
Transparent Integration of Opportunistic Resources into
the WLCG Compute Infrastructure

Michael Böhler3, René Caspart1,∗, Max Fischer1, Oliver Freyermuth2, Manuel Giffels1, Ste-
fan Kroboth3, Eileen Kuehn1, Matthias Schnepf1, Florian von Cube1, and Peter Wienemann2

1Karlsruhe Institute of Technology (KIT), Germany
2University of Bonn, Germany
3Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany

Abstract. The inclusion of opportunistic resources, for example from High
Performance Computing (HPC) centers or cloud providers, is an important con-
tribution to bridging the gap between existing resources and future needs by the
LHC collaborations, especially for the HL-LHC era. However, the integration
of these resources poses new challenges and often needs to happen in a highly
dynamic manner. To enable an effective and lightweight integration of these
resources, the tools COBalD and TARDIS are developed at KIT.
In this contribution we report on the infrastructure we use to dynamically of-
fer opportunistic resources to collaborations in the World Wide LHC Com-
puting Grid (WLCG). The core components are COBalD/TARDIS, HTCondor,
CVMFS and modern virtualization technology. The challenging task of manag-
ing the opportunistic resources is performed by COBalD/TARDIS. We showcase
the challenges, employed solutions and experiences gained with the provision-
ing of opportunistic resources from several resource providers like university
clusters, HPC centers and cloud setups in a multi VO environment. This work
can serve as a blueprint for approaching the provisioning of resources from
other resource providers.

1 Introduction

The Worldwide LHC Computing Grid (WLCG) has historically been built on a homogeneous
computing environment, relying on member sites to provide a common base functionality.
Today, the spread of modern technologies and generalization of usage models, such as cloud
computing or idle cycle scavenging, means there is a significant volume of compute resources
outside the permanent member sites of the WLCG. Even though the underlying technologies
exist for years, the proper usage of such opportunistic resources is still the focus of ongoing
research and development: the heterogeneity as well as the dynamicity require capabilities
well beyond those of resource management systems aimed at permanent, homogeneous re-
sources.

In this paper, we present an approach for opportunistic resource management that allows
to combine per-resource-provider expertise with uniform, transparent resource access. The
major contribution is the demonstration of scalability and real-world feasibility of previous

∗e-mail: Rene.Caspart@kit.edu

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 251, 02039 (2021)	 https://doi.org/10.1051/epjconf/202125102039
CHEP 2021



prototypical work applied to production usage at national scale. For this, we present the high-
level idea of our approach, several case studies of opportunistic resource providers, as well
as the evolution into a unified setup allowing for monitoring and accounting.

The fundamental idea of our work is to maximize transparency for all involved parties:
complexities of each task are handled by the respective experts, without significantly impact-
ing other tasks. Conversely, our approach should be able to scale well beyond even what we
have achieved so far.

2 Opportunistic Resource Federation at National Scale

Providing transparent access to resources from multiple sites or resource providers can be di-
vided into several subtasks: First, available resources should be presented via a single access
point for transparency towards resource users. Second, required resources should be auto-
matically acquired for transparency towards resource providers. Finally, accessing resources
should provide a common baseline of functionality to bridge the expectation gap between
resource users and providers. The overarching goal of these subtasks is a strong separation
of concerns: resource providers do not need to adapt to resource users, and vice versa.

Previous and related work in the context of WLCG generally follows the same basic
structure: Resources are aggregated in a single Overlay Batch System (OBS), with a meta-
scheduler predicting which resources must be acquired, using pilot jobs to allow access from
the OBS to resources. While such approaches are proven to scale well for homogeneous
resource providers, the high diversity of opportunistic resources and provider-centered scope
necessitates modifications.

2.1 Single point of entry and the intermediate OBS

The scope of existing OBS in the WLCG is tied to user groups, not resource providers: an
OBS represents all resources acquired by the Workflow Management System of a collabora-
tion [1–3]. While integrating opportunistic resources into an existing OBS makes resources
directly accessible to users, it also restricts access to the specific group owning the OBS.
For example, the meta-scheduler Cloud Scheduler [4] directly integrates resources into the
distributed job submission infrastructure of specific collaborations.

In order to benefit from the advantages of an OBS, namely extensibility with and trans-
parency of resource, without restriction to a specific user group, we introduce an intermediate
OBS. The intermediate OBS aggregates resources at the scope of several resource providers;
at the same time it acts like a regular, multi-group batch system towards users. Notably, this
usage model still allows resources to be late-bound by another OBS: the pilot of the OBS
is transparently executed by the intermediate OBS on the opportunistic resource. The meta-
scheduler HEPCloud [5] follows a similar approach utilizing an OBS for scaling, but still
restricting access to a specific user group.

In practice, we have realized such an intermediate OBS on a national scale using es-
tablished services as already used regularly in the WLCG (see Fig.1): An instance of the
HTCondor batch system, which has been proven to scale well beyond our needs [6], aggre-
gates the resources acquired from resource providers. Grid Compute Elements (CE) provide
a point of entry that is indistinguishable from those of regular WLCG batch systems. On the
one hand, this minimizes the integration efforts needed by collaborations – our intermediate
OBS and thus its resources are accessed exactly like existing WLCG resources. On the other
hand, this minimizes the operational effort – the intermediate OBS and CE are deployed at
the GridKa Tier 1, using the same configuration management templates as for the Tier 1 batch
system and CE.

2

EPJ Web of Conferences 251, 02039 (2021)	 https://doi.org/10.1051/epjconf/202125102039
CHEP 2021



prototypical work applied to production usage at national scale. For this, we present the high-
level idea of our approach, several case studies of opportunistic resource providers, as well
as the evolution into a unified setup allowing for monitoring and accounting.

