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We present the Core Imaging Library (CIL), an
open-source Python framework for tomographic
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of challenging datasets. Conventional filtered back-
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channel data arising for example in dynamic,
spectral and in situ tomography. CIL provides
an extensive modular optimization framework
for prototyping reconstruction methods including
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sparsity and total variation regularization, as well as tools for loading, preprocessing and
visualizing tomographic data. The capabilities of CIL are demonstrated on a synchrotron
example dataset and three challenging cases spanning golden-ratio neutron tomography,
cone-beam X-ray laminography and positron emission tomography:.

This article is part of the theme issue ‘Synergistic tomographic image reconstruction: part 2”.

1. Introduction

It is an exciting time for computed tomography (CT): existing imaging techniques are being
pushed beyond current limits on resolution, speed and dose, while new ones are being
continually developed [1]. Driving forces include higher-intensity X-ray sources and photon-
counting detectors enabling respectively fast time-resolved and energy-resolved imaging. In
situ imaging of evolving processes and unconventional sample geometries such as laterally
extended samples are also areas of great interest. Similar trends are seen across other imaging
areas, including transmission electron microscopy (TEM), positron emission tomography (PET),
magnetic resonance imaging (MRI) and neutron imaging, as well as joint or multi-contrast
imaging combining several such modalities.

Critical in CT imaging is the reconstruction step where the raw measured data is
computationally combined into reconstructed volume (or higher-dimensional) data sets. Existing
reconstruction software such as proprietary programs on commercial scanners are often
optimized for conventional, high-quality datasets, relying on filtered back projection (FBP) type
reconstruction methods [2]. Noisy, incomplete, non-standard or multi-channel data will generally
be poorly supported or not at all.

In recent years, numerous reconstruction methods for new imaging techniques have been
developed. In particular, iterative reconstruction methods based on solving suitable optimization
problems, such as sparsity and total variation (TV) regularization, have been applied with
great success to improve reconstruction quality in challenging cases [3]. This however is highly
specialized and time-consuming work that is rarely deployed for routine use. The result is a
lack of suitable reconstruction software, severely limiting the full exploitation of new imaging
opportunities.

This article presents the Core Imaging Library (CIL)—a versatile open-source Python library
for processing and reconstruction of challenging tomographic imaging data. CIL is developed
by the Collaborative Computational Project in Tomographic Imaging (CCPi) network and is
available from https:/ /www.ccpi.ac.uk/CIL, as well as from [4], with documentation, installation
instructions and numerous demos.

Many software libraries for tomographic image processing already exist, such as TomoPy [5],
ASTRA [6], TIGRE [7], Savu [8], AIR Tools II [9] and CASToR [10]. Similarly, many MATLAB and
Python toolboxes exist for specifying and solving optimization problems relevant in imaging,
including FOM [11], GlobalBioIm [12], ODL [13], ProxImaL [14] and TFOCS [15].

CIL aims to combine the best of the two worlds of tomography and optimization software
in a single easy-to-use, highly modular and configurable Python library. Particular emphasis is
on enabling a variety of regularized reconstruction methods within a ‘plug and play” structure
in which different data fidelities, regularizers, constraints and algorithms can be easily selected
and combined. The intention is that users will be able to use the existing reconstruction methods
provided, or prototype their own, to deal with noisy, incomplete, non-standard and multi-channel
tomographic datasets for which conventional FBP type methods and proprietary software fail
to produce satisfactory results. In addition to reconstruction, CIL supplies tools for loading,
preprocessing, visualizing and exporting data for subsequent analysis and visual exploration. CIL
easily connects with other libraries to further combine and expand capabilities; we describe CIL
plugins for ASTRA [6], TIGRE [7] and the CCPi-Regularisation (CCPi-RGL) toolkit [16], as well as
interoperability with the Synergistic Image Reconstruction Framework (SIRF) [17] enabling PET
and MRI reconstruction using CIL.
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io ] framework ] processors ] utilities ] optimisation ] plugins
data readers: data data visualization optimization CCPi-RGL
lab/synchrotron | || structures corrections tools algorithms toolkit plugin
data writers: geometric data demonstration regularization, ASTRA
NeXus/TIFF meta-data conversion datsets fitting functions | || toolbox plugin
core data slicing, noise/data linear TIGRE
functionality masking, etc. simulation operators toolbox plugin

Figure 1. Overview of CIL module structure and contents. The cil.plugins module contains wrapper code for other software
and third-party libraries that need to be installed separately to be used by CIL.

We envision that in particular two types of researchers might find CIL useful:

— Applied mathematicians and computational scientists can use existing mathematical
building blocks and the modular design of CIL to rapidly implement and experiment
with new reconstruction algorithms and compare them against existing state-of-the-art
methods. They can easily run controlled simulation studies with test phantoms and
within the same framework transition into demonstrations on real CT data.

— CT experimentalists will be able to load and pre-process their standard or non-standard
datasets and reconstruct them using a range of different state-of-the-art reconstruction
algorithms. In this way, they can experiment with, and assess the efficacy of, different
methods for compensating for poor data quality or handle novel imaging modalities in
relation to whatever specific imaging task they are interested in.

CIL includes a number of standard test images as well as demonstration data and scripts that
make it easy for users of both groups to get started using CIL for tomographic imaging. These
are described in the CIL documentation and we also highlight that all data and code for the
experiments presented here are available as described under Data Accessibility.

This paper describes the core functionality of CIL and demonstrates its capabilities using an
illustrative running example, followed by three specialized exemplar case studies. Section 2 gives
an overview of CIL and describes the functionality of all the main modules. Section 3 focuses on
the optimization module used to specify and solve reconstruction problems. Section 4 presents
the three exemplar cases, before a discussion and outlook are provided in §5. Multi-channel
functionality (e.g. for dynamic and spectral CT) is presented in the part II paper [18] and a use
case of CIL for PET /MR motion compensation is given in [19], both within this same issue; further
applications of CIL in hyperspectral X-ray and neutron tomography are presented in [20,21].

