
Evaluation of Different Manual Placement
Strategies to Ensure Uniformity of the V-FPGA?

1[0000−0000−0000−0000], 2[0000−0000−0000−0000],
and 1[0000−0000−0000−0000]

1

.
2

. . . .

Abstract. Virtual FPGA (V-FPGA) architectures are useful as both
early prototyping testbeds for custom FPGA architectures, as well as to
enable advanced features which may not be available on a given host
FPGA. V-FPGAs use standard FPGA synthesis and placement tools,
and as a result the maximum application frequency is largely determined
by the synthesis of the V-FPGA onto the host FPGA. Minimal net delays
in the virtual layer are crucial for applications, but due to increased
routing congestion, these delays are often significantly worse for larger
than for smaller designs.
To counter this effect, we investigate three different placement strate-
gies with varying amounts of manual intervention. Taking the regularity
of the V-FPGA architecture into account, a regular placement of tiles
can lead to an 37 % improvement in the achievable clock frequency. In
addition, uniformity of the measured net delays is increased by 39 %,
which makes implementation of user applications more reproducible. As
a trade-off, these manual placement strategies increase area usage of the
virtual layer up to 16 %.

Keywords: FPGA · EDA · Placement · Virtual FPGA

1 Introduction

In recent years, virtual Field Programmable Gate Arrays (FPGA) architectures
(V-FPGAs) have been been introduced in academia [2]. Unlike common com-
mercial and academic FPGAs, the V-FPGA is an FPGA architecture layered
onto a base FPGA architecture: A commercial host FPGA architecture is syn-
thesized for a silicon chip target, and the V-FPGA layer is synthesized for that
host FPGA architecture. The virtual layer is implemented as a bitstream to
be programmed onto the host FPGA. User applications are synthesized using a
custom toolchain for the V-FPGA layer and the resulting application bitstream
is programmed onto it. V-FPGA architectures have been applied for three main

?

.

2 . .

use cases: First, as an abstraction layer, providing a common bitstream format
independent of commercial FPGA architectures. This allows using features such
as partial dynamic reconfiguration on FPGAs which do not natively support
this [6]. Secondly, V-FPGAs can be used for FPGA architecture research: Novel
ideas can be integrated in the architecture and tested on a hardware implementa-
tion, which can provide additional insight compared to simulation. This becomes
especially useful when investigating heterogeneous System-on-Chips (SoCs) so-
lutions, which may combine processing systems and reconfigurable logic [2,4].
Thirdly, using the V-FPGA as a basic FPGA architecture: Here it is realized
using standard cell synthesis for silicon targets and can be used to evaluate the
usage of different transistor technologies in FPGAs.

Targeting FPGAs instead of silicon, synthesizing and implementing a V-
FPGA requires different considerations than normal FPGA architectures. Most
notably, whereas FPGAs are usually designed in a custom or semi-custom way
based on tiles, V-FPGA architectures are written in standard hardware descrip-
tion language. Usual FPGA synthesis is used, trying to minimize critical path
length to meet a target clock frequency. The V-FPGA code introduces a hier-
archy of components and supports the concept of tiles. These tiles are a logical
representation and used for silicon targets, but are not considered in the synthe-
sis, mapping and placement onto the host FPGA. This leads to various issues:

1. The final target clock frequency must be given without knowing the user
application. Usually an “as fast as possible” solution is used, but for com-
mon timing driven synthesis and placement, this means manually increasing
the frequency until the design fails to synthesize, which is a time-intensive
process.

2. The V-FPGA architecture is not uniform: For example, the delay of a connec-
tion between two neighboring tiles depends on their location on the FPGA.
Whereas the maximum delay can be used to describe the architecture for
the synthesis toolchain targeting the virtual layer, this limits the ability to
overclock user applications: As routing is not deterministic, a user applica-
tion may be synthesized to different tiles in different synthesis runs and the
real timing slack varies. To achieve deterministic results, the delays of the
V-FPGA layer need to be uniform.

3. As any FPGA architecture consists of configurable elements and multiplex-
ers, it is possible to form combinational loops on these architectures. Such
loops break timing analysis and need to be marked accordingly using dis-
able timing constraints, otherwise timing analysis obtained from commercial
tools is wrong.

