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Abstract

For an improvement of separation processes regarding efficiency and selectivity,

extending the knowledge of particle dynamics is crucial. This especially concerns

the challenging case of particle sizes in the range around 1 µm, as neither diffu-

sion nor inertial effects are dominant. While the particle flow has to be depicted

on the scale of the process machine, effects on a scale several orders of magni-

tude smaller, e.g., related to the particle shape, can affect the overall separation

results. In this thesis the influence of the particle’s shape on its flow behaviour,

more specifically the experienced drag, is studied via simulations. Presented is

a correlation regarding the drag coefficient and terminal settling velocity, based

on various particle shape parameters, for a confined range of Reynolds numbers

and shape parameters. Furthermore, a general procedure is proposed to obtain

such correlations from given data, along with simulation schemes to obtain the

latter.

The simulations are performed using the homogenized lattice Boltzmann method,

which is extended to depict arbitrary particle shapes in this thesis. It is also im-

proved firstly regarding accuracy by updating the schemes for the calculation of

exchanged momentum and application of forces and secondly regarding com-

putational performance. Furthermore, all implementations and simulations are

embedded in the C++ package OpenLB. As it is open-source published, the im-

plementation of the finally applied simulation method is freely available.
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As a first step, the homogenized lattice Boltzmann method, which could previ-

ously only be used for the simulation of objects with available analytical descrip-

tions of the surface, volume and moment of inertia, is extended for arbitrary

shapes. Applying the automated creation of a voxel representation of the par-

ticle, these values can be calculated for any shape, e.g., utilizing the parallel axis

theorem. The new capability is then demonstrated simulating the settling of 16

limestone particles with geometries obtained from computer tomography scans.

Comparing to the same simulation conducted with spheres of equal volume, the

former are found to settle 28.75% slower.

The computational performance of the method is further improved by paralleliz-

ing the calculation of exchanged momentum and reducing the required memory.

This leads to a code which is 99.5% parallelizable according to performance stud-

ies. Considering experimental data of a settling sphere for Reynolds numbers

Re = 1.5,4.1, 11.6 and 32.2, obtained with particle imaging velocimetry, a com-

parative study is performed. Various combinations of schemes applying the force

to the fluid flow and calculating the momentum are investigated, also introducing

a new scheme, denoted as momentum loss algorithm, for the latter. According to

this study, the new approach is to favor for small Re and comparably low reso-

lutions. Performing a convergence study as well, the overall best combination of

methods is selected, yielding an average error of about 5.5% across the tested Re

and grid resolutions. For additional validation, the settling of a single sphere is

further investigated and compared to correlations from literature. The best accor-

dance is found with the correlation by Schiller and Naumann yielding an average

deviation of 7.78% across the range from Re= 0.24 up to Re= 948.67. The error

is quantified regarding the maximum occurring lattice velocity, which serves as a

guideline for parameter selection, also in future studies. Besides, the capability

of the method to depict the tubular pinch effect is also demonstrated. Finally, the

method is validated for the case of hindered settling, considering solid volume

fractions between 5% and 25%. Conducting simulations for Re = 0.53,5.29 and

49.46, the average deviation to results in literature is found to be only 8.07%,

with the largest deviation obtained for the highest Reynolds number.
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The link between particle shape and settling behaviour is studied via simulations

of superellipsoids. To quantify the shape, a large set of shape descriptors like the

sphericity, roundness, convexity, the Corey shape factor and the Hofmann shape

entropy is used. Identifying the most relevant parameters with statistical meth-

ods, correlations regarding the drag coefficient and terminal settling velocity are

constructed. The approach is based on a multiple linear regression for a polyno-

mial constructed from the identified parameters also containing interaction terms.

The multicolinearity is monitored by assessing the variance inflation factor and

additional measures to control it by dropping the respective terms in the polyno-

mial. The average error of the found drag correlation is less than a sixth of the

one obtained applying correlations available in literature to the current data set.

Similarly, the average error regarding the terminal settling velocity is found to

be less than a fifth compared to available correlations. To prevent overfitting, the

data are split in a training and a test set. The presented procedure to construct the

polynomial and obtain the correlation is generally applicable to other data sets

and can therefore be used to derive further correlations which might be specific

to a desired set of particles.

Thereby the studies presented in this thesis aid in the design of process machines,

as the newly found correlations can be used in simulations on the process scale.

The tools for such simulations applying an Euler–Euler approach for the particles

and the volume-averaged Navier–Stokes equations are given in publications, con-

comitant to this thesis. The simulation methods presented in this work, together

with the described procedure to obtain new correlations, additionally allow to

further automate the whole process. This may lead to a process which automat-

ically creates predictions regarding the separation efficiency, specifically tailored

for a desired particle collective and process setup.





Zusammenfassung

Zur Verbesserung von Trennprozessen bezüglich der Effizienz und Selektivität ist

es notwendig, das Wissen über das Verhalten von Partikeln in Strömungen zu er-

weitern. Dies ist insbesondere der Fall für Partikel im Größenbereich um 1 µm,

da hier weder die Diffusion, noch Trägheitseffekte die Dynamik dominant be-

stimmen. Weiterhin sind Abläufe in der Größenordnung eines industrierelevanten

Prozesses abzubilden, während Effekte, welche sich auf der um mehrere Größen-

ordnungen kleinere Skala eines Partikeldurchmessers abspielen, die Effizienz des

gesamten Verfahrens beeinflussen können. In dieser Arbeit wird die Abhängigkeit

des Strömungsverhaltens der Partikel von der Form untersucht, wozu die wirken-

de Strömungswiderstandskraft simulativ betrachtet wird. Es werden Korrelatio-

nen bezüglich des Widerstandkoeffizienten und der terminalen Sinkgeschwindig-

keit vorgestellt. Diese beschreiben die Abhängigkeit von mehreren Formparame-

tern und der Reynoldszahl, jeweils für einen eingeschränkten Bereich. Darüber

hinaus wird ein allgemeines Vorgehen zur Erstellung solcher Korrelationen basie-

rend auf gegebenen Daten vorgestellt.

Für die Simulationen wird die homogenized lattice Boltzmann Methode verwen-

det, welche im Rahmen dieser Arbeit erweitert wird, um beliebig geformte Partikel

abbilden zu können. Die Methode wird weiterhin hinsichtlich der benötigten Re-

chenleistung und Genauigkeit optimiert, wobei für letztere der Einfluss verschie-

dener Ansätze für die Anwendung der Kräfte und den Impulsaustausch untersucht
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wird. Der erstellte Code ist in das C++-Paket OpenLB integriert, womit alle hier

präsentierten Simulationen durchgeführt werden. Da es als Open-Source-Paket

veröffentlicht wird, ist die Implementierung der angewandten Simulationsmetho-

de damit frei verfügbar.