2. Overview of Core Imaging Library

CIL is developed mainly in Python and binary distribution is currently via Anaconda. Instructions
for installation and getting started are available at https:/ /www.ccpi.ac.uk/CIL, as well as from
[4]. The present v.21.0 consists of six modules, as shown in figure 1. CIL is open-source software
released under the Apache 2.0 license, while individual plugins may have a different license,
e.g. ccpi.plugins.astra is GPLv3. In the following subsections, the key functionality of each CIL
module is explained and demonstrated, apart from ccpi.optimisation which is covered in §3.

As a running example (figure 2) we employ a three-dimensional parallel-beam X-ray CT
dataset from Beamline 113-2, Diamond Light Source, Harwell, UK. The sample consisted of a
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Figure 2. Raw and preprocessed three-dimensional parallel-beam X-ray (T steel-wire dataset. (a) Raw transmission projection.
(b) Scaled, cropped, centred and negative-log transformed projection. (c)(i) Sinogram for slice ver t i cal =103, all 90
angles. (c)(ii) Same, subsampled to 15 equi-spaced angles.

0.5 mm aluminium cylinder with a piece of steel wire embedded in a small drilled hole. A droplet
of salt water was placed on top, causing corrosion to form hydrogen bubbles. The dataset, which
was part of a fast time-lapse experiment, consists of 91 projections over 180°, originally acquired
as size 2560-by-2160 pixels, but provided in [22] downsampled to 160-by-135 pixels.

(a) Data readers and writers

Tomographic data comes in a variety of different formats depending on the instrument
manufacturer or imaging facility. CIL currently supplies a native reader for Nikon’s XTek data
format, Zeiss” TXRM format, the NeXus format [23] if exported by CIL, as well as TIFF stacks.
Here ‘native’ means that a CIL Acqui si ti onDat a object incl. geormet ry (as described in the
following subsection) will be created by the CIL reader. Other data formats can be read using e.g.
DXchange [24] and a CIL Acqui si t i onDat a object can be manually constructed. CIL currently
provides functionality to export/write data to disk in NeXus format or as a TIFF stack.

The steel-wire dataset is included as an example in CIL. It is in NeXus format and can be loaded
using NEXUSDat aReader . For example datasets in CIL, we provide a convenience method that
saves the user from typing the path to the datafile:

Load steel-wire example dataset

from cil.utilities.dataexample import SYNCHROTRON_PARALLEL_BEAM DATA
data = SYNCHROTRON_PARALLEL_BEAM DATA.get ()

(b) Data structures, geometry and core functionality

CIL provides two essential classes for data representation, namely Acqui sitionData for
tomographic data and | mageDat a for reconstructed (or simulated) volume data. The steel-wire
dataset was read in as an Acqui si t i onDat a that we can inspect with:

Print AcquisitionData object to view essential properties

>>> print (data)

Number of dimensions: 3

Shape: (91, 135, 160)

Axis labels: ('angle', 'vertical', 'horizontal')

At present, data are stored internally as a NumPy array and may be returned using the
method as_array(). Acqui sitionData and | mageDat a use string labels rather than a
positional index to represent the dimensions. In the example data, ‘ angl e’ , ‘ vertical’
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and ‘ hori zontal ' refer to 91 projections each with vertical size 135 and horizontal size 160.
Labels enable the user to access subsets of data without knowing the details of how it is stored
underneath. For example, we can extract a single projection using the method get _sl i ce with
the label and display it (figure 2a) as

Extract single projection and display as image

show2D (data.get_slice (angle=0), cmap='inferno', origin='upper-left')

where show2Dis a display function in cil.utilities.display. show2D displays dimension labels on
plot axes as in figure 2; subsequent plots omit these for space reasons.
Both | mageDat a and Acqui si ti onDat a behave much like a NumPy array with support for:

— algebraic operators +, -, etc.,

— relational operators >, >=, etc.,

— common mathematical functions like exp, | og and abs, mean, and
— inner product dot and Euclidean norm nor m

This makes it easy to do a range of data processing tasks. For example in figure 2a, we note the
projection (which is already flat-field normalized) has values around 0.7 in the background, and
not 1.0 as in typical well-normalized data. This may lead to reconstruction artefacts. A quick-fix
is to scale the image to have background value ca 1.0. To do that we extract a row of the data
towards the top, compute its mean and use it to normalize the data:

Normalize data by mean over vertical slice of data

data = data / data.get_slice(vertical=20) .mean ()

Where possible in-place operations are supported to avoid unnecessary copying of data. For
example the Lambert-Beer negative logarithm conversion can be done by:

In-place mathematical operations

data.log (out=data)
data »= -1

Geometric meta-data such as voxel dimensions and scan configuration is stored in
| mageCeorret ry and Acqui Si ti onGeoret ry objects available in the attribute geonmet ry of
| mageDat a and Acqui si tionDat a. Acqui si ti onCGeonetry will normally be provided as
part of an Acqui si ti onDat a produced by the CIL reader. It is also possible to manually create
Acqui si tionGeonetry and | mageGeonet ry from a list of geometric parameters. Had the
steel-wire dataset not had geometry information included, we could have set up its geometry

with the following call:
Manually define AcquisitionGeometry

ag = AcquisitionGeometry.create_Parallel3D () \
.set_panel (num_pixels=[160, 135]) \
.set_angles (angles=np.linspace(-88.2, 91.8, 91))

The first line creates a default three-dimensional parallel-beam geometry with a rotation axis
perpendicular to the beam propagation direction. The second and third lines specify the detector
dimension and the angles at which projections are acquired. Numerous configuration options are
available for bespoke geometries; this is illustrated in §4b, see in particular figure 9, for an example
of cone-beam laminography. Similarly, | mageGeonet ry holds the geometric specification of a
reconstructed volume, including numbers and sizes of voxels.
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Table1. Pr ocessor s currently available in CIL.

name description

Binner downsample data in selected dimensions
......................... ey
I apply e
© Paddr  padfedtenddatainselecteddimensions
......................... Shcerextractdataatspec|ﬁed|nd|ces
T applybmarymasktokeepselecteddataonly ..................................................
MaskGeneratormakebmarymasktokeepselecteddataonly ..................................................
~ RingRemover  removesinogramstripestoreduce ring artefacts

(c) Preprocessing data

In CIL, a Processor is a class that takes an | mageDat a or Acqui si t i onDat a as input, carries
out some operations on it and returns an | mageDat a or Acqui si ti onDat a. Example uses
include common preprocessing tasks such as resizing (e.g. cropping or binning/downsampling)
data, flat-field normalization and correction for centre-of-rotation offset, see table 1 for an
overview of Processor s currently in CIL.

