
Contract-based methods and activities in the
validation of interfaces for System of Systems

Moritz Wäschle*, Matthias Behrendt*, Kangning Xing*, Hanwen Shi*, Albert Albers*
*Karlsruher Institut für Technologie (KIT), IPEK – Institut für Produktentwicklung, Kaiserstraße 10, 76131 Karlsruhe,

{Moritz.Waeschle, Matthias.Behrendt, Albert.Albers}@kit.edu, {kangning.xing, shi.hanwen221}@gmail.com

Abstract— One of the key challenges in System of Systems
Engineering is the validation of System of Systems (SoS). In a
SoS the interfaces between the systems need to be defined as
early as possible in the product development process. Contracts
may help to define and specify interfaces in an early phase of the
product development and support the validation of interfaces.
This contribution applies existing methods, analysis and
synthesis activities for the contract-based validation of
interfaces between vehicle and infrastructure as an exemplary
SoS. Hereby, Model-Based Systems Engineering supports the
use of contract-based validation with specific methods and
activities. Three different virtual and mixed physical-virtual
validation environments - each for the Vehicle-to-Everything
use case of an intersection scenario - enable the verification of
the applied methods and activities. Two of these are virtual
containing MATLAB and MATLAB-Network Simulator 3 Co-
Simulation, respectively. The third is a mixed physical-virtual
validation environment, including a driving robot. It realizes the
exchange of information between a BMW i3 on a roller test
bench and the vehicle simulation environment in CarMaker.

Keywords—System of Systems, interface, validation,
Vehicle-to-Everything (V2X), contract-based design

I. INTRODUCTION
The National Platform Future of Mobility in Germany
describes the need for standardization, specification and
standard tests for interfaces [1]. Regarding mobility,
consisting of systems like the vehicle and the traffic light, as
a System of Systems (SoS), the question arises of how to cope
with interfaces of these systems within the SoS. This
independent existence of constituent systems (CS), originally
designed for different contexts as well as other specific
characteristics of the SoS, impact the interfaces [2, 3].
Moreover, the validation, as one of the key challenges of SoS
Engineering, needs to be taken into account. Based on already
existing methods and activities, the main focus of this paper
lies on contracts in SoS interfaces and the validation of
interfaces in three specific validation environments.

Section II describes the main contributions in the areas of
focus. It leads to the research gap of using contracts with the
support of Model-Based Systems Engineering (MBSE) in the
context of validation of interfaces and results in two research
questions.

II. FUNDAMENTALS
According to the INCOSE Systems Engineering Vision 2025,
in the system design for SoS, engineers need to develop and
validate even more interconnected systems [4]. They have
diverse stakeholders with increasing demands for services
and information [4].
In the following sections, the three parts: (A) “Model-Based
Systems Engineering”, (B) “Validation of interfaces” and (C)
“Contract-based design” build the basis of this contribution
and are therefore introduced.

A. Model-Based Systems Engineering for interfaces in SoS

Systems Engineering is an "interdisciplinary approach
governing the total technical and managerial effort required
to transform a set of customer needs, expectations, and
constraints into a solution and to support that solution
throughout its life" [5]. The formalized use of models to
improve traceability and consistency can be achieved in
MBSE. The three pillars of MBSE, language, method and
tool, need to be considered in every usage [6]. The following
approach is realized in the tool Cameo Systems Modeler in
the Systems Modeling Language using different methods.
Focusing on the three diagrams Block Definition (BDD),
Internal Block Definition (IBD) and Views and Viewpoints
Diagram, the modeled requirements and contracts are linked
to different hierarchical system layers.

Various publications cope with the handling of interfaces in
SoS with MBSE. The Unified Architecture Framework is
based on the Object Management Group and provides
different views to understand the relationship between
organizations and systems. It is based on the Department of
Defense (DoDAF) and British Ministry Department
Architecture Framework (MODAF). It uses the views:
metadata, strategic, operational, services, personnel,
resource, security, project, standards and resources. [7]
Eichmann et al. focus on the specific aspect of stakeholders
and requirements of SoS in the understanding of MBSE. This
results in a methodology for stakeholder needs and
requirements. [8]

However, existent approaches in the understanding of MBSE
are not focusing on the validation of interfaces for SoS by
using validation environments.