Zunächst wird die homogenized lattice Boltzman Methode, mit der bisher nur

Objekte simuliert werden konnten, für die analytische Beschreibungen der Ober-

fläche, des Volumens und des Trägheitsmoments verfügbar sind, für beliebige For-

men erweitert. Durch die automatisierte Erstellung einer Voxel-Darstellung der

Partikel können diese Werte für jede beliebige Form berechnet werden, z. B. unter

Verwendung des Satzes von Steiner. Die Funktionalität dieser Erweiterung wird

dann anhand der Simulation der Sedimentation von 16 Kalksteinpartikeln mit

Geometrien, welche aus Computertomographie-Scans erhalten wurden, demons-

triert. Führt man dieselbe Simulation mit volumenäquivalenten Kugeln durch,

zeigt sich, dass die Kalksteinpartikel um 28,75% langsamer absinken.

Die Rechenleistung der Methode wird weiter verbessert, indem die Berechnung

des ausgetauschten Impulses parallelisiert und der benötigte Speicher reduziert

wird. Dies führt zu einem Code, der laut Performancestudie zu 99,5% paralleli-

sierbar ist. Unter Berücksichtigung von experimentellen Daten sedimentierender

Kugeln für Reynoldszahlen Re = 1,5;4,1; 11,6 und 32,2, welche mittels Partic-

le Image Velocimetry erhalten wurden, wird eine Vergleichsstudie durchgeführt.

Dabei werden verschiedene Kombinationen von Ansätzen zur Anwendung der

Kraft auf die Fluidströmung und zur Berechnung des ausgetauschten Impulses

untersucht, wobei auch ein neuer Ansatz, der momentum loss Algorithmus, vorge-

stellt wird. Dieser ist der Studie zufolge für kleine Re und vergleichsweise geringe

Auflösungen zu bevorzugen. Anhand einer Konvergenzstudie wird die insgesamt

beste Methodenkombination ausgewählt, welche über alle getesteten Re und Git-

terauflösungen hinweg einen durchschnittlichen Fehler von etwa 5,5% aufweist.

Zur weiteren Validierung wird das Sedimentieren einer einzelnen Kugel genauer

untersucht und mit Korrelationen aus der Literatur verglichen. Die beste Über-

einstimmung wird mit der Formel von Schiller und Naumann erzielt, die mittlere
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Abweichung für Reynoldszahlen zwischen Re= 0,24 und Re= 948,67 beträgt da-

bei 7,78%. Der Fehler wird hinsichtlich der maximal auftretenden lattice velocity

quantifiziert, was Richtwerte für die Parameterwahl, auch für zukünftigen Studi-

en, liefert. Weiterhin wird die Eignung der Methode zur Untersuchung des Segré–

Silberberg Effekts demonstriert. Schließlich wird die Methode für Schwarmse-

dimentation unter Berücksichtigung von Feststoffvolumenanteilen zwischen 5%

und 25% validiert. Bei der Durchführung von Simulationen für Re = 0,53;5,29

und 49,46 beträgt die durchschnittliche Abweichung zu Ergebnissen in der Lite-

ratur 8,07%, wobei die größte Abweichung für die höchste Reynoldszahl erhalten

wird.

Der Zusammenhang zwischen Partikelform und Sinkverhalten wird anhand der

Simulation von Super-Ellipsoiden untersucht. Um die Form zu quantifizieren, wer-

den diverse Formparameter wie die Sphärizität, Rundheit, Konvexität, der Corey-

Formfaktor und die Hofmann-Formentropie eingesetzt. Nach der Identifizierung

der relevantesten Parameter mit statistischen Methoden werden Korrelationen

bezüglich des Widerstandskoeffizienten und der terminalen Sinkgeschwindigkeit

berechnet. Der Ansatz basiert auf einer multiplen linearen Regression für ein aus

den ausgewählten Parametern konstruiertes Polynom, das auch Interaktionsterme

enthält. Die Multikolinearität wird dabei unter Anderem über den Varianzinflati-

onsfaktor betrachtet, um sie durch Eliminieren einzelner Terme des Polynoms zu

reduzieren. Verglichen mit gängigen Modellen aus der Literatur sinkt der durch-

schnittliche Fehler der neuen Korrelation bezüglich des Widerstandskoeffizienten

auf ein Sechstel, bei Anwendung auf den in dieser Studie verwendeten Datensatz.

Bezüglich der terminalen Sinkgeschwindigkeit ist der Fehler um den Faktor Fünf

kleiner im Vergleich zu bisher verfügbaren Modellen. Um overfitting zu vermei-

den, werden die Daten in Trainings- und Testdaten aufgeteilt. Das vorgestellte

Verfahren zur Konstruktion des Polynoms und zum Erhalt der Korrelation ist all-

gemein auf andere Datensätze anwendbar und kann daher verwendet werden,

um weitere Korrelationen, spezifisch für ein gewünschtes Partikelkollektiv, zu er-

stellen.
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Somit sind die in dieser Arbeit vorgestellten Untersuchungen wertvoll für die Aus-

legung von Prozessmaschinen, da die neu gefundenen Korrelationen in Simula-

tionen auf der Prozessskala verwendet werden können. Die Methoden für solche

Simulationen, unter Verwendung eines Euler–Euler-Ansatzes für die Partikel und

der volumengemittelten Navier–Stokes-Gleichungen, werden in begleitenden Pu-

blikationen zu dieser Arbeit vorgestellt. Zusätzlich erlauben die hier vorgestell-

ten Simulationsmethoden, zusammen mit dem beschriebenen Verfahren zur Ge-

winnung neuer Korrelationen, den gesamten Prozess weiter zu automatisieren.

Daraus ist ein Verfahren ableitbar, welches automatisiert Vorhersagen über die

Abscheideleistung erstellt, die speziell auf ein gewünschtes Partikelkollektiv und

einen Prozessaufbau zugeschnitten sind.
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1| Introduction

Particle systems and flows of coupled particle-fluid systems are ubiquitous and

gaining insights about their characteristics and dynamics is relevant for a broad

range of industrial applications. Despite decades of research and advances, in-

creasing the separation efficiency [46], selectivity [89], and throughput [105],
remains a topic of current research in particle separation. Besides process engi-

neering, advances in this field are also relevant for medical applications [19, 143],
for advances in anaerobic digestion of by-products of wastewater treatment [26,

27] or to fight environmental pollution [146], among others. One challenge in

particle separation is the minimization of the separation gap, which describes a

minimum in separation efficiency in a size range where effects of diffusion and

inertial forces are both present, but neither of them dominant [80]. Simple mod-

els solely based on particle size and density are insufficient and multidimensional

approaches considering more particle and process properties are required [83,

110]. For the investigation of this complex dependencies machine learning is

also applied [149]. One approach to improve current models and processes is not

to simplify particles as spheres of equal volume or surface, but to take the actual

particle’s shape into account. Studies found a dependency, e.g., of the mechanical
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properties of silica–rubber composites [118], the efficiency of drug carriers [19]
or the classification in a hydrocyclone, on the particle shape.

