. On JUQUEEN, NRQuick already starts to run out of memory for skewed
inputs with 28 elements per PE.

Running Time of RQuick for Different Distributions. Figure 7.7a depicts the running time
of RQuick for different input distributions. We see that the running time of RQuick is very
robust, meaning that RQuick does not sort any input distribution slower than random inputs
(i.e., Uniform inputs) with the exception of a few outliers. For small inputs (n < 2'2), the
running time is about the same for all distributions. In the following, we consider large inputs,
i.e., n > 2'2, for which the situation is more diverse. The sorting times of large skewed inputs
(Staggered and Mirrored) are very similar and close to the running times of large Uniform
inputs. Exceptions are large inputs with many duplicates, i.e., DeterDupl distributed inputs:
RQuick sorts large DeterDupl inputs faster than the other input distributions, e.g., up to 1.31
times as fast as Uniform. At the first glance, this is surprising since RQuick has somewhat large
imbalances when sorting DeterDupl inputs (see Figure 7.6¢c). However, the reasons for short
sorting times of DeterDupl inputs are that the local sorting algorithm sorts these inputs faster
(due to equality buckets) and that RQuick performs less element transfers (due to tie-breaking).
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Comparison to Minisort and HykQuick. RQuick is up to one order of magnitude faster
than Minisort. One reason is that Minisort trades off more recursion levels for zero imbalance.
We also noticed that the splitter quality of Minisort is worse than the splitter quality of RQuick,
especially for the skewed inputs Mirrored and Staggered. However, this does not fully explain
the large performance gap between RQuick and Minisort: Even though Minisort selects worse
splitters with distributions Mirrored and Staggered than with distributions DeterDupl and
Uniform, the running times with the former distributions were shorter than with the latter
distributions. To explain this observation, one needs to take a look at the number of different
communication partners separately for each input distribution. Since the distributions Mirrored
and Staggered are skewed, the path an element takes to its final PE is more deterministic. And
indeed, the average number of different communication partners for DeterDupl and Uniform
inputs over many runs were much larger than for Mirrored and Staggered inputs. This confirms
our observation in Appendix B.1 that alternating communication partners increase the message
startup overhead.

Figure 7.7b shows the running times of our competitor HykQuick for different input dis-
tributions. Compared to RQuick (see Figure 7.7a), HykQuick is much slower and much less
robust than RQuick: (1) HykQuick deadlocks for sparse inputs. (2) For small inputs, HykQuick
is more than one order of magnitude slower than our algorithm. We found that the splitter
selection of HykQuick needs a tremendously large amount of time. (3) HykQuick runs out of
memory while sorting large Mirrored inputs as its hypercube routing algorithm gathers too
many elements on “hot” PEs. This is a known issue of naive hypercube routing algorithms (see
Section 5.1.1). (4) HykQuick runs out of memory for relatively large DeterDupl inputs as the
algorithm does not sort inputs with duplicates robustly. Only the largest Uniform inputs are
sorted faster by HykQuick in comparison to our algorithm. The reason is the redistribution
that our algorithm uses to make skewed inputs easy. However, one would use multiway sorting
algorithms for these large inputs anyway.

7.4.3 Robustness of Multiway Hypercube-Based Sorting

Motivation. In Section 7.3, we have already noticed that our competitors HykSort and HSS
are not robust in several aspects. This is not surprising since hypercube-based routing is
known to have severe intermediate load imbalances for worst case inputs (see the discussion in
Section 5.1.1). Here, we study the robustness of HykSort and HSS based on the results obtained
on JUQUEEN and SuperMUC-NG in more detail (see Figures 7.1-7.4 of Section 7.3).

Experimental Results. Both algorithms are not robust for three reasons. The first reason
is that HykSort and HSS only work when t = k" where r is the number of levels. The second
reason is that the implementations are rather prototypical. Both algorithms crash for Zero,
DeterDupl, and RandDupl inputs as they do not break ties. Additionally, they do not support
sparse inputs even though we have already fixed some bugs that caused them to crash for small
inputs. The third reason is that the algorithms do not sort skewed inputs robustly. On the
first recursion level, they route the input of the distribution Staggered to t/2 PEs. The load
imbalance is even worse for Mirrored input: As the multiway hypercube algorithms perform

log k levels of hypercube data routing in one step, after r = [bi" tJ recursions of HykSort, ¢/k"
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PEs hold nk"/t elements each. As a result, HSS sorts Staggered (Mirrored) input 2.25 (6.95)
times slower than non-skewed Uniform inputs on SuperMUC-NG (n/t = 2*2). On JUQUEEN,
HykSort even runs out of memory while sorting Mirrored input with more than 2'¢ elements
per PE. The algorithms do not break for this input distribution on SuperMUC-NG, as we have
more local memory and fewer PEs available than on JUQUEEN.

To run HykSort and HSS for any number of ¢, it would be possible to send the data from the
additional PEs to the embedded hypercube in a preprocessing step. To become robust against
skewed inputs, a preprocessing step could redistribute the input. We expect both approaches
as not practical since they would increase the local work and the communication volume
significantly. This would only have little effect on their running time for relatively small input
sizes. However, one would prefer RQuick for these inputs anyway. These robustness measures,
however, turned out to work quite well for RQuick: For small inputs, the element redistribution
did not increase the performance of RQuick much since it only adds log ¢ additional message
startups and RQuick still remains about as fast as BitonicSort. For larger inputs, i.e., for which
RQuick is bandwidth- and compute-bound, RQuick with element redistribution is still twice
as fast as its closest competitor BitonicSort.

7.4.4 Robustness of AMS-sort

Motivation. In the first part of this section, we show that our recursive multiway algorithm
AMS-sort is much more efficient than single-level sorting algorithms for the input sizes we
consider in this work. The second part studies the robustness measures of AMS-sort in detail.
In Section 7.3 we have already seen that AMS-sort sorts all kinds of input distributions robustly
and very efficiently whereas its closest competitors HSS and HykSort are less efficient for small
inputs and much less robust when the input becomes larger. However, without the robustness
measures of AMS-sort, namely our message assignment algorithm DMA and our tie-breaking
approach, the situation would be very different. To illustrate the advantages of our robustness
measures we show that they come with low overhead for “easy” inputs but reduce the running
time of AMS-sort tremendously for worst case inputs.

Comparison of Message Assignment Algorithms. Figure 7.8a-b shows the running time
ratio of AMS-sort over SMA-AMS, a version of AMS-sort that uses the simple message as-
signment algorithm proposed by Kalé and Krishnan [KK93] (see Section 5.2) instead of our
deterministic message assignment algorithm. We present results for different input distributions
obtained on SuperMUC-NG and JUQUEEN. DeterDupl, Mirrored, Staggered, and Uniform
are “easy” inputs for the message assignment algorithms DMA and SMA, i.e., regardless of the
message assignment algorithm that AMS-sort uses, the number of messages that are sent and
received by each individual PE is very small. Our experiments show that the overhead of DMA
over SMA for these inputs is very small. An exception are inputs with n/t = k for which DMA
has an overhead of up to a factor of two. However, for such small inputs RQuick would be
used preferably in any case. For the input distribution AllToOne, SMA-AMS sends min(n/t,t)
messages to PE 0 on the first recursion level. In this case, AMS-sort actually can take advantage
of DMA as it reduces the startups in the data exchange step to O (k). This speeds up AMS-sort
over SMA-AMS by a factor of up to 1240 on SuperMUC-NG. On JUQUEEN, the factor is 5.21

144



7.4 Robustness Analysis

(a) SuperMUC-NG (b) JUQUEEN
T T

0 RS — 0 @88 e @ O
gz 1 g2 107 §
g3 g = i ]

< <
Ez w0 Ez w0l
- = r - r B
5 g 107} 5 g 107
< £ I 3 S r §

-3 3L i

10 El I I 10 El I I =
21 28 215 222 21 27 213 219
(c) SuperMUC-NG
s
o
g 3
s g
=
é § —o— AllToOne
u < —=— DeterDupl
g 8 —+— Mirrored
z £ —— Staggered
< .
> +— Uniform
| | |
21 28 215 222

Number of local elements n/ p

Figure 7.8: Running time ratios of different algorithms with and without DMA. The
results were obtained on the SuperMUC-NG using 2'¢ cores and on the JUQUEEN using
27 cores.

as JUQUEEN has very small message startup costs. The positive effect begins for n/t > 256
elements per PE and increases rapidly. The effect decreases when the time for the message
exchange dominates the startup time. One might assume that SMA-AMS sorts AllToOne
inputs slowly as we use our own implementation for the actual data exchange step. Thus, we
conclude the benchmark by presenting results of MPI-SMA-AMS, a version of SMA-AMS that
uses collective operations provided by MPI, e.g., for communicator creation and for the data
exchange step (MPI_Alltoall for exchanging the message sizes and MPI_Alltoallv for the
data exchange). Figure 7.8c depicts the running times of MPI-SMA-AMS relative to the ones
of AMS-sort obtained on SuperMUC-NG. MPI-SMA-AMS sorts AllToOne inputs two orders
of magnitude slower than AMS-sort. Furthermore, MPI-SMA-AMS is more than one order of
magnitude slower for inputs of small and medium size—regardless of the input distribution.
In preliminary experiments, we have also tested AMS-sort with a straightforward imple-
mentation of the data exchange step, i.e., the data exchange step posted all sent and receive
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operations at once and counted on the MPI library to execute the operations as efficiently
as possible. This approach turned out to be relatively fast when AMS-sort uses our message
assignment algorithm DMA. However, when we disable DMA and use the simple message
assignment algorithm (SMA) instead, the MPI library on JUQUEEN crashed while sorting
AllToOne inputs as the PEs posted to many messages simultaneously.

15
"
— I
g =
- 10 E
£ o
p E
2 &
< >
<
0 0
21 25 29 213 214 215 216 217 218 219 220 221 222
Number of local elements 1/ p Number of local elements 1/ p

—e— Splitter Selection —=— Partitioning —+— DMA —— Exchange —* Local Sort ‘

Figure 7.9: Accumulated running time of the phases of AMS-sort on SuperMUC-NG.

Subroutines of AMS-sort. We divide each level of AMS-sort into five distinct phases: splitter
selection, partitioning, deterministic message assignment (DMA), data exchange, and local
sorting. To measure the time of each phase, we place a barrier before each phase. Timings for
these phases are accumulated over all recursion levels. The splitter selection phase includes the
sample selection and sorting as well as the overpartitioning algorithm.

Figure 7.9 shows the running times of the phases for Uniform inputs on SuperMUC-NG.
The extra cost for the message assignment DMA is relatively small. For example, DMA takes
less than 19 % of the total running time and less than 13 % when we look at the range where
AMS-sort is faster than RQuick (n/t > 2'%). For a comparison of AMS-sort and RQuick, we
refer to Section 7.3. For small inputs (n/t < 2'%), the splitter selection takes more than 50 %
of the total running times. This appears to be large at a first glance. However, even when we
exclusively consider the cost of the data exchange step, AMS-sort would not be faster than
RQuick for small inputs. For inputs larger than n/t > 2'7, the running time increases almost
linear and the phases partitioning, data exchange, and local sorting dominate the total running
time with 85 % and more.

Tie-Breaking. Figure 7.10 shows the running time ratio of AMS-sort and AMS-sort without
tie-breaking during local data partitioning (NTB-AMS) on SuperMUC-NG. When sorting
small inputs without unique keys (e.g., AllToOne, Mirrored, Staggered, and Uniform), the
extra work to calculate splitters with tie-breaks slightly slows down AMS-sort compared to
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Figure 7.11: Running times of single-level algorithms and AMS-sort on SuperMUC-NG.

NTB-AMS (factor of 1.10). NTB-AMS sorts inputs of the distribution DeterDupl much slower
than AMS-sort as this distribution contains many duplicates. The nonrobust version runs out
of memory for n > 2'¢ when we sort DeterDupl inputs because too many keys were gathered
on “hot” PEs.

Comparison to Single-Level Algorithms. We sum up the robustness analysis of (recursive
multiway) AMS-sort by comparing its performance to the performance of single-level sorting
algorithms. The fastest single-level algorithms we have found for the input sizes considered
in this work are our reimplementation of single-level histogram sort with sampling 1LHSS
(see Section 7.1) and our multiway AMS-sort algorithm executed with k = t (ILAMS-sort).
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1LAMS-sort and 1LHSS use pure MPI for communication. In particular, they exchange the
message sizes with the MPI collective MPI_Alltoall and exchange the data with the MPI
collective MPI_Alltoallv. To achieve the best performance of 1LHSS and 1LAMS-sort, we
also tested both algorithms with RBC collectives in a preliminary experiment. The versions
with RBC collectives perform the data exchange with our data exchange routine described in
Section 5.2. 1LAMS-sort and 1LHSS with pure MPI were faster for 7/t > 28 (and much faster
for n/t > 2'°) since our own data exchange routine has not been optimized for a dense t-way
data exchange. For smaller inputs, ILAMS-sort and 1LHSS were up to twice as fast when we
use RBC.