The fundamental idea of our work is to maximize transparency for all involved parties:
complexities of each task are handled by the respective experts, without significantly impact-
ing other tasks. Conversely, our approach should be able to scale well beyond even what we
have achieved so far.

2 Opportunistic Resource Federation at National Scale

Providing transparent access to resources from multiple sites or resource providers can be di-
vided into several subtasks: First, available resources should be presented via a single access
point for transparency towards resource users. Second, required resources should be auto-
matically acquired for transparency towards resource providers. Finally, accessing resources
should provide a common baseline of functionality to bridge the expectation gap between
resource users and providers. The overarching goal of these subtasks is a strong separation
of concerns: resource providers do not need to adapt to resource users, and vice versa.

Previous and related work in the context of WLCG generally follows the same basic
structure: Resources are aggregated in a single Overlay Batch System (OBS), with a meta-
scheduler predicting which resources must be acquired, using pilot jobs to allow access from
the OBS to resources. While such approaches are proven to scale well for homogeneous
resource providers, the high diversity of opportunistic resources and provider-centered scope
necessitates modifications.

2.1 Single point of entry and the intermediate OBS

The scope of existing OBS in the WLCG is tied to user groups, not resource providers: an
OBS represents all resources acquired by the Workflow Management System of a collabora-
tion [1–3]. While integrating opportunistic resources into an existing OBS makes resources
directly accessible to users, it also restricts access to the specific group owning the OBS.
For example, the meta-scheduler Cloud Scheduler [4] directly integrates resources into the
distributed job submission infrastructure of specific collaborations.

In order to benefit from the advantages of an OBS, namely extensibility with and trans-
parency of resource, without restriction to a specific user group, we introduce an intermediate
OBS. The intermediate OBS aggregates resources at the scope of several resource providers;
at the same time it acts like a regular, multi-group batch system towards users. Notably, this
usage model still allows resources to be late-bound by another OBS: the pilot of the OBS
is transparently executed by the intermediate OBS on the opportunistic resource. The meta-
scheduler HEPCloud [5] follows a similar approach utilizing an OBS for scaling, but still
restricting access to a specific user group.

In practice, we have realized such an intermediate OBS on a national scale using es-
tablished services as already used regularly in the WLCG (see Fig.1): An instance of the
HTCondor batch system, which has been proven to scale well beyond our needs [6], aggre-
gates the resources acquired from resource providers. Grid Compute Elements (CE) provide
a point of entry that is indistinguishable from those of regular WLCG batch systems. On the
one hand, this minimizes the integration efforts needed by collaborations – our intermediate
OBS and thus its resources are accessed exactly like existing WLCG resources. On the other
hand, this minimizes the operational effort – the intermediate OBS and CE are deployed at
the GridKa Tier 1, using the same configuration management templates as for the Tier 1 batch
system and CE.

HTCondor-CE
cloud-htcondor-ce-1-kit

HTCondor
OBSGridKa

Single Point of Entry

Bonn Tier 3
(BAF)

KIT HPC
(FORHLR2)

KIT Tier 3
(TOPAS)

LMU Munich
OpenStack

Bonn HPC
(BONNA)

Figure 1. Schematic view of the job flow from the experiments to the integrated opportunistic resources
via the Grid CE and the intermediate OBS.

Even though an intermediate OBS simplifies the aggregation and access to opportunis-
tic resources, it also complicates the meta-scheduling of these resources: The simplest use
case layers three batch system on top of each other, two of which use late-binding for their
resources.1 Whereas resource requirement prediction given directly late-bound payloads is
challenging but possible [7], we found prediction to be unfeasible given the latency and mul-
tiple layers of late-binding.

2.2 Provider specific resource management using COBalD/TARDIS

To tackle the challenges of meta-scheduling in complex environments, the COBalD/TARDIS
software suite [8, 9] primarily developed at Karlsruhe Institute of Technology aims at an
evolution of proven approaches and a revolution of challenges: We adapt the proven idea of
having a single software framework providing a unified abstraction over common resource
provider technologies; however, we evolve the idea of pilots as a concrete implementation
to more general drones as a framework itself. Most importantly, we abandon the idea of
globally unified resource prediction for all jobs and resource providers. The following is a
brief summary of the core concepts as relevant for this paper, an in-depth discussion being
available in previous publications [10, 11].

The major issue with global resource prediction is that it must anticipate the decisions of
all schedulers with incomplete information: these schedulers are black-boxes, any late-bound
jobs are not known ahead of time, and the latency from all scheduling layers puts a hard
requirement on the minimum look ahead. In practice, this is difficult for even one of multiple
schedulers, late-binding or significant look ahead [12]. Thus COBalD – the Opportunistic
Balancing Daemon – uses a different approach based on reaction instead of prediction: each
COBalD instance monitors how well its resources are used and subsequently provisions more
well-used resources or deprovisions unused resources. Notably, this means that multiple
COBalD instances can trivially serve the same (intermediate) OBS.
TARDIS – the Transparent Adaptive Resource Dynamic Integration System – is a plugin

to COBalD, providing production ready adapters for common batch systems and resource pro-
vision technologies. This includes both the tasks of provisioning/deprovisioning resources, as
well as integrating them into an intermediate OBS. The TARDIS equivalent of pilots, dubbed
drones, focuses on semi-autonomous resource integration; a drone is agnostic to the specific

1More generally, for a setup involving n layers, n − 1 layers are late-bound

3

EPJ Web of Conferences 251, 02039 (2021)	 https://doi.org/10.1051/epjconf/202125102039
CHEP 2021



needs of the WLCG, and can be fully customized to match its target environment and use
case.