4. As the FPGA synthesis tools are not aware of the structure of the V-FPGA
architecture, they are essentially just placing a large network. This may
increase runtime and we postulate it further leads to worse critical path
delay for large designs, as the effort to place the whole design becomes too
large to yield results similar to a grid-based layout.

To address these problems, we investigate manual placement strategies forcing
the mapped design onto certain locations on the host FPGA. First, we describe

Manual Placement Strategies of the V-FPGA 3

metrics measuring the variation in delays of similar V-FPGA nets (uniformity),
delay and area. Secondly, we explain three strategies to constrain the tiles in
the V-FPGA in a grid-like layout, how the size and form of the tiles has to be
determined and how we place cells within the tiles. In the end, we evaluate the
results based on the introduced metrics. Results show that the three different
strategies increase uniformity and lead to decreased maximum delay, at the cost
of slightly increased area.

2 Related Work

For previous research in placement algorithms for FPGA, we can differentiate
two research areas: Placement algorithms for generic FPGA applications and
manually guided placement for specific applications. Research on generic place-
ment algorithms has largely been conducted using academic open source tools.
The most-widely used of these tools is Verilog to Routing (VTR), which con-
sists of three main tools: Odin II for synthesizing circuits designed in Verilog
into generic Lookup Table (LUT) resources, ABC for technology-mapping those
resources into architecture specific LUTs, and Versatile Place and Route (VPR)
for packing, placement, and routing. Research led to the introduction of new
techniques and algorithms for placement and packing, focusing on different cost
targets such as timing driven, routing-driven or runtime-driven: [7] introduces
an algorithm named adaptive range-based Simulated Annealing (ARBSA). It
provides an adaptive approach to choose the neighborhood for each block ac-
cording to the nets it belongs to. The result shows a 1.78X runtime speed up,
10 % reduction on wire length and 2 % reduction on the critical path with path
timing-driven optimization. Research in this area proposes general algorithms,
trying to find good solutions regardless of the target application. Results are
therefore usually shown relative to the VTR algorithms.

The second group of research uses the concept of manual placement, ranging
from guidance to completely manually placed designs. For example, [1] intro-
duced a sea-of-gates architecture called Triptych. It aims to reduce the signifi-
cant cost paid for routing in standard FPGAs, replacing the logic blocks with
Routing and Logic Blocks (RLBs). RLBs perform both logic and routing tasks,
allowing a tradeoff between logic and routing resources on a per mapping basis.
Using manual placement made this architecture yield a logic density improve-
ment of up to a factor of 3.5 over commercial FPGA’s automatic placement. As
another example, Shi et al. analyzed manual placement for their specific FPGA
application [5]. It shows that using manual placement leads to a compact and
optimized design with shorter nets, reducing propagation delay up to 25 %.

Whereas generic algorithms can be used to implement the V-FPGA, they
have to be reimplemented in the Vivado synthesis flow, as they originally target
VPR. In addition, none of these algorithms takes the regular structure of the
V-FPGA into account. The presented application specific manual placement
methods on the other hands side, do not directly translate to the V-FPGA
structure. They need to be heavily modified to be usable for this use case. In

4 . .

order to improve net delay in the V-FPGA, we therefore investigate specific
custom placement methods based on similar ideas, but explicitly considering the
V-FPGA architecture and regularity.

3 Background

The placement strategies to be introduced make use of the regular structure of
the V-FPGA. As such, they are dependent on both the V-FPGA architecture,
as well as on the host FPGA architecture. The strategies have been designed
to work with a certain parameter variability in these architectures, but certain
assumptions have to be made.

3.1 V-FPGA Architecture

Figure 1a shows the V-FPGA architecture and the arrangement into certain
types of tiles. In its simplest configuration, the V-FPGA consists of tiles of Con-

(a) Tile Distribution. (b) CLB Implementation.