Figure 7.11 depicts the running times of AMS-sort, ILAMS-sort, and 1LHSS obtained on
SuperMUC-NG for Uniform inputs. AMS-sort is between one and two orders of magnitude
faster than the single-level algorithms for inputs of small and medium size (/¢ < 218). For the
largest input (n/t = 2**), AMS-sort is still faster by a factor of 2.13.

Both, the data exchange as well as the splitter selection contribute to the poor performance of
1LAMS-sort and 1LHSS. It turned out that the splitter selection contributes to the performance
very much in particular for n/t > 2'°. For larger inputs the t-way data exchange dominates the
running time. Looking at Figure 7.11, we see that ILAMS-sort and 1LHSS have a peak around
n/t = 2!, For these input sizes, the data exchange operation MPI_Alltoallv is particularly
slow. We assume that MPI_Alltoallv switches to a different implementation for larger inputs.

In preliminary experiments, we also tested the multiway hypercube implementation of
histogram sort with sampling provided by Harsh et al. [HKS19] with k = t. However, our
implementation 1LHSS turned out to be faster as the data exchange routine MPI_Alltoallv
performed better than the k-way hypercube exchange with k = ¢.

7.5 Efficiency in Scaling Experiments

The experimental setting of the efficiency test is as follows: We benchmarked RFIS, RQuick,
and AMS-sort on 2/, i € [10..16] PEs for different input sizes with Uniform inputs obtained
on SuperMUC-NG. For each algorithm, we have chosen input sizes for which the particular
algorithm is faster than its competitors. Table 7.1 shows the efficiency of these algorithms
compared to our sequential sorting algorithm I1S%o.

RFIS and RQuick. Even though RFIS respectively RQuick sort small inputs (n/t < 2'')
the fastest, they are still very inefficient. RQuick, for example, has an efficiency of less than
0.1 on all machine sizes. For 2° elements per PE, its efficiency is only 0.043 on 2'¢ PEs. The
efficiency of RFIS is even smaller, e.g., less than 0.0002 on 2'¢ PEs for n/t < 2. However, RFIS
sorts these input sizes still 12 times as fast as the sequential sorting algorithm I1S*o. This is still
a pessimistic comparison we stored the input of [1S*0 on a single PE.

AMS-sort. When we assume that the local input size is constant, the efficiency of AMS-sort
increases by a factor of 2.2 to 2.6 when we use 2' instead of 2'® PEs (strong scaling). When we
assume that the number of PEs is constant, i.e., 2'° PEs respectively 2'¢ PEs, the efficiency of
AMS-sort also increases by a factor of 2.2 to 2.6 when we use 2°* instead of 2'° elements on
each PE (scaling the local input size). For n/t > 2'%, the efficiency changes only slightly. This
input size seems to be a turning point. When the number of local elements goes below 2'%, the
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p
Algorithm  n/p 210 21 212 21 21 2b 216
2% 0.462 0437 *0.375 *0320 *0.306 *0.275 *0.207
2%0 0.435 0.425 0.379 0.318  *0.293 *0.248 *0.190
AMS-sort 218 0.425 0.403 0.357 0.283 0.272 0.247  *0.197
216 0.347 0.278 0.271 0.206 0.194 0.172 0.150
214 0.217 0.179 0.156 0.128 0.121 0.096 0.083
P 0.099 0.086 0.071 0.062 0.060 0.051 0.043
RQuick 2° 0.070 0.050 0.031 0.029 0.027 0.019 0.018
27 0.026 0.023 0.020 0.017 0.008 0.009 0.008
2° 0.008 0.006 0.005 0.004 0.004 0.002 0.002
RFIS 2! 0.00115 0.00089 0.00045 0.00034 0.00035 0.00026 0.00018

20 0.00057 0.00047 0.00047 0.00019 0.00018 0.00018 0.00011

Table 7.1: Efficiency of sorting algorithms compared to 11S*o on the SuperMUC-NG. A
single node was not able to store inputs with 7 > 2** elements. We linearly scaled the
running time of 11S*o for these inputs and labeled the efficiency with a “*”.

efficiency decreases rapidly—independent of the machine size. Note that we had to extrapolate
the running time of 11S*o for n > 2% as a single node would not store these large inputs.

7.6 Conclusion

We have shown how practical parallel sorting algorithms like recursive multiway mergesort and
samplesort can be generalized so that they scale on massively parallel machines without incur-
ring a large additional amount of communication volume. Our implementation of AMS-sort
shows very competitive performance that is probably the best by orders of magnitude for large
t and moderate n. For large n it can compete with the best single-level algorithms. Indeed,
AMS-sort is the only scalable recursive multiway sorting algorithm that works for arbitrary ¢.
For smaller inputs, we devised RQuick and RFIS, two work-inefficient, yet practical and fast
algorithms with (poly)logarithmic latency.

So far, most “practical” research on massively parallel sorting algorithms had focused on
average case inputs. Our work closed the gap between these algorithms and theoretical pub-
lications on achieving asymptotically fast and efficient parallel sorting algorithms, usually
involving large constant factors, by turning worst case inputs into average cases. The result is
that we obtain robustness of massively parallel sorting with respect to the input size by using
three algorithms: RFIS for sparse inputs and very small inputs, RQuick for small inputs, and
AMS-sort for moderate and large inputs. Robustness with respect to skew can be achieved by
careful randomization (RQuick) and clever message assignments (AMS-sort). Our competitors
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HSS and HykSort and nonroubst implementations of our algorithms crash on sorting hard
input distributions with skewed input due to tremendously large load imbalances (HykSort,
HSS, and nonrobust RQuick) or become extremely slow due to immense message startup over-
heads (nonrobust AMS-sort, also see algorithms such as [KK93]). Robustness with respect to
duplicated keys can be achieved at reasonable overhead using careful implicit implementations
of the brute-force tie-breaking idea (RFIS), equality buckets (AMS-sort), and data shuffling in
combination with greedy tie-breaking (RQuick). All these algorithms would crash on sorting
hard input distributions with duplicated keys.

Our communication library RBC closed the gap between theory and practice a step further
by providing asymptotically optimal implementations for range-based communicator splitting
and collective communication operations. If we had relied on MPI functionality, scalable
implementations of our algorithms would have been impossible. Moreover, a fair comparison to
our competitors would have been impossible, too. Only after applying RBC to our competitors,
their running times matched with the running times one would expect from the theoretical
analysis. In regard to our competitors, RBC speeds up their running time by multiple orders of
magnitude for inputs of small and medium size.

Outlook. Still further improvements are possible. For large inputs, more overlapping of
communication and computation, as well as a specialized shared-memory implementation for
node-local partitioning, seems useful for AMS-sort. We could combine RFIS, RQuick, and
AMS-sort to a single robust algorithm. A simple solution could perform binary searches on
several machine sizes to determine the range of input sizes that each algorithm sorts the fastest
(and interpolate the result).

Another approach could combine the advantages of gather-merge-sort, RQuick, and recur-
sive multiway samplesort by adaptively selecting the appropriate sorting routine for each level
of recursion. As long as the startup overheads for the splitter selection dominate the remaining
running time of RQuick, a gather-merge-sort could ship all data to few PEs and replaces the first
levels of RQuick. The last levels of RQuick could again be replaced by a multiway samplesort
routine or by a second gather-merge-sort, which collects all data of each subcube to its first PE.

On the SuperMUC supercomputers, we measured large fluctuations in the message startup
latency on very large machine instances (SuperMUC-NG) and on some smaller instances
(SuperMUC Phase 1-2). On the one hand, one could try to develop sorting algorithms being
more robust to these fluctuations. On the other hand, our experiments indicated that the
fluctuations depend on the specific MPI implementation and the supercomputer at hand. In
our opinion, a more universal solution would therefore be more robust MPI implementations.
If we go a step further, one would want fault-tolerant sorting algorithms with low overhead.
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Appendix A

Sequential and Shared-Memory Sorting

In Appendix A.1, we limit the recursion depth of IPS*0. Appendix A.2 describes a tech-
nique how to store the recursion stack of IPS*o implicitly—a requirement to make the space
consumption of IPS*o0 independent of . In Appendix A.3, we report additional measurements
of sequential and shared-memory sorting algorithms.

A.1 Limit the Number of Recursions

We prove the following theorem:

Theorem A.1 (Recursion depth of IPS%0)

Let M > 1 be a constant. Then, after (9( log, %) recursion levels, all non-equality buckets of
IPS*0 have size M with a probability of at least 1 —n/M for an oversampling ratio of « = ®(logk).

We first show Lemmas A.2 and A.3 in order to prove Theorem A.1. Let e be an arbitrary but
fixed element of a task with 7 elements in IPS*o. A “successful recursion step” of e is a recursion
step that assigns the element to a bucket of size 3n/k.

Lemma A.2 (Probability of a successful recursion step)

The probability of a successful recursion step of an arbitrary but fixed element is at least 1 — 2k™/'?

for an oversampling ratio of o« = clogk.

Proof. We bound the probability that a task of n elements assigns an arbitrary but fixed element
e;j to a bucket containing at most 3n/k elements (a successful recursion step). Let [e; ..e,] be
the input of the task in sorted order, let R, = [e; .. e,,1 54/k—1] be the set containing e, and the
next 1.5n/k larger elements, and let [s; .. s,« ]| be the selected samples. The Boolean indicator
X, that sample s; is an element of R, is defined as

_ 1, s;€ Rr
Xir = { 0, else.

The probability Pr[X;, = 1] = 1.5% - 2 = 12 is independent of the sample s; as the samples
are selected with replacement. Thus, the expected value of the number of samples selected
from R, is X, = Z;x:kl Xy is E[X,] = 1.5/k - ak = 1.5a. We use the Chernoff bound to limit
the probability of less than « samples in R, to Pr[X, < a] = Pr[X, < (1 - 1/3)E[X,]] <

e 1213 E[X,] _ o=1/120 \Whep R;j as well as R;_; 5,/ both provide at least o samples, R; as
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well as R;_ s, provide a splitter and e; is in a bucket containing at most 3n/k elements. The

probability is Pr[X; > SA Xy 5k = S] = 1= Pr[X; < SV X y5,x < S] 2 1-Pr[X; <

S] - Pr[Xj—l.Sn/k < S] >1- 23_1/1206 =1- 2k—1/12c. -

Lemma A.3 (Limit recursion depth of an arbitrary element)

Let c be a constant, let o = clog k be the oversampling ratio of IPS*o (c > 36 — 2.38/10g(0.34-k)),
and let IPS*o execute 2log, /3 31 recursion levels. Then, an arbitrary but fixed input element
of IPS?o passes at least log, s3log 3 successful recursion levels with a probability of at least

1-(n/M)™

Proof. We execute IPS*0 2log, /3 31 recursion levels and bound the probability that an arbitrary
but fixed input element passes atleast log; ;; log 77 successful recursion levels. This experiment is
a Bernoulli trial as we have exactly two possible outcomes, “successful recursion step” and “non-
successful recursion step’, and the probability of success is the same on each level. Let denote the
random variable X as the number of non-successful recursion steps after 2log, ; 7; recursion

levels, ¢ the probability of a non-successful recursion step, and let ¢ > 36 — 2.38/10g(0.34 - k).
The probability I

I—P[X>2lo 1o 1]<P[X>1o ﬁ]
- Sv %M S Y

n n\J
5 (ZIOgﬁ)tj(l—t)zlog%_jg 5 (ZelogM)tj

- j>log 4 J j>log g J
2elog i o j
< 2 () e 2, o "
j>log ﬁ Og M j>log ﬁ
log £ +1
i 4ek—1/12c 8 M
< Z (4ek—1/12c)12( )
jlog 1 — 4ek—1/12¢
n \~1/12c+log(4e)
(%)

-2
=T ek S M)

defines an upper bound of the probability that a randomly selected input element passes
2logy s n /M recursion levels without passing log, /3 31 Successful recursion levels. For the sake
of simplicity, all logarithms of the equation above are to the base of k/3. The third “<” uses
(Z) < (en/k)k, the fifth “<” uses Lemma A.2 and the “=” uses the geometric series. o

Proof of Theorem A.1. We first assume that M > k®ng holds. In this case, we select kclogk
samples. Let ] = log; ; 7 and let e be an arbitrary but fixed input element of IPS*o after 21
recursion levels. Lemma A.3 tells us that e has passed at least [ successful recursion steps with
a probability of at least 1 — (n/M )72 when IPS*0 has performed 2log, /3 1 recursion levels.

Element e is, in this case, in a bucket containing more than #n (3/ k)l = M elements as each
successful recursion step shrinks the bucket by a factor of at least 3/k. Let E = [e; ..e,] be
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the input elements of IPS*o in sorted order and let Q = {ex|1 < i < n/M Ai € N} every
n/M-th element. We now examine buckets containing elements in Q after 2! recursion levels.
The probability that any element Q is in a bucket containing more than M elements is less
than n/M - (n/M)~* = (n/M) ' —this follows from the former insight and Bool€’s inequality.
In other words, the probability that all elements in Q are in buckets containing less than M
elements is larger than 1 — M/n. As this holds for all elements in Q, every n/M-th element
in the sorted output, the probability that all elements after 2/ recursion level are in buckets
containing less than M elements is larger than 1 — M /n. ]

A.2 From In-Place to Strictly In-Place

We now explain how the recursion stack of IPS*o can be implicitly represented in a rather
simple way by adapting the strictly in-place approach of quicksort [Dur86]. The technique
which we describe—making the space consumption of IPS*o0 independent of n—requires that
(sequential and parallel) partitioning steps mark the beginning of each subtask by storing the
largest element of a subtask in its first position. We now exploit that the sequential tasks of a
PE are stored next to each other when the PE has finished its last parallel task:

Lemma A.4 (Sequential tasks of a PE are adjacent)

When PE i starts its sequential phase, the sequential tasks assigned to PE i cover a consecutive
subarray A[l..r — 1] of the input array, i.e., there is no gap between the tasks in the input array.