Numerical simulations are one important tool to gain new insights on particle

behaviour, as they allow to examine a setup which might not be experimentally

accessible like the aorta [55], the human nasal cavity [56] or the lungs [143]. Fur-

thermore, simulations allow a more detailed inspection of data at all time during

the process and can thereby be a less cost intensive alternative, e.g., to study the

breakage of aggregates [6]. Therefore models for the simulation of discrete parti-

cles have been developed and applied for the investigation of fluidized beds [28]
or pneumatic conveying [157]. Models taking the influence of the particle pres-

ence on the fluid flow into account have also been proposed and applied to the

two latter processes as well as to hydrocyclones [156]. Furthermore, numerical

simulations can be used for geometry identification and optimisation [66, 67].
Studies investigated, e.g., the influence of the geometry of a centrifugal air clas-

sifier on the resulting particle size distribution [64] or optimised the separation

efficiency of a cyclone via computational fluid dynamics (CFD) [90]. Models de-

veloped on the basis of simulations can predict the performance of processes and

thereby aid in the design of machines [37].

One challenge in the simulation of particle flows in engineering applications is

the difference in scales. On one hand taking effects into account which appear

on a microscopic scale like the influence of the shape on the dynamics is desir-

able. On the other hand the impact of this effects, e.g., in a centrifuge, is to be

studied on a macroscopic scale. Thereby a very detailed depiction of the particles

is required while also considering a large amount of objects in a large domain.

This leads to a high computational demand. To face this issue efficient simulation

algorithms have been developed [40, 98], which are capable of utilizing large

CPU computing clusters [43] or are taking advantage of recent advances in GPU

computing [54]. Another way to mitigate the computational load is to choose

appropriate simulation approaches to depict effects on different scales and cou-

ple them in a multi-scale simulation framework [23]. For highly detailed particle
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simulations usually a Lagrangian representation is chosen, applying the discrete

element method (DEM) [158]. This allows to assign different properties to each

of the particles and track their behaviour. For simulations of a huge amount of

particles or if the size of the computational domain exceeds the characteristic

particle size by several orders of magnitude, it is common to switch to a contin-

uous approach by choosing an Eulerian representation. In this case, the particles

are modeled by an advection–diffusion equation [59, 138]. One advantage of

this approach is that the computational demand does not scale with the number

of particles, outperforming Lagrangian approaches, e.g, in cases resulting in a

steady state [155]. However, information on the micro scale is lost, as it is not

possible to track individual particles or assign different properties. An overview

of Eulerian and Lagrangian approaches for particle simulation is given in [85].

On the microscopic scale the simplest approach is to utilize the DEM and con-

sider the particles as a point masses with dynamics determined by the drag force,

applying Newton’s second law of motion. However, this model can be extended

by consideration of additional forces like gravitation, buoyancy, Basset history

force [135] or the added mass effect [84]. It is also possible to consider basic

information regarding the shape in this framework. Drag models exist for simple

geometries like cylinders [82]. Furthermore, it is possible to approximate shapes

by multiple spheres [39, 73]. However, this compound approach requires a high

number of spheres for a proper approximation of complex shapes, while the com-

putational effort scales with the number of spheres describing a particle. There-

fore more sophisticated methods are required. Probably the most popular one is

the immersed boundary method (IBM), which represents particles by Lagrangian

points describing the object’s surface on an Eulerian background grid handling

the fluid flow [106, 141]. These two systems are coupled by interpolation be-

tween Lagrangian and Eulerian points, which is required in every time step. In

the simulation the particle domain is still filled with fluid and a no-slip condition

is enforced at the object’s boundary. This approach is capable of depicting any

particle shape, given a sensible distribution of points on its surface is found, if the

fluid grid has a sufficient resolution to properly depict interactions with the par-
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ticle. Together with the interpolations, this approach might be computationally

expensive. Another approach is the partially saturated cells method (PSM) [72,

109], which is built upon the lattice Boltzmann method (LBM). It considers the

interior of the particle as solid and was already in many studies, e.g., on vortex-

induced vibrations [50] . Since it depicts the object directly on the fluid grid, no

interpolations are required. To describe the shape more accurately, cells that are

only partially covered by the particle are represented by a convex combination

of fluid bulk flow and no-slip condition. However, new challenges arise for this

approach, e.g., since cells which change from solid to fluid during the particle

motion need to be initialized [104]. Finally the homogenized lattice Boltzmann

method (HLBM) [71, 137, 139] also depicts the particle on the background grid,

similar to the PSM, but does not consider the interior as solid, which is a similar-

ity to the IBM. Instead it relaxes the fluid velocity towards the particle’s velocity

across a small transition zone. Thereby, e.g., the problem of cell initialization is

circumvented and still no interpolations are required. Since this is a semi-local

algorithm, only relying on the information of neighbouring cells, it is well suited

for implementation for massive parallel computing clusters.

A simulation method capable of depicting arbitrary particle shapes and correctly

capturing the dynamics is only one step on the path to improve processes by in-

corporating geometry characteristics in current prediction models. Since shape

itself can not be quantified, relevant aspects and parameters need to be identi-

fied. While in literature many classification systems are described, which often

suggest several classes based on the aspect ratio [124, 159], also new parameters

like the Corey shape factor are constructed [94]. Further investigations aimed

at finding a minimal set of parameters describing the particle behaviour [57] or

identified the ones most relevant for a desired model [7].

The particle behaviour is often described by a model for the drag force an object

experiences. The simplest shape is that of a sphere, as it is independent of orien-

tation. For low Reynolds numbers the Stokes approximation can be used [128],
beyond that, especially for the intermediate regime of Reynolds numbers between
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1 and 1000, many approximations have been been proposed in literature [32].
The quantity of studies on this topic, even if restricted to spheres exposes the com-

plexity of the topic. While all of these correlations only consider single particles in

an infinitely expanded medium, correlations describing the settling of collectives

of spheres do also exist [8, 111, 112]. Obtaining models for shapes different from

spheres is a topic of current research, with many correlations being proposed [7,

16, 41, 61, 136]. While the elongation and flatness of an object are among the

most influential parameters, they are not sufficient to describe all effects, as also

the density difference between particle and fluid [7] or the orientation [125] are,

among other characteristics, relevant parameters for a model aiming to correctly

predict the dynamics of particles in a flow. Due to the high number of complex

dependencies, correlations specific to a certain type of particles [30, 34] might

be superior in prediction quality than one general one, as they are better suited

for the respective characteristics. To be viable, this approach requires an abun-

dant availability of data regarding various particles’ shapes and parameters, e.g.,

obtained from tomographic scans [35]. This is achieved via the creation of open

databases [36].