In combination, the COBalD/TARDIS suite is a production ready suite to provision re-
sources from individual providers for an (intermediate) OBS. As several instances can oper-
ate in parallel, it is possible and advisable to deploy a separate instance per resource provider
or even per resource flavor of each provider. This allows to adjust each instance to the re-
quirements of its specific resource provider, combining general templates with expertise of
local experts.

3 Integration of Opportunistic Resources

Leaving the scope of homogeneous resources provided by WLCG and heading towards a
more heterogeneous environment where each resource is unique and different, poses addi-
tional challenges to be tackled. At this point it is reasonable to use synergies as far as possible
in order to reduce the overhead required for each integration to a minimum.

This applies in particular to the provisioning of the WLCG like software environment
expected to be present by the experiments. For all resources described below either tra-
ditional virtual machines or modern container technologies like Singularity [13] or Char-
liecloud [14] are used to provide the mandatory WLCG worker node environment. The vir-
tual machines/containers are based upon official Centos 7 images supplemented by additional
software packages like the HEP_OSlibs [15] and worker node [16] meta-packages. The built
containers are then stored in unpacked form on a CVMFS file system [17], which is either
inherently mounted on the compute nodes itself or provided by the cvmfsexec [18] tool al-
lowing for unprivileged mounts of CVMFS repositories in user space. Furthermore, CVMFS
is also used to provide the experiment software as well as parts of the Grid middleware.

In addition, it is also advisable to repurpose existing edge services like Frontier [19] and
CVMFS Squid proxies, which are fortunately operated close by to the integrated resources
described below.

3.1 University of Bonn

At the University of Bonn we explored two different scenarios: Integration of a Tier 3 cluster
to which the authors have administrative access and exploitation of HPC resources run by
external operators. Although demands are quite different for those use cases, we tried to use
as much synergy as possible. To integrate both clusters we run a common COBalD/TARDIS
node with two instances of the service as interface between the intermediate overlay batch
system and the local batch systems. The machine and service configuration are deployed fully
automated using the local Foreman/Puppet [20, 21] infrastructure. To configure and control
the COBalD and TARDIS services a dedicated Puppet module has been developed [22].

To achieve a maximum of job mobility we launch drones inside containers. We use official
CentOS 7 images from Docker Hub [23] as described above, augment it by configuration
adjustments and add an HTCondor execute node setup which is configured in such a way
that it integrates itself into the intermediate OBS. This image is rebuilt either if configuration
changes are pushed to its repository or at least once a day to ensure the latest security and
bug fix updates are included.

This setup is presently used to run jobs from the ATLAS and the Belle experiments at
both clusters at the University of Bonn.

4

EPJ Web of Conferences 251, 02039 (2021)	 https://doi.org/10.1051/epjconf/202125102039
CHEP 2021



needs of the WLCG, and can be fully customized to match its target environment and use
case.

In combination, the COBalD/TARDIS suite is a production ready suite to provision re-
sources from individual providers for an (intermediate) OBS. As several instances can oper-
ate in parallel, it is possible and advisable to deploy a separate instance per resource provider
or even per resource flavor of each provider. This allows to adjust each instance to the re-
quirements of its specific resource provider, combining general templates with expertise of
local experts.

3 Integration of Opportunistic Resources

Leaving the scope of homogeneous resources provided by WLCG and heading towards a
more heterogeneous environment where each resource is unique and different, poses addi-
tional challenges to be tackled. At this point it is reasonable to use synergies as far as possible
in order to reduce the overhead required for each integration to a minimum.

This applies in particular to the provisioning of the WLCG like software environment
expected to be present by the experiments. For all resources described below either tra-
ditional virtual machines or modern container technologies like Singularity [13] or Char-
liecloud [14] are used to provide the mandatory WLCG worker node environment. The vir-
tual machines/containers are based upon official Centos 7 images supplemented by additional
software packages like the HEP_OSlibs [15] and worker node [16] meta-packages. The built
containers are then stored in unpacked form on a CVMFS file system [17], which is either
inherently mounted on the compute nodes itself or provided by the cvmfsexec [18] tool al-
lowing for unprivileged mounts of CVMFS repositories in user space. Furthermore, CVMFS
is also used to provide the experiment software as well as parts of the Grid middleware.

In addition, it is also advisable to repurpose existing edge services like Frontier [19] and
CVMFS Squid proxies, which are fortunately operated close by to the integrated resources
described below.

3.1 University of Bonn

At the University of Bonn we explored two different scenarios: Integration of a Tier 3 cluster
to which the authors have administrative access and exploitation of HPC resources run by
external operators. Although demands are quite different for those use cases, we tried to use
as much synergy as possible. To integrate both clusters we run a common COBalD/TARDIS
node with two instances of the service as interface between the intermediate overlay batch
system and the local batch systems. The machine and service configuration are deployed fully
automated using the local Foreman/Puppet [20, 21] infrastructure. To configure and control
the COBalD and TARDIS services a dedicated Puppet module has been developed [22].

To achieve a maximum of job mobility we launch drones inside containers. We use official
CentOS 7 images from Docker Hub [23] as described above, augment it by configuration
adjustments and add an HTCondor execute node setup which is configured in such a way
that it integrates itself into the intermediate OBS. This image is rebuilt either if configuration
changes are pushed to its repository or at least once a day to ensure the latest security and
bug fix updates are included.

This setup is presently used to run jobs from the ATLAS and the Belle experiments at
both clusters at the University of Bonn.

3.1.1 Bonn Analysis Facility

The Bonn Analysis Facility (BAF) [24] is run by Physikalisches Institut at the University of
Bonn. It serves – among others – as an ATLAS tier 3 site and provides compute resources to
a wide range of other local physics research groups. The diversity of research fields comes
along with a significant variation of compute and storage requirements. To cope with the
multitude of different software stacks more easily and to decouple the operating system used
to run the underlying infrastructure from the user software stack, all jobs are run inside Sin-
gularity [13] containers on this cluster. This was implemented using HTCondor’s integrated
container support. Therefore the only difference between local user jobs and jobs deployed
via COBalD/TARDIS is that a different container flavor is chosen. Accessing the container
images on the compute nodes is also straightforward since CVMFS clients are running on all
worker nodes and all necessary repositories are bind-mounted inside the containers.