For reasons of better readability, we appended the proof of Lemma A .4 to the end of this section.
The proof of this lemma also implicitly describes the technique to track the values of / and r
until the last parallel task had been processed.

In the sequential phase, the PEs have to sort their elements A[I..r — 1], which are already
partitioned into sequential tasks. The boundaries of the sequential tasks are implicitly repre-
sented by the largest element at the beginning of each task. Algorithm 14 emulates recursion
on the sequential tasks of A[l..r — 1] in constant space.

Algorithm 14 Sequential task execution of the subarray A[b,e — 1] without a local stack

Input: A[0..n—1]an array of n input elements, b begin of the subarray, e end of the subarray

n<r-I D> total size of sequential tasks
i<l B> first element of current task
j < SEARCHNEXTLARGEST(A[i], A,i+ 1,n) D> first element of next task
while i < n do
if ONLYEQUALELEMENTS(A, 7, j) theni « j > skip equal tasks
else if j — i < 1y then SMALLSORT(A, 1, j); i<« j D> base case
else PARTITION(A, 1, /) D> partition first unsorted task
j < SEARCHNEXTLARGEST(A[i], A,i+ 1,n) > find beginning of next task

Starting a search at the leftmost task, the first element larger than the first element of a
task defines the first element of the next task. Note that the time required for the search is
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only logarithmic to the task size when using an exponential/binary search. We assume that
the corresponding function searchNextLargest returns n + 1 if no larger elements exist—this
happens for the last task. The function onlyEqualElements checks whether a task only contains
identical elements. We have to skip these “equal” tasks to avoid an infinite loop. The following
pseudocode uses this approach to emulate recursion in constant space on the sequential tasks.

The technique which we described—making the space consumption of IPS*o independent
of n—used the requirement that the sequential tasks of a PE cover the consecutive subarray
A[l..r — 1] for some I and r. In the following, we show that this requirement holds.

Proof of Lemma A.4. Let PE i process a parallel task T[,7) with PE group [¢..t) in one of the
following states:
o Left. PE i is the leftmost PE of the PE group, i.e., i =t.

o Right. PE i is the rightmost PE of the PE group, i.e.,i =f— 1.

o Middle. PE i is not the leftmost or rightmost of the PE group, i.e.,t <i<t—-1.

We claim that the sequential tasks assigned to PE i fulfill the following propositions when
(and directly before) PE i processes T[1,7):

o T[l,r) was processed in state Left (Right). PE i does not have sequential tasks or its
sequential tasks cover a consecutive subarray of the input array, i.e., there is no gap
between the tasks. In the latter case, the rightmost task ends at position [ — 1 with [ -1 €
(inft, (i+1)n/t — 1) (the leftmost task begins at position r with r € (in/t, (i+2)n/t - 1)).

o T[l,r) was processed in state Middle. PE i does not have sequential tasks.

Assume for now that these propositions hold—we will prove them later. We use the propo-
sition to show that Lemma A.4 holds when a PE i starts processing its sequential tasks: Let
T[l,7) be the last parallel task of PE i, executed with the PE group [¢..t). No matter in which
state T[1,7) has been executed, the sequential tasks of PE i cover a consecutive subarray of the
input array at the beginning of its sequential phase.

o T[l,r) was processed in state Right. Asi =t — 1, we add all subtasks of T[I, ) that start
in A[in/t - 1,r — 1] to PE i. No gap can exist between these subtasks as they cannot
be interrupted by a parallel task. Also, before we assign the new subtasks to PE i, the
leftmost sequential task of PE i begins at position r (see proposition). Then, the rightmost
sequential subtask of T[I,r) that starts in A[in/t — 1,7 — 1] ends at A[r — 1]. Thus, after
the subtasks were added, there is no gap between the sequential tasks of PE i.

o T[l,r) was processed in state Left. Asi = t, we add all subtasks of T[l,r) that start in
A[L (i+ 1)n/t — 1] to PE i. No gap can exist between these subtasks as they cannot be
interrupted by a parallel task. Also, before PE i adds the new subtasks, the rightmost
sequential task ends at position I — 1 (see proposition). Then, the leftmost subtask of
T[l,r) that starts in A[l, (i + 1)n/t — 1] begins at A[I]. Thus, after the subtasks were
added, there is no gap between the sequential tasks of PE i.

o T[l,r) processed in state middle. We add all sequential subtasks to PE i that start in
Alin/t, (i + 1)n/t — 1]. No gap can exist between these subtasks as they cannot be
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interrupted by a parallel task. Also, the subtasks are added in sorted order from left to
right.
We will now prove the propositions by induction.
Base case. When a PE i processes its first parallel task T[0,7), PE i does not have any
sequential tasks.
Inductive step. We assume that the induction hypothesis holds when PE i was executing the

parallel task T[I,r) with the PE group [t..t). We also assume PE i and others execute the next
parallel task T[ls,7;). We note that T[ls, r,) is a subtask of T[I, 7). We have to prove that the
induction hypothesis still holds after we have added PE i’s sequential subtasks of T[1,) to the
PE, i.e., when PE i executes the subtask T[I;, ).

o PE i has executed T[1,r) in the state Middle and PE i is executing T[l;,rs) in the state
Middle. From the induction hypothesis, we know that PE i did not have sequential tasks
when T[l,r) was executed. We have to show that PE i did not get sequential subtask of
T[l,r), after T[l,r) has been executed. A sequential subtask T[a, b) would have been
added to PE i, if i = min(at/n, t — 1). We show that no T[a, b) with this property exists.
As PE i is not the rightmost PE of T[I,r), we have i < f — 1. This means that a sequential
subtask T[a,b) is only assigned to PE i if i = |at/n] holds, i.e., a € [in/t, (i + 1)n/t) is
required. However, there is no sequential subtask of T[,7) that begins in the i-th stripe
of the input array: As PE i is not the leftmost PE of T[I,, ), the parallel subtask T[I,, )
contains the subarray A[in/t, (i + 1)n/t — 1] completely (see Lemma 3.5). Thus, a second
(sequential) subtask T[a,b) with in/t < a < (i + 1)n/t cannot exist.

o PEi has executed T[l, 1) in the state Middle and PE i is executing T[ls, rs) in the state Right.
From the induction hypothesis, we know that PE i did not have sequential tasks when
T[l,r) was executed. As PE i was not the rightmost PE of T[,7), we have i < t — 1. This
means that a sequential subtask T[a,b) of T[l,7) is only assigned to PE i if i = |at/n|
holds, i.e., a € [in/t, (i + 1)n/t) is required. However, as PE i is not the leftmost PE of
T[ls,rs), T[Is, rs) completely contains A[in/t, (i+1)n/t — 1]. Thus, there is no sequential
subtask T[a,b) with a € [in/t(i + 1)n/t)—we do not add sequential tasks of T[I,7) to
PEi.

o PEi has executed T[1,r) in the state Middle and PE i is executing T[ls, 1) in the state Left.
From the induction hypothesis, we know that PE i did not have sequential tasks when
T[l,r) was executed. Also, as PE i is not the rightmost PE of T[I, ), we have i < £ — 1. This
means that a sequential subtask T[a,b) is only assigned to PE i if i = |at/n| holds, i.e.,
a € [in/t, (i + 1)n/t) is required. Thus, if there is no sequential subtask T[a,b) of T[1,r)
with a € [in/t, (i + 1)n/t), the PE i does not get sequential subtasks and the induction
step is completed in the case here. Otherwise, if sequential subtasks T[a, b) exist with
a € inft, (i+1)n/t), they are added to PE i and we have to show that the propositions hold
afterwards: All subtasks T[a,b) that begin in A[in/t, (i + 1)n/t] are sequential subtasks,
except one parallel subtask, T[I;, 7). Thus, there is no gap between these sequential
subtasks. As PE i is the leftmost PE of T[I,,r,), we know that I; € (in/t, (i + 1)n/t)
and that r; > (i + 2)n/t. Thus, the rightmost sequential subtask ends at A[l, — 1] with
I,-1¢€(inft,(i+ 1)nft-1).
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160

o PEi has executed T[1,r) in the state Left (Right) and PE i executes T|l,, ;) in the state Left

(Right). From the induction hypothesis, we know that  — 1 (that ) is narrowed by [ - 1 €
(inft, (i+1)n/t) (by r € [in/t, (i+2)n/t)) before tasks of T[], r) are added to PE i. As PE
i is the leftmost (rightmost) PE of T[I,, ), we can narrow the begin I; (end r,) of T[I,, 75)
alsobyls—1 € (inft, (i+1)n/t) (byrs € [in/t, (i+2)n/t)). Thus, T[I,r) creates subtasks
whereof one subtask starts at A[I] (at A[r]), one subtask ends at A[l; — 1] (at A[r —1]),
and subtasks cover the remaining elements in between without gaps. These subtasks are
sequential subtasks as | (I, — 1)t/n] — |It/n| < | ((i + V)n/t - 1)t/n| - | (in/t)t/n] = 0 (as
[(r = Dt/n] - |rst/n] <|((G+2)n/t — 1)t/n]| - | (in/t)t/n] = 1). And, these sequential
subtasks are all added to PE i, as they start in the subarray A[in/t, (i + 1)n/t — 1] (in the
subarray A[in/t, (i + 2)n/t — 1], the +2 is used as PE i is the rightmost PE of T[I;,,)).
Note that, in the penultimate sentence, we used the inequality I < in/t (the inequality
r < (i + 2)n/t) from the induction hypothesis. When these subtasks were added to PE i,
the sequential tasks of PE i still cover a consecutive sequence of elements: On the one
hand, the leftmost (rightmost) sequential subtask starts at A[I] (ends at A[r —1],) and
the new sequential subtasks have no gaps in between. On the other hand, we know from
the induction hypothesis that the rightmost (leftmost) sequential task of PE i had ended
at position [ — 1 (had started at position r) and that the old sequential tasks of PE i had
not had gaps in between. ]
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A.3 More Measurements

28 210 212 214 216 218 220 222 224 226 228 230 232

I1S%0 202 084 075 055 045 037 032 0.30 0.17 0.16 0.15 0.15 0.15
BlockPDQ 1.09 0.75 0.69 0.61 049 041 037 0.30 020 0.19 018 0.19 0.19
18 142 1.00 0.62 057 047 042 038 0.30 024 021 024 021 0.23
S stdusort 128 120 1.04 121 092 082 0.76 045 042 041 041 041 041
§ 11S$?Ra 0.85 080 050 044 046 0.29 025 025 0.14 0.11 0.11 0.12 0.12
SkaSort 086 0.62 0.52 066 043 032 028 0.23 0.16 0.13 0.13 0.15 0.13
IppRadix 225 067 049 039 037 036 033 035 027 024 028 022 021
I1S%o 068 037 024 034 023 016 0.16 0.14 0.13w 0.12 0.12 0.12
BlockPDQ 043 029 036 025 024 022 020 0.18 0.18 0.18 0.18 0.17
1S 087 042 035 020 020 019 0.19 0.17 0.16 0.15 0.15 0.15
E std::sort 060 036 059 035 034 038 037 034 033 033 034 0.34
2 I1S°Ra 065 043 0.18 0.16 0.14 0.13 0.09 0.11 0.09 0.08 0.07 0.09
SkaSort 0.46 021 032 037 017 016 0.14 0.16 0.12 011 0.11 0.13
IppRadix 074 030 025 021 023 027 025 024 021 019 019 0.17
I1S%o 1.12  0.62 052 040 035 033 031 0.29 0.28 0.28 031 030 0.25
BlockPDQ 0.67 0.53 0.44 040 037 036 034 033 032 031 036 034 033
1S*o 1.10 057 0.44 039 040 037 035 0.39 039 036 040 042 0.38
©  std:sort 081 073 0.70 070 0.68 0.67 0.67 0.66 066 0.66 0.71 0.66 0.66
E 11$?Ra 070 0.60 0.98 050 037 026 028 027 026 021 024 026 0.23
SkaSort 0.65 044 035 038 033 0.26 023 0.26 024 0.19 0.23 0.22 0.20
IppRadix 1.31 049 052 060 065 057 054 073 073 070 0.72 0.76 0.70
I1S%o 080 0.66 035 0.24 021 0.18 0.18 0.17 0.16 0.15 0.15 0.14 0.14
BlockPDQ 0.44 034 029 026 024 023 022 021 020 019 018 018 0.17
1S 081 059 038 030 026 024 023 022 021 020 0.19 018 0.18
§ std::sort 052 053 047 054 048 045 045 044 044 044 043 043 044
b 11S°Ra 052 055 032 023 018 0.14 0.11 0.13 0.12 0.10 0.08 0.10 0.09