Fig. 1: V-FPGA architecture details: a): Tile Distribution and top-level architec-
ture. b): CLB implementation and routing channels.

figurable Logic Blocks (CLBs), Programmable Switch Matrices (PSMs) and I/O
Blocks (IOBs), which are drawn as triangles on the peripheral area. A single tile
can contain all of these elements (type 5 and 7), all but the IOB (type 9, the
central tiles), PSM and IOB (type 2, 4, 6, 8), PSM and two IOBs (type 1), or
only the PSM (type 3). Because of their differences in orientation or structure
— and therefore layout —, individual tile types will have to be handled differ-
ently. Figure 1a also shows relevant delays for the final architecture: Apart from

Manual Placement Strategies of the V-FPGA 5

intra-block delays such as delays in the CLB, these consist of nets in the global
interconnect channels. Channel nets can be divided into multiple segments, if
they’re divided by connection boxes attached to IOB or CLB units (figure 1b).
Extraction of delays for VPR focuses on these atomic segments, but for assess-
ment of placement results in this publication, we will always consider complete
PSM-to-PSM and CLB-to-PSM paths.

3.2 Xilinx 7-series Architecture

In this work, we primarily target Xilinx 7 Series devices, although the methods
are generic and adapt to other host FPGA architectures. For manual placement,
the most important aspect of the host FPGA architecture is its uniformity:
Placing the V-FPGA in a uniform way is a simple task if the host FPGA is
uniform, but this is not the case for recent commercial FPGAs. As an example,
consider trying to place the V-FPGA across the whole area of a 7-series device:
Delays between two tiles on two sides of a hard IP column will be significantly
larger than delays between two tiles not separated by hard IP. Manual placement
strategies have to take this effect into account.

3.3 Metrics

To evaluate and assess the results, we first introduce comparison metrics. The
commonly used metrics — delays, uniformity and area — have a specific meaning
for V-FPGA targets and are crucial for V-FPGA applications.

Uniformity is a measurement of local delay variation across the V-FPGA struc-
ture. Placing every tile in the same way, the V-FPGA is a uniform structure,
which in theory could be placed uniformly on the host FPGA. In practice, not
all tiles have exactly the same internal structure and non-uniformity of the host
FPGA architecture will further degrade results. To address this, our definition
of uniformity divides the V-FPGA into NC sets, where each set represents one
column. We also group nets into classes, so that the same nets in different tiles
are in a class. Uniformity then targets rows within a set, but no uniformity
is guaranteed between these sets. This definition is formalized in the following
equations:

µc,n =
1

NR

NR∑
r=1

tc,r,n (1)

σ2
c,n =

1

NR

NR∑
r=1

(tc,r,n − µc,n)
2

(2)

σ =
1

NCNN

NC∑
c=1

NN∑
n=1

√
σ2
c,n (3)

6 . .

cv =
1

NCNN

NC∑
c=1

NN∑
n=1

√
σ2
c,n

µc,n
(4)

Equation (1) provides the arithmetic mean µc,n of the delays (t) of a net class
(n) in a column (c), calculated over the V-FPGA rows. σ2

c,n then calculates
the variance for a net class in a certain column over the rows. This is further
used in σ to calculate the arithmetic mean of the standard deviations of all net
classes in all columns. cv provides the arithmetic mean over the coefficient of
variation of all net classes in all columns. Whereas the standard deviation is an
absolute value and therefore depends on the mean of the delays, the coefficient
of variation provides a relative measurement. As the delays in the host FPGA
are largely discrete (e.g. fixed delays in LUTs), it is expected that relative delays
can not be reduced further at some point. Because of this, we use σ to guide the
design of our strategies and for evaluation of practically achievable uniformity.
cv is used to judge the quality of results for V-FPGA: As a smaller delay τ
allows to put more logic elements in a path at the same frequency for V-FPGA
applications, a constant standard deviation leads to reduced certainty of the
number of V-FPGA logic elements in the path. A constant relative value cv
signifies unchanged conditions for the V-FPGA application synthesis.

Delay in the V-FPGA is a measurement that determines the final achievable
application frequency. Equations to find the maximum delay among the building
blocks are given below:

τc,n = max
r∈{1..NR}

tc,r,n (5)

τ = max
c∈{1..NC}

max
n∈{1..NN}

τc,n (6)

τc,n selects the worst delay of a net class (n) in a column (c), calculated over the
V-FPGA rows. τ uses this to find the absolute maximum delay over all columns
and all net classes in the design, providing a single value for evaluation.

Area is measured in number of host FPGA CLBs used by the V-FPGA design.
Used CLBs in the design do not solely consist of the V-FPGA building blocks: It
also includes CLBs that are constrained to be explicitly not used in placement,
optimizing the placement regularity. For partition blocks, their size may need to
be slightly more than the minimum required area, as aiming for utilization ratio
of 100 % may cause routing to fail. 87 % utilization rate is the default target
chosen by Vivado and is our starting point for manual placement.