B. Validation of SoS interfaces

Honour analyzes the issues with verification and validation
of SoS. He points out in validation of SoS the need of
"Interface certification testing" [9]. Different approaches
focus on activities like using matrices and rules for the
validation of SoS.
Luna et al. propose the sequencing of Design Structure
Matrices (DSM) and the use of graph theory. These optimize
the information flows and path identifications. In addition,
they introduce interface layers to support the integration of
systems to analyze emergence effects within a SoS. [10]
The application of validation rules are introduced in Silingas
& Butleris for software requirements in UML diagrams [11].
They describe the reuse of validation rules in the Object
Constraint Language (OCL) to validate requirement models
[11]. Companies may include their specific validation rules
to make sure the interface complies with it. This is especially
beneficial to SoS with multiple companies involved.

Other contributions develop frameworks, sets and methods to
apply in the context of interfaces and validation of SoS. The
general need for relations in SoS Engineering was identified
in an online survey with 113 participants [12].
An ontology framework and process set is derived in the
research project COMPASS - Comprehensive Modelling for
Advanced Systems of Systems [13]. A validation view
includes i.a. a constraint validation view. The ontology
contains rules, which can be set for requirement types, goals,
capabilities and requirements. [14, 15]
Bilal et al. propose an interface and interaction model for SoS
to manage the interaction between subsystems. The interfaces
transport a flow of data, energy or material and the models
include effects, constraints and rules. [16]
Lollini et al. describe different viewpoints of a SoS’s
structure and behaviors. The authors focused exclusively on
SysML stereotypes and suggested eleven concepts, each with
ten to over 45 stereotypes. [17]

In order to plan validation activities as early as possible [18]
and consider involved systems, the IPEK-X-in-the-Loop
(IPEK-XiL) approach [19] can be applied. The `X' hereby
represents the System-under-Investigation, which is in focus
of a validation activity [20]. A validation environment is a
specification of an operating system for validation with
methods and resource systems [20]. It contains at least one
combination of product and validation objective in a certain
point in time of the product life cycle phase [20]. The
validation environment of a SoS shows significant amounts
of evolutionary development, operational independence and
managerial independence [21], which are key characteristics
of a SoS summarized by Honour [9].

Few contributions consider contracts in validating interfaces.
Furthermore, our research applies concrete test cases in
different validation environments.

C. Contract-based design

Contract-based design is a well-known Software Engineering
methodology, which is widely used in design of component-
based, safety critical real-time embedded and software
systems [22].
A contract consists of “formalizations of the conditions for
correctness of element integration […], and for lower level of
abstraction to be consistent with the higher ones […]” [23].
Dragomir et al. define a contract for a component by the
pairing of an assumption with a guarantee [24]. The
assumption models an abstraction of the component's
environment behavior and the guarantee models an
abstraction of the component's behavior given that the
environment behaves according to the assumption [24]. In the
following contribution, the component refers to an interface
in SoS.
Benveniste et al. state the need of contracts to handle complex
systems, complex OEM supplier chains, addressing
certification and the management of requirements and risks
[25]. Böhm et al. describe the challenges in the development
and evaluation of collaborative systems using simulation
[26]. They differentiate between design and run time, as well
as different levels of abstractions from business level to
contract level [26].

Bryans et al. propose contract patterns for System of Systems
[27]. Faldik et al. apply it for modeling interface contract
behavior [28]. The authors use interface automata to analyze
the compatibility between different contracts [29, 28].

In most cases, existing approaches tend to omit contracts or
precise details of how to include them in the validation of
interfaces for SoS. Hence, this contribution applies contract-
based methods and activities with the support of MBSE to
validate Vehicle-to-Everything (V2X) use cases.

III. RESEARCH QUESTIONS
The goal of this contribution is to structure the validation of
interfaces in SoS with the support of MBSE and to apply and
validate methods and activities. The following research
questions are answered:

I. How can contracts modeled in SysML be integrated
in the validation of interfaces between vehicle and
infrastructure as an exemplary SoS?

II. How can existing contract-based methods, analysis-
and synthesis activities be applied in the validation
of interfaces for specific V2I scenarios?

IV. METHODS AND ACTIVITIES FOR VALIDATION OF
INTERFACES IN SOS

Section A describes an approach to structure interfaces for the
validation of SoS with contracts. Section B applies selected
analysis and synthesis activities in the mentioned area.