SkaSort 0.41 029 0.25 029 021 017 0.16 0.20 0.16 0.13 0.12 0.14 0.11
IppRadix 1.08 047 032 029 026 025 025 026 027 024 022 020 0.17

Table A.1: Running times in nanoseconds of sequential algorithms of uint64 values with
input distribution Uniform executed on different machines. The running times are scaled

by 1/8nlog, n. The fastest comparison-based and non-comparison-based running time is
highlighted.
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0.25
0.2
0.15
0.1
0.05

Running time / 4nlog, 1 [ns]

29 217 225 29 217 225

Item count n Item count n

——11S% BlockPDQ —— 1S%*0 —+— SkaSort —— IppRadix - #- [1S?Ra

Figure A.1: Running times of sequential algorithms of uint32 values with input distribu-
tion Uniform executed on different machines. The results of DualPivot, std::sort, Timsort,
QMSort, and WikiSort cannot be seen as their running times exceed the plot.
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o ] - + © =1 *—' A <
o S =1 = =1 =
Type Distribution ‘": % ’é T,o; & 8 g 3 58 2 E ‘?c,‘)
Z 3 3 A E| 3 E > = ] o &
;@ i3 & &5 £ & E E
double Sorted 1.11  1.77 2031 1.04 1154 17.14 1.03 51.78 290 1690 49.53
double ReverseSorted 1.04 1.87 1520 1.08 5.57 6.40 1.07 25.97 6.08 9.18 24.82
double  Zero 1.14 193 1748 1.11 1.29 1356 1.02 293 3.72 13.09 18.38
double  Exponential 1.05 1.10 124 128 2.31 2.56 4.15 3.79 3.98 1.27 1.12
double Zipf 1.19 132 144 145 2.86 3.07 477 4.23 4.84 1.26 1.14
double RootDup 1.10 1.39 1.73  1.62 1.51 2,50 1.50 5.43 2.81 1.70 2.43
double  TwoDup 1.21 133 140 142 2.50 273 293 3.27 3.12 1.11 1.14
double EightDup 1.02 1.08 136 1.27 2.46 2.78 4.28 4.29 4.07 1.21 1.35
double  AlmostSorted 222 1.05 1.87 279 1.57 1.62 1.25 5.85 2.26 2.05 4.22
double  Uniform 1.13  1.24 127 132 247 2.57 3.62 2.94 3.56 1.14 1.07
Total 123 1.21 146 1.53 2.19 2,51 2.89 4.15 3.43 1.36 1.55
Rank 2 1 4 5 7 8 9 12 11 3 6
uint64 Sorted 1.10 177 17.70 1.06 893 16.60 1.06 42.12 2.82 17.88 61.80 11.03
uint64 ReverseSorted 1.02 1.73 14.04 1.08 4.92 6.25 1.03 22.35 6.16 10.28 35.04 6.71
uint64 Zero 1.10 150 1549 1.04 1.08 12.05 1.04 2.35 334 12,65 16.71 1.29
uint64 Exponential 1.09 1.22 1.35 1.40 2.65 2.84 4.69 3.74 4.62 1.23 1.37 1.05
uint64 Zipf 145 171 1.92 193 3.54 382 6.08 5.02 6.23 1.60 1.50 1.04
uint64 RootDup 1.06 1.44 1.77  1.70 1.43 255 1.64 5.16 3.24 1.70 2.28 1.08
uint64 TwoDup 1.55 1.84 1.89  2.00 3.34 3.57 4.02 4.07 4.29 1.37 2.32 1.00
uint64 EightDup 1.20 1.32 1.56 1.58 2.77 315 5.07 4.76 5.03 1.49 2.68 1.02
uint64 AlmostSorted 2.13 1.06 1.85 3.03 1.52 1.71  1.35 5.36 2.41 2.37 6.14 1.23
uint64 Uniform 1.28 147 1.51 1.63 2.84 297 424 3.18 4.32 1.17 1.57 1.05
Total 136 1.42 1.68 1.84 2.45 286 342 4.40 4.14 1.52 2.24 1.06
Rank 2 3 5 6 8 9 10 12 11 4 7 1
uint32 Sorted 2.84 429 4959 287 2436 60.07 194 121.52 6.43 35.09 48.04 27.84
uint32 ReverseSorted 1.55 227 2024 146 6.38 11.16 1.01 31.74 5.86 9.79 29.71 8.44
uint32 Zero 256 397 4898 253 226 3381 194 6.54 9.05 2041 12.16 3.12
uint32 Exponential 154 1.85 2.07 1.89 4.37 4.57 7.00 5.93 6.71 1.47 1.03 1.18
uint32 Zipf 1.89 231 2.65 240 527 567 8.57 7.40 8.91 1.33 1.20 1.18
uint32 RootDup 1.19 1.55 197 1.85 1.63 276 144 5.98 3.15 1.23 1.52 1.11
uint32 TwoDup 193 246 2.50 246 5.05 5.07 5.07 5.20 5.47 1.22 1.46 1.10
uint32 EightDup 1.34 1.64 1.99 177 4.17 4.56  6.50 5.74 6.43 1.22 1.83 1.01
uint32 AlmostSorted 265 1.25 221 350 1.83 274 1.14 6.79 2.45 2.08 4.92 1.33
uint32 Uniform 1.75  2.05 2.06 2.04 4.10 4.23 5.89 4.55 5.91 1.41 1.00 1.32
Total 1.70 1.83 2.19 221 3.46 4.09 4.09 5.88 5.15 1.40 1.58 1.17
Rank 4 5 6 7 8 10 9 12 11 2 3 1
Pair Sorted 1.12 157 13,51 1.04 7.57 12.35 1.02 28.08 2.31  13.08 8.61
Pair ReverseSorted 1.11 141 9.31 1.01 3.78 4.63 1.05 14.28 7.20 6.49 5.00
Pair Zero 1.16 1.65 1091 1.05 1.08 10.21 1.03 1.97 2.74 9.02 1.22
Pair Exponential 1.15  2.05 1.29 138 2.11 245 426 3.19 4.18 1.25 1.05
Pair Zipf 145 275 1.67 1.82 2.69 2.84 482 3.73 5.27 1.48 1.02
Pair RootDup 1.20 1.46 1.68 1.71 1.44 230 1.86 4.39 3.78 1.60 1.03
Pair TwoDup 1.74 3.04 1.83 2.01 2.90 3.10 3.74 3.56 4.41 1.47 1.00
Pair EightDup 1.30  2.39 1.53 1.65 2.28 2.65 451 3.97 4.93 1.46 1.01
Pair AlmostSorted 2.73  1.02 229 340 1.86 2.06 229 5.47 391 2.58 1.48
Pair Uniform 141 254 147 1.71 2.46 248 3.82 2.88 4.22 1.24 1.00
Total 1.50 2.06 1.66 1.88 2.20 2.53 343 3.81 4.36 1.54 1.07
Rank 2 6 4 5 7 8 9 10 11 3 1
Quartet  Uniform 1.06 191 126 139 1.92 1.78 3.08 2.01 3.22 1.04
Rank 2 6 3 4 7 5 9 8 10 1
100B Uniform 1.21 1.16 1.13  1.51 1.52 121 2.02 1.55 2.65 1.09
Rank 4 3 2 6 7 5 9 8 10 1

Table A.2: Average slowdowns of sequential algorithms for different data types and input
distributions on 14x20. The slowdowns average over input sizes with at least 2'® bytes.
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o ° o = o =1 o X
o S = = =1 = e <
Type Distribution i % Ag T,o; .‘11 8 é 3 é ‘% E “i
=t 2 - £ % £ & £ 2 & =
) /a —
double Sorted 1.01 176 3511 1.09 1538 21.09 1.10 76.15 2.58 2891 72.53
double ReverseSorted 1.02 187 1519 1.01 5.04 5,53 1.10 26.62 6.54 10.39 25.48
double  Zero 1.03 183 3136 1.09 125 1736 1.10 2.50 3.36 21.07 32.62
double Exponential 1.02  1.29 1.59 1.23 2.45 2.69 4.36 4.42 448 1.46 1.38
double Zipf 1.05 146 1.73  1.26 2.70 2.86 4.64 4.43 486 1.34 1.27
double RootDup 1.13 199 251 175 1.61 243 134 6.93 354 2.44 2.98
double TwoDup 1.11 138 146 127 2.40 246 282 345 3.11 1.11 1.08
double EightDup 1.00 1.38 1.73 125 2.60 3.09 4.62 525 4.82 1.60 1.70
double AlmostSorted 220 148 247 290 1.58 1.58 1.01 6.79 2.58 2.51 3.53
double  Uniform 1.06 1.25 134 1.22 2.36 239  3.58 3.00 3.61 1.18 1.05
Total 1.18 145 1.79 148 2.20 245 278 4.69 3.77 1.58 1.66
Rank 1 2 6 3 7 8 9 12 11 4 5
uint64 Sorted 127 1.84 3598 1.00 1529 2394 1.40 70.86 3.38 39.54 100.69 16.53
uint64 ReverseSorted 1.01 179 13.80 1.01 427 5.30 1.01 20.68 6.63 11.26 28.76 6.19
uint64 Zero 124 179 3508 1.00 1.19 15.68 141 231 418 24.10 36.80 1.35
uint64 Exponential 1.06 142 1.72 131 2.32 2.72 482 4.20 4.88 1.29 1.79 1.04
uint64 Zipf 1.78 252 3.14 224 4.21 4.77 7.84 6.78 8.28 2.37 2.38 1.00
uint64 RootDup 1.62 281 393 290 2.23 347 232 9.39 550 3.38 392 1.00
uint64 TwoDup 2.05 281 3.01 244 4.45 486 5.68 6.00 6.44 2.14 3.06 1.00
uint64 EightDup 142 172 248 1.70 3.15 397 6.55 6.13 640 2.25 4.15 1.02
uint64 AlmostSorted 2.19 1.26 245 3.20 1.56 1.65 1.13 594 294 2.89 6.59 1.18
uint64 Uniform 144 195 2.07 174 3.10 343 537 4.19 544 1.38 2.09 1.02
Total 1.61 198 2.60 213 2.84 337 411 5.88 547 2.13 3.13 1.03
Rank 2 3 6 4 7 9 10 13 12 5 8 1
uint32 Sorted 2.15 319 6726 2.10 31.01 4701 2.18 14990 5.3 62.99 38.38  32.72
uint32 ReverseSorted 124 208 1846 1.32 6.12 7.30  1.07 2995 6.22 11.91 16.88 7.38
uint32 Zero 232 312 81.68 237 2.02 3324 234 5.00 8.11 28.89 16.21 2.66
uint32 Exponential 149 199 259 191 3.63 4.11 7.14 6.41 7.00 1.55 1.05 1.05
uint32 Zipf 193 3.06 3.89  2.60 5.45 594 991 8.60 9.80 2.04 1.28 1.06
uint32 RootDup 1.74 334 451 3.14 2.60 4.03 2.14 11.16 5.37 2.89 2.20 1.00
uint32 TwoDup 227 3.18 3,51 288 5.32 586 6.77 7.21  7.00 1.69 1.24 1.02
uint32 EightDup 1.55 2.17 2.84 193 3.92 4.67 7.66 7.48 7.41 1.82 2.13 1.02
uint32 AlmostSorted 2.82 1.69 291 4.26 1.96 1.92 1.00 7.71 297 2.72 4.37 1.39
uint32 Uniform 1.75 233 2.66 231 4.27 450 6.87 522 6.57 1.67 1.02 1.16
Total 1.89 246 321 262 3.67 421 474 7.50 6.25 2.00 1.66 1.09
Rank 3 5 7 6 8 9 10 13 11 4 2 1
Pair Sorted 1.03 177 23.06 1.01 12.03 1728 1.04 4420 2.29 24.60 13.90
Pair ReverseSorted 1.05 1.18 8.67 1.04 3.83 429 1.04 13.90 7.30 7.52 5.51
Pair Zero 1.02 166 18.17 1.02 1.09 1429 1.03 220 284 15.14 1.27
Pair Exponential 1.13  2.04 128 1.17 1.92 2.18 3.83 330 4.46 1.14 1.08
Pair Zipf 146 2.80 1.74 1.56 2.64 291 5.04 391 5.82 1.54 1.02
Pair RootDup 149 1.78 244 196 1.77 2.60 2.04 589 4.98 2.24 1.00
Pair TwoDup 1.65 298 1.81 1.67 2.85 296 3.82 3.65 4.76 1.52 1.00
Pair EightDup 132 228 1.63  1.40 2.29 2.61 491 4.22  5.01 1.74 1.00
Pair AlmostSorted 3.63 1.00 348 4.50 2.54 2.64 241 749 513 3.90 2.09
Pair Uniform 142 2.63 1.65 1.53 2.60 2.65 4.23 321 477 1.22 1.05
Total 1.60 2.10 191 178 2.34 2.64 3.58 4.32 497 1.75 1.14
Rank 2 6 5 4 7 8 9 10 11 3 1
Quartet  Uniform 1.15 1.89 146 1.34 191 198 3.37 238 3.89 1.01
Rank 2 5 4 3 6 7 9 8 10 1
100B Uniform 152 135 145 154 2.17 145 242 206 3.75 1.01
Rank 5 2 4 6 8 3 9 7 10 1