The drone jobs are submitted to the local HTCondor batch system directly from the
COBalD/TARDIS node, which acts as a regular submit node using Kerberos to authenticate
to the local batch system as a VO-specific service user. The users are handled by regular fair-
share, but given a tunable weight: at the time of writing, their priority is decreased by a factor
of 20 as compared to regular users, effectively performing backfilling. A high core quota set
in the COBalD/TARDIS configuration effectively allows backfilling of the full cluster, while
the drones are automatically drained after 12 hours of lifetime to ensure sufficient dynamics
for regular user jobs to take over.

3.1.2 Bonna High Performance Computing Center

Bonna is the central HPC cluster at the University of Bonn. It is run by the Fraunhofer-Institut
für Algorithmen und Wissenschaftliches Rechnen (SCAI) on behalf of the university. This
cluster neither offers integrated container support nor CVMFS clients on its worker nodes.
Therefore a slightly different approach had to be chosen to run TARDIS drones on Bonna.
Drone submission is performed remotely via SSH to the Bonna Slurm batch system. To
access the necessary CVMFS repositories, the tool cvmfsexec is used. It allows unprivileged
users to mount CVMFS repositories provided that some prerequisites are met. The situation
on Bonna at the time of writing is that fusermount and unprivileged user namespaces are
available. This allows cvmfsexec to create a mount namespace in which the desired CVMFS
repositories are accessible via the usual /cvmfs mount point. Subsequent commands are run
in this environment. In our case we launch Charliecloud containers using the same unpacked
images from the CVMFS infrastructure which we also use on BAF. After the commissioning
of this setup cvmfsexec learned to directly start Singularity containers from CVMFS. Still
we stuck to Charliecloud which has been designed as lightweight container solution to be
used by unprivileged users.

A disadvantage of using fusermount is that it is difficult to ensure that all mount points
created by cvmfsexec are properly cleaned up on job exit. To overcome these shortcomings,
cvmfsexec offers making use of unprivileged namespace FUSE mounts. In this case the
mounts are performed in an additional process ID (PID) namespace which makes sure that
the kernel cleans up mount relics upon job termination. Unfortunately the presently used
kernels on Bonna are too old to support this feature2 but we hope that this will be remedied
soon.

2It requires at least kernel 4.18 as it is available e.g. on CentOS 8 but it has also been backported to the CentOS 7
series starting from CentOS 7.8.

5

EPJ Web of Conferences 251, 02039 (2021)	 https://doi.org/10.1051/epjconf/202125102039
CHEP 2021



3.2 Karlsruhe Institute of Technology

Similar to the situation at the University of Bonn, at Karlsruhe Institute of Technology two
compute clusters are integrated in the opportunistic infrastructure: on the one hand the HEP
specific local university cluster, the Throughput optimized Analysis System (TOPAS) [25]
and on the other hand the HPC cluster Forschungshochleistungsrechner ForHLR Phase II
(ForHLR II) [26]. Both of these resources are integrated in a backfilling mode, meaning
other usages take precedence and only otherwise idling resources are provisioned. The re-
sources at ForHLR II are available to all collaborations supported by the local Tier 1 WLCG
center GridKa, while the usage of the resources at TOPAS is limited to the CMS and Belle II
collaborations.

To simplify the setup at KIT as many synergies as possible are exploited for the inte-
grations of both clusters. Drones for both clusters utilize HTCondors built-in support for
singularity to provide the basic worker node environment expected by the WLCG collabo-
rations. The configurations for the HTCondor daemons required by the drones are stored in
a common git repository and pulled in using condor-git-config, a custom tool utilizing
HTCondor’s "include command" functionality [27]. Due to the close proximity to GridKa,
the setup for both clusters utilizes edge services provided by the Tier 1 center.

3.2.1 TOPAS

The TOPAS cluster is a local university Tier 3 cluster designed for high-throughput HEP
analyses. Both the TOPAS cluster and the intermediate OBS use HTCondor as workload
management system. To ease the deployment of drones at the TOPAS cluster, the locally
available HTCondor binaries are used for the integration in the intermediate OBS. While
given its primary purpose for running local HEP user analysis workflows, the setup of the
TOPAS worker nodes complies with the basic environment expected by the WLCG collab-
orations, this environment is nonetheless provided via a singularity container. This further
allows utilizing the setup at the TOPAS cluster, where the authors have administrative access,
as a test bed for changes to both the TOPAS and ForHLR II setup.

In a recent extension to the TOPAS cluster additional GPU nodes have been deployed.
To allow for the utilization of these GPUs via the intermediate OBS, drones requesting and
providing GPUs are deployed. The batch system and GPU drones utilize the standard HT-
Condor mechanism for providing and requesting GPU resources. The association of drones
with GPU devices is achieved using environment variables, which are propagated through the
deployment layers. Due to limitations in the singularity layer a modified version of the image
providing the basic worker node environment is required. This modified image includes the
necessary Nvidia drivers and libraries needed for the GPU drones. The modification of the
image is performed using functionalities provided by Charliecloud, allowing to integrate the
required files into the image sandbox. Since this introduces a dependency on the setup of the
host system, the resulting image is distributed to the GPU worker nodes using a local shared
file system. At the time of writing integrated GPU resources from the TOPAS cluster are
being used by the CMS Collaboration.