We will demonstrate centre-of-rotation correction and cropping using Pr ocessor s. Typically,
it is not possible to align the rotation axis perfectly with respect to the detector, and this leads
to well-known centre-of-rotation reconstruction artifacts. CIL provides different techniques to
estimate and compensate, the simplest being based on cross-correlation on the central slice. First
the Pr ocessor instance must be created; this is an object instance which holds any parameters
specified by the user; here which slice to operate on. Once created the Pr ocessor can carry out
the processing task by calling it on the targeted dataset. All this can be conveniently achieved in
a single code line, as shown in the first line below.

Afterwards, we use a Slicer to remove some of the empty parts of the projections by
cropping 20 pixel columns on each side of all projections, while also discarding the final projection
which is a mirror image of the first. This produces dat a90. We can further produce a subsampled
dataset dat al5 by using another Sl i cer, keeping only every sixth projection.

Use Processors to center and subsample data

data = CentreOfRotationCorrector.xcorr(slice_index='centre') (data)
data90 = Slicer(roi={'angle':(0,90), 'horizontal':(20,140)}) (data)
datalb = Slicer(roi={'angle': (0,90,6)}) (data90)

Figure 2 illustrates preprocessing and the final 90- and 15-projection sinograms; mainly the
latter will be used in what follows to highlight differences between reconstruction methods.

(d) Auxiliary tools

This module contains a number of useful tools:

— dataexample: Example datasets and test images such as the steel-wire dataset.!

— display: Tools for displaying data as images, including the show2D used in the previous
section and other interactive displaying tools for Jupyter notebooks.

— noise: Tools to simulate different kinds of noise, including Gaussian and Poisson.

! Available from https:/ /github.com/TomographicImaging /CIL-Data.
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— quality_measures: Mathematical metrics mean-square-error (MSE) and peak-signal-to-
noise-ratio (PSNR) to quantify image quality against a ground-truth image.

Some of these tools are demonstrated in other sections of the present paper; for the rest, we refer
the reader to the CIL documentation.

(e) CorelmagingLibrary pluginsand interoperability with Synergisticimage Reconstruction
Framework

CIL allows the use of third-party software through plugins that wrap the desired functionality. At
present, the following three plugins are provided:

— cil.plugins.ccpi_regularisation: This plugin wraps a number of regularization methods
from the CCPi-RGL toolkit [16] as CIL Funct i ons.

— cil.plugins.astra: This plugin provides access to CPU and GPU-accelerated forward
and back projectors in ASTRA as well as the FBP and Feldkamp-Davis—Kress (FDK)
reconstruction methods for parallel and cone-beam geometries.

— cil.plugins.tigre: This plugin currently provides access to GPU-accelerated cone-beam
forward and back projectors and the FDK reconstruction method of the TIGRE toolbox.

Furthermore, CIL is developed to be interoperable with the Synergistic Image Reconstruction
Framework (SIRF) for PET and MR imaging [17]. This was achieved by synchronizing naming
conventions and basic class concepts:

— sirf: Data structures and acquisition models of SIRF can be used from CIL without
a plugin, in particular with cil.optimisation one may specify and solve optimization
problems with SIRF data. An example of this using PET data is given in §4c.

We demonstrate here how the cil.plugins.astra plugin, or cil.plugins.tigre plugin
interchangeably, can be used to produce an FBP reconstruction of the steel-wire dataset using
its FBP Processor . To compute a reconstruction we must specify the geometry we want for
the reconstruction volume; for convenience, a default | nageGeonet r y can be determined from a
given Acqui si ti onCGeonet ry. The FBP Processor can thenbe set up and in this instance we
specify for it to use GPU-acceleration, and then call it on the dataset to produce a reconstruction:

Set up and run GPU-accelerated FBP algorithm from ASTRA plugin

datal5.reorder (order="astra')

ag = datal5.geometry
ig = ag.get_ImageGeometry ()
recon = FBP(ig, ag, device='gpu') (datalb)

The first line permutes the underlying data array to the specific dimension order required by
cil.plugins.astra, which may differ from how data is read into CIL. Reconstructions for both the
90- and 15-projection steel-wire datasets are seen in figure 3, with notable streak artefacts in the
subsampled case, as is typical with few projections.

3. Reconstruction by solving optimization problems

FBP type reconstruction methods have very limited capability to model and address challenging
datasets. For example, the type and amount of noise cannot be modelled and prior knowledge
such as non-negativity or smoothness cannot be incorporated. A much more flexible class of

!
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Figure 3. Reconstructions of steel-wire dataset by FBP. (a,b) Horizontal and vertical slices using 90 projections. (¢,d) Same
using 15 projections—showing prominent streak artefacts. Colour range [—0.01, 0.11].

reconstruction methods arises from expressing the reconstructed image as the solution to an
optimization problem combining data and noise models and any prior knowledge.

The CIL optimization module makes it simple to specify a variety of optimization problems
for reconstruction and provides a range of optimization algorithms for their solution.

(a) Operators

The ccpi.optimisation module is built around the generic linear inverse problem
Au=b, (3.1)

where A is a linear operator, u is the image to be determined, and b is the measured data. In
CIL, u and b are normally represented by | mageDat a and Acqui si ti onDat a, respectively,
and A by a Li near Oper at or. The spaces that a Li near Oper at or maps from and to are
represented in attributes donmai n and r ange; these should each hold an | mageGeonetry or
Acqui si ti onCGeorret ry that match with that of u and b, respectively.

Reconstruction methods rely on two essential methods of a Li near Oper at or, namely
di r ect , which evaluates Av for a given v, and adj oi nt , which evaluates A*z for a given z, where
A* is the adjoint operator of A. For example, in a Li near Qper at or representing the discretized
Radon transform for tomographic imaging, di rect is forward projection, i.e. computing the
sinogram corresponding to a given image, while adj oi nt corresponds to back-projection.