Eulerian simulation approaches depict less physical characteristics of the particles

and therefore rely strongly on the quality of the underlying model. This class of

methods has already been applied, e.g., for the simulation of particles in mag-

netic chromatography [91] utilizing an advection–diffusion equation or solute

transport with a fractional advection–diffusion equation [29, 133]. Since they

are applied especially when a large number of entities is considered, the influ-

ence on the fluid may not be neglected, as done for dilute suspensions [85]. To

integrate it, the fluid is usually modeled by the volume-averaged Navier–Stokes

equations (VANS) [4]. While the approach is well established for conventional

methods like the finite volume method or the finite element method [11, 48],
only few studies exist regarding the LBM. However, almost none of the latter

schemes account for moving objects, as they are all tested only for a constant or

spatially varying porosity [12, 45, 154], except one which also accounts for tem-
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poral derivatives. It was additionally qualitatively evaluated for particle flows,

coupled with an advection–diffusion equation [59, 87].

The aim of this work is to provide the tools and description of a procedure for

the detailed investigation of particle settling behaviour and creation of models

for the drag coefficient and terminal settling velocity, based on LBM simulations.

Furthermore the feasibility of the presented approach is demonstrated using a set

of 200 superellipsoids. The derived correlations can be applied to improve the

quality of large scale simulations and help in the design of processes by providing

better estimates. Combining these tools with a large database of particle data, a

mostly automated process for the compilation of new specialized models could

be established.

The main part of this thesis is structured as follows: first the underlying model

is discussed in Chapter 2 along with existing drag correlations from literature,

which are used for comparison and validation. In Chapter 3 the methods applied

from literature are given and new ones like the momentum loss algorithm are

proposed. Within the context of this work, those approaches were implemented

in the open-source C++ LBM package OpenLB [70]. The extension of HLBM to 3D

and arbitrary shapes is discussed in more detail in Chapter 4 and first validations

are presented. The whole method is then analysed and extensively validated in

Chapter 5. Finally an application is shown along with a proposed proceeding to

obtain new correlations in Chapter 6 and an outlook is given in Chapter 7.



2| Modeling of Particles
Submersed in Fluid

Mathematical models are a depiction of a confined part of reality. They usually

aim to give a forecast utilizing mathematical formulations based on observations

[69]. Heinrich Hertz formulated three requirements for a model in the introduc-

tion to his book "Prinzipien der Mechanik": sufficiency, correctness and expedi-

ency [58]. The first one means that a model may not contain any contradictions

within itself or the framework it is embedded in. Regarding the second point, a

model should depict all relevant relations and therefore not vary widely from ob-

servations. As correctness can only be claimed based on current knowledge and

available observations, this needs to be checked recurrently upon new insights

[69]. Lastly the expediency favors the easiest model if several are equivalent re-

garding the other two points. A principle also known as Occam’s razor.

In this chapter the models on which the later discussed simulations are based are

described. They are parted in two categories, namely models regarding the fluid

(Section 2.1) and models regarding the particles (Section 2.2). The interactions

between these are described via the acting forces in Section 2.3 and coupling

approaches in Section 2.4.
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2.1 Fluid Models

In the context of this work only Newtonian fluids forming a continuum are consid-

ered, which are at least approximately incompressible. Therefore the commonly

used incompressible Navier–Stokes equations are discussed, as well as a version

modified by volume-averaging. The latter is valuable in the depiction of multiple

phases or components [148].

For both models describing fluid flows, the Reynolds number is an important char-

acteristic parameter to indicate similarities in the flow pattern. As the ratio of

inertial to viscous forces it is given by

Re=
U L
ν

. (2.1)

The parameter U and L denote a characteristic flow speed and length, respectively.

The kinematic viscosity ν is related via the fluid’s density to the dynamic viscosity

µ= νρf.

2.1.1 Navier–Stokes Equations

To describe the dynamics of fluids usually the Navier–Stokes equations are ap-

plied, which are based on the principles of mass and momentum conservation.

Denoting the domain filled with fluid by Ωf(t), the first one is equal to the inte-

gral of the fluid density not changing over time. Applying the material derivative

[86], this can be written as

∂ ρf

∂ t
+∇ · (ρfuf) = 0 , (2.2)

with the fluid’s velocity uf : Ωf× I → R3 for a time interval I . For the conservation

of momentum, first the forces in Euler’s first law of motion [93] are parted in

volume and surface forces. The latter are given via the Cauchy stress tensor σ
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[86]. Applying the divergence theorem to the surface integral and again taking

the material derivative leads to

∂ ρfuf

∂ t
+ρf(uf · ∇)uf =∇ ·σ + F . (2.3)

The volume forces F : Ωf × I → R3 are, e.g., comprised of gravity. Assuming an

incompressible and viscous fluid, Equation (2.2) simplifies to∇·uf = 0. Moreover

assuming the fluid to be Stokesian [86] and requiring a linear dependency of the

stress tensor on the deformation tensor, the expression

σ = −pI +µ (∇uf + (∇uf)
t) , (2.4)

is obtained for the pressure p : Ωf × I → R and unit tensor I . With the uniform

density and viscosity of the fluid, combining the above equations leads to the

incompressible Navier–Stokes equations

∇ · uf = 0 ,

∂ uf

∂ t
+ (uf · ∇)uf = −

1
ρf
∇p+ ν∆uf +

1
ρf

F .
(2.5)

2.1.2 Volume Averaged Navier–Stokes Equations

In some cases the interface between two phases or components can not be re-

solved, or it is for practical reasons not feasible to do so, e.g., for a large amount

of small distributed particles. However, if a considerable solid volume fraction is

to be depicted, the influence of the particles’ presence on the fluid is to be taken

into account. Therefore averaging techniques are required. Since there are differ-

ences in literature, the notation in this section follows the one given by Whitaker
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[148]. First an operator 〈·〉 yielding the superficial average and one yielding the

intrinsic average 〈·〉f for a quantity a in the fluid domain are given by

〈a〉=
1
|Vc|

∫

Vc∩Ωf

a dΩf , and

〈a〉f =
1

|Vc ∩Ωf|

∫

Vc∩Ωf

a dΩf ,

(2.6)

for a control volume Vc ⊂ Ω. Regarding the fluid’s velocity the first one yields a

value as if no second phase or component were present, while the second aver-

age is considered to be closer to measurable values. Denoting the ratio of fluid

volume to the total volume in a given domain with εf, also called void fraction, it

is apparent that 〈a〉= εf〈a〉f.