3.2.2 ForHLR II

The ForHLR II is a HPC cluster operated by the Steinbuch Centre for Computing at KIT.
The worker nodes at the ForHLR II cluster are set up to provide support for singularity and
user namespaces. The required CVMFS repositories are provided using cvmfsexec. The
cache for CVMFS is setup as an alien cache shared among all clients hosted on the parallel

6

EPJ Web of Conferences 251, 02039 (2021)	 https://doi.org/10.1051/epjconf/202125102039
CHEP 2021



3.2 Karlsruhe Institute of Technology

Similar to the situation at the University of Bonn, at Karlsruhe Institute of Technology two
compute clusters are integrated in the opportunistic infrastructure: on the one hand the HEP
specific local university cluster, the Throughput optimized Analysis System (TOPAS) [25]
and on the other hand the HPC cluster Forschungshochleistungsrechner ForHLR Phase II
(ForHLR II) [26]. Both of these resources are integrated in a backfilling mode, meaning
other usages take precedence and only otherwise idling resources are provisioned. The re-
sources at ForHLR II are available to all collaborations supported by the local Tier 1 WLCG
center GridKa, while the usage of the resources at TOPAS is limited to the CMS and Belle II
collaborations.

To simplify the setup at KIT as many synergies as possible are exploited for the inte-
grations of both clusters. Drones for both clusters utilize HTCondors built-in support for
singularity to provide the basic worker node environment expected by the WLCG collabo-
rations. The configurations for the HTCondor daemons required by the drones are stored in
a common git repository and pulled in using condor-git-config, a custom tool utilizing
HTCondor’s "include command" functionality [27]. Due to the close proximity to GridKa,
the setup for both clusters utilizes edge services provided by the Tier 1 center.

3.2.1 TOPAS

The TOPAS cluster is a local university Tier 3 cluster designed for high-throughput HEP
analyses. Both the TOPAS cluster and the intermediate OBS use HTCondor as workload
management system. To ease the deployment of drones at the TOPAS cluster, the locally
available HTCondor binaries are used for the integration in the intermediate OBS. While
given its primary purpose for running local HEP user analysis workflows, the setup of the
TOPAS worker nodes complies with the basic environment expected by the WLCG collab-
orations, this environment is nonetheless provided via a singularity container. This further
allows utilizing the setup at the TOPAS cluster, where the authors have administrative access,
as a test bed for changes to both the TOPAS and ForHLR II setup.

In a recent extension to the TOPAS cluster additional GPU nodes have been deployed.
To allow for the utilization of these GPUs via the intermediate OBS, drones requesting and
providing GPUs are deployed. The batch system and GPU drones utilize the standard HT-
Condor mechanism for providing and requesting GPU resources. The association of drones
with GPU devices is achieved using environment variables, which are propagated through the
deployment layers. Due to limitations in the singularity layer a modified version of the image
providing the basic worker node environment is required. This modified image includes the
necessary Nvidia drivers and libraries needed for the GPU drones. The modification of the
image is performed using functionalities provided by Charliecloud, allowing to integrate the
required files into the image sandbox. Since this introduces a dependency on the setup of the
host system, the resulting image is distributed to the GPU worker nodes using a local shared
file system. At the time of writing integrated GPU resources from the TOPAS cluster are
being used by the CMS Collaboration.

3.2.2 ForHLR II

The ForHLR II is a HPC cluster operated by the Steinbuch Centre for Computing at KIT.
The worker nodes at the ForHLR II cluster are set up to provide support for singularity and
user namespaces. The required CVMFS repositories are provided using cvmfsexec. The
cache for CVMFS is setup as an alien cache shared among all clients hosted on the parallel

file-system of the HPC cluster. Since alien caches for CVMFS are unmanaged, the caches
are rotated and cleaned up on a monthly basis thereby avoiding clogging of the available
disk-space.

The drones at ForHLR II are submitted as jobs to the local Slurm workload manager via
SSH. The HTCondor daemons required for the drones are run bare-metal on the Red Hat
Enterprise Linux 8 worker nodes using the pre-compiled binaries provided by the HTCondor
Team. Due to limits enforced in the local Slurm setup, only 50 jobs of a user may run at a
time. As the drones are designed to fully utilize a single worker node, this limits the maximum
number of provided CPU cores to 1200.

In 2021 the successor of the ForHLR II HPC cluster will be commissioned at KIT. The
HoreKa cluster[28] will in additional to x86 CPU resources also provide Nvidia A100 GPU
resources. Due to the similarity in the setup of both HPC clusters we expect to be able to
integrate the CPU resources of the new cluster with little adaptions. In addition, profiting
from the experience gained with integrating GPU resources at the TOPAS cluster and due
to the similarities of the drone setups, we expect to be able to integrate the available GPU
resources with little additional effort.

3.3 Leibniz Supercomputing Centre Garching

The Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and Humanities
(LRZ) in Garching operates a cloud computing service [29] based on Open Stack [30], has
been integrated into WLCG compute infrastructure using COBalD/TARDIS and provides addi-
tional compute resources for the ATLAS and Belle II experiments. Due to the limited amount
of available resources (40 CPU cores), this setup has to be considered more as a proof of con-
cept operated in a production environment.

The resource management is driven by a COBalD/TARDIS instance remotely operated at
KIT as one of many in order to reduce the integration efforts needed by the local Munich
physics groups. The resources comprise traditional virtual machines providing the WLCG
worker node environment. In addition, HTCondor is installed inside the image and dynami-
cally configured using condor-git-config in order to join the intermediate OBS using the
HTCondor pool password method. Due to the proximity to the WLCG Munich Tier 2 Grid
Centre also operated at LRZ, edge services are repurposed for the LRZ cloud resources.

3.4 Wrap-up on integrated opportunistic resources

All together the amount of resources opportunistically contributed to the WLCG in 2020 is
shown in Fig. 2 on a monthly basis per resource provider. In total the experiments could
profit from additional 7.8 million core hours.