Table 2 provides an overview of the Oper at or s available in the current version of CIL.
It includes imaging models such as Bl urringQperator for image deblurring problems
and mathematical operators such as | denti t yQper at or and Gr adi ent Cper at or to act as
building blocks for specifying optimization problems. Oper at or s can be combined to create new
Oper at or s through addition, scalar multiplication and composition.

The bottom two rows contain Proj ecti onQperators from both cil.plugins.astra and
cil.plugins.tigre, which wrap forward and back-projectors from the ASTRA and TIGRE
toolboxes, respectively, and can be used interchangeably. A Pr oj ecti onQper at or can be set

up simply by

Create ProjectionOperator from image and acquisition geometries

A = ProjectionOperator (ig, ag)

and from the Acqui sitionCeonetry provided the relevant two-dimensional or three-
dimensional, parallel-beam or cone-beam geometry employed; in case of the steel-wire dataset,
a three-dimensional parallel-beam geometry.
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Table2. Oper at or sin (L and Oper at or sfrom cil.plugins.astra and cil.plugins.tigre in bottom two rows.

name description

BlockOperator form block (array) operator from multiple operators
............. BIurrmgOperatorapplypomtspreadfunc'uontoquran|mage
""""""" ChannelwiseOperator ~~ apply the same operator toall channels
............. D|agonaI0peratorformad|agonaloperatorfr0m|mage/ach|S|t|0ndata
............. F|n|teD|fference0peratorapplyﬁnltedlfferencesmselecteddlmensmn
""""""" GradientOperator ~~ apply fnite difference tomultiple/all dimensions
............. Ident|ty0peratorapply|dent|tyoperator|ereturnmput
............. MaskOperatorfrombmarymputkeepselectedentnesmaskoutrest
............. : ymmetrlsedGradlentOperatorapplysymmetrlzedgrad|entusedlnTGV
............ . eroOperatoroperatorofallzeroes
............. ProlectlonOperatortomographyforward/backprOJectlonfromASTRA
............. Pro;ect|0n0peratortomographyforward/backprOJect|onfr0mTIGRE

(b) Algebraic iterative reconstruction methods
One of the most basic optimization problems for reconstruction is least-squares minimization,

u* = arg min ||Au — b||%, (3.2)
u

where we seek to find the image u that fits the data best, i.e. in which the norm of the residual
Au — b takes on the smallest possible value; this 1 we denote u* and take as our reconstruction.
The conjugate gradient least squares (CGLS) algorithm [25] is an algebraic iterative method
that solves exactly this problem. In CIL, it is available as CG_S, which is an example of an
Al gori t hmclass. The following code sets up a CGA.S algorithm instance—inputs required are
an initial image, the operator (here Pr oj ect i onQper at or from cil.plugins.astra), the data and
an upper limit on the number of iterations to run—and runs a specified number of iterations with

verbose printing:
Set up and run CGLS algorithm

x0 = ig.allocate(0.0)

b = datal>b

myCGLS = CGLS (initial=x0, operator=A, data=b, max_iteration=1000)
myCGLS.run (20, verbose=1)

At this point, the reconstruction is available as myCGLS. sol uti on and can be displayed or
otherwise analysed. The object-oriented design of Al gorithm means that iterating can be
resumed from the current state, simply by another my CGS. r un call.

As imaging operators are often ill-conditioned with respect to inversion, small errors and
inconsistencies tend to magnify during the solution process, typically rendering the final least
squares u* useless. CGLS exhibits semi-convergence [26] meaning that in the initial iterations
the solution will approach the true underlying solution, but from a certain point the noise
will increasingly contaminate the solution. The number of iterations therefore has an important
regularizing effect and must be chosen with care.

CIL also provides the simultaneous iterative reconstruction technique (SIRT) as SI RT, which
solves a particular weighted least-squares problem [9,27]. As with CGLS, it exhibits semi-
convergence, however it tends to require more iterations. An advantage of SIRT is that it admits
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Figure 4. Algebraic iterative reconstruction of 15-projection three-dimensional steel-wire dataset. (a,b) Horizontal and vertical
slices, 20-iteration CGL Sreconstruction. (¢,d) Same using SI RT, lower/upper bounds 0.0/0.09. Colour range [—0.01, 0.11].

the specification of convex constraints, such as box constraints (upper and lower bounds) on u;
this is done using optional input arguments | ower and upper :

Set up and run SIRT algorithm with bounds on pixel values

mySIRT = SIRT (initial=x0, operator=A, data=b, max_iteration=1000, \
lower=0.0, upper=0.09)
mySIRT.run (200, verbose=1)

In figure 4, we see that CGLS reduces streaks but blurs edges. SI RT further reduces streaks and
sharpens edges to the background; this is an effect of the non-negativity constraint. In the steel
wire example data, the upper bound of 0.09 is attained causing a more uniform appearance with
sharper edges.

(c) Tikhonov reqularization with BlockOperator and BlockDataContainer

Algebraic iterative methods like CGLS and SIRT enforce regularization of the solution implicitly
by terminating iterations early. A more explicit form of regularization is to include it directly in
an optimization formulation. The archetypal such method is Tikhonov regularization which takes
the form

i = arg min{llAu—bH% +a2||Du||§}, (3.3)
u

where D is some operator, the properties of which govern the appearance of the solution. In
the simplest form D can be taken as the identity operator. Another common choice is a discrete
gradient implemented as a finite-difference operator. The regularization parameter a governs the
balance between the data fidelity term and the regularization term. Conveniently, Tikhonov
regularization can be analytically rewritten as an equivalent least-squares problem, namely

~ A - b
where A = <aD) and b= <0> , (3.4)

where the 0 corresponds to the range of D. We can use the CGLS algorithm to solve equation (3.4)
but we need a way to express the block structure of A and b. This is achieved by the

u* = arg min HAM —
u
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Figure 5. Anisotropic Tikhonov reconstruction of 15-projection three-dimensional steel-wire dataset. (a,b) Horizontal and
vertical slices, Tikhonov regularization with horizontal smoothing (cty = o, =30, o, = 0.1). (¢,d) Same, with vertical
smoothing (cty = oy, = 0.1, o, = 60). Colour range [—0.01, 0.11].