A. Contract-based structure for interface validation

In order to integrate contracts in the validation of interfaces,
interfaces between constituent systems (CS) are identified
(see Fig. 1). Subsequently, certain requirements and contracts
are derived for each identified interface. The structure is
based on the connection of the three architectures functional
(FA), logical (LA) and physical (PA) [30, 31]. The contracts
impact certain functions in the functional architecture. These
functions relate to hardware and software in a logical and
physical architecture.

Fig. 1: Structure for the integration of contracts in the validation of interfaces
for V2X

Deduced from the modelled architectures, the validation
environment is built. Iterations enable the specification and
evaluation of the interface with its architectures and

validation environment(s). Using the pull principle of
validation, the validation environment is not just built based
on requirements and contracts. It also defines, identifies and
adjusts certain requirements and contracts. The pull principle
describes the development of the product with its validation
as the starting point, by "pulling" validation elements into all
the stages of the product design. Furthermore, the structure
considers previous generations of elements like contracts,
validation environments or products. This is described in the
PGE - Product Generation Engineering (cf. [32]).

Faldik et al. propose the use of contract patterns in the context
of SoS [28]. Different views on contracts allow their
specification depending on their purposes [28].
Considering the SoS characteristics, the contract pattern is
composed of several viewpoints, which are shown in TABLE
I. In it, five viewpoints are listed for a contract between the
CS Vehicle, which contains a BMWi3 and the CS Driver. The
CS Driver contains a driving robot, an On-Board Unit (OBU)
and an algorithm which transforms environment and vehicle
information in set pedal positions. In the Contract Protocol
Viewpoint, contract rules state the restrictions of every
function, related to the contract of the interface in focus.

TABLE I. EXAMPLES OF CONTRACT PATTERN VIEWPOINTS
Name Purpose of View

Contractual SoS
Definition Viewpoint
(CSDV)

Contract CS Vehicle-CS Driver

Contract Conformance
Viewpoint (CCV)

This contract constrains the interface between
CS Vehicle and CS Driver. The contract is
fulfilled, only when both interface functions
are satisfied.

Contract Connections
Viewpoint (CConnV)

Interface function 1 is achieved by Driver
OBU and Vehicle OBU; Interface function 2
is achieved by driving robot and pedal
system.

Contract Definition
Viewpoint (CDV)

Speed control: BUS sends out actual vehicle
velocity at a fixed frequency and Driver OBU
controls the driving robot using the velocity
to a new velocity.
State variables: Frequency for sending and
receiving
State invariants: Velocity in every cycle

Contract Protocol
Viewpoint (CPV)

Contract rules for Function 1:
a) Vehicle should send out the actual velocity
in BUS.
b) Driver OBU receives and processes the
velocity every 400ms.
c) reading frequency > sending frequency

An exemplary contract can be based on the Service Level
Requirement with environmental factors like the Service
Level Latency of 100ms (cf. [33]). This is taken as the
assumption for the interface between vehicle and Road Side
Unit (RSU), for the use case of an intersection movement
assist. The guarantee states a minimal communication range
of 100m and a reliability of 90% (cf. [33]).
Interface oriented layer models like OSI layers [34] allow the
specification of requirements and contracts for interfaces
more deeply. The number of layers necessary for modelling
an interface depends on the interface with its contracts. This
affects the design or selection of a validation environment,
e.g. an explicit parametrization of the datalink layer
according to 802.11p is necessary to test package transport
loss rates between the communications of two RSUs. The

structure allows to adress contracts in different interface
layers modeled in FA, LA and PA.

An exemplary modeling of the structure with CP, LA and a
PA of a mixed physical-virtual validation environment is
shown in Fig 2.

Fig. 2. Model of a XiL validation environment linked to an IBD model of the
environment and a contract view pattern in a Views and Viewpoints Diagram

Fig. 2 visualizes involved systems in the validation. At the
top is a model of the mixed physical-virtual validation
environment of an IPEK-XiL-Architecture. The System-
under-Investigation of the CS Driver and the interface to the
CS Vehicle is connected to physical and virtual systems. The
interface between CS Driver and CS Vehicle is modelled in
an IBD and shown in the LA. Hereby, the LA does not only
link CSs but also the subsystems involved in the interface
functionalities. A contract for the information and energy
flow between CS Driver and CS Vehicle is defined. The
contract for the interface is further specified in five contract
viewpoints in Fig. 2 (yellow boxes). The Contract
Connections Viewpoint is shown as an example and the
detailed contract viewpoints are in TABLE I. The contract
impacts and is impacted by the interface in the IPEK-XiL-
Architecture.