3.4 Methodology

Our overall approach to implement and evaluate the custom placement strategies
for the V-FPGA consists of three steps: At first, the V-FPGA code is synthesized

Manual Placement Strategies of the V-FPGA 7

in Xilinx Vivado. Secondly, we run custom Tool Command Language (TCL)
scripts on the synthesized design, adding various timing and location constraints.
The third step is needed to evaluate the results and consists of running a custom
TCL script to extract timing and area information.

Synthesis Synthesis largely follows the Vivado default strategy. To ensure
proper conditions for the TCL script, some settings are adjusted: The flat-
ten hierarchy option is changed from the default rebuilt to none. As V-FPGA de-
signs often provide customizable parameters [3], the default option rebuilt leads
to unpredictable signal names when these parameters change. Changing this
setting can also affect optimization across hierarchy levels. To limit the impact
of this, the implemented design was analyzed manually and some optimization
have been carried out manually in the VHDL source code.

Constraining the Design As Vivado analyzes every possible path in the de-
sign, it will also consider configurations of PSM multiplexers that can create
combinational loops. It is therefore not easily possible to constrain the timing
of the design by simple definition of the final clock period, as Vivado will break
the loops at arbitrary points. This generates long paths through different num-
bers of CLBs and PSMs, making it further impossible to constrain a path just
between two specific PSMs. To solve this problem, these paths are broken man-
ually. The individual atomic nets then have their delay constrained using the
set max delay timing exception, ensuring that the design still meets timing and
forcing the timing driving optimization to operate. These constraints will lead
to path segmentation, which in this case is the desired outcome. In addition, it
will add false path constraints on the original long paths automatically. Path
segmentation can affect logic placement and timing results, so special care needs
to be taken when examining the Vivado timing reports. In addition to path con-
straints, we define four clocks for our design: The primary clock as well as three
auxiliary clocks used for the configuration of PSM, IOB and CLB elements. The
frequency of configuration logic is less important than the application frequency,
so configuration clocks will target a lower frequency, avoiding over constraining
the design.

Extracting Metrics The Vivado timing report includes all details to judge how
far the design met the timing constraints and usually provides the authoritative
source in knowing the delay of all the nets. But in case of the V-FPGA, this
report can not be used to extract meaningful data: The combinational loops,
path delay constraints and path segmentation hide the important delays of the
atomic nets from the timing report. Even though the target value for these nets is
given using the path delay constraints, it is still useful to extract the real delays.
To remedy this, a TCL script was written to extract the delays manually, using
the get net delay command to get the delays of atomic nets. To get the delay of
a whole path consisting of more than one net, a recursive search for nets is done
and parts are summed up until the destination of the path is reached.

8 . .

4 Logic Placement Strategies

In the following, we discuss the three manual placement strategies in detail. We
primarily use the uniformity metric to guide development of the strategies, then
assess critical path delay and area in the evaluation.

4.1 Basic P-Block Strategy

In the basic P-Block strategy, we contain each tile in a single Partition Block
(P-Block): We create a block with suitable size, then use the add cells to pblock
TCL command to add all cells of a tile to the block. Before a block can be
created, the size of the block must be determined. We therefore investigate two
options to derive the block size: The first option is to use a size with same width
and height for all tiles, resulting in quadratic tiles. The largest tile dimensions
are then taken as the unified size for the P-Blocks of all tiles. Alternatively,
the size can be chosen according to the required area in each tile. This requires
additional rules for tile sizes, to keep the rectangular layout of V-FPGA and
avoid irregular layout results. Therefore, the horizontal size for all tiles in the
same column and the vertical size for all tiles in the same row have to be identical,
leading to rectangular tiles. Figure 2a demonstrates the second option, showing
the generated floorplan for a small 3x3 V-FPGA.

(a) Simple Floorplan. (b) Split Target Area.

Fig. 2: Floorplanning and P-Blocks: a): Floorplan for 3x3 V-FPGA using indi-
vidually calculated sizes for each tile. To keep the layout regular, widths and
heights of tiles are adjusted accordingly. b): P-Block floor plan demonstrating a
larger V-FPGA design. The start point location was forced, so the target area
must be split into three smaller areas because of intersecting hard blocks.