Table A.3: Average slowdowns of sequential algorithms for different data types and input
distributions on A1x16. The slowdowns average over input sizes with at least 2'8 bytes.
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A.3 More Measurements

o 5 ¢ £ 5 % . ox
o S =1 =1 = = X
Type Distribution <<'/oz % 3§ ;*2 & 3 é 3 ?2’ 3 E e?f
= ) 2 — s bt g = = g 5 &
'I:% = A 2 = o = 2] o —
double Sorted 1.07 183 31.60 1.01 1448 28.79 1.02 92.63 393 27.46 94.22
double  ReverseSorted 1.03 170 19.10 1.06 572 775 1.4 36.85 745 12.07 3744
double Zero 1.09 179 26.88 1.01 1.15 19.12 1.05 3.02 4.87 21.95 28.47
double Exponential 1.00 1.11 123 1.29 2.34 2,69 444 4.42 4.19 1.19 1.65
double Zipf 1.08 1.23 1.38  1.48 2.79 3.11 5.01 4.70 4.79 1.08 1.39
double RootDup 1.04 1.23 1.52 1.51 1.23 2,12 1.34 6.01 2.57 1.59 2.39
double TwoDup 1.20  1.35 1.38  1.52 2.60 285 3.19 3.79 3.18 1.02 1.45
double  EightDup 1.00 1.06 1.31 1.33 243 290 4.64 5.02 4.35 1.16 1.61
double AlmostSorted 229 1.01 2.07 276 1.60 1.87 1.30 7.43 222 2.26 5.61
double Uniform 1.05 1.20 120 1.34 2.43 254 382 3.26 3.63 1.01 1.78
Total 1.18 1.16 142 1.55 2.13 2.55  3.00 4.79 3.45 1.28 2.00
Rank 2 1 4 5 7 8 10 12 11 3 6
uint64 Sorted 1.11 1.83 2842 1.02 1330 2646 1.05 84.18 333 34.08 11692 16.69
uint64 ReverseSorted 1.06 173 17.76 1.02 5.28 7.00 1.04 32.52 7.72 13.81 43.72 7.59
uint64 Zero 1.10 1.68 2590 1.03 1.11 1794 1.01 2.73 4.42 22.45 28.05 1.47
uint64 Exponential 1.02 1.15 124 138 2.23 2.59 442 4.09 4.14 1.11 2.06 1.10
uint64 Zipf 1.28 1.56 1.71 185 3.20 361 5.76 523 5.72 1.27 1.75 1.01
uint64 RootDup 1.06 1.22 1.52 1.63 1.16 195 1.39 535 2.73 1.43 2.26 1.35
uint64 TwoDup 149 1.67 1.65 1.90 2.99 329 376 4.19 3.85 1.21 2.26 1.00
uint64 EightDup 1.16 1.20 147 1.58 2.51 3.00 495 5.04 4.74 1.36 2.54 1.02
uint64 AlmostSorted 237  1.02 191 3.08 1.60 1.76 141 6.81 2.39 2.69 7.30 1.21
uint64 Uniform 1.25 141 1.38  1.61 2.61 2.80 4.09 343 4.01 1.00 2.80 1.12
Total 1.32 1.30 1.54 1.80 2.21 2.64 325 4.77 3.79 1.37 2.66 1.11
Rank 3 2 5 6 7 8 10 13 11 4 9 1
uint32 Sorted 2.82 445 8397 232 3539 9500 2.00 234.86 8.93 61.73 92.69 42.36
uint32 ReverseSorted 147 238 2697 151 7.54 12.80 1.00 49.47 7.45 14.09 51.86 10.10
uint32 Zero 2,51 4.09 8092 199 249 5423 211 7.59 12.12 34.89 17.80 4.03
uint32 Exponential 1.29 1.53 1.67 1.62 3.20 3.56 5.92 5.77 5.61 1.13 1.11 1.05
uint32 Zipf 1.67 2.10 240 2.18 4.76 514 8.11 7.72 7.94 1.09 1.34 1.22
uint32 RootDup 1.35 143 1.85 1.70 1.41 242 126 6.66 2.76 1.09 1.67 1.61
uint32 TwoDup 1.86 2.16 222 215 4.12 440 4.86 5.67 4.89 1.04 1.78 1.18
uint32 EightDup 128 146 1.77  1.59 3.29 3.76  6.00 6.28 5.70 1.04 191 1.08
uint32 AlmostSorted 2.77 122 243  3.56 1.89 2.76  1.09 8.40 2.23 2.30 7.36 1.30
uint32 Uniform 1.35  1.62 1.56 1.63 3.20 325 479 4.01 4.53 1.01 1.12 1.20
Total 1.59 1.61 1.96 1.98 291 351 3.68 6.22 4.45 1.19 1.84 1.22
Rank 3 4 6 7 8 9 10 13 11 1 5 2
Pair Sorted 1.08 1.72 19.73 1.02 9.96 19.02 1.01 51.62 2.65 20.73 11.81
Pair ReverseSorted 1.07 1.18 10.15 1.08 3.48 4.63 1.07 17.97 7.55 7.46 5.07
Pair Zero 1.12 1.64 17.10 1.01 1.05 16.22 1.12 2.13 3.05 13.49 1.15
Pair Exponential 1.04 194 1.18 1.52 1.82 2.07 3.87 3.35 4.04 1.10 1.07
Pair Zipf 1.39  2.68 1.53 2.06 2.53 2.72 483 4.09 5.25 1.25 1.00
Pair RootDup 1.05 1.15 1.39 1.66 1.09 1.76  1.65 4.31 3.24 1.23 1.12
Pair TwoDup 1.48 2.67 1.56 2.00 2.47 2.66 3.35 3.55 395 1.21 1.02
Pair EightDup 1.24  2.20 1.40 178 2.08 247 452 4.35 4.85 1.37 1.00
Pair AlmostSorted 340 1.00 2,62 4.12 2.17 2.50 2.80 7.94 4.55 3.17 1.66
Pair Uniform 1.29  2.39 1.35 1.76 2.24 234 375 2.98 4.00 1.04 1.08
Total 143 1.88 1.53 2.01 2.00 234 337 4.16 4.22 1.37 1.12
Rank 3 5 4 7 6 8 9 10 11 2 1
Quartet  Uniform 1.22 2.00 1.31 1.82 2.00 2.02 337 2.39 3.71 1.02
Rank 2 5 3 4 6 7 9 8 10 1
100B Uniform 1.51 130 129 1.88 1.84 1.38  2.39 1.98 3.40 1.04
Rank 5 3 2 7 6 4 9 8 10 1

Table A.4: Average slowdowns of sequential algorithms for different data types and input
distributions on 12x16. The slowdowns average over input sizes with at least 2'® bytes.
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A Sequential and Shared-Memory Sorting

o 5 . = = oz e oA s
o S = = = = =}
Type Distribution T/ol % 3 T/o: E“ 2 é & é 3% E (‘E/‘}
= 2 2 - 2 3 £ 3 £ £ & &
= A" =
double  Sorted 1.03  1.64 2922 111 16.69 2254 1.24 70.63  2.51 27.84 6647
double  ReverseSorted 1.01 156 11.86 1.00 475 498 1.04 21.65  4.68 8.75 19.44
double  Zero 1.01 1.64 21.64 117 111 16.84 1.19 2.62 3.03 18.42  32.61
double  Exponential 1.03 1.10 120 124  2.62 292 478 432 479 1.36 1.32
double  Zipf 1.02 111 127 126 295 312 492 428  5.06 1.08 121
double  RootDup 114 1.64 1.96 1.86 1.79 2,69 114 7.04 3.71 2.32 3.24
double  TwoDup 118 1.26 131 137 280 2.95 3.25 3.48 3.54 1.09 109
double  EightDup 1.02  1.06 129 125 272 3.13 4.86 493 482 1.38 1.52
double  AlmostSorted 3.03 122 3.02 447 243 233 1.00 9.01 3.56 352 481
double  Uniform 1.09 115 1.15 125 2.64  2.68 3.96 3.07 3.95 1.10 1.04
Total 125 1.21 1.51 1.6l 254 282 2.89 4.83 4.16 1.53 1.71
Rank 2 1 3 5 7 8 9 11 10 4 6
uint64  Sorted 133 1.92 2977 1.00 1675 24.57 103 5938 281 37.63  79.94 16.30
uint64  ReverseSorted 1.01 1.54 1029 1.01 411 467 101 1595 4.66 9.84 2049  5.05
uint64 Zero 137 206 2496 1.10 1.18 1698 1.01 2.57 3.81 22.53 3942 1.39
uint64  Exponential 1.04 118 133 134 251 289 509 373 507 1.26 162 104
uint64 Zipf 173 2.06 239 233 4.80 532 9.03 636  9.19 215 251 1.00
uint64 RootDup 159 232 290 277 242 3.61 1.80 7.98 5.65 315 426 1.00
uint64 TwoDup 2.04 247 255 262 494 536 636 547 695 1.99 3.41 1.00
uint64 EightDup 137 152 191 177 343 406  6.89 5.57  6.84 2.13 339  1.00
uinté4  AlmostSorted 293 119 294 464 239 241 103 7.08  3.83 403 729 166
uint64  Uniform 143 173 173 182 359 378 586 375 584 1.34  2.02  1.00
Total 165 171 217 230 3.30 378 417 5.51 6.00 2.12 313 1.08
Rank 2 3 5 6 8 9 10 11 12 4 7 1
uint32 Sorted 248 451 6712 280 37.74 5421 1.93 13972  6.14 64.10 2828 3551
uint32 ReverseSorted 142 188 13.03 155 5.38 6.34  1.06 19.68  4.27 8.92 7.12 5.83
uint32 Zero 219 395 6033 238 221 4148 1.96 6.01 7.85 27.01 17.69 297
uint32 Exponential 160 1.84 213 197 412 476 7.67 5.90 7.78 1.51 1.00 1.09
uint32 Zipf 2.04 251 3.01 267 6.12 6.86 10.77 7.84 11.07 1.66 125 1.06
uint32 RootDup 1.67 248 321 283 256  4.07 1.50 9.10 5.14 2.41 2.08  1.00
uint32 TwoDup 2.65 313 332 313 6.46 7.09 772 6.89 8.31 1.63  1.09 1.10
uint32 EightDup 153 1.81 231 193 4.31 5.07 7.80 6.48 7.89 1.55 1.30  1.00
uint32 AlmostSorted 523 210 495 825 3.93 396  1.00 12.63 5.42 534 524 270
uint32 Uniform 221 253 2.60 257 5.38 577 832 5.38 8.39 175  1.02 1.29
Total 221 231 297 294 451 524 484 7.49 7.49 2.03 153 1.24
Rank 4 5 7 6 8 10 9 11 12 3 2 1
Pair Sorted 1.03 1.65 2071 1.04 1267 1852 1.03 35.04 241 23.54 12.43
Pair ReverseSorted 1.08 1.18 6.89 1.07 377 390 1.05 10.76 5.49 6.82 4.58
Pair Zero 1.02  1.65 1338 1.04 1.06 12.81 1.03 2.03 2.78 12.80 1.24
Pair Exponential 1.06  2.00 1.09 120 1.96 2.18 4.16 272 440 113 1.04
Pair Zipf 153 3.18 1.63 174 3.06 3.31 5.96 377  6.50 1.58 1.00
Pair RootDup 1.62 190 206 217 1.8 285 196 537 522 2.22 1.00
Pair TwoDup 167 323 1.69 1.86 3.10 334 426 332 499 1.55 1.00
Pair EightDup 124 237 134 144 231 270 4.96 3.64 5.16 1.72 1.00
Pair AlmostSorted 351 1.00 326 4.62 270 291 1.96 6.48 5.18 4.17 2.03
Pair Uniform 141 2.82 140 158 271 2.81 4.62 2.75 490 1.24 1.00
Total 1.60 221 1.68 1.90 2.48 2.85 3.69 3.83 5.16 1.77 111
Rank 2 6 3 5 7 8 9 10 11 4 1
Quartet  Uniform 113 1.82 124 128 1.96 1.84 3.04 1.95 3.67 1.01
Rank 2 5 3 4 8 6 9 7 10 1
100B Uniform 1.53 1.38 140 1.68 2.10 142 225 1.79 3.50 1.01
Rank 5 2 3 6 8 4 9 7 10 1

Table A.5: Average slowdowns of sequential algorithms for different data types and input
distributions on A1x64. The slowdowns average over input sizes with at least 2'® bytes.
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A.3 More Measurements