The averaging can now be applied to the Navier–Stokes equations shown in Equa-

tion (2.5). However, in contrast to the superficial average velocity the vector field

of the intrinsic velocity looses the property of solenoidality during the process

[148]. Starting with

〈
∂ ρf

∂ t
〉+ 〈∇ · (ρfuf)〉= 0 ,

〈
∂ ρfuf

∂ t
〉+ 〈ρf(uf · ∇)uf〉= −〈∇p〉+ 〈µ∆uf〉+ 〈F〉 ,

(2.7)

the equations can be simplified following Jackson [63] by implying a no-slip con-

dition at the boundary between fluid and solid object, and utilizing the relation

between superficial and intrinsic averaging. This leads to

ρf
∂ εf

∂ t
+ρf∇ · (εf〈uf〉f) = 0 ,

ρf
∂ εf〈uf〉f
∂ t

+ρf∇ · (εf〈ufu
t
f 〉f) =− εf〈∇p〉f +µεf〈∆uf〉f + εf〈F〉f .

(2.8)

It should be noted that (uf · ∇)uf = ∇ · (ufu
t
f ) only holds if ∇ · uf = 0, i.e., for

solenoidal vector fields, and therefore has to be applied before switching to the

intrinsic averaging operator.
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Figure 2.1: Schematic representation of the fluid and solid domain with a control volume. (Source:
Own representation based on Whitaker [148], Figure 4.2)

With the chain rule and the divergence theorem the pressure and viscous terms

can be rewritten according to Jackson [63] by

− εf〈∇p〉f +µεf〈∆uf〉f = −∇(εf〈p〉f) +µ∆(εf〈uf〉f)−
1
|Ω|

∫

Γ∩Vc

σn dΓ . (2.9)

The interface between fluid and rigid bodies is denoted by Γ , as depicted in Fig-

ure 2.1, and n represents the surface normal vector. The last term containing

the integral represents the momentum exchanged between fluid and solid com-

ponents and is denoted by M in the following.

The remaining term for closer consideration is the one, non-linear in velocity.

Enwald et al. [38] applied a procedure similar to Reynolds decomposition from

turbulence theory to split the averaged product, by splitting the velocity in an

averaged value and the deviation from that. This yields

ρf〈ufuf〉f = ρf〈uf〉f〈uf〉f −σSG , (2.10)

with a new subgrid stress termσSG, obtained similar as for the Reynolds-averaged

Navier–Stokes equations. Finally inserting Equations (2.9) and (2.10) in Equa-
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tion (2.8) yields the set denoted as volume-averaged Navier–Stokes equations in

this thesis

ρf
∂ εf

∂ t
+ρf∇ · (εf〈uf〉f) = 0 ,

ρf
∂ εf〈uf〉f
∂ t

+ρf∇ · (εf〈uf〉f〈uf〉f) =−∇(εf〈p〉f) +µ∆(εf〈uf〉f) + εf〈F〉f

−M +∇ ·σSG .

(2.11)

2.1.3 Boltzmann Equation

Developed by Ludwig Boltzmann in 1872 [18], the Boltzmann equation is used to

describe the statistical behaviour of systems in a non-equilibrium state. Consider-

ing a particle distribution function f : Ωf×R3×I → R defined on a six-dimensional

phase space, yielding the density of particles with a given velocity at a given lo-

cation and time, the equation models the change of this quantity due to collisions

of said particles. It should be noted that ’particles’ refers in this context to the

molecules of an ideal gas and should not be confused with the macroscopic par-

ticles whose behaviour is studied in this work and are described in Section 2.2.

Taking the total derivative with respect to the time, the equation is given by [72]

∂ f
∂ t
+ ξ · ∇ f +

F
ρ

∂ f
∂ ξ
=
�

∂ f
∂ t

�

coll
, (2.12)

for a particle velocity ξ, the density of a particle ρ and the right hand side rep-

resenting the change due to collisions. More specifically the term Boltzmann

equation refers to the form of the equation expressing the collision term by a

rather unwieldy integral over the phase space, which Boltzmann found applying

the ’stosszahlansatz’ [18]. For the latter he considered all possible collision for a

mono-atomic ideal gas. Despite this assumption, the application of the Boltzmann

equation was later extended to various transport problems, like that of neutrons,

radiative transfer [18] and also quantum mechanics [130].
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Since the calculation of the collision integral might be challenging, simplifications

have been proposed in literature. Most commonly applied is the one by Bhatnagar,

Gross and Krook [10], in the following referred to as BGK collision term. Their

assumption was that the collisions force the system towards an equilibrium state,

which can be described by the Maxwell–Boltzmann distribution, given by [72]

f eq(ξ) = ρ
�

1
2πkBT

�3/2

e−|ξ−u|2/(2kBT ) , (2.13)

with kB ≈ 1.38× 10−23 m2 kg/(s2 K) denoting the Boltzmann constant and for a

temperature T . In this formula u refers to the local mean velocity. Together with

a relaxation time τ this leads to the BGK collision term
�

∂ f
∂ t

�

coll
= −

1
τ
( f − f eq) . (2.14)

It was proven by many studies based on this simplification, including this work,

that it produces correct results comparing it to measurements. As it also contains

no contradictions, it is thereby the preferable model regarding the principle of

expediency by Hertz [58].

2.2 Particle Models

To describe the dynamics of particles, further characteristic numbers are required.

The first one is the particle Reynolds number Rep, which is important for correla-

tions describing the drag force affecting an object as discussed in Section 2.3. It

is defined similar to the fluid, now adapted for particles, by

Rep =
deq|uf − up|

ν
, (2.15)

with the diameter of the volume equivalent sphere deq, usually chosen as the

characteristic length. For the characteristic speed the absolute of the particle’s

velocity up relative to the fluid is used.
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The Stokes number St, defined as the ratio of the characteristic response time

of the particle to the characteristic response time of the flow, is used to describe

the particle’s behavior. While for values well below 1 the particle follows the

streamlines closely, it will detach thereof due to inertia for larger values. The

characteristic number is defined as

St=
ρpdp|uf|

18µ
, (2.16)

with the particle’s density ρp and diameter dp. The latter can be replaced by the

diameter of the volume equivalent sphere in the case of a non-spherical particle.