Before the V-FPGA can be placed, a suitable host FPGA location and area
has to be determined. This step has to consider non-uniformity of the host
FPGA: For example, Virtex 7 devices have a rectangular structure with larger

Manual Placement Strategies of the V-FPGA 9

gaps (more than 2 columns) and smaller gaps (2 columns) between CLBs. This
is caused by I/O banks, clocking and other support logic. In addition, Digital
Signal Processor (DSP) and Block RAM (BRAM) blocks are distributed over the
chip between CLB columns. In order to reduce net length between placed logic
blocks, the largest location with no gaps will be selected. This is supposed to
improve net delays and support the rectangular layout of the V-FPGA. Finding
the location and area consists of the following steps:

1. Estimate the overall area needed for the design using total CLB count.
2. Create a 2D array which represents available and used CLBs. Then search

for the largest possible target area, only considering areas without blockages
larger than an accepted gap. A reasonable value for Virtex 7 is two, allowing
DSP and BRAM gaps but avoiding larger ones.

3. Calculate tile dimensions, fitting all tiles in square form in the target area.
4. If the previous step fails, set the dimension ratio of all tiles relative to the

vertical and horizontal dimensions of the selected target area.
5. If the largest contiguous target area is not large enough to fit the complete

design (step three and four failed), the steps are reevaluated. In this reeval-
uation, multiple disconnected areas are allowed, yielding split target areas
as shown in figure 2b.

6. Find the vertical and horizontal dimensions of all tiles according to their
resource usage.

7. Normalize the dimensions of all tiles in the same column or row.

After the tile sizes, host FPGA location and target area have been determined,
the following step completes the basic P-Block placement:

8. Map all V-FPGA cells to the P-Blocks belonging to their tile.

4.2 Nested P-Block Strategy

In addition to the P-Blocks used in the first strategy, this strategy introduces
up to two additional P-Blocks within each tile. Logic belonging to the V-FPGA
CLBs and IOBs is mapped to these nested P-Blocks accordingly: When defining
the P-Blocks, all assigned logic cells are forced into the blocks, but this does not
prevent placing any additional unassigned cells into them. Based on this idea, we
introduce two more variants in addition to the rectangular vs. quadratic layout
distinction: In the partially nested strategy, we use the outer P-Block for the tile
and nested blocks for IOB and CLB, but the PSM is only constrained by the
outer P-Block. This gives Vivado the freedom to place the PSM in the remaining
outer P-Block area, or place part of it inside the nested P-Blocks. In the fully
nested strategy, we force Vivado to not place any PSM logic in the nested P-
Blocks, prohibiting usage of remaining logic cells in them. Figure 3 demonstrates
the concept for a 5x5 CLB V-FPGA.
The placement script is extended with the following steps to create the nested
P-Blocks:

10 . .

Fig. 3: V-FPGA floorplan with nested P-Blocks. The nested CLB P-Block is
divided into two pieces to ensure the minimum possible area is used. The top
right corner tile has an extra nested P-Block for its second IOB unit. No internal
P-Block was used at all in the bottom left corner tile, as it only contains a PSM.

1. The internal P-Blocks can consist of multiple rectangles. The CLB P-Block
is placed at the bottom left corner with height at most equal to the height
of the tile minus one. This guarantees some freedom to IOB P-Block and to
ensures distribution of the PSM unit over the tile P-Block.