Based on the structure described above, analysis and
synthesis activities are subsequently applied.

B. Analysis and synthesis activities in the context of
interface validation

Analysis is a systematic investigation of an initial situation or
result [35]. In contrast, synthesis elaborates and depicts
solution alternatives for goals, based on an analysis [35]. The
authors apply the activities “usage of validation rules”,
“usage of time-based DSM” and “analysis of interfaces for
selecting and developing a suitable validation environment”.

Different modeling tools enable the use of validation rules to
verify models. The rules can be described in languages like
OCL 2.0 and are bundled in validation suits. In the example
of interfaces for SoS, company specific validation rules may
be set up to verify interface models. In Fig. 3, the rules are

applied with constraints on classifiers, so every (sub)system
complies with the frequency range according to the European
Telecommunications Standards Institute (ETSI) standard EN
302663 [36]. The standard describes the frequency range for
cooperative Intelligent Transport Systems within the
European Union for the intended usage of road safety related
applications [36]. In the example, the contract is violated due
to the frequency of the RSU of 5.906 MHz, which is higher
than the allowed range between 5.875 and 5.905 MHz (cf.
[36]). Despite technical rules, validation rules can restrict the
model in specific architectures. For instance, the need to
model a contract can be set as a rule if two CSs are connected.

Fig. 3. Applied validation rule for frequency sending and receiving

The Design Structure Matrix (DSM) can show the
interdependencies of elements like systems and interfaces
within a SoS. It helps to analyze the impact between different
interfaces. An interface-related DSM is generated with the
following process:

1. Firstly, a DSM with functions according to FA or
systems according to LA, PA are created.

2. Then the interdependencies of systems are analyzed
(e.g. with a Sequence Diagram), considering
information, energy and matter flow parameters like
voltage or time.

3. The interdependencies of interfaces are further
considered with parameter specific DSM based on
the function involved. An exemplary time-based
DSM, used for delay analysis of a speed control
function, is used in the validation in section V-B
TABLE II.

Different validation environments are suitable for different
validation activities. The validation environment can be
selected by using a criteria system, which is adapted from
previous work in the area of distributed validation [29] and
vehicle communication [37]. The criteria system consists of
the five perspectives: technical, functional, organizational,
user and economic. The criteria are defined based on test
cases, e.g. in the V2X test case described in section V-A, 22
criteria are used. For IEEE 802.11p specific test cases, the
Received Signal Strength Indicator is necessary to measure
the physical layer and can be considered as performance
criteria [38]. Moreover, the content of the contracts can be
extracted as criteria in order to select a validation
environment. For example, the data rate of the IEEE 802.11p
standard and the latency between CSs can be part of the
technical perspective in the criteria system.

Depending on the validation goal and the criteria, different
environments are applicable.

V. VALIDATION OF METHODS AND ACTIVITIES
The validation is achieved with three validation environments
in the context of IPEK-XiL validation.

The validation of an interface, either between two CSs or
between their subsystems as Systems-under-Investigation
(the "X" of XiL), considers a flexible modular kit
development approach.

A. Virtual validation environment

The Vehicle-to-Infrastructure (V2I) scenario involves the
interaction of the two constituent systems vehicle and
infrastructure (including traffic lights with RSU). Contracts
constraint and specify the behavior of their interfaces. In the
scenario, the wireless communication must comply with
certain contracts, which are based on standards like IEEE
802.11p or LTE-5G. In the performed V2I scenario, a vehicle
is driving to an intersection and it receives controlled area
messages of the traffic light state within a range of 100m. By
using the tool in-build propagation delay model and
propagation loss model, the MATLAB-NS3 Co-Simulation
simulates the interface. Depending on the implemented
model, different parameters like latency of the signal
transmission and the reception power of the signal can be
adjusted. For example, the frequency range of the signal
transmission of controlled area messages is between 1 to
10Hz according to the ETSI standard EN 302 637-2 [38]. In
ten test runs, the set frequencies of 1Hz and 2Hz in the log-
distance propagation loss model lead to the different average
distances between vehicle stopping point and traffic light of
8.2m and 5.2m, respectively. Therefore, contracts and
contract-based activities, like using derived validation rules,
may support the parametrization in the validation
environment and are an integral part of the validation.