Bl ockQper at or and Bl ockDat aCont ai ner of CIL:

Set up Tikhonov regularization for CGLS using BlockOperator and BlockDataContainer

alpha = 1.0

D = IdentityOperator (ig)

Atilde = BlockOperator (A, alphaxD)
z = D.range.allocate (0.0)

btilde = BlockDataContainer (b, z)

If instead, we want the discrete gradient as D we simply replace the second line by:

Set up GradientOperator for use in regularization

D = GradientOperator (ig)

G adi ent Oper at or automatically works out from the | mageGeonet ry i g which dimensions
are available and sets up finite differencing in all dimensions. If two or more dimensions are
present, Dwill in fact be a Bl ockQper at or with a finite-differencing block for each dimension.
CIL supports nesting of a Bl ockOper at or inside another, so that Tikhonov regularization with
a G adi ent operator can be conveniently expressed.

In figure 5a,b Tikhonov regularization with the G- adi ent Oper at or is demonstrated on
the steel-wire sample. Here, o governs the solution smoothness similar to how the number of
iterations affects CGLS solutions, with large « values producing smooth solutions. Here, « =1 is
used as a suitable trade-off between noise reduction and smoothing.

The block structure provides the machinery to experiment with different amounts or types of
regularization in individual dimensions in a Tikhonov setting. We consider the problem

u =arg min { | Au — b3 + o3I Dsul + a3 IDyul3 + o21D-ul3) (3.5)
u

where we have different regularizing operators Dy, Dy, D; in each dimension and associated
regularization parameters ay, ay, az. We can write this as the following block least-squares
problem which can be solved by CGLS:

A b\ |
u* = arg min oxDx u— O , (3.6)
u ayDy Oy
oD, 0, 5

where Oy, 0y and 0, represent zero vectors of appropriate size.
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In figure 5, we show results for Dy, Dy and D being finite-difference operators in each
direction, achieved by the Fi ni t eDi f f erenceOper at or. We show two choices of sets of
regularization parameters, namely oy = oy =30, @; = 0.1 and oy = ay = 0.1, @z = 60. We see in the
former case a large amount of smoothing occurs in the horizontal dimensions due to the larger oy
and «;, parameters, and little in the vertical dimension, so horizontal edges are preserved. In the
latter case, opposite observations can be made.

Such anisotropic regularization could be useful with objects having a layered or fibrous
structure, or if the measurement set-up provides different resolution or noise properties
in different dimensions, e.g. for non-standard scan trajectories such as tomosynthesis/
laminography.

(d) Smooth convex optimization

CIL supports the formulation and solution of more general optimization problems. One problem
class supported is unconstrained smooth convex optimization problems,

u* = arg minf(u). (3.7)
u
Here, f is a differentiable, convex, so-called L-smooth function, that is its gradient Vf is L-Lipschitz
continuous: ||Vf(u1) — Vf(u2)ll2 < Lllug — uzll2, Yuj,up for some L > 0 referred to as the Lipschitz
parameter. CIL represents functions by the Functi on class, which maps an | nageDat a or
Acqui si tionDat a to a real number. Differentiable functions provide the method gr adi ent
to allow first-order optimization methods to work; at present CIL provides a Gradient Descent
method GD with a constant or back-tracking line search for step size selection. CIL Functi on
supports algebra so the user can formulate for example linear combinations of Funct i on objects
and solve with the GD algorithm.
As example we can formulate and solve the Tikhonov problem equation (3.3) with GD as

Set up and run Gradient Descent for Tikhonov regularization

fl = LeastSquares (A, b)

f2 = OperatorCompositionFunction (L2NormSquared (), L)
f = f1 + (alphaxx2)=*£f2

myGD = GD(initial=x0, objective_function=f)
myGD.run (1000, verbose=1)

Here, Least Squar es( A, b), representing ||A - —b||%, and L2Nor nSquar ed, representing
Il - ||§, are examples from the Function class. With Qper at or Conposi ti onFunction a
function can be composed with an operator, here L, to form a composite function ||L - ||%. An
overview of Functi on types currently in CIL is provided in table 3. Another example using a
smooth approximation of non-smooth TV regularization will be given in §4a.

(e) Non-smooth convex optimization with simple proximal mapping

Many useful reconstruction methods are formulated as non-smooth optimization problems.
Of specific interest in recent years has been sparsity-exploiting regularization such as the L!-
norm and TV. TV-regularization for example has been shown capable of producing high-quality
images from severely undersampled data whereas FBP produces highly noisy, streaky images. A
particular problem class of interest can be formulated as

u* = arg min {f(u) + g(u)}, (3.8)

where f is L-smooth and ¢ may be non-smooth. This problem can be solved by the Fast Iterative
Shrinkage-Thresholding Algorithm (FISTA) [28,29], which is available in CIL as FI STA. FISTA
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Table3. Funct i onsinCIL.

name description

BlockFunction separable sum of multiple functions

makes use of f being smooth by calling f. gradi ent and assumes for g that the so-called
proximal mapping,

. 1
proxrg(u) = argvmm {rg(v) + E”U - ull%} (3.9)

for a positive parameter 7 is available as g. pr oxi mal . This means that FISTA is useful when g
is “‘proximable’, i.e. where an analytical expression for the proximal mapping exists, or it can be
computed efficiently numerically.

A simple, but useful, case for FISTA is to enforce constraints on the solution, i.e. require u € C,
where C is a convex set. In this case, g is set to the (convex analysis) indicator function of C, i.e.