2. The IOB P-Block is placed within the tile P-Block. The side is determined
according to the tile type.

4.3 Fine-Grain Manual Placement Strategy

This strategy further constrains logic, directly mapping the relevant LUTs and
flipflops to specific LUTs or flipflops in the 7 series host CLB. As there are
numerous ways to place the logic within a tile, a manually derived layout is
chosen instead of trying to find a fully automated one. The strategy is then made
generic to support different V-FPGA parameters, but the layout is fixed to the
V-FPGA and therefore cannot be reused for completely different applications.
Evaluation of different manual layouts led to a placement as was presented in
figure 1a: The PSM is located in the upper right corner and the CLB is placed
in the lower part of the tile. Figure 4 shows the device view in Vivado after the
manual placement strategy has been applied.
The implementation of this strategy operates on two lists for each tile P-Block,
an instruction list and a list of the free host FPGA LUTs. The instruction list
contains simple V-FPGA logic element place instructions, interleaved with sort-
ing instructions. It is processed element by element, either placing logic elements
or resorting the list of free resources. When an element placement instruction
is processed, the logic elements are mapped sequentially to the elements in the
sorted list of free resources, starting at a specified offset. When a resorting in-
struction is found, the resorting algorithm sorts the list of remaining available
host LUTs. It sorts horizontally or vertically and uses ascending or descending
sorting order, depending on the instruction. As an example, the sort xy dd in-
struction sorts first based on the x location, and if the x value is the same for

Manual Placement Strategies of the V-FPGA 11

Fig. 4: V-FPGA tile (type 9) placed using the manual placement strategy. Multi-
plexers of the PSM’s top, right, bottom and left side are marked sky blue, green,
dark blue and yellow. The CLB is located at the bottom with the LUT, two
internal multiplexers and D-flipflop colored in white. Red color represents the
configuration units of the tile. Blue blocks at the bottom depict write connection
boxes, whereas read connection boxes make up remaining logic around the LUT.

some CLBs, it uses y as secondary criteria. Descending sorting is applied in both
cases. This specific instruction is used to sort the list of available logic elements
before placing the right and left multiplexers of the PSM, as they need to be
placed vertically from the top right corner. Sorting is always done on the list
of free resources, so the length of this list decreases as the placement process
proceeds. This makes it possible to reach every single CLB in the P-Block, not
just the ones at the borders.

5 Evaluation of the Placement Strategies

To evaluate the different strategies with different V-FPGA parameters, three
V-FPGA designs of increasing size have been implemented: A small 2x2 design
with 4 CLB tiles total (track width 2), a 5x5 design with 25 CLB tiles (track
width 10) and a 8x8 design with 64 CLB tiles (track width 9). The larger track
width for the second design has been used to evaluate influence of increasing
routing congestion, compared to the influence of the design size. All designs have
been evaluated both with fine grain timing constraints and without fine grain
timing constraints. We compare the three strategies presented previously, with
both quadratic and rectangular tiles for the P-Block strategies. For the manual
placement strategy, we use only rectangular blocks, but compare two different
placement script variations. In the nested P-Block strategy, we consider both
the partially and fully nested variants. Comparisons between the three proposed
strategies are held in the previously described metrics of uniformity, worst delay

12 . .

and area. All results are normalized to the Vivado 2019.1 default synthesis results
as a baseline.

Uniformity We assess uniformity as defined in the metrics chapter. Table 1
shows standard deviation σ for the different designs. In all strategies, for smaller
designs, better uniformity is achieved than for larger designs. Also in all strate-
gies, the 5x5 design has worst uniformity when timing constraints are applied.
This can be explained by two observations: The 5x5 design uses wide track
widths, which increases routing congestion in timing constrained designs and
makes it more difficult to reach uniform values. Additionally, in larger designs,
non-uniformity of the host FPGA is more prevalent, as the design spans a larger
host FPGA area. There is no large difference between uniformity in quadratic
or rectangular tile layout, but the rectangular layout performs better or equal
to the quadratic layout for all strategies. When comparing the strategies, fully
manual placement yields the best uniformity in timing constrained cases and is
within 2 % of the best results in the other cases. Both variants are similar, but
variant 1 provides slightly better uniformity.

Table 1: Standard deviation σ relative to Vivado standard synthesis results,
comparing uniformity. “R” denotes rectangle based strategies.

Timing
Con-

straints

Design Basic Basic R Partially
Nested

Partially
Nested

R

Fully
Nested

Fully
Nested

R

Manual
Variant

1

Manual
Variant

2

No
2x2 0.90 0.95 1.01 0.84 0.89 0.67 0.69 0.83
5x5 0.82 0.79 0.80 0.80 0.80 0.81 0.81 0.81
8x8 0.89 0.81 0.93 0.82 0.88 0.82 0.79 0.79

Yes
2x2 0.72 0.71 0.65 0.72 0.65 0.64 0.61 0.75
5x5 1.04 0.98 1.02 1.02 1.00 1.00 0.90 0.90
8x8 0.79 0.83 0.82 0.82 0.85 0.82 0.76 0.80

Table 2: Coefficient of variation cv relative to Vivado standard synthesis results,
comparing uniformity. “R” denotes rectangle based strategies.