The criteria system, described in chapter III, helps to select a
validation environment and hence certain models inside the
environment. For instance, the detailed simulation of physical
and datalink layer according to the OSI layer model lead to
the decision to use the MATLAB-NS3 Co-Simulation.
Hereby, the validation environments address main SoS
characteristics and needs like flexibility and modularity.
Therefore, the authors use modular kit approaches including
a library of V2X specific interface functions [39] and models
in the environments.

In order to validate more realistically and include possible
unpredictable events that cannot be represented in a model,
physical hardware can be included in the validation
environment.

B. Mixed physical-virtual validation environment

In the mixed physical-virtual validation environment, the V2I
test scenario “Intersection Movement Assist with Vulnerable
Road User” is applied. A stationary Host Vehicle drives a
distance of 62 meters to an intersection. The validation goal
of the Driver-Vehicle interface is to ensure the vehicle’s
correct crossing of the intersection, avoiding any risk of
collision. Contracts may state that the necessary operations
are executed in the required sequence and that the data
transmission is successful. The full realization of the interface
is only achieved, when contracts for all the sub-functions (e.g.
data transmission) in the FA of the respective interface are
fulfilled.

The unidirectional time-based DSM in TABLE II shows the
delay analysis of speed control function, referring to one test
with the mixed physical-virtual validation environment.

TABLE II. Unidirectional time-based DSM for speed control in the V2I
scenario with unexpected delay

The delay of the interface between Driver On-Board-Unit
(OBU) and MATLAB is set to 400ms in the contract, which
depends on the response time of the driving robot. When this
delay exceeds the set value in the contract, the delay adds on
to the following interfaces and the algorithm of the speed
control is therefore disturbed.

Fig.4 shows the result of the same test in TABLE II with the
mixed physical-virtual validation environment.

Fig. 4. Validation of the Driver-Vehicle interface showing a velocity, time
and distance plot and traffic light states

In this test, the delay in the interface between Driver OBU
and MATLAB is set to 1000ms, which exceeds the normal
delay of 400ms in the contract. Previous work analyzed the
delays of wireless hardware connections in a mixed physical-
virtual validation environment [40]. In the test in Fig. 4, the
vehicle stops after 53.6m, when the stop line is still 3.7m in
front of the vehicle.

In Fig. 4 the higher latency leads to a disarrangement of the
speed control algorithm, which results in a premature
breaking. This breach of the contract is manifested by the no
longer valid assumption that the information flow of the
interface between CS Driver and CS Vehicle is within a
restricted scope.
In contrast to previous work [21] with a human driver, using
a driving robot results in a smoother graph. The integration
of the driving robot in the validation environment was
achieved with a remote control of the driving robot through
MATLAB and the Wi-Fi module ESP8266.

VI. DISCUSSION AND CONCLUSION
This contribution integrated contracts in existing structures
for the specific purpose of interface validation. This allows
analyzing and synthesizing of (validation) systems with the
consideration of contracts for interfaces. MBSE supports the
integration of contracts by modeling different views, linking
architectures with methods and including automated
verification of models. Different activities like using
parameter-tailored DSM or criteria systems for the selection
of a validation environment are applied and validated for V2I
specific use cases.
Contracts may help to cope with SoS-specific challenges like
the different life-cycle phases, operational and managerial
independence of CSs. With defined interface contracts, new
system owners know from the very start of their development
process, which restrictions to consider for a successful
integration of their CS in an existing SoS. Contract-based
activities can be tailored to support these challenges and the
validation of interfaces.
The validation in this contribution is only applicable to
specific test cases for V2I. Therefore, a generalization for all
technical SoS is not achieved. The authors evaluate the
validation environments based on the SoS characteristics (c f.
[9]). Future work focuses on quantifiable requirements
derived from SoS properties and characteristics. MBSE may
support the realization and beneficial application of contracts.
Using contracts for interfaces in SoS can be extended by
considering more methods and activities. Further research
should address safety and security within the CSs and
interfaces which impact the whole SoS performance (c f.
[41]). Additionally the validation environments should be
part of an integrated, continuous and flexible validation of
models. This leads to an efficient validation of even complex
SoS.