0 ifueC
=1 " (3.10)
oo else.
The proximal mapping of an indicator function is simply a projection onto the convex set; for
simple lower and upper bound constraints, this is provided in CIL as | ndi cat or Box. FISTA
with non-negativity constraints is achieved with the following lines of code:

Set up and run FISTA for non-negative least-squares problem

F = LeastSquares (A, b)

G = IndicatorBox (lower=0.0)

myFISTA = FISTA(f=F, g=G, initial=x0, max_iteration=1000)
myFISTA.run (300, verbose=1)

Another simple non-smooth case is Ll-norm regularization, i.e. using [|ull; = Z]» |u;| as regularizer.
This is non-differentiable at 0 and a closed-form expression for the proximal mapping is known
as the so-called soft-thresholding. In CIL, this is available as L1Nor mand can be achieved with
the same code, only with the second line replaced by

Set up L1 regularizer for use in FISTA

alpha = 100
G = alpha*L1lNorm()

The resulting steel-wire dataset reconstruction is shown in figure 6.

sy 3 SRR
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Figure 6. FISTA reconstruction of 15-projection three-dimensional steel-wire dataset. (a,b) L'-norm reqularization with large
reqularization parameter of v = 30 forces all pixels but in steel wire to zero. (¢,d) TV-regularization with o« = 0.02 removes
streaks and noise and preserves edges. Colour range [—0.01, 0.11].

FISTA can also be used whenever a numerical method is available for the proximal mapping
of g; one such case is the (discrete, isotropic) TV. TV is the mixed L*!-norm of the gradient image,

(Dx)? + (Dyu) (3.11)

D
grv(u) = ||Dullp; = H <D;>”

where D = (Dy; Dy) is the gradient operator as before and the L?>-norm combines the x and y
differences before the L!-norm sums over all voxels. CIL implements this in Tot al Vari at i on
using the FGP method from [29]. Using the FISTA code above, we can achieve this with

Set up TV regularizer for use in FISTA
alpha = 0.02

G = alphaxTotalVariation ()

The resulting reconstruction is shown in figure 6 and clearly demonstrates the edge-preserving,
noise-reducing and streak-removing capabilities of TV-regularization.

(f) Non-smooth convex optimization using splitting methods

When the non-smooth function is not proximable, we may consider so-called splitting methods for
solving a more general class of problems, namely

u* = arg min {f(Ku) + g(u)}, (3.12)

where f and g are convex (possibly) non-smooth functions and K a linear operator. The key change
from the FISTA problem is the splitting of the complicated f(K(u)), which as a whole may not be
proximable, into simpler parts f and K to be handled separately. CIL provides two algorithms
for solving this problem, depending on properties of f and assuming that g is proximable. If f is
proximable, then the linearized ADMM method [30] can be used; available as LADMMin CIL. If the
so-called convex conjugate, f*, of f is proximable, then the primal dual hybrid gradient (PDHG)
method [31-33], also known as the Chambolle-Pock method, may be used; this is known as PDHG
in CIL.
In fact, an even wider class of problems can be handled using this formulation, namely

u* = arg min {Zf,(Klu) + g(u)} , (3.13)
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Figure 7. PDHG reconstruction of 15-projection three-dimensional steel-wire dataset. (a,b) TV-regularization with o = 0.02,
reproduces the same result as FISTA in figure 6 on the same case and parameter choice, thus validating algorithms against each
other. Colour range [—0.01, 0.11]. (c) Objective value histories (log-log) for FISTA and PDHG on TV-regularization problem. Both
algorithms reach the same (primal) objective value, FISTA taking fewer but slower iterations. The primal-dual gap for PDHG
(difference between primal and dual objectives) approaches zero indicating convergence.

i.e. where the composite function f(K-) can be written as a separable sum

f(Ku)="" fi(Ku). (3.14)

In CIL, we can express such a function using a Bl ockOper at or, as also used in the Tikhonov
example, and a Bl ockFunct i on, which essentially holds a list of Funct i on objects.

Here, we demonstrate this setup by using PDHG to solve the TV-regularized least-squares
problem. As shown in [33] this problem can be written in the required form as

/= fl) - (i | _||bz“§> K= (g>’ 8 =0 (319

In CIL, this can be written succinctly as (with a specific choice of regularization parameter):

Set up and run PDHG for TV-regularized least-squares problem

alpha = 0.02

F = BlockFunction (L2NormSquared (b=b), alphaxMixedL21Norm())
K = BlockOperator (A, GradientOperator (ig))

G = ZeroFunction ()

myPDHG = PDHG (f=F, operator=K, g=G, max_iteration=10000)
myPDHG.run (5000, verbose=2)

Figure 7 shows the resulting steel-wire dataset reconstruction which appears identical to the
result of FISTA on the same problem (figure 6), and as such validates the two algorithms against
each other.

CIL Al gori t hrs have the option to save the history of objective values so the progress and
convergence can be monitored. PDHG is a primal-dual algorithm, which means that the so-called
dual maximization problem of equation (3.12), which is referred to as the primal problem, is
solved simultaneously. In PDHG, the dual objective values are also available. The primal-dual gap,
which is the difference between the primal and dual objective values, is useful for monitoring
convergence as it should approach zero when the iterates converge to the solution.

Figure 7c compares the primal objective, dual objective and primal-dual gap history with the
objective history for FISTA on the same problem. The (primal) objectives settle at roughly the same
level, again confirming that the two algorithms achieve essentially the same solution. FISTA used
fewer iterations, but each iteration took about 25 times as long as a PDHG iteration. The dual
objective is negative until around 3000 iterations, and the primal-dual gap is seen to approach
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Table4. Al gori t hmsindIL.

name description problem type solved

(GLS conjugate gradient least squares least squares

simultaneous iterative reconstruction tec nique weignted least squares .
s gy PO MRS
e e
laowm linearized alternating direction method of multiplis ~~~~~~ non-smooth
i o
b i

zero, thus confirming convergence. CIL makes such algorithm comparisons straightforward. It
should be stressed that the particular convergence behaviour observed for FI STA and PDHG
depends on internal algorithm parameters such as step sizes for which default values were used
here. The user may experiment with tuning these parameters to obtain faster convergence, for
example for PDHG the primal and dual step sizes may be set using the inputs si gna and t au.

In addition to PDHG a stochastic variant SPDHG [34] that can sometimes accelerate
reconstruction substantially by working on problem subsets is provided in CIL as SPDHG this
is demonstrated in the Part II article [18] within this issue.

An overview of all the algorithms currently supplied by CIL is provided in table 4.

4. Exemplar studies using Core Imaging Library

This section presents three illustrative examples each demonstrating different functionality of
CIL. All code and data to reproduce the results are provided, see Data Accessibility.