Timing
Con-

straints

Design Basic Basic R Partially
Nested

Partially
Nested

R

Fully
Nested

Fully
Nested

R

Manual
Variant

1

Manual
Variant

2

No
2x2 0.97 1.01 1.03 0.85 0.92 0.71 0.74 0.92
5x5 0.86 0.83 0.81 0.81 0.81 0.81 0.85 0.83
8x8 0.93 0.85 0.93 0.82 0.90 0.81 0.83 0.82

Yes
2x2 0.81 0.79 0.72 0.78 0.72 0.68 0.70 0.77
5x5 0.99 0.97 0.97 0.95 0.96 0.96 0.86 0.87
8x8 0.88 0.89 0.88 0.87 0.90 0.88 0.78 0.83

Manual Placement Strategies of the V-FPGA 13

Table 2 shows the coefficient of variation cv for the different designs. Overall
trends are similar to σ, and for constrained designs, the manual placement vari-
ants again yield best results. The reduced standard deviation in delays therefore
translates to relative improvements, which can be taken advantage of when syn-
thesizing applications for the V-FPGA.

Delay Figure 5 shows how these improvements in uniformity translate to im-
provements in worst-delay τ for the different strategies. Figure 5a demonstrates
that results without fine grain timing constraints need to be viewed with some
scrutiny: Further analysis showed that without these constraints, Vivado puts
little effort into routing optimization. This leads to worse results for most of the
strategies, where the fully manual strategies are a notable exception and also
yield consistent improvements in the unconstrained case. Interestingly, without
these constraints, results of manual strategies get worse for larger designs. As
the design is regular, we expected similar or better results for larger designs:
The manual placement should be regular, whereas the baseline Vivado synthesis
strategy may have to deal with congestion and increasing effort for large designs.
Investigating this, we tightly constrained the nets in the design and reevaluated

2x2 5x5 8x8

0.6

0.8

1

1.2

R
el
at
iv
e
D
el
ay

Basic Basic Rectangle Partially Nested Partially Nested Rectangle

Fully Nested Fully Nested Rectangle Manual Variant 1 Manual Variant 2

(a) Without fine grain timing constraints.

2x2 5x5 8x8

0.6

0.8

1

1.2

R
el
at
iv
e
D
el
ay

Basic Basic Rectangle Partially Nested Partially Nested Rectangle

Fully Nested Fully Nested Rectangle Manual Variant 1 Manual Variant 2

(b) With fine grain timing constraints.

Fig. 5: Delays τ relative to Vivado standard synthesis results. Of all analyzed
atomic needs, the largest increase or the smallest decrease, i.e. the worst case,
is shown.

14 . .

the results, shown in figure 5b. In this case, we can see significant improvements
for all strategies over the baseline. Furthermore, the advantage of the strategies
now increases for larger designs, which we attribute to routing and congestion
issues in the Vivado default strategy for larger designs. It can also be seen that
in most cases, using a rectangular floorplan leads to less delay than using the
simpler square based floorplan. The two variants for manual placement produce
the best and similar results, but depending on the size of the design, one may
be slightly advantageous. For the largest design, we see an improvement of 37 %
in the achieved delay.

Area Table 3 shows how the strategies affect the required host FPGA area. In
the case without timing constraints, there is no consistent pattern. This is ex-
plained by the fact that the baseline is not timing optimized. For the constrained
designs and small designs, most strategies even achieve reduced area usage. As
designs get larger, the baseline logic is more localized and the relative overhead
of the manual placement strategies increases. Here, worst case overheads of the
fully manual strategies are 13 % and 16 %. We consider this as an acceptable
tradeoff, as these strategies also achieve best results in delay reduction for large
designs. Rectangular blocks most of the time lead to less used area, which is
expected as they can fit the really required tile sizes more closely.

Table 3: Area of used or blocked CLBs relative to Vivado standard synthesis
results. “R” denotes rectangle based strategies.