Approaches considering the particle component as continuum, as discussed later,

usually also include diffusion in the model. It is therefore sensible to also consider

the Péclet number

Pe=
LU
D

, (2.17)

defined as ratio of convective to diffusive transport, with the diffusion coefficient

D. It will be useful to chose appropriate discretization schemes in Chapter 3,

considering the transportiveness property, i.e., a discretization scheme’s direction

of influence should respect the flow direction [144].

As already mentioned in the introduction, there are two approaches for the mod-

eling of particle dynamics. The first one is the Lagrangian, which is discussed in

Section 2.2.1. It describes the motion from the point of view of an observer mov-

ing with the particle. Since in this case each object is tracked separately, it offers

more possibilities for a detailed modeling. Therefore systems and parameters to

quantify the representation of particle shape are introduced in Section 2.2.2. In-

stead describing the motion for a location fixed in space, i.e., particles entering

and leaving the said location, leads to the Eulerian approach, depicting the parti-

cle collective as a continuum. It is discussed in Section 2.2.3. Both approaches are

linked by the material derivative already introduced in Section 2.1.1. It was fur-

thermore found in studies that for an increasing number of particles, the results

of the Lagrangian approach converge towards the ones of Eulerian simulations

[115], with a good agreement if at least 105 particles are considered.
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2.2.1 Particle Motion

A first description of the dynamics of objects is given by Newton’s laws of motion.

Those have been extended from point particles to rigid bodies by Euler, his first

and second law of motion are given by

Fp = mp
∂ vcm

∂ t
and Tp = Jp

∂ωcm

∂ t
, (2.18)

for a torque Tp acting on the object with angular velocity ωp and moment of in-

ertia Jp [93]. Denoting the velocity of the center of mass of a particle with vcm,

this allows to calculate the position of the center of mass xcm = ∂ vcm/∂ t and

angle θ = ∂ωcm/∂ t of the object. The forces acting on the particle can be di-

vided in surface forces Fp,S like drag force, and volume forces Fp,V like gravitation,

whereby the latter often vanish considering the torque, since a homogeneous den-

sity distribution within a particle is considered in this work. The surface forces

can furthermore be described by using the stress tensor [86], which leads to

Fp = Fp,V + Fp,S = Fp,V +

∫

Γ

σ · n dΓ ,

Tp =

∫

Γ

(r ×σ) · n dΓ ,

(2.19)

with Γ being the particle surface and r denoting the distance vector between a

surface point and the object’s center of mass. More details on the acting forces

and their modeling is given in Section 2.3.

2.2.2 Particle Shape Description

Since Euler’s laws of motion hold not only for point masses, but also for parti-

cles with distributed mass and arbitrary shape, the influence of the latter on the

motion can be studied. To be able to formulate correlations which depend on
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the particle shape, it needs to be quantified. As found in discussions [7], this

is a complex task and a single parameter is not sufficient to capture all relevant

aspects. However, for some applications, like the analysis of gravel, classifica-

tion systems are established. They are usually based on the main axis lengths

of the particle, here denoted by aL, aI and aS for the longest, intermediate and

shortest axis, respectively. Such systems have been proposed by Sneed and Folk

[124] or Zingg [159]. Later Blott and Pye [13] introduced two separate, more

sophisticated systems with more classes, differentiating between rounded and

non-rounded particles.

This section deals with the introduction of parameters, which allow some kind of

quantification, and is oriented on [136]. A first approach are measures regarding

the size. Notable are the minimum and maximum Feret diameter, given by the

minimal and maximal distance between two parallel planes, which are tangential

to the particle’s surface. Furthermore the diameter of the smallest sphere con-

taining the particle dext and the the one of the largest sphere still fitting inside the

particle dint are of interest. Considering the volume of the particle Vp, also the

diameter of a sphere with equal volume can be defined

deq =
�

6
π

Vp

�1/3

. (2.20)

Together with the particle’s surface Ap these parameters can be combined to obtain

more sophisticated ones. As the most common example to be mentioned here, the

aspect ratio is frequently calculated in various studies. The definitions may vary,

though. It is often found as the ratio of maximum to minimum Feret diameter

[108]. In a more detailed view, the elongation and flatness given by

E = aI/aL , F = aS/aI , (2.21)

can be considered, allowing to differentiate between rod-like and plate-like par-

ticles. Thereby it is also possible to define the aspect ratio via these measures as
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AR = 0.5(E + F) [129]. Another common parameter regarding the compactness

is the convexity

κcon =
Vp

Vp,conv
, (2.22)

with Vp,conv being the volume of the convex hull. The latter is defined as the

volume of the smallest convex object fully containing the particle. Analogously

the solidity can be defined as ratio of the particle’s surface to the one of its convex

hull. The sphericity [145] is also concerned with the compactness of an object

and is given by

ψ=
1
Ap

3

r

π
�

6Vp

�2
. (2.23)

It can be further specialized by division into crosswise sphericity ψ⊥, i.e., con-

sidering the surface in direction of motion, and lengthwise sphericity ψ‖, i.e.,

considering the surface parallel to the direction of motion. Depending on the

considered particle type and application, additional parameters, which are more

specific to some aspects can be of interest. One example is the roundness [52]
describing the curvature of the particle’s corners and edges by

κrnd =
Vp

Ap (8aLaIaS)
1/3

, (2.24)

or the circularity

κcirc =
Ap,max

0.25πd2
eq

, (2.25)

with Ap,max being the maximum projected area of the particle. If friction or surface

reactions are to be considered, the texture of the surface becomes important. A

first approach in its description is the irregularity parameter [108]

κirreg =
dint

dext
. (2.26)

Another more detailed, but also more complex description of the surface is ob-

tainable via Fourier analysis of the surface texture [153]. If an angle-dependent

investigation of the particle geometry is possible, additional parameters regarding

the angularity can be defined [108, 129].
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As some sophisticated parameters might be unwieldy and complex to calculate,

their utilization is often restricted to specialized applications. To be generally

applicable and useful in practice the parameters need to be accessible via current

measurement devices [7]. A common procedure is image analysis, whereby only

the 2D equivalent of some parameters can be retrieved. It was found in studies,

however, that the 2D parameters are correlated to their 3D counterpart [129].
Nevertheless complex parameters can be formulated in two dimensions, e.g., by

considering the similarity to various shapes. Let C0 be the number of characteristic

corners and H1, H2 and H3 be the ratio of the measured area to the one of a square,

circular and triangular shape, defined by the minimum Feret diameter and the one

perpendicular to it. Together with the elongation the parameter

κsd = C0 + det

�

E H1

H2 H3

�

, (2.27)

can be defined [107]. While this parameter is capable of differentiating various

particle shapes, it fails to capture the roundness or irregularity of particles with

few characteristic corners. Also basic operations in image processing like erosion

can be used to define a mesoscopic set of shape parameters [108].