(a) Neutron tomography with golden-angle data

This example demonstrates how CIL can handle other imaging modalities than X-ray, a non-
standard scan geometry, and easily compare reconstruction algorithms.

Contrary to X-rays, neutrons interact with atomic nuclei rather than electrons that surround
them, which yields a different contrast mechanism, e.g. for neutrons hydrogen is highly
attenuating while lead is almost transparent. Nevertheless, neutron data can be modelled with
the Radon transform and reconstructed with the same techniques as X-ray data.

A benchmarking neutron tomography dataset (figure 8) was acquired at the IMAT beamline
[35,36] of the ISIS Neutron and Muon Source, Harwell, UK. The raw data is available at [37] and a
processed subset for this paper is available from [38]. The test phantom consisted of an Al cylinder
of diameter 22 mm with cylindrical holes holding 1 mm and 3 mm rods of high-purity elemental
Cu, Fe, Ni, Ti and Zn rods. 186 projections each 512-by-512 pixels in size 0.055 mm were acquired
using the non-standard golden-angle mode [39] (angular steps of %(\/5 —1) x 180° =111.24-- -°)
rather than sequential small angular increments. This was to provide complete angular coverage
in case of early experiment termination and to allow experimenting with reconstruction from
a reduced number of projections. An energy-sensitive micro-channel plate (MCP) detector was
used [40,41] providing raw data in 2332 energy bins per pixel, which were processed and
summed to simulate a conventional white-beam absorption-contrast dataset for the present paper.
Reconstruction and analysis of a similar energy-resolved dataset is given in [21].

We use Tl FFSt ackReader to load the data, several Processor instances to preprocess it,
and initially FBP to reconstruct it. We compare with TV-regularization, equation (3.11), solved
with M xedL21Nor mand PDHG using o =1 and 30000 iterations, and further with a smoothed
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Figure 8. IMAT neutron tomography dataset. Top row: (left) top-view schematic of high-purity elemental metal rod sample;
(centre) top-view photograph; (right) single raw projection image showing rods of different absorption. Middle row: (left)
preprocessed slice sinogram; (right) horizontal line profile of FBP, PDHG TV and GD TV reconstruction along line shown onimage
below. Bottom row: (left) slice reconstructions, FBP; (centre) TV reconstruction with PDHG (right) STV reconstruction with
@GD. Colour range [—0.002, 0.012].

variant of TV (STV) using Snoot hM xedL21Nor m The latter makes the optimization problem
smooth, so it can be solved using GD, using the same « and 10000 iterations.

The sinogram for a single slice is shown in figure 8 along with FBP, TV and STV reconstructions
and a horizontal line profile plot as marked by the red line. The FBP reconstruction recovers the
main sample features, however it is contaminated by noise, ring artefacts and streak artefacts
emanating from the highest-attenuating rods. The TV and STV reconstructions remove these
artefacts, while preserving edges. We see that the STV approximates the non-smooth TV very
well; this also serves to validate the reconstruction algorithms against one another.

(b) Non-standard acquisition: X-ray laminography

This example demonstrates how even more general acquisition geometries can be processed
using CIL, and how cil.plugins.ccpi_regularisation allows CIL to use GPU-accelerated
implementations of regularizing functions available in the CCPi-RGL toolkit [16]. Furthermore,
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Figure 9. (ILAcqui si ti onGeon®et r y andl mageGeonet r y illustrated for the laminography cone-beam
setup. Configurable parameters are shown in the legend. Parallel-beam geometry and two-dimensional versions are also
available. CIL canillustrate | nageGeomret ry and Acqui si t i onGeonet ry instances as in this figure using
show geonetry(ag,ig).

unlike the examples up to now, we here employ the Pr oj ecti onQper at or provided by the
TIGRE plugin, though the ASTRA plugin could equally have been used.

Laminography is an imaging technique designed for planar samples in which the rotation
axis is tilted relative to the beam direction. Conventional imaging of planar samples often leads
to severe limited-angle artefacts due to lack of transmission in-plane, while laminography can
provide a more uniform exposure [42]. In TEM, the same technique is known as conical tilt.

An experimental laminography set-up in the so-called rotary configuration was developed [43]
for Nikon micro-CT scanners in the Manchester X-ray Imaging Facility. Promising reconstructions
of a planar LEGO-brick test phantom were obtained using the CGLS algorithm. Here, we use
CIL on the same data [44] to demonstrate how TV-regularization and non-negativity constraints
can reduce inherent laminographic reconstruction artefacts. CIL allows the specification of very
flexible scan configurations. The cone-beam laminography set-up of the LEGO dataset provides
an illustrative case for demonstrating CIL geometry, see figure 9. This particular geometry can be
specified as follows, illustrating how different geometry components are used:

Specify non-standard laminography acquisition geometry with full flexibility

ag = AcquisitionGeometry.create_Cone3D (
source_position=[0.0, source_pos_y, 0.0],
detector_position=[0.0, detector_pos_y, 0.0],
rotation_axis_position=[object_offset_x, 0.0, 0.0],
rotation_axis_direction=[0.0, -np.sin(tilt), np.cos(tilt)])
.set_angles (angles=angles_list, angle_unit='degree')

~ s s s s~

.set_panel (num_pixels=[num_pixels_x, num_pixels_y],
pixel_size=pixel_size_xy, origin='top-left')

The data consist of 2512 projections of 798-by-574 pixels sized 0.508 mm in a 360°
cone-beam geometry. We load the data with Ni konDat aReader and preprocess with
a couple of Processor instances to prepare it for reconstruction. For reconstruction
we use the GPU-accelerated cone-beam Proj ecti onOperator from ccpi.plugin.tigre and
FI STA to solve equation (3.8) for the unregularized least-squares problem (LS) and non-
negativity constrained TV-regularized least-squares (TVNN). For TVNN, we use FBP_TV from
cil.plugins.ccpi_regularisation which implements a GPU-accelerated version of gy, which is
faster than, but otherwise equivalent to, using the native CIL Tot al Vari at i on. The full three-
dimensional volume is reconstructed for LS and TVNN, and figure 10 shows a horizontal and
vertical slice through both.
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Figure 10. Slices through three-dimensional reconstruction of laminography LEGO sample. Left, top/bottom: LS reconstruction
using FISTA, horizontal/vertical slice at yellow line. Right: Same using TVNN, in which laminography artefacts are suppressed
while edges are preserved.