4 Monitoring and Accounting

Complex interconnected infrastructure with multilayered batch systems such as the ones de-
scribed in this paper involve many components and various interfaces. Network connections
can be unreliable and it is not uncommon to observe unpredictable temporal behavior, such
as delayed action following a request. Issues arising in such an environment can be difficult
to debug, particularly when the individual components of the infrastructure are managed by
dedicated teams. Continuous and centralized monitoring of relevant metrics at a sufficient
resolution which is accessible by all involved parties is therefore essential. Metrics typically
collected are the utilization of system resources and network traffic as well as general system

7

EPJ Web of Conferences 251, 02039 (2021)	 https://doi.org/10.1051/epjconf/202125102039
CHEP 2021




 � ��* 	)* ��/ �-' �-% 	-" � ) ��, �(. � �

�(',#�����

���

���

���

���

���

���

���

�
(
*
 
�
(
-
*
+

� �

	. *�" �&(',#%/��(',*$�-,$('�(!���� *&�'�	��	���'$. *+$,/��$ *���$'�����

�*(.$� ���))(*,-'$+,$���(&)-, �� +(-*� +��/��$, 

���	�

���


(*������


(''�


	


Figure 2. Additional resources measured in core hours supplied by opportunistic resource providers
in 2020. The dashed line indicates the average resource contribution of an average German ATLAS
University Tier 2 in 2020 [31].

and service health information, which can be obtained from the nodes running the services
and the drones. In addition, the involved software and services such as COBalD/TARDIS
and batch system schedulers expose metrics which can be vital for the assessment of sys-
tem health. COBalD/TARDIS offers three monitoring plugins which can export information
about the current state of the drones to the data stores Telegraf [32], Prometheus [33] and
Elasticsearch [34]. These plugins export the current number of drones in each state as a time
series or every state change of a drone as an event. The data stores are specialized in the
way they store and access the data. The time-series database Prometheus regularly fetches
the data from a source while Telegraf follows a push model. Event-like data is stored in Elas-
ticsearch, which also offers a fast and powerful search engine to access the data. The wide
range of data endpoints ensures that the appropriate storage is used depending on the type of
data. Grafana is used for visualization as it offers means for aggregating metrics from various
sources which facilitates system performance tuning and the identification of potential root
causes. An example of how such aggregated data can provide valuable insights is depicted
in Fig. 3 which illustrates the dynamics of how the number of drones increases after a large
number of jobs are submitted to the OBS. Fig. 4 visualizes the monitoring infrastructure. To
ease the deployment of the monitoring infrastructure a highly configurable Puppet module is
in development.

When incorporating opportunistic resources into an OBS, it is vital to provide a mecha-
nism which properly accounts for the consumed resources. For instance, a site might have to
fulfill a pledge to an external entity; however, if the site aims to fulfill its pledge by having
its computing resources opportunistically integrated into another cluster, it is not able to di-
rectly report its provided resources. In such a setting, an accounting system acts as a means
to separate the information about the provided resources by site/cluster again. Based on the
interfaces developed for the monitoring infrastructure, it is planned to develop an accounting
system which collects the relevant data, particularly about the drones, and stores them in a

8

EPJ Web of Conferences 251, 02039 (2021)	 https://doi.org/10.1051/epjconf/202125102039
CHEP 2021




 � ��* 	)* ��/ �-' �-% 	-" � ) ��, �(. � �

�(',#�����

���

���

���

���

���

���

���

�
(
*
 
�
(
-
*
+

� �

	. *�" �&(',#%/��(',*$�-,$('�(!���� *&�'�	��	���'$. *+$,/��$ *���$'�����

�*(.$� ���))(*,-'$+,$���(&)-, �� +(-*� +��/��$, 

���	�

���


(*������


(''�


	


Figure 2. Additional resources measured in core hours supplied by opportunistic resource providers
in 2020. The dashed line indicates the average resource contribution of an average German ATLAS
University Tier 2 in 2020 [31].

and service health information, which can be obtained from the nodes running the services
and the drones. In addition, the involved software and services such as COBalD/TARDIS
and batch system schedulers expose metrics which can be vital for the assessment of sys-
tem health. COBalD/TARDIS offers three monitoring plugins which can export information
about the current state of the drones to the data stores Telegraf [32], Prometheus [33] and
Elasticsearch [34]. These plugins export the current number of drones in each state as a time
series or every state change of a drone as an event. The data stores are specialized in the
way they store and access the data. The time-series database Prometheus regularly fetches
the data from a source while Telegraf follows a push model. Event-like data is stored in Elas-
ticsearch, which also offers a fast and powerful search engine to access the data. The wide
range of data endpoints ensures that the appropriate storage is used depending on the type of
data. Grafana is used for visualization as it offers means for aggregating metrics from various
sources which facilitates system performance tuning and the identification of potential root
causes. An example of how such aggregated data can provide valuable insights is depicted
in Fig. 3 which illustrates the dynamics of how the number of drones increases after a large
number of jobs are submitted to the OBS. Fig. 4 visualizes the monitoring infrastructure. To
ease the deployment of the monitoring infrastructure a highly configurable Puppet module is
in development.

When incorporating opportunistic resources into an OBS, it is vital to provide a mecha-
nism which properly accounts for the consumed resources. For instance, a site might have to
fulfill a pledge to an external entity; however, if the site aims to fulfill its pledge by having
its computing resources opportunistically integrated into another cluster, it is not able to di-
rectly report its provided resources. In such a setting, an accounting system acts as a means
to separate the information about the provided resources by site/cluster again. Based on the
interfaces developed for the monitoring infrastructure, it is planned to develop an accounting
system which collects the relevant data, particularly about the drones, and stores them in a

dedicated database. These data include for instance the run time and the consumed resources
(CPU, RAM, Disk, . . . ) of the drone as well as the cluster where it was running on. The
architecture of the accounting service will include an interface which provides other services
or plugins with access to the data. This allows for the implementation of plugins which
handle the interaction with external accounting systems like the central accounting system
of the WLCG. In addition, specialized plugins tailored for specific applications can be im-
plemented, such as inter-site billing systems or software which manages fair-shares across
clusters (Fig. 4).