[1] Nationale Plattform Mobilität der Zukunft, „SCHWERPUNKT-

ROADMAP AUTOMATISIERTES UND VERNETZTES
FAHREN“: Arbeitsgruppe 6 „Normung, Standardisierung,
Zertifizierung und Typgenehmigung“, Ed., Berlin, May 2020,
Bundesministerium für Verkehr und digitale Infrastruktur.

[2] J. Leite, F. Oquendo, and T. Batista, “SysADL: A SysML Profile for
Software Architecture Description,” in Lecture notes in computer
science, vol. 7957, Software Architecture: 7th European Conference,
ECSA 2013, Montpellier, France, July 1-5, 2013. Proceedings, K.
Drira, Ed , Berlin, Heidelberg: Springer Berlin Heidelberg; Imprint;
Springer, 2013, pp. 106–113.

[3] T. Batista, “Challenges for SoS architecture description,” in SESoS
2013: Proceedings of the first ACM SIGSOFT/SIGPLAN International
Workshop on Software Engineering for Systems-of-Systems : July 2,
2013, Montpeller, France, Montpellier, France, 2013, pp. 35–37.

[4] International Council on Systems Engineering (INCOSE), Ed.,
“INCOSE Systems Engineering Vision 2025”, 2014.

Interfaces 1 2 3 4 5 6 7 8

Vehicle‐Realtime System 1

Realtime System‐Router 2 <20ms

Router‐CarMaker 3 <20ms

CarMaker‐Router 4 <20ms

Router‐Driver OBU 5 <20ms

Driver OBU‐MATLAB 6 1000ms

MATLAB‐Driving Robot 7 <500ms

Driving Robot‐Vehicle 8 <1522ms 10ms

[5] ISO/IEC/IEEE24765, “ISO/IEC/IEEE24765:2017: Systems and
software engineering — Vocabulary,” 2017, doi:
10.1109/IEEESTD.2010.5733835.

[6] L. Delligatti, “SysML distilled: A brief guide to the systems modeling
language”. Upper Saddle River, NJ: Addison-Wesley, 2014. [Online].
Available: http://proquest.tech.safaribooksonline.de/9780133430356

[7] OMG Object Management Group, Ed., “UAF Unified Architecture
Framework”.

[8] O. C. Eichmann, S. Melzer, F. Giertzsch, and R. God, “Stakeholder
Needs and Requirements Definition During Service Development in a
System of Systems,” in 2020 IEEE International Systems Conference
(SysCon).

[9] E. Honour, “Verification and Validation Issues in Systems of
Systems,” in Electron. Proc. Theor. Comput. Sci., vol. 133, no. 4, pp.
2–7, 2013, doi: 10.4204/EPTCS.133.1.

[10] S. Luna, A. Lopes, H. Y. S. Tao, F. Zapata, and R. Pineda, “Integration,
Verification, Validation, Test, and Evaluation (IVVT&E) Framework
for System of Systems (SoS),” in Procedia Computer Science, vol. 20,
pp. 298–305, 2013, doi: 10.1016/j.procs.2013.09 276.

[11] D. Silingas and R. Butleris, “Towards implementing a framework for
modeling software requirements in MagicDraw UML,” Information
technology and control, vol. 38, 2009.

[12] A. Kurrle, „Durchgängige Dokumentation von verteilten Zielsystemen
in der Produktentwicklung durch Verwendung semantischer
Metainformationen am Beispiel Connected Car,“ 2017.

[13] J. Holt, S. Perry, M. Brownsword, D. Cancila, S. Hallerstede, and F. O.
Hansen, “Model-based requirements engineering for system of
systems,” in 2012 7th International Conference on System of Systems
Engineering (SoSE), Genova, Jul. 2012 - Jul. 2012, pp. 561–566.

[14] P. Weinmeister, “Supporting Your Business with Validation Rules,” in
Practical Salesforce Development Without Code: Apress, 2019, pp.
179–199.

[15] Europäische Kommission, “COMPASS Research Project,”. Accessed:
Jan. 22 2021. [Online]. Available: https://cordis.europa.eu/project/id/
287829/de

[16] M. Bilal, N. Daclin, and V. Chapurlat, “System of Systems Design
Verification: Problematic, Trends and Opportunities,” in Enterprise
Interoperability VI: Springer International Publishing, 2014, pp. 405–
415.