Type Distribution ~ 1S*0  $%0S
double  Sorted 1.00 35.77
double  ReverseSorted 1.00 16.15
double  Zero 1.00 17.03
double  Exponential 1.00 141
double  Zipf 1.00 1.34
double  RootDup 1.02  1.39
double  TwoDup 1.00 1.23
double  EightDup 1.00 152
double  AlmostSorted 1.02  1.13
double  Uniform 1.00 123
Total 1.01 1.32
Rank 1 2
uint64  Sorted 1.00 37.39
uint64  ReverseSorted 1.00 15.50
uint64 Zero 1.00 16.41
uint64  Exponential 1.00 141
uint64  Zipf 1.00 1.31
uint64 RootDup 1.02 1.33
uint64 ~ TwoDup 1.00 124
uint64  EightDup 1.00 148
uinté4  AlmostSorted  1.04  1.11
uint64  Uniform 1.00 124
Total 1.01 1.30
Rank 1 2
uint32  Sorted 1.00 39.40
uint32  ReverseSorted 1.01 15.16
uint32 Zero 1.00 20.16
uint32  Exponential 1.00  1.49
uint32 Zipf 1.00 1.38
uint32 RootDup 1.01 1.45
uint32 TwoDup 1.00 1.25
uint32  EightDup 1.00 1.56
uint32  AlmostSorted 1.04  1.14
uint32 Uniform 1.00 1.25
Total 1.01 1.35
Rank 1 2
Pair Sorted 1.00 24.42
Pair ReverseSorted  1.00 10.47
Pair Zero 1.00 12.16
Pair Exponential 1.00 1.32
Pair Zipf 1.01 1.20
Pair RootDup 1.02 1.24
Pair TwoDup 1.00 119
Pair EightDup 1.00 1.37
Pair AlmostSorted  1.04  1.07
Pair Uniform 1.01 1.16
Total 1.01 1.22
Rank 1 2
Quartet  Uniform 1.01 1.12
Rank 1 2
100B Uniform 1.09 1.04
Rank 2 1

Table A.6: Average slowdowns of 1S*0 and S*oS for different data types and input distri-
butions. The slowdowns average over the machines and input sizes with at least 2'® bytes.
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A Sequential and Shared-Memory Sorting

218 220 222 224 226 228 230 232 234
IPS*o 27284 51.73 820 3.00 1.06 0.66 0.50 0.49 0.49
PBBS 10.15 462 286 170 139 110 113 1.12 1.13
o MCSTLbq 229 35211 6394 1579 458 225 191 1.86 1.82
3 IPS?Ra 23791 37.12 1054 256 093 0.54 0.45 0.45 0.40
=~  PBBR 13.96 403 2.08 096 092 062 089 070 0.79
RADULS2 721.12 146.75 37.14 929 3.09 1.87 125 130 1.09
RegionSort 314.64 6506 1572 422 225 155 145 122 123
IPS*o 14.39 1.11 0.62 047 041 047 044 0.42
PBBS 1.99 120 079 083 072 0.69 066 0.65
o MCSTLbq  57.04 13.62 234 108 111 123 134 148
% IPS’Ra 2.41 048 038 0.37 0.41 048 046 0.42
< PBBR 1.16 068 049 056 056 063 063 0.59
RADULS2 9.13 287 120 063 048 050 051 044
RegionSort 9.88 256 091 049 055 0.51 049 045
IPS*o 21.33 289 112 0.74 0.58 0.53 0.50 0.48 0.48
PBBS 2.93 1.74 129 119 113 110 110 1.07 1.05
o MCSTLbq  149.59 36.86 6.07 209 141 127 131 126 133
5 IPS?Ra 10.25 263 1.02 067 0.48 0.45 045 045 040
~  PBBR 2.63 122 075 0.66 072 068 0.69 067 0.64
RADULS2 6136 1446 415 129 062 047 0.40 037 0.39
RegionSort ~ 57.67 1392 358 135 072 049 059 042 046
IPS*o 2617 11.88 334 126 063 050 045 042 0.42
PBBS 4.72 248 1.74 126 095 087 083 083 0.83
< MCSTLbq 40896 9510 2722 530 1.79 129 118 119 124
E IPS’Ra 4522 1172 320 125 052 045 044 041 0.39
< PBBR 5.80 2.03 138 0.87 064 058 055 052 050
RADULS2 154.04 3682 982 279 1.00 056 044 040 040
RegionSort 103.12  26.75 6.62 209 096 0.66 055 0.39 0.46

Table A.7: Running times in nanoseconds of parallel algorithms sorting uint64 values
with input distribution Uniform executed on different machines. The running times are
scaled by t/8nlog, n. The fastest comparison-based and non-comparison-based running
time is highlighted.
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A.3 More Measurements

Uniform double AlmostSorted uint64
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- +- RegionSort —— IPS?’Ra

Figure A.2: Running times of parallel algorithms on different input distributions and
data types of size D executed on machine Alx64. The radix sorters PBBR, RADULS2,
RegionSort, and IPS?Ra does not support the data types double and 100B.
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A Sequential and Shared-Memory Sorting

Uniform double AlmostSorted uint64
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Figure A.3: Running times of parallel algorithms on different input distributions and
data types of size D executed on machine I12x16. The radix sorters PBBR, RADULS2,
RegionSort, and IPS?Ra does not support the data types double and 100B.
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A.3 More Measurements

Uniform double
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Figure A.4: Running times of parallel algorithms on different input distributions and
data types of size D executed on machine Alx16. The radix sorters PBBR, RADULS2,
RegionSort, and IPS?Ra does not support the data types double and 100B.
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A Sequential and Shared-Memory Sorting
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Figure A.5: Running times of parallel algorithms on different input distributions and
data types of size D executed on machine I14x20. The radix sorters PBBR, RADULS2,
RegionSort, and IPS?Ra does not support the data types double and 100B.
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A.3 More Measurements

E
z £ g a3 s
e L 2 20 g =) 0 2 = 5 2 &

Type Distribution E 2 o % % S | ?.)D & E: Z) E

s = & ~
double Sorted 1.04 1424 136 17.74 22.71 1.01 65.29
double  ReverseSorted 1.09 121 173 140 1582 340 6.39
double  Zero 1.04 1229 130 19.88 319.78 1.00 64.20
double  Exponential 1.00 182 187 245 337 1564 5.57
double  Zipf 1.00 1.89 1.98 2.51 325 16.17 5.99
double RootDup 1.00 145 2.02 2.20 3.74 6.33 6.78
double  TwoDup 1.00 1.90 1.73 2.23 292 7.01 4.85
double EightDup 1.00 1.84 194 2.29 334 15.16 5.63
double  AlmostSorted 1.00 150 212 412 257 343 7.15
double Uniform 1.00 1.96 1.70 2.33 3.00 12.65 4.77
Total 1.00 1.75 1.90 2.53 3.15 9.57 5.76
Rank 1 2 3 4 5 7 6
uint64 Sorted 1.17 1263 131 17.38 23.67 1.00 7.19 7817 4441 10.76
uint64 ReverseSorted 1.17 124 196 1.59 18.27 3.96 1.07 7.83 4.24 1.37
uint64 Zero 1.09 1245 133 19.68 317.45 1.00 1.02  69.97 39.00 1.32
uint64 Exponential 1.02 1.61 197 2.39 332 14.06 1.63 1.51 2.61 1.29
uint64 Zipf 1.00 1.66 2.03 2.41 344 14.10 1.39 19.54 547 1.23
uint64 RootDup 1.00 1.35 2.06 2.20 3.62 7.54 1.33 9.04 5.70 1.23
uint64 TwoDup 1.03 1.74 1.87 2.25 3.11 7.34 1.11  10.11 3.43 1.08
uint64 EightDup 1.00 1.61 2.00 224 346 13.40 1.28 13.38 4.38 1.23
uint64 AlmostSorted 1.11 1.58 2.46 4.72 322 4.39 1.05 9.69 5.47 1.30
uint64 Uniform 1.11 1.96 2.01 2.59 3.15 13.15 1.40 1.26 1.27 1.03
Total 1.04 1.63  2.05 2.59 3.33 9.77 1.30 6.25 3.64 1.20
Rank 1 4 5 6 7 10 3 9 8 2
uint32 Sorted 1.23 948 174 10.22 17.28 2.09 4.87 7.39 4.96
uint32 ReverseSorted 1.67 1.84 2.56 1.87 16.85 8.19 1.06 1.39 1.16
uint32 Zero 1.09 1343 135 22.64 47499 1.00 1.01  89.40 1.38
uint32 Exponential 1.27 2.60 212 343 424 2427 1.37 1.78 1.00
uint32 Zipf 1.06 232 1.94 3.07 390 2224 1.16 6.03 1.02
uint32 RootDup 1.11 1.61 213 243 3.89 7.71 1.18 6.98 1.08
uint32 TwoDup 1.46 3.09 227 353 4.61 1222 1.07 1.59 1.00
uint32 EightDup 1.24 266 213 321 399 23.06 1.16 1.54 1.04
uint32 AlmostSorted 1.51 1.99  2.60 5.20 3.69 5.49 1.12 1.52 1.01
uint32 Uniform 1.46 318 224 3.77 4.73  21.36 1.21 1.50 1.01
Total 1.29 243 220 3.44 4.13  14.54 1.18 2.30 1.02
Rank 3 6 4 7 8 9 2 5 1
Pair Sorted 1.05 1266 132 16.25 23.98 1.00 6.54 29.00 75.74 9.68
Pair ReverseSorted 1.11 1.28 1.85 1.57 16.77 321 1.12 2.82 7.53 1.39
Pair Zero 1.06 1476 129 19.14 283.98 1.00 1.04 15.63 74.08 1.35
Pair Exponential 1.21 1.59 227 2.33 341 8.89 1.93 1.01 9.32 1.62
Pair Zipf 1.00 1.35 1.90 1.93 291 7.31 1.38 7.94 8.41 1.26
Pair RootDup 1.02 124 187 2.00 3.49 5.12 1.26 3.38 9.61 1.28
Pair TwoDup 1.02 1.37 1.88 1.86 2.84 437 1.24 4.69 6.20 1.17
Pair EightDup 1.02 1.36 1.96 1.89 3.10 7.29 1.31 8.00 7.57 1.29
Pair AlmostSorted 1.07 1.74  2.59 4.25 3.64 3.94 1.09 4.01 10.36 1.31
Pair Uniform 1.08 1.50 1.98 2.04 2.94 7.26 1.47 1.05 4.39 1.07
Total 1.06 144 2.05 223 3.17 6.07 1.36 3.30 7.70 1.28
Rank 1 4 5 6 7 9 3 8 10 2
Quartet  Uniform 1.03 1.14 1.99 1.83 2.71 4.68
Rank 1 2 4 3 5 6
100B Uniform 1.05 1.11  2.04 1.70 2.53 3.51
Rank 1 2 4 3 5 6

Table A.8: Average slowdowns of parallel algorithms for different data types and input
distributions obtained on machine A1x64. The slowdowns average input sizes with at least
t - 2! bytes.
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double  Sorted 247 1827 281 2246 19.43 1.02 60.33
double  ReverseSorted 1.05 120 178 140 879 224 4.29
double  Zero 217 1791 230 2699 29291 1.03 60.63
double  Exponential 1.00 206 192 276 279 11.65 4.17
double  Zipf 1.00 236 2.08 3.16 333 1348 4.65
double  RootDup 1.00 1.63 229 2.62 3.53 571 571
double  TwoDup 1.00 215 1.79 2.60 2.64 537 3.52
double  EightDup 1.00 210 198 267 293 11.29 4.29
double  AlmostSorted 1.00 147 207 421 157 272 5.05
double  Uniform 1.00 223 178 2.70 2.65 9.35 3.43
Total 1.00 1.97 198 292 271 7.54 4.34
Rank 1 2 3 5 4 7 6
uint64 Sorted 232 1698 291 21.77 18.67 1.01 8.19 93.89 50.76 12.20
uint64 ReverseSorted 1.34 143 228 1.75 11.17 2.83 1.00 8.30 4.24 1.47
uint64 Zero 1.62 1842 230 26.88 29198 1.07 1.09 85.76 52.94 1.09
uint64 Exponential 1.04 1.98 2.06 2.79 3.01 11.02 1.58 1.45 1.96 1.08
uint64 Zipf 1.00 2.17  2.09 2.99 324 1217 1.32 18.30 5.64 1.30
uint64 RootDup 1.00 1.55 227 2.53 3.50 5.64 1.17 9.66 6.40 1.26
uint64 TwoDup 1.19 236 210 291 3.12 6.18 1.09 11.02 3.39 1.15
uint64 EightDup 1.05 2.02 211 2.66 298 10.68 1.14 14.02 4.45 1.15
uint64 AlmostSorted 1.23 1.73  2.62 5.24 1.99 3.42 1.04 9.95 518 1.26
uint64 Uniform 1.21 2.50 215 3.09 311 10.31 1.36 1.54 1.15 1.06
Total 1.10 2.02 219 3.08 2.95 7.80 1.23 6.43 3.49 1.18
Rank 1 4 5 7 6 10 3 9 8 2
uint32 Sorted 333 1436 355 14.59 18.15 1.96 6.28 8.67 6.47
uint32 ReverseSorted 1.94 212 2.80 2.07 12.90 5.32 1.02 1.28 1.14
uint32 Zero 197 1935 199 3252 473.11 1.06 1.08 105.42 1.09
uint32 Exponential 1.46 338 243 4.20 433 19.28 1.32 1.93 1.00
uint32 Zipf 1.10 299 2.03 3.73 3.90 17.67 1.05 5.83 1.10
uint32 RootDup 1.21 194 241 2.96 3.48 6.35 1.01 7.00 1.36
uint32 TwoDup 1.64 379 248 4.08 4.38 9.68 1.04 2.12 1.06
uint32 EightDup 1.38 348 243 3.95 429 18.54 1.10 1.84 1.09
uint32 AlmostSorted 1.72 225 276 6.11 2.87 4.77 1.17 1.34 1.01
uint32 Uniform 1.53 3.63 223 3.95 4.09 1473 1.09 1.73 1.08
Total 1.42 298 239 4.06 3.87 11.54 1.11 243 1.09
Rank 3 6 4 8 7 9 2 5 1
Pair Sorted 217 1422 293 19.64 17.52 1.03 7.26 3412 95.13 11.46
Pair ReverseSorted 1.14 131  2.05 1.74 9.42 2.76 1.03 3.11 8.53 1.53
Pair Zero 195 2027 240 2529 197.76 1.03 1.06 19.66  97.93 1.06
Pair Exponential 1.06 149  2.02 2.36 2.45 6.71 1.52 1.07 8.42 1.20
Pair Zipf 1.00 1.58 1.93 2.38 2.55 6.87 135 7.99 9.45 1.35
Pair RootDup 1.01 1.34 2.05 2.31 3.06 4.89 1.16 430 10.97 1.13
Pair TwoDup 1.05 1.65 1.99 2.30 2.48 4.08 1.15 4.92 6.91 1.17
Pair EightDup 1.02 1.50 2.04 2.22 2.48 6.44 1.16 7.57 8.34 1.21
Pair AlmostSorted 1.06 1.67 2.60 4.49 2.12 3.25 1.03 3.97 11.00 1.33
Pair Uniform 1.06 1.73 201 2.41 2.39 6.19 1.36 1.32 4.74 1.01
Total 1.04 1.56 2.08 2.56 2.49 5.31 1.24 3.55 8.26 1.20
Rank 1 4 5 7 6 9 3 8 10 2
Quartet  Uniform 1.00 126 2.01 2.20 2.28 4.50
Rank 1 2 3 4 5 6
100B Uniform 1.01 1.16 1.94 1.93 2.16 3.33
Rank 1 2 4 3 5 6