Figure 3. Monitoring both the queue length of the batch system (PD = pending, R = running) and
the number of drones in their states enables one to assess how quickly the setup reacts to the sudden
submission of a large number of jobs.

Figure 4. Illustration of the monitoring/accounting infrastructure. COBalD/TARDIS as the core com-
ponent provides information about the state of the infrastructure. Data is also collected from the batch
system as well as the drones.

5 Summary & Outlook
We have demonstrated the scalability and real-world applicability of our approach to inte-
grate opportunistic resources into the WLCG compute infrastructure. During that work, the

9

EPJ Web of Conferences 251, 02039 (2021)	 https://doi.org/10.1051/epjconf/202125102039
CHEP 2021



used tool set has been evolving from the prototype stage to production usage at national
scale. Through a collaborative effort between the University of Bonn, the KIT and the Uni-
versity of Freiburg five diverse compute resources – each a unique challenge in and of itself
– could be integrated in a nationwide federated infrastructure delivering in total 7.8 million
additional core hours to the WLCG experiments in 2020. By re-using existing and well
established technologies like Grid CEs as entry point and an intermediate OBS as unified re-
source pool the integration efforts needed by the experiments have been minimized, while the
operational effectiveness on the provider side could be increased. The dynamic provision-
ing/deprovisioning as well as the transparent integration of resources into the intermediate
OBS is handled by the COBalD/TARDIS resource manager taking into account the actual re-
source utilization and aiming to increase the efficiency.

For the future we envisage to develop tools to improve the monitoring capabilities and
to enable per provider accounting of the resources in the APEL accounting portal [35] used
withing the WLCG infrastructure. Heading towards enabling fair accrediting of contributed
opportunistic resources from participating providers by the experiments in order to acknowl-
edge the efforts made and to motivate more to join.

6 Acknowledgements

The authors are grateful for being able to use the Bonna cluster at the University of Bonn. In
addition, parts of this work is using the supercomputer ForHLR II funded by the Ministry of
Science, Research and the Arts Baden-Württemberg and by the Federal Ministry of Education
and Research.

Parts of the work were supported by the Federal Ministry of Education and Research
(BMBF) within the project 05H18VFRC1 - "Entwicklung und Optimierung der Nutzung het-
erogener Rechenressourcen (Pilotmaßnahme ErUM-Data)". The monitoring code was mainly
developed and validated on the HPC-cluster NEMO in Freiburg, which is supported by the
Ministry of Science, Research and the Arts Baden-Württemberg through the bwHPC grant
and by the German Research Foundation (DFG) through grant no INST 39/963-1 FUGG.

References

[1] I. Sfiligoi, D.C. Bradley, B. Holzman, P. Mhashilkar, S. Padhi, F. Wurthwein, WRI
World Congress 2, 428 (2009)

[2] P. Nilsson, J. Caballero, K. De, T. Maeno, M. Potekhin, T. Wenaus, Proceedings of
XII Advanced Computing and Analysis Techniques in Physics Research, Erice, Italy 1
(2008)

[3] V. Garonne, A.Y. Tsaregorodtsev, I. Stokes-Rees (2004)
[4] F. Berghaus et al., Comput. Softw. Big Sci. 4, 4 (2020)
[5] B. Holzman et al., Comput. Softw. Big Sci. 1, 1 (2017), 1710.00100
[6] J. Balcas et al., J. Phys. Conf. Ser. 664, 062030 (2015)
[7] E. Kühn, Online analysis of dynamic streaming data (2018)
[8] M. Giffels, S. Kroboth, M. Schnepf, E. Kuehn, R. Caspart, F. von Cube, M. Fischer,

P. Wienemann, Matterminers/tardis: The dead planet (2020), https://doi.org/10.
5281/zenodo.4314952

[9] M. Fischer, E. Kuehn, M. Giffels, M. Schnepf, S. Kroboth, O. Freyermuth, Mat-
terminers/cobald: New plugin system (2020), https://doi.org/10.5281/zenodo.
3752587

10

EPJ Web of Conferences 251, 02039 (2021)	 https://doi.org/10.1051/epjconf/202125102039
CHEP 2021



used tool set has been evolving from the prototype stage to production usage at national
scale. Through a collaborative effort between the University of Bonn, the KIT and the Uni-
versity of Freiburg five diverse compute resources – each a unique challenge in and of itself
– could be integrated in a nationwide federated infrastructure delivering in total 7.8 million
additional core hours to the WLCG experiments in 2020. By re-using existing and well
established technologies like Grid CEs as entry point and an intermediate OBS as unified re-
source pool the integration efforts needed by the experiments have been minimized, while the
operational effectiveness on the provider side could be increased. The dynamic provision-
ing/deprovisioning as well as the transparent integration of resources into the intermediate
OBS is handled by the COBalD/TARDIS resource manager taking into account the actual re-
source utilization and aiming to increase the efficiency.

For the future we envisage to develop tools to improve the monitoring capabilities and
to enable per provider accounting of the resources in the APEL accounting portal [35] used
withing the WLCG infrastructure. Heading towards enabling fair accrediting of contributed
opportunistic resources from participating providers by the experiments in order to acknowl-
edge the efforts made and to motivate more to join.