The LEGO bricks are clearly visualized in all reconstructions. The LS reconstruction has a haze
in the horizontal slice (top left), which in the vertical slice (bottom left) is seen to amount to
smooth directional streaks known to be inherent for laminography; in particular horizontal edges
are heavily blurred. On the other hand, fine details in the horizontal plane are preserved, for
example the text 'LEGO’ seen on several knobs to the right.

TVNN (right) reduces the haze and streaks substantially with the LEGO bricks displaying
a uniform gray level and the horizontal edges in the vertical slice completely well-defined.
However, some fine details are lost, including the ‘LEGO’ text, which is a commonly observed
drawback of TV-regularization. Depending on the sample and application, this may or may not
be an issue, and if necessary more sophisticated regularizers such as total generalized variation
(TGV) could be explored (a CIL example with TGV is given in the Part II article [18]).

As shown, CIL can process very general scan configurations and allows easy experimentation
with different reconstruction methods, including using third-party software through plugins.

() PET reconstruction in Core Imaging Library using Synergistic Image Reconstruction
Framework

SIRF [17] is an open-source platform for joint reconstruction of PET and MRI data developed by
CCP-SyneRBI (formerly CCP-PETMR). CIL and SIRF have been developed with a large degree
of interoperability, in particular, data structures are aligned to enable CIL algorithms to work
directly on SIRF data. As an example, we demonstrate here reconstruction of the NEMA IQ
Phantom [45], which is a standard phantom for testing scanner and reconstruction performance.
It consists of a Perspex container with inserts of different-sized spheres, some filled with liquid
with higher radioactivity concentration than the background, others with ‘cold” water (see [45]
for more details). This allows assessment of resolution and quantification.

A 60-min PET dataset [46] of the NEMA IQ phantom was acquired on a Siemens Biograph
mMR PET/MR scanner at the Institute of Nuclear Medicine, UCLH, London. Due to poor data
statistics in PET a Poisson noise model is normally adopted, which leads to using the Kullback-
Leibler (KL) divergence as data fidelity. We compare here reconstruction using the ordered subset
expectation maximization (OSEM) method [47] available in SIRF without using CIL, and TV-
regularized KL divergence minimization using CIL’s PDHGalgorithm with a Kul | backLei bl er
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Figure 11. Three-dimensional PET reconstruction of NEMA 1Q phantom data using CIL with SIRF data structures. (a) OSEM
reconstruction (SIRF), horizontal slice. (b) KLTV reconstruction (CIL PDHG). Colour range both [0,0.15]. (c) OSEM and KLTV profiles
along red vertical line on centre plot.

data fidelity (KLTV). Instead of a CIL Oper at or a SIRF Acqui si ti onMbdel represents the
forward model, and has all necessary methods to allow its use in CIL algorithms.

Figure 11 shows horizontal slices through the 220 x 220 x 127-voxel OSEM and KLTV
reconstructions and vertical profile plots along the red line. In both cases, the inserts are visible,
but OSEM is highly affected by noise. KLTV reduces the noise dramatically, while preserving the
insert and outer phantom edges. This may be beneficial in subsequent analysis, however a more
detailed comparative study should take post-filtering into account.

The purpose of this example was to give proof of principle of prototyping new reconstruction
methods for PET with SIRF, using the generic algorithms of CIL, without needing to
implement dedicated new algorithms in SIRF. Another example with SIRF for PET/MR motion
compensation employing CIL is given in [19] within this issue.

5. Summary and outlook

We have described the CCPi Core Imaging Library, an open-source library, primarily written
in Python, for processing tomographic data, with particular emphasis on enabling a variety
of regularized reconstruction methods. The structure is highly modular to allow the user to
easily prototype and solve new problem formulations that improve reconstructions in cases with
incomplete or low-quality data. We have demonstrated the capability and flexibility of CIL across
a number of test cases, including parallel-beam, cone-beam, non-standard (laminography) scan
geometry, neutron tomography and PET using SIRF data structures in CIL. Further multi-channel
cases including temporal/dynamic and spectral tomography are given in [18].

CIL remains under active development with new functionality continually being added,
steered by ongoing and future scientific projects. Current plans include:

— adding more algorithms, functions, and operators to support an even greater set of
problems, for example allowing convex constraints in smooth problems;

— adding more pre-/postprocessing tools, for example to handle beam hardening;

— adding templates with preselected functions, algorithms, etc. to simplify solving common
problems such as TV regularization;

— further integrating with other third-party open-source tomography software through the
plugin capability;

— introducing support for nonlinear problems, such as polarimetric neutron spin
tomography [48] and electron strain tomography [49]; and

— developing support for multi-modality problems.

CIL is developed as open-source on GitHub, and questions, feature requests and bug reports
submitted as issues are welcomed. Alternatively, the developer team can be reached directly at
CCPI-DEVEL@jiscmail.ac.uk. CIL is currently distributed through the Anaconda platform; in the
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future additional modes of distribution such as Docker images may be provided. Installation
instructions, documentation and training material is available from https://www.ccpi.ac.uk/
CIL, as well as from [4], as are GitHub repositories with source code that may be cloned/forked
and built manually. In this way, users may modify and contribute back to CIL.

Finally, we emphasize that a multitude of optimization and regularization methods exist
beyond those currently implemented in CIL and demonstrated in the present article. Recent
overviews are given for example by [3,50-52] with new problems and methods constantly
being devised. CIL offers a modular platform to easily implement and explore such methods
numerically as well as apply them directly in large-scale imaging applications.

Data accessibility. CIL v21.0 as presented here is available through Anaconda; installation instructions are at
https:/ /www.ccpi.ac.uk/CIL. In addition, CIL v21.0 and subsequent releases are archived at [4]. Python
scripts to reproduce all results are available from [53]. The steel-wire data set is provided as part of CIL;
the original data is at [22]. The neutron data set is available from [38]. The laminography data set is available
from [44]. The NEMA IQ PET data set is available from [46].
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