KIT | KIT-Bibliothek | Impressum | Datenschutz

Two birds with one stone: dual grain-boundary and interface passivation enables >22% efficient inverted methylammonium-free perovskite solar cells

Gharibzadeh, Saba 1,2; Fassl, Paul 1,2; Hossain, Ihteaz M. 1,2; Rohrbeck, Pascal; Frericks, Markus; Schmidt, Moritz 1,2; Duong, The; Khan, Motiur Rahman 1; Abzieher, Tobias 1; Nejand, Bahram Abdollahi 1,2; Schackmar, Fabian 1,2; Almora, Osbel; Feeney, Thomas 1; Singh, Roja 1,2; Fuchs, Dirk 3; Lemmer, Uli 1; Hofmann, Jan P.; Weber, Stefan A. L.; Paetzold, Ulrich W. ORCID iD icon 1,2
1 Lichttechnisches Institut (LTI), Karlsruher Institut für Technologie (KIT)
2 Institut für Mikrostrukturtechnik (IMT), Karlsruher Institut für Technologie (KIT)
3 Institut für Quantenmaterialien und -technologien (IQMT), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Advancing inverted (p–i–n) perovskite solar cells (PSCs) is key to further enhance the power conversion efficiency (PCE) and stability of flexible and perovskite-based tandem photovoltaics. Yet, the presence of defects at grain boundaries and in particular interfacial recombination at the perovskite/electron transporting layer interface induce severe non-radiative recombination losses, limiting the open-circuit voltage (VOC) and fill factor (FF) of PSCs in this architecture. In this work, we introduce a dual passivation strategy using the long chain alkylammonium salt phenethylammonium chloride (PEACl) both as an additive and for surface treatment to simultaneously passivate the grain boundaries and the perovskite/C60 interface. Using [2-(9H-carbazol-9-yl)ethyl]phosphonic acid (2PACz) as a hole transporting layer and a methylammonium (MA)-free Cs0.18FA0.82PbI3 perovskite absorber with a bandgap of ∼1.57 eV, prolonged charge carrier lifetime and an on average 63 meV enhanced internal quasi-Fermi level splitting are achieved upon dual passivation compared to reference p–i–n PSCs. Thereby, we achieve one of the highest PCEs for p–i–n PSCs of 22.7% (stabilized at 22.3%) by advancing simultaneously the VOC and FF up to 1.162 V and 83.2%, respectively. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000136793
Veröffentlicht am 26.08.2021
Originalveröffentlichung
DOI: 10.1039/D1EE01508G
Web of Science
Zitationen: 68
Dimensions
Zitationen: 80
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Mikrostrukturtechnik (IMT)
Institut für Quantenmaterialien und -technologien (IQMT)
Universität Karlsruhe (TH) – Interfakultative Einrichtungen (Interfakultative Einrichtungen)
Karlsruhe School of Optics & Photonics (KSOP)
Lichttechnisches Institut (LTI)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 01.11.2021
Sprache Englisch
Identifikator ISSN: 1754-5692, 1754-5706
KITopen-ID: 1000136793
HGF-Programm 38.01.02 (POF IV, LK 01) Materials and Interfaces
Weitere HGF-Programme 47.11.03 (POF IV, LK 01) Quantum Nanoscience
Erschienen in Energy & environmental science
Verlag Royal Society of Chemistry (RSC)
Band 14
Heft 11
Seiten 5875-5893
Vorab online veröffentlicht am 09.08.2021
Nachgewiesen in Dimensions
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page