Table A.9: Average slowdowns of parallel algorithms for different data types and input
distributions obtained on machine 12x16. The slowdowns average input sizes with at least
t - 2! bytes.
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double Sorted 1.08 11.04 126 1497 1574 1.00 47.54
double  ReverseSorted 1.01 115 145 153  3.63 148 5.11
double  Zero 110 743 123 1854 48.16 1.00 47.74
double Exponential 1.00 1.52 141 222 2.88 435 5.06
double Zipf 1.00 1.55 1.46 2.23 292 421 4.97
double  RootDup 1.00 140 139 224 319 282 5.62
double TwoDup 1.00 1.62 143 2.11 2.81 2.68 4.64
double EightDup 1.00 1.52 146 2.29 2.85 442 5.20
double  AlmostSorted 1.00 152 196 439 224 186 6.73
double Uniform 1.00 1.71 143 2.20 2.78 3.96 4.63
Total 1.00 1.55 1.50 2.44 2.80 3.33 522
Rank 1 3 2 4 5 6 7
uint64 Sorted 1.05 1076 121 14.83 1567 1.00 6.04 4227 27.60 7.78
uint64 ReverseSorted 1.07 1.23  1.58 1.64 386 1.58 1.04 5.03 3.12 1.27
uint64 Zero 1.06 741 117 1831 4738 1.00 1.01 3498 30.32 1.06
uint64 Exponential 1.03 146 1.50 2.25 291  3.99 1.40 1.63 1.91 1.24
uint64 Zipf 1.00 147 149 222 294 382 1.29 6.92 3.55 1.27
uint64 RootDup 1.00 1.36  1.39 2.23 316 2.80 1.22 5.67 4.18 1.15
uint64 TwoDup 1.04 1.57 153 221 295 271 1.14 5.64 2.80 1.11
uint64 EightDup 1.03 145 1.50 2.29 290 4.06 1.22 7.00 3.27 1.22
uint64 AlmostSorted 1.08 1.66 2.16 4.78 242 2.05 1.07 6.63 4.23 1.18
uint64 Uniform 1.05 1.67 154 231 297 384 1.25 1.44 1.19 1.02
Total 1.03 1.52 157 2.51 2.88 323 1.22 4.08 2.79 1.17
Rank 1 4 5 6 8 9 3 10 7 2
uint32 Sorted 1.14 1438 133 1651 1474 1.13 553 16.98 6.20
uint32 ReverseSorted 1.25 149 1.68 1.67 432 1.96 1.02 1.75 1.12
uint32 Zero 1.12 833 127 19.15 56.60 1.00 1.02 48.85 1.05
uint32 Exponential 1.10 220 1.60 2.70 318 6.38 1.27 1.64 1.07
uint32 Zipf 1.02 2.07 1.52 2.58 3.14 597 1.21 4.53 1.20
uint32 RootDup 1.01 1.68 1.53 231 321 351 1.19 5.33 1.13
uint32 TwoDup 1.12 236 1.57 2.61 314 375 1.10 1.75 1.00
uint32 EightDup 1.04 2.08 1.53 2.56 3.06 6.01 1.17 2.00 1.09
uint32 AlmostSorted 1.19 1.99 217 5.53 2.56 228 1.10 232 1.04
uint32 Uniform 1.17 2.56 1.57 2.79 317  5.69 1.13 1.43 1.00
Total 1.09 212 1.63 2.89 3.06 4.53 1.17 2.29 1.07
Rank 2 5 4 7 8 9 3 6 1
Pair Sorted 1.06 1294 120 14.57 1562 1.00 6.13 17.80 55.45 7.71
Pair ReverseSorted 1.06 1.51 1.54 1.68 387 1.51 1.10 2.11 6.43 1.28
Pair Zero 1.07 992 1.15 1842 4453 1.00 1.01 8.84 59.46 1.09
Pair Exponential 1.04 1.48 1.48 2.19 2.83 291 1.44 1.04 5.90 1.29
Pair Zipf 1.00 145 145 2.09 278 277 1.32 322 6.72 1.31
Pair RootDup 1.00 1.57 131 2.29 327 263 1.21 2.73 7.61 1.20
Pair TwoDup 1.01 142 148 2.03 279 229 1.25 2.68 5.85 1.11
Pair EightDup 1.02 1.48 149 2.19 2.81 3.01 1.17 3.28 6.60 1.26
Pair AlmostSorted 1.05 1.98 2.06 4.18 244 186 1.09 2.75 8.50 1.15
Pair Uniform 1.04 1.50 1.55 2.15 2.89 280 1.31 1.12 4.40 1.05
Total 1.02 1.54 153 2.37 2.82 258 1.25 2.20 6.39 1.19
Rank 1 5 4 7 9 8 3 6 10 2
Quartet  Uniform 1.01 1.19 145 1.96 255 217
Rank 1 2 3 4 6 5
100B Uniform 1.03 1.12 148 2.00 243 2.09
Rank 1 2 3 4 6 5

Table A.10: Average slowdowns of parallel algorithms for different data types and input
distributions obtained on machine A1x16. The slowdowns average input sizes with at least
t - 2! bytes.
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double  Sorted 138 436 357 871 391 1.24 11.66
double  ReverseSorted 1.08 199 354 350 3314 828 6.39
double  Zero 223 1545 295 379 161.14 1.26 11.06
double  Exponential 1.01  1.89 3.03 3.00 4.00 17.67 542
double  Zipf 1.00 2.05 3.38 3.34 528 20.29 6.38
double  RootDup 1.00 1.68 3.85 3.18 5.64 9.79 8.00
double  TwoDup 1.00 2.05 286 2.96 3.80 9.77 5.21
double  EightDup 1.00 1.83 293 2.67 382 1583 5.17
double  AlmostSorted 1.01 283 4.03 9.66 2,62 1032 7.06
double  Uniform 1.00 2.08 275 297 376 15.88 5.24
Total 1.00 2.03 3.23 3.56 4.02  13.66 5.99
Rank 1 2 3 4 5 7 6
uint64 Sorted 1.47 4.75 222 9.82 4.12 1.45 551 2612 16.95 5.50
uint64 ReverseSorted 1.10 191 3.56 3.77 31.91 8.39 324 1298 8.60 4.15
uint64 Zero 494 1891 3.54 4.48 190.32 1.58 337 27.58 15.69 1.21
uint64 Exponential 1.08 1.96 3.20 3.14 4.87 1991 3.05 1.80 4.86 1.23
uint64 Zipf 1.00 2.00 3.51 3.24 538 19.31 3.08 3036 12.53 4.42
uint64 RootDup 1.00 1.65 3.87 3.27 5.71 9.94 384 19.67 1642 3.43
uint64 TwoDup 1.00 1.97 2.89 2.83 3.73 9.85 222 1549 7.37 2.55
uint64 EightDup 1.01 1.69 2.87 2.49 384 14.73 2.14 1758 10.19 2.74
uint64 AlmostSorted 1.00 2.83  4.07 9.64 2.77 10.81 329 1471 10.28 3.34
uint64 Uniform 1.15 230 3.20 3.31 4.30 1691 2.87 1.40 3.02 1.00
Total 1.03 2.03 3.35 3.58 4.26 1392 2.87 8.75 8.12 2.38
Rank 1 2 5 6 7 10 4 9 8 3
uint32 Sorted 2.01 4.80 7.19 7.18 9.39 3.03 4.44 3.46 2.84
uint32 ReverseSorted 1.21 193 291 2.68 23.08 8.82 2.15 1.42 1.27
uint32 Zero 275 29.11 4.61 8.71 533.66 1.97 536 52.76 1.33
uint32 Exponential 1.45 334 3.61 4.60 7.78 34.24 2.88 3.03 1.02
uint32 Zipf 1.00 2.81 3.06 3.52 584 26.87 231 10.95 3.26
uint32 RootDup 1.00 1.89  3.29 2.78 5.74 8.66 269 12.64 2.65
uint32 TwoDup 1.40 356 3.25 4.29 578 16.27 2.09 1.86 1.03
uint32 EightDup 1.27 325 327 4.07 6.40 28.26 2.25 2.07 1.11
uint32 AlmostSorted 1.14 2.06 3.05 5.78 4.15 7.46 2.25 1.52 1.28
uint32 Uniform 1.53 373 345 4.34 6.69 26.29 2.50 1.80 1.00
Total 1.24 2.86 3.28 4.11 596 18.42 2.41 3.04 1.44
Rank 1 4 6 7 8 9 3 5 2
Pair Sorted 1.52 293 233 10.32 8.15 1.07 3.48 8.00 15.73 4.38
Pair ReverseSorted 1.07 191 3.14 5.76 21.25 8.15 292 588 11.18 4.00
Pair Zero 3.63 1224 2.80 522 70.67 1.32 2.08 597 17.38 1.15
Pair Exponential 1.20 290 3.64 5.12 4.04 14.27 3.53 1.18 18.28 1.53
Pair Zipf 1.00 227 331 4.44 297 11.95 3.06 1393 18.25 4.98
Pair RootDup 1.01 2.58 381 6.39 6.71 9.15 4.01 9.30 24.77 3.42
Pair TwoDup 1.00 246 3.05 4.22 4.07 7.30 2.54 9.19 1348 3.48
Pair EightDup 1.02 223 297 3.84 3.02 9.60 228 11.55 14.89 3.43
Pair AlmostSorted 1.00 2,66 379 14.09 6.58 10.68 3.25 7.75 14.84 4.09
Pair Uniform 1.13 2.81 3.37 4.69 3.77 1217 3.20 1.32 9.45 1.04
Total 1.05 2.55 341 5.52 4.24 1051 3.08 5.57 15.68 2.79
Rank 1 2 5 7 6 9 4 8 10 3
Quartet  Uniform 1.01 1.64 3.28 4.45 5.09 8.95
Rank 1 2 3 4 5 6
100B Uniform 1.14 1.17 3.61 4.73 8.11 7.00
Rank 1 2 3 4 6 5

Table A.11: Average slowdowns of parallel algorithms for different data types and input
distributions obtained on machine 14x20. The slowdowns average input sizes with at least
t - 2! bytes.
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Appendix B

On the Performance of MPI Libraries

In high-performance computing, algorithms usually use an MPI library for communication.
The target of MPI libraries is to simplify the development of algorithms by providing efficient
and scalable implementations of frequently used operations for communication. However, it
turned out that point-to-point message exchanges, collective operations, and operations to
create new communicators are much less efficient in many situations than one would expect:
Depending on the MPI library, the startup overhead of data exchanges with alternating commu-
nication partners is tremendously large, collective operations are slow, and the time to create
MPI communicators makes it impossible to implement algorithms with polylogarithmic latency.
In Appendix B.1, we study the problem of performing fast data exchanges with point-to-point
messages on different supercomputers with different MPI implementations. On one supercom-
puter, we did not see any running time fluctuations. On two supercomputers, data exchanges
with alternating communication partners are not efficient at all. And on one supercomputer,
the time for data exchanges fluctuates only slightly. In Appendix B.2, we study the performance
of MPI collective operations and MPI communicators. We also present RBC, a communication
library based on MPI that creates range-based communicators in constant time without com-
munication. These RBC communicators provide very scalable and efficient implementations
of collective operations. For an illustration, we apply RBC to three sorting algorithms from
Harsh et al. [HKS19] and Sundar et al. [SMB13]. RBC improves the performance of these
algorithms by multiple orders of magnitude.