[17] Lollini, Paolo; Mori, Marco; Babu, Arun; Bouchenak, Sara,
“AMADEOS SysML Profile for SoS Conceptual Modeling,” in Cyber-
Physical Systems of Systems: Springer International Publishing, 2016,
pp. 97–127.

[18] C. Hood, S. Wiedemann, S. Fichtinger, and U. Pautz, “Requirements
Management: The Interface Between Requirements Development and
All Other Systems Engineering Processes”. Berlin, Heidelberg:
Springer-Verlag Berlin Heidelberg, 2008. [Online]. Available: http://
site.ebrary.com/lib/alltitles/docDetail.action?docID=10217695

[19] A. Albers, T. Düser, O. Sander, C. Roth, and J. Henning, “X-in-the-
Loop-Framework für Fahrzeuge, Steuergeräte und
Kommunikationssysteme,” in ATZelektronik, vol. 5, no. 5, pp. 60–65,
2010, doi: 10 1007/BF03224034.

[20] A. Albers, M. Behrendt, S. Klingler, and K. Matros, “Verifikation und
Validierung im Produktentstehungsprozess: Handbuch
Produktentwicklung,” in Udo Lindemann, Ed., München: Carl Hanser
Verlag, 2016, pp. 541–569.

[21] M. Wäschle, Y. Jiang, M. Behrendt, and A. Albers, “Development of
an integrated validation environment for System of Systems in the
context of V2X using the XiL-Approach,” in IEEE, 2020.

[22] S. S. Bauer et al , “Moving from Specifications to Contracts in
Component-Based Design,” in Fundamental Approaches to Software
Engineering: Springer Berlin Heidelberg, 2012, pp. 43–58.

[23] A. Sangiovanni-Vincentelli, W. Damm, and R. Passerone, “Taming Dr.
Frankenstein: Contract-Based Design for Cyber-Physical Systems*,”
in European Journal of Control, vol. 18, no. 3, pp. 217–238, 2012, doi:
10.3166/ejc.18.217-238.

[24] I. Dragomir, I. Ober, and C. Percebois, “Contract-based modeling and
verification of timed safety requirements within SysML,” in Software
& Systems Modeling, vol. 16, no. 2, pp. 587–624, 2017, doi:
10.1007/s10270-015-0481-1.

[25] Albert Benveniste, Benoit Caillaud, Dejan Nickovic, Roberto
Passerone, Jean-Baptiste Raclet, et al.: “Contracts for System Design”.

[Research Report] RR-8147, INRIA. 2012, pp.65., hal-00757488, RR-
8147.

[26] W. Böhm, M. Broy, C. Klein, K. Pohl, B. Rumpe, and S. Schröck,
“Model-Based Engineering of Collaborative Embedded Systems,” in
Cham: Springer International Publishing, 2021.

[27] J. Bryans, J. Fitzgerald, R. Payne, A. Miyazawa, and K. Kristensen,
“SysML contracts for systems of systems,” in 2014 9th International
Conference on System of Systems Engineering (SOSE).

[28] O. Faldik, R. Payne, J. Fitzgerald, and B. Buhnova, “Modelling System
of Systems Interface Contract Behaviour,” in Electron. Proc. Theor.
Comput. Sci., vol. 245, no. 5, pp. 1–15, 2017, doi:
10.4204/EPTCS 245.1.

[29] L. de Alfaro and T. A. Henzinger, “Interface automata,” in Proceedings
of the 8th European software engineering conference held jointly with
9th ACM SIGSOFT international symposium on Foundations of
software engineering - ESEC/FSE-9, 2001.

[30] Jesko G. Lamm and Tim Weilkiens, “Functional Architectures in
SysML,” in M. Maurer and S.-O. Schulze (eds.), Tag des Systems
Engineering 2010, pp. 109–118. Carl Hanser Verlag, München,
Germany, November 2010. English translation by J. Lamm.“,” in Tag
des Systems Engineering (TdSE 2010), 2010. Accessed: Feb. 13 2021.
[Online]. Available: https://www.oose.de/wp-content/uploads/2016/
10/110427_TdSE2010_Lamm_Weilkiens_Functional_Architectures_
English-1.pdf

[31] K. Pohl, H. Hönninger, R. Achatz, and M. Broy, “Model-Based
Engineering of Embedded Systems: The SPES 2020 Methodology”.
Berlin, Heidelberg: Springer, 2012. [Online]. Available: http://
site.ebrary.com/lib/alltitles/docDetail.action?docID=10625072

[32] A. Albers, N. Bursac, and E. Wintergerst, “
Produktgenerationsentwicklung ‐ Bedeutung und Herausforderungen
aus einer entwicklungsmethodischen Perspektive, ” in Stuttgarter
Symposium für Produktentwicklung 2015 SSP 2015, 2015.