Timing
Con-

straints

Design Basic Basic R Partially
Nested

Partially
Nested

R

Fully
Nested

Fully
Nested

R

Manual
Variant

1

Manual
Variant

2

No
2x2 0.89 0.87 0.93 0.85 0.89 0.89 1.07 0.72
5x5 0.99 0.99 1.04 1.00 1.03 1.03 0.99 0.91
8x8 1.01 1.06 1.14 1.06 1.04 1.07 0.99 0.99

Yes
2x2 1.05 0.94 1.05 0.95 0.99 0.89 0.86 0.67
5x5 0.93 0.95 0.98 0.92 0.98 0.99 1.04 0.98
8x8 1.03 1.12 1.23 1.13 1.12 1.13 1.16 1.13

6 Conclusion

In this publication, we investigated varying degrees of customization in the Vi-
vado FPGA logic placement process, aiming to reduce the delays in our V-FPGA
implementation. We have shown that utilizing knowledge about the regularity
of the design in logic placement can lead to significant improvements in net de-
lay of the V-FPGA. Regressions in the delays were only found when the design

Manual Placement Strategies of the V-FPGA 15

was not constrained with fine grain timing constraints: Here, due to combina-
tional loops in the V-FPGA, basic timing constraints do not constrain the design
fully, preventing certain optimizations and leading to varying results. When con-
straining each atomic net in the V-FPGA, these regressions will not occur. We
further showed that uniformity in the V-FPGA net timing can be used as an
indicator to guide the design of the placement strategies: Increasing uniformity
by up to 39 % in the timing results also lead to reduced maximum delay. Out of
the strategies investigated, the most advanced strategy lead to best results. In
this strategy, the location of individual CLBs was assigned completely manually
using a TCL script and only routing was left to Vivado’s automated algorithms.
This approach lead to improvements in maximum delay of up to 37 % for the
largest designs, at increased area costs of up to 16 %. Larger designs generally
benefit more from the manual placement strategy.

To conclude, these results will allow for higher clock rates in user applications
on V-FPGA, lowering the entry barrier for using it in more cases. In addition, the
increased uniformity can be used to enable new concepts, such as overclocking
of user applications or moving parts of the application dynamically on the V-
FPGA. In general, more uniform V-FPGAs also provide more realistic insights
for physical FPGA development, as they resemble their uniformity more closely.

References

1. Borriello, G., Ebeling, C., Hauck, S.A., Burns, S.: The triptych fpga architecture.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 3(4), 491–501
(1995)

2. Figuli, P., Hübner, M., Girardey, R., Bapp, F., Bruckschlögl, T., Thoma, F., Henkel,
J., Becker, J.: A heterogeneous soc architecture with embedded virtual fpga cores
and runtime core fusion. In: 2011 NASA/ESA Conference on Adaptive Hardware
and Systems (AHS). pp. 96–103 (2011)

3. Figuli, P., Ding, W., Figuli, S., Siozios, K., Soudris, D., Becker, J.: Parameter sen-
sitivity in virtual fpga architectures. In: Wong, S., Beck, A.C., Bertels, K., Carro,
L. (eds.) Applied Reconfigurable Computing. pp. 141–153. Springer International
Publishing, Cham (2017)

4. Harbaum, T., Schade, C., Damschen, M., Tradowsky, C., Bauer, L., Henkel, J.,
Becker, J.: Auto-si: An adaptive reconfigurable processor with run-time loop detec-
tion and acceleration. In: 2017 30th IEEE International System-on-Chip Conference
(SOCC). pp. 153–158 (2017)

5. Shi, M., Bermak, A., Chandrasekaran, S., Amira, A.: An efficient fpga implemen-
tation of gaussian mixture models-based classifier using distributed arithmetic. In:
2006 13th IEEE International Conference on Electronics, Circuits and Systems. pp.
1276–1279 (2006)

6. Sidiropoulos, H., Figuli, P., Siozios, K., Soudris, D., Becker, J.: A platform-
independent runtime methodology for mapping multiple applications onto fpgas
through resource virtualization. In: 2013 23rd International Conference on Field
programmable Logic and Applications. pp. 1–4 (2013)

7. Yuan, J., Chen, J., Wang, L., Zhou, X., Xia, Y., Hu, J.: Arbsa: Adaptive range-based
simulated annealing for fpga placement. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 38(12), 2330–2342 (2019)

	Evaluation of Different Manual Placement Strategies to Ensure Uniformity of the V-FPGA