B.1 Startup Overheads of Communication Patterns

In this section, we discuss the reliability of four supercomputers and their MPI libraries in
terms of startup overhead of message exchanges. On each supercomputer, we have executed a
simple communication pattern with point-to-point messages in different situations to challenge
the network and the MPI implementation. This is an overview of what we have found out: The
result differed widely between the supercomputers: On JUQUEEN, the communication cost
was very reliable—in most cases we had cost « + n3 for about the same constants & and 8. On
SuperMUC-NG, SuperMUC Phase 1, and SuperMUC Phase 2, the first communication between
two PEs is tremendously large. The supercomputers SuperMUC Phase 1 and SuperMUC
Phase 2 are only fast when we use fixed communication partners. OnSuperMUC-NG, the time
of data exchanges between fixed communication partners is slightly smaller than the time of
exchanges between alternating partners. Since the results obtained on SuperMUC-NG and
on JUQUEEN are much more reliable, we assume that the bad performance of SuperMUC
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Phase 1 and 2 cannot be generalized. Thus, we decided to use SuperMUC-NG and JUQUEEN
for our sorting benchmarks.

The experimental setting of the startup overhead test was as follows: Our benchmark
measured the running time of a single PE performing ping-pong message transfers with 256
different PEs. We present results of benchmark runs obtained after two different warmup types.
The local warmup performs exactly the same ping-pong massage transfers with the same PEs as
the actual benchmark. The global warmup executes a point-to-point message transfer between
all PEs beforehand. These two benchmarks provide minimal working examples to understand
the impact of startup overheads of two different data exchanges. The benchmark after a local
warmup represents data exchanges with fixed communication partners executed over and over
again, e.g., hypercube data exchanges. The benchmark after a global warmup represents a
situation in which we execute data exchanges with alternating communication partners over
and over again. We also present results obtained after a cold start, i.e., the running time of the
benchmark directly executed after system startup.

JUQUEEN. The communication cost on JUQUEEN matched very well with the single-ported
message passing model. The communication bandwidth as well as the startup overhead for
inter-node communication was almost the same between any pair of nodes. As expected, the
intra-node communication was somewhat faster. Additionally, the time for local computations
was very predictable—probably as the nodes ran with a constant frequency and as a 17-th core
processed OS-related tasks. Overall, the fluctuation in running time of our sorting algorithms
was very small on JUQUEEN and only a few runs were necessary to obtain reliable results. On
JUQUEEN, we used the IBM MPI library mpich2 version 1.5.

SuperMUC Phase 1 and 2. We present results obtained on SuperMUC Phase 2 [Leil5],
which is the predecessor of SuperMUC-NG. We do not present results obtained on SuperMUC
Phase 1 as the results were very similar. For the measurements we used the IBM MPI library
version 1.4 and the Intel MPI library 2018. We now discuss the startup overheads on SuperMUC
Phase 2 in detail.

Figure B.1 shows the results obtained with IBM MPI. By default, IBM MPI 1.4 uses the
bulk transfer protocol for messages with at least 2'® bytes. As this protocol has a big impact
on the performance of IBM MPI, we ran the benchmark once with bulk transfer (default) and
once without. In both cases, we got reliable results after a local warmup (fixed communication
partners) but not after global warmups (alternating communication partners). We first describe
the results of the default configuration. When we executed the benchmark after a cold start, the
startup overhead of messages that use bulk transfer internally was about a factor of 37 larger
than the overhead of shorter messages. Even a global warmup did not prohibit these large
startup overheads for long messages (factor of 18.05). Even worse, the startup overhead of
short messages increased by more than one order of magnitude when we used a global warmup
instead. Only a local warmup (fixed communication partners) avoids these large running times.
When we disabled the bulk transfer protocol, the overhead for long messages disappeared.
However, the startup overhead after a global warmup was still one order of magnitude larger
than the overhead after a local warmup.

The results obtained with Intel MPI 2018 were even worse (see Figure B.2). Similar to IBM
MPI, Intel MPI supported data exchanges with alternating communication partners (global
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Figure B.1: Ping-pong benchmark with 256 partners on SuperMUC Phase 2 with IBM
MPL

warmup) very poorly. The startup latency after a global warmup was 32.65 times larger than
the latency after a local warmup for long messages. Even worse, after a cold start, exchanges of
short messages took almost two orders of magnitude longer than after a local warmup.

The results obtained on SuperMUC Phase 2 were obtained on a job instance with 7 168 PEs.
For small numbers of ¢, we were able to avoid these fluctuations by disabling so-called “dynamic

connections”. Unfortunately, this did not help for large ¢, probably since the total number of
open connections is limited.

SuperMUC-NG. Figure B.3 depicts the results obtained on SuperMUC-NG with the Intel
MPI library 2020. Communicating the longest messages took about the same time for all
benchmarks. We conclude that the choice of the communication partners is not a crucial factor
when PEs send a large bulk of data. The results are different for short messages: After a global
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Figure B.2: Ping-pong benchmark with 256 partners on SuperMUC Phase 2 with Intel
MPI.

warmup, the startup overhead was “only” twice as large as the overhead after a local warmup.
However, the startup overhead after a cold start was more than a magnitude larger than the
overhead after a local warmup. Thus, the first execution of a data exchange will have increased
startup overheads. If subsequent data exchanges involve new communicating partners, the
startup overheads will also be large for these connections. That may be very problematic if the
data exchanges of an algorithm use few but always different connections.

B.2 Faster Sorting with MPI—Communicators and Collectives

The size of supercomputers rapidly increased to petascale machines with millions of cores. The
de facto standard for communication in High Performance Computing (HPC) is the Message
Passing Interface (MPI). Many applications need a flexible management of PE groups, e.g., to
adjust the scope of parallelism for load balancing, to achieve parallelism on multiple levels, to
divide tasks into fine-grained subproblems, or to recursively sort data [Din+11; Bal+09; SMB13;
HKS19]. MPI uses the concept of communicators to enable multiple levels of parallelism
by connecting groups of PEs. MPI provides (collective) communication operations between
PEs of a communicator to ensure scalability, portability, and comfortable programming with
a high-level interface [HLRO07; Bal+95b]. The group context of a communicator guarantees
that collective communication and point-to-point communication within one communicator
as well as over different communicators does not interfere. In this work, we do not need a
separation of communication between communicators—in fact, all MPI sorting algorithms we
have found only communicate between PEs of one group at the same time.
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Figure B.3: Ping-pong benchmark with 256 partners on SuperMUC-NG with Intel MPIL.

We did not find an MPI library that provides fast communicator creation routines in sublin-
ear time. Thus, collective communicator creation in MPI becomes a bottleneck for sublinear
algorithms. E.g., the most recent open-source implementations Open MPI 3.1 and MPICH 3.4
create an array of PE IDs when the user creates a communicator. In this case, the construction
time of a communicator is linear to the number of group members. Mohamad Chaarawi and
Edgar Gabriel [CGO08] integrated sparse data storages into Open MPI. Their implementation
reduces the footprint of an existing communicator. But the PE group is still stored explicitly
during the communicator construction. Unfortunately, MPI does not provide a method to
invoke collective operations on a subset of PEs without creating a new communicator. Before
performing the collective operation, the user must create a communicator of the subset of PEs
with a blocking communicator creation routine.

Besides inefficient communicator creation routines, it turned out that some supercomputers
used in this work provide poorly implemented collective operations. However, when we want
to use the full functionality of the message passing interface to implement efficient algorithms,
e.g., sub-communicators or collective operations, we need fast MPI libraries. Additionally,
scalable and efficient MPI libraries are crucial for a fair comparison of algorithms. Otherwise,
poorly implemented MPI operations would penalize algorithms that use these operations more
frequently. Thus, we decided to implement a library that provides the functionality required
for scalable and efficient sorting algorithms.

We present the lightweight library RangeBasedComm (RBC) based on MPI. RBC creates new
communicators, containing a consecutive PE range of a parent communicator, in constant time
without communication. Our range-based communicators provide (non)blocking collective
operations and (non)blocking point-to-point communication. As RBC can not access the
context ID of a message, the library does not fully support the nonblocking model of the MPI-
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Figure B.4: Running time of communicator splitting into two communicators of equal
size on SuperMUC-NG with different number of cores.

standard. Even though we restricted the semantics of communication, the library is applicable
to all sorting algorithms used in this work. For example, we replaced the MPI primitives used
by our competitors RQuick, HykSort, and HSS with RBC by substituting the prefix “MPI_" with
the prefix “RBC: :”. It was also easy to replace the routines that create new MPI communicators
because all sorting algorithms that we have found create communicators of consecutive PEs.
Our RBC communicators only need the index of the first and the last PE of the new PE range.
Our experiments show that our library reduces the time to create a new communicator by
multiple orders of magnitude whereas the performance of collective operations increases in
some cases by more than one order of magnitude. RBC improves the running times of RQuick,
HykSort, and HSS proposed by Sundar et al. [SMB13] and Harsh et al. [HKS19] by multiple
orders of magnitude.

The RBC library has been proposed with focus on perfectly balanced quicksort [AWS18]
in cooperation with our bachelor student Armin Wiebigke. The RBC library is available at
https://github.com/MichaelAxtmann/RBC/. For a detailed description of RBC as well
as perfectly balanced quicksort, we refer to the conference publication [AWS18] and to the
bachelor’s thesis of Armin Wiebigke [Wiel7a]. Since we have published the first version of RBC,
we extended the collective operations of RBC with implementations of the two-tree algorithms
for full bandwidth broadcast, (all-)reduction, and (exclusive) prefix sum proposed by Sanders
et al. [SST09]. We consider the implementation of these algorithms as a separate contribution
of this work since the source code of the two-tree algorithms has never been published as open
source.

Experimental Results. We still owe you an experimental evaluation of the RBC library. We
compare the performance of RBC to the Intel MPI library 2020 on SuperMUC-NG. First, we
present benchmark results of communicator creation routines and collective operations. In a
second step, we evaluate the performance of RBC on sorting algorithms as a whole.

MPI offers two methods to create sub-communicators of consecutive PE ranges. The first
method requires each PE to provide the index of its new group and its rank within that group
(MPI_Comm_Split). For the second method, the PEs of the new communicator have to be
provided by every single PE. Fortunately, MPI provides an efficient interface to enumerate
consecutive PE ranges—MPI_Group_range_incl only requires the index of the first and last
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Figure B.5: Running time of collective operations with # output elements on SuperMUC-
NG with 32784 cores.

PE of the range. Figure B.4 depicts the time to split a communicator into two ranges of equal
size with MPI respectively RBC. This splitting technique is, for example, frequently used by
hypercube quicksort algorithms. We see that the time to split MPI communicators increases
piece-wise linearly with the communicator’s size. Thus, it depends on the communicator
which MPI splitting method works the best. Overall, communicator splitting with MPI is very
inefficient. For example, splitting a communicator containing 2'° PEs takes between 94.62 and
110.00 milliseconds. On the contrary, communicator splitting with RBC is multiple orders of
magnitude faster.

Figure B.5 depicts the running times of the MPI collectives broadcast (MPI_Bcast), (all-
Jreduction (MPI_Reduce resp. MPI_Allreduce), exclusive prefix sum (MPI_Exscan), and (all-
)gather (MPI_Gather resp. MPI_Allgather) as well as their counterparts provided by the RBC
library. The exclusive prefix sum and the all-reduction is the most expensive MPI collective.
RBC performs these collectives more than one order of magnitude faster. Note that the prefix
sum and the reduction are important subroutines of sorting algorithms, e.g., to sum up local
bucket sizes or to compute the rank of an element within a bucket across PE boundaries. The
other collectives are sometimes slightly faster either with RBC or with MPIL

We now study the performance impact of RBC on our competitors HykSort, HSS, and
HykQuick. RBC improves the performance of HykSort, HSS, and HykQuick significantly.
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Figure B.6: Running time ratios of algorithms with MPI collectives over algorithms
with RBC collectives. The left figure includes the running times of the MPI collective
MPI_Comm_split for sub-communicator creation. The right figure excludes the running
times of the MPI collective MPI_Comm_split.

Figure B.6a shows the speed of HykSort, HSS, and HykQuick with RBC operations over the
original implementations that use pure MPI. On SuperMUC-NG, HSS is our closest competitor
for n/t > 2'2. For these input sizes, RBC speeds up HSS up to a factor of 101. When we exclude
the time to construct MPI communicators, RBC still speeds up HykSort, HSS, and HykQuick
significantly (see Figure B.6b). For example, RBC decreases the running time of HSS by a factor
of 25 for n/t = 2'2.

Our sorting algorithms RQuick, RFIS, and AMS-sort also benefit from the RBC library
enormously. When we configure RBC to use MPI operations, RFIS is slowed down by a factor
39.75 for n/t = 1/243, RQuick by a factor of 39.51 for n/t = 25, and AMS-sort by a factor of
2.47 for nft = 2. For these input sizes, the algorithms ran the fastest compared to the other
algorithms.
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