[33] 5GAA, “C-V2X Use Cases, Methodology, Examples and Service
Level Requirements”. [Online]. Available: https://5gaa.org/wp-
content/uploads/2019/07/5GAA_191906_WP_CV2X_UCs_v1-3-
1.pdf

[34] ISO/IEC 7498-1:1994, “Information technology -- Open Systems
Interconnection -- Basic Reference Model: The Basic Model,”
ISO/IEC, 1994.

[35] VDI 2221 Blatt 1, “Entwicklung technischer Produkte und Systeme,“
2019.

[36] ETSI EN 302 663: “Intelligent Transport Systems (ITS); ITS-G5
Access layer specification for Intelligent Transport Systems operating
in the 5 GHz frequency band,” ETSI EN 302 663 V1.2.1, ETSI, May.
2019. [Online]. Available: https://www etsi.org/deliver/etsi_en/
302600_302699/302663/01.02.01_30/en_302663v010201v.pdf

[37] R. Protzmann, I. Radusch, A. Festag, R. Fritzsche, and M. Rehme,
“IV2X - Integrierte Betrachtung Fahrzeugkommunikation,” Berlin,
2018. Accessed: Jan. 23 2021. [Online]. Available: https://
www.testfeld-berlin.de/pdfs/iV2X%20Dokumentation%201.5.pdf

[38] ETSI EN 302 637-2: “Intelligent Transport Systems (ITS); Vehicular
Communications; Basic Set of Applications; Part 2: Specification of
Cooperative; Awareness Basic Service,” ETSI EN 302 637 V1.3.1,
ETSI, Sep. 2014. [Online]. Available: https://www.etsi.org/deliver/
etsi_en/302600_302699/30263702/01.03.01_30/en_
30263702v010301v.pdf

[39] S. Chen, “Modellbasierter Ansatz in der Entwicklung einer
Validierungsumgebung für V2X,” unpublished Masterthesis, IPEK -
Institut für Produktentwicklung, Karlsruher Institut für Technologie
(KIT), Karlsruhe, 2020.

[40] L. Eberle, “Weiterentwicklung einer Validierungsumgebung für die
Entwicklung von kamerabasierten Fahrerassistenzsystemen zur
Anwendung an verteilten Standorten,“ IPEK-thesis; 3790, IPEK -
Institut für Produktentwicklung, Karlsruher Institut für Technologie
(KIT), Karlsruhe, 2019.

[41] Causevic, Aida, “A risk and threat assessment approaches overview in
autonomous systems of systems,” in 2017 XXVI International
Conference on Information, Communication and Automation
Technologies (ICAT): IEEE.

Repository KITopen

Dies ist ein Postprint/begutachtetes Manuskript.

Empfohlene Zitierung:

Waschle, M.; Behrendt, M.; Xing, K.; Shi, H.; Albers, A.
Contract-based methods and activities in the validation of interfaces for System of Systems.

2021. 16th International Conference of System of Systems Engineering (SoSE), 2021,
Institute of Electrical and Electronics Engineers (IEEE).
doi:10.5445/IR/1000136724

Zitierung der Originalveröffentlichung:

Waschle, M.; Behrendt, M.; Xing, K.; Shi, H.; Albers, A.
Contract-based methods and activities in the validation of interfaces for System of Systems.
2021. 16th International Conference of System of Systems Engineering (SoSE), 2021., 102–

107, Institute of Electrical and Electronics Engineers (IEEE).
doi:10.1109/SOSE52739.2021.9497476

Lizenzinformationen: KITopen-Lizenz

https://publikationen.bibliothek.kit.edu/1000136724
https://publikationen.bibliothek.kit.edu/1000136724
https://publikationen.bibliothek.kit.edu/1000136724
https://doi.org/10.1109/SOSE52739.2021.9497476
https://www.bibliothek.kit.edu/cms/kitopen-workflow.php