6 Acknowledgements

The authors are grateful for being able to use the Bonna cluster at the University of Bonn. In
addition, parts of this work is using the supercomputer ForHLR II funded by the Ministry of
Science, Research and the Arts Baden-Württemberg and by the Federal Ministry of Education
and Research.

Parts of the work were supported by the Federal Ministry of Education and Research
(BMBF) within the project 05H18VFRC1 - "Entwicklung und Optimierung der Nutzung het-
erogener Rechenressourcen (Pilotmaßnahme ErUM-Data)". The monitoring code was mainly
developed and validated on the HPC-cluster NEMO in Freiburg, which is supported by the
Ministry of Science, Research and the Arts Baden-Württemberg through the bwHPC grant
and by the German Research Foundation (DFG) through grant no INST 39/963-1 FUGG.

References

[1] I. Sfiligoi, D.C. Bradley, B. Holzman, P. Mhashilkar, S. Padhi, F. Wurthwein, WRI
World Congress 2, 428 (2009)

[2] P. Nilsson, J. Caballero, K. De, T. Maeno, M. Potekhin, T. Wenaus, Proceedings of
XII Advanced Computing and Analysis Techniques in Physics Research, Erice, Italy 1
(2008)

[3] V. Garonne, A.Y. Tsaregorodtsev, I. Stokes-Rees (2004)
[4] F. Berghaus et al., Comput. Softw. Big Sci. 4, 4 (2020)
[5] B. Holzman et al., Comput. Softw. Big Sci. 1, 1 (2017), 1710.00100
[6] J. Balcas et al., J. Phys. Conf. Ser. 664, 062030 (2015)
[7] E. Kühn, Online analysis of dynamic streaming data (2018)
[8] M. Giffels, S. Kroboth, M. Schnepf, E. Kuehn, R. Caspart, F. von Cube, M. Fischer,

P. Wienemann, Matterminers/tardis: The dead planet (2020), https://doi.org/10.
5281/zenodo.4314952

[9] M. Fischer, E. Kuehn, M. Giffels, M. Schnepf, S. Kroboth, O. Freyermuth, Mat-
terminers/cobald: New plugin system (2020), https://doi.org/10.5281/zenodo.
3752587

[10] M. Fischer, M. Giffels, A. Heiss, E. Kuehn, M. Schnepf, R.F. von Cube, A. Petzold,
G. Quast, EPJ Web of Conferences 245, 07038 (2020)

[11] M. Fischer, E. Kuehn, M. Giffels, M.J. Schnepf, A. Petzold, A. Heiss, EPJ Web of
Conferences 245, 07040 (2020)

[12] Kuehn, Eileen, Fischer, Max, Lange, Sven, Petzold, Andreas, Heiss, Andreas, EPJ Web
Conf. 245, 07039 (2020)

[13] Singularity, https://sylabs.io, accessed on 2021-02-08
[14] Charliecloud, https://hpc.github.io/charliecloud, accessed on 2021-02-08
[15] HEP_OSlibs meta-package, https://gitlab.cern.ch/linuxsupport/rpms/

HEP_OSlibs/blob/master/README.md, accessed on 2021-02-11
[16] Universal Middleware Distribution Workernode meta-package, https://twiki.

cern.ch/twiki/bin/view/LCG/EL7WNMiddleware#Description, accessed on
2021-02-11

[17] CVMFS, https://cernvm.cern.ch/portal/filesystem, accessed on 2021-02-08
[18] cvmfsexec: Mount cvmfs repositories as an unprivileged user., https://github.com/

cvmfs/cvmfsexec, accessed on 2021-02-08
[19] D. Dykstra, J. Phys. Conf. Ser. 331, 042008 (2011)
[20] Foreman, https://theforeman.org, accessed on 2021-02-08
[21] Puppet, https://puppet.com, accessed on 2021-02-08
[22] P. Wienemann, O. Freyermuth, Puppet module for COBalD/TARDIS based oppor-

tunistic resource management, https://github.com/unibonn/puppet-cobald,
accessed on 2021-02-08

[23] Docker Hub, https://hub.docker.com, accessed on 2021-02-08
[24] O. Freyermuth, P. Wienemann, P. Bechtle, K. Desch, Computing and Software for Big

Science 5, 9 (2021)
[25] R. Caspart, M. Fischer, M. Giffels, R.F. von Cube, C. Heidecker, E. Kuehn, G. Quast,

A. Heiss, A. Petzold, EPJ Web Conf. 245, 07007 (2020)
[26] The research high performance computer ForHLR II, https://www.scc.kit.edu/

en/services/10398.php, accessed on 2021-02-11
[27] condor-git-config: dynamically configure an HTCondor node from a git repository,

https://github.com/maxfischer2781/condor-git-config, accessed on 2021-
02-11

[28] KIT Procures New Supercomputer, https://www.scc.kit.edu/en/services/
horeka.php, accessed on 2021-02-22

[29] LRZ Compute Cloud Service, https://doku.lrz.de/display/PUBLIC/Compute+
Cloud, accessed on 2021-02-11

[30] Open Stack, https://www.openstack.org/, accessed on 2021-02-11
[31] ATLAS Grafana Site-oriented Dashboard, https://monit-grafana.cern.ch/

goto/Et2EdcyGz, accessed on 2021-02-23
[32] Telegraf, https://www.influxdata.com/time-series-platform/telegraf/,

accessed on 2021-02-23
[33] Prometheus, https://prometheus.io, accessed on 2021-02-23
[34] Elasticsearch, https://www.elastic.co, accessed on 2021-02-23
[35] Apel accounting, https://wiki.egi.eu/wiki/APEL, accessed on 2021-02-23

11

EPJ Web of Conferences 251, 02039 (2021)	 https://doi.org/10.1051/epjconf/202125102039
CHEP 2021