To describe rather characteristics of the flow behaviour of the particles than of

their shape, more abstract parameters were obtained through the combination of

the basic ones given at the beginning of this section. The one most frequently

discussed is the Corey shape factor [33, 94], which is related to the flatness of the

object and given by

κCSF =
aSp
aIaL

. (2.28)

Applying principles from communication theory, an entropy-like parameter de-

noted as Hofmann shape entropy [60] can be defined as

κH = −
ãS ln(ãS) + ãI ln(ãI) + ãL ln(ãL)

ln(3)
, (2.29)

with the normalized axis lengths ãi = ai/(aS + aI + aL) for i ∈ {S, I , L}. It proved

to be useful in the description of settling ellipsoids [113]. Finally Bagheri and
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Bonadonna [7] introduced two parameters in their investigation of the settling

behavior of arbitrarily shaped particles, given by

κBB,S = F E1.3

�

d3
eq

aLaIaS

�

,

κBB,N = F2E

�

d3
eq

aLaIaS

�

.

(2.30)

With the first one related to the Stokes regime (i.e., Rep < 1) and the second one

to the Newton regime (i.e., 1000 < Rep < 105), these parameters were found to

be useful in the description of the drag force acting on the single settling particle.

Furthermore this parameters are comparably easy to obtain as only information

about the volume and major axis lengths are required.

2.2.3 Advection–Diffusion Equation

Depicting the particles as a continuum by their concentration c, the conservation

of mass has to be satisfied, which was stated for a system free of sources or sinks

in Equation (2.2). Now allowing for particles to enter and leave the domain, this

leads to
∂ c
∂ t
+∇ · j = s , (2.31)

with a source / sink term s and the total flux of particles denoted by j . While the

first term of the equation describes the change of concentration over time, the flux

is given as the sum of advective and diffusive flux. The latter can be approximated

by −D∇c with the diffusivity D, according to Fick’s first law. Applying this to the

equation of mass conservation leads to the advection–diffusion equation

∂ c
∂ t
+ up · ∇c − D∆c = s , (2.32)

assuming that the vector field up is solenoidal. The diffusivity for a given solute

and solvent can be looked up in literature or determined experimentally. With
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some restrictions it can also be calculated, e.g., using the Stokes–Einstein equation

[25] given by

D =
kBT

6πµR
. (2.33)

It assumes the solute as a rigid sphere with radius R submersed in a continuous

solvent, which thereby forms an infinitely diluted solution. This view on the topic

requires the radius of a solute object to be at least five times the one of a solvent

molecule to obtain a prediction with a reasonable error [25]. Many extensions

to this equation exist, e.g., for non-dilute suspensions. Typical values for the

diffusion coefficient are in the range of 10−6 to 10−4 m2/s for a gaseous solvent

and 10−10 to 10−9 m2/s for a liquid solvent [25].

Finally it should be noted that different interpretations for this equation exist, as

it simply describes the transport of a scalar quantity c, which does not necessarily

need to be seen as a particle concentration. It can also represent a temperature,

in this case the parameter D is to be interpreted as thermal diffusivity, i.e., the

thermal conductivity divided by density.

2.3 Forces

In this section forces relevant for a model describing the dynamics of particles

submersed in a fluid are recapitulated. Special attention is given to the drag

force, as it is the force mainly defining the behavior of a settling particle and is

fairly complex to model, wherefore the details of existing models are discussed in

following subsections.

A falling object usually experiences an acceleration due to a gravitational force.

Since it not only depends on the mass of two objects, but also on their distance,

the acceleration a particle experiences depends on its altitude. On the earth’s

surface the acceleration is usually approximated as |g | = 9.81 m/s2. This force
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is opposed by buoyancy. Since the pressure in a fluid increases with depth, a

submersed object experiences a pressure difference between its top and bottom.

The magnitude of the force is proportional to the displaced fluid, assuming the

particle is not floating on the surface or only partially submersed, the forces are

given by

Fbg = mpg −ρfVpg = mp

�

1−
ρf

ρp

�

g . (2.34)

While gravity and buoyancy cover the relevant external forces required in this

work, the hydrodynamic force remains. In the transient case it is composed of

three parts with the first one being the steady state part, described by the drag

force [96]. The others are expressed by the Basset history force and the added

mass force. Therefore the hydrodynamic force is given by

Fh = FD + Fam + FB . (2.35)

The added mass force is caused by the fact that an object moving through a sur-

rounding fluid has to displace the volume in its way. For a sphere and an inviscid

fluid it is given by

Fam =
ρfVp

2

d
�

uf − up

�

d t
. (2.36)

The reason for the denotation of this force becomes apparent, inserting this force

in the momentum equation of Euler’s first law (see Equation (2.18)) and rear-

ranging it, since it effectively adds half of the displaced fluid mass to the particle

mass.

The Basset history force [9] originates from unsteadiness and is related to decay-

ing vorticity [96]. It is thereby a memory term due to a delayed adaption of the

fluid movement in the boundary layer and is given by

FB =
3
2

d2
p

p
πρfµ

t
∫

0

1
p

t − t ′
d
�

uf − up

�

d t
d t ′ . (2.37)
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Finally the drag is the major force acting on the particle, besides the external

forces, in the setups considered in this work. By nature it is directed opposite to

the direction of motion and can be divided in two parts, namely the form and

friction drag [96]. The first depends on the size and shape of the particle, since

it arises from a pressure difference between front and back of the particle, with

front and back defined according to the direction of motion. The latter is related

to friction and originates from interactions of the fluid boundary layer with the

particle’s surface. It therefore depends on the particle’s shape and surface texture.

Overall the drag is given by

FD =
1
2
ρf(up − uf)

2CDAp , (2.38)

for a drag coefficient CD, which is to be determined. Simple approximations exist

for the special case of a settling sphere in an infinitely extended fluid domain.

For particle Reynolds numbers well below 1, the coefficient can be approximated

according to Stokes [128] by CD = 24/Rep. For the range of 6000<Rep<105 New-

ton found the drag coefficient to be CD ≈ 0.44 [96]. For higher particle Reynolds

numbers, it enters the super-critical regime. For the intermediate regime between

the approximations by Stokes and Newton various correlations have been pro-

posed in literature, with the one by Schiller and Naumann [116] being depicted

in Figure 2.2.

In the following correlations regarding the drag coefficient for various cases are

discussed. First the intermediate regime for a sphere is studied more closely,

with the assumption of a spherical particle, being dropped afterwards to discuss

correlations for arbitrary particle shapes. Since in applications usually a large

amount of particles is considered and not single ones, this section closes with the

discussion of drag correlations for particle collectives.
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Figure 2.2: Drag coefficient of a single settling sphere plotted against the particle Reynolds number.
Depicted are the approximations by Stokes, Schiller and Naumann, and Newton around
their region of applicability. (Source: Own representation)

2.3.1 Drag Correlations for Single Spheres

A comprehensive overview of drag correlations for a single sphere in the inter-

mediate regime is given by Dey et al. [32] and divides the correlations in those

obtained by theoretical studies and those obtained empirically. Some of them are

recapitulated here.

Oseen [102] extended Stokes’ correlation by taking inertia into account and lin-

earized the term quadratic in velocity of the Navier–Stokes equation. This finally

leads to

CD =
24
Rep

�

1+
3

16
Rep

�

, for Rep < 2 . (2.39)

Starting with a dimensional analysis, Abraham [1] took advantage of the bound-

ary layer theory assuming this region to be laminar. While effects of friction can be

neglected elsewhere, they are important close to the considered object. Therefore

in his model Abraham depicted a body comprised of the particle and its boundary
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layer. This new body allowed to derive a formulation for the drag independent

of the viscosity for Reynolds numbers large enough to differentiate between a

boundary layer and the remaining fluid domain. Using estimates by McDonald

[92] for a remaining empirical parameter finally leads to

CD =

 

0.5407+

√

√

√
24
Rep

!2

, for 0< Rep < 5000 . (2.40)

While these approaches were mainly obtained by theoretical considerations, oth-

ers obtained from a series of observations are also available. The first of these

empirical formulas mentioned by Dey et al. [32] was obtained by Ruby [114].
However, no empirical coefficients were used or necessary in the original paper.

Instead of focusing on the drag coefficient the terminal settling velocity was cal-

culated from a force balance considering viscous forces according to Stokes’s law

and the momentum of the surrounding fluid on the particle, thereby bridging the

gap between the Stokes and Newton regime while approximating these solutions

in the limit. This type of correlations gained in complexity starting from the sim-

ple approach by Schiller and Naumann [116]

CD =
24
Rep

�

1+ 0.15Re0.687
p

�

, for Rep < 1000 . (2.41)

Based on 37 data points compiled from literature by Lapple and Shepherd [77],
the correlation

CD = 0.284153

�

1+
9.04
Re0.5

p

�2

P , (2.42)

was proposed by Concha and Barrientos [24] with P being a polynomial of fifth

order. They found an error to the experimental data of about 2.11%, claiming a

good fit for particle Reynolds numbers up to 3× 105. However, the data-set for a

non-linear regression with five parameters is comparably small regarding today’s

opportunities, and the possibility of overfitting was not discussed. A larger data

base was given, e.g., by Brown and Lawler [17], who compiled data from litera-
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ture, finally leading to 480 points after revision regarding outliers and applicabil-

ity, and correcting for wall influences. Based on this data Cheng [22] proposed

CD =
24
Rep

�

1+ 0.27Rep

�0.43
+ 0.47

�

1− e−0.04Re0.38
p

�

, (2.43)

yielding an average relative error to the experimental data of 2.469%. Their study

also found, in comparison to seven other correlations from literature, that inde-

pendent of complexity every evaluated formula led to an averaged relative error

below 5% regarding the drag coefficient. This also holds for intricate formulas like

the one proposed by Almedeij [3], which is a combination of four functions with

each comprised of several terms. Thereby it can be assumed that the description

of the drag coefficient of a single settling sphere is well covered by literature and

can thereby serve as a benchmark for methods in more complex investigations.

2.3.2 Drag Correlations for non-spherical Particles

Besides the drag coefficient sometimes explicit correlations regarding the termi-

nal settling velocity are proposed. For spheres this was done, e.g., by Almedeij

[3], Brown and Lawler [17] or Cheng [22]. While the errors are still below 5%

they tend to be higher for such explicit estimations. Dropping the assumption of

a spherical particle shape, only few correlations regarding the terminal settling

velocity uts are available, e.g., by Haider and Levenspiel [47]

uts =

�

gν(ρp −ρf)

ρf

�1/3�
18
d2
∗
+

2.335− 1.744ψ
p

d∗

�−1

, with

d∗ = deq

�

g(ρp −ρf)

ν2ρf

�1/3

,

(2.44)

limited to a sphericity between 0.5 and 1 for isometric particles. Nevertheless,

changing the particle class can lead to errors above 25% [136], even if the given

range of applicability is respected. Therefore it might be sensible to formulate
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correlations for a very specific class of particles, like Dellino et al. [30], who con-

sidered pumice particles of volcanic origin, leading to

uts =
1.2065ν

deq

�

d3
eq g(ρp −ρf)(ψ/κcirc)1.6

ν2ρf

�0.5206

. (2.45)

Drag correlations considering a preferably arbitrary shape of particles have to con-

tain multiple shape parameters to cover a large range of possible shapes. There-

fore correlations tend to be complex and require the groundwork of identifying

the most influential parameters [57]. Ganser [41] proposed a correlation in 1993

taking only the sphericity into account as an additional parameter

CD =
24KS

Rep

�

1+ 0.1118
�RepKN

KS

�0.6567�

+
0.4305KN

1+ 3305KS/(RepKN)
, with

KS =
1
3
+

2
3

Æ

ψ ,

KN = 101.8148(− logψ)0.5743
.

(2.46)

In this formula limited to isometric objects and based on a data set of 731 points

compiled from literature, two coefficients regarding the behaviour in the Stokes

and Newton regime were introduced. Later this was also adopted by Bagheri and

Bonadonna [7] as stated in Section 2.2.2. These values can also be interpreted as

drag correction factors, describing the deviation of the drag acting on the particle

to the one which would be exerted on a volume equivalent sphere. For the Stokes

regime correction factors were proposed by Leith [81]

KS =
1
3

Æ

ψ⊥ +
2
3

Æ

ψ , (2.47)

who split it into contributions from form and friction drag, and Loth [84]

KS =

�

aLaI

a2
S

�0.09

=

�

1
κ2

CSF

�0.09

. (2.48)

While Leith’s original formula was based on sphere diameters of equal surface or

projected area, later defined as (crosswise) sphericity, Loth based the formulation
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on the length of the main axes. Both found a discrepancy to experimental data

and thereby the requirement for additional parameters, for which the orientation

of the particle is often relevant though.

Based on the structure of previously defined correlations [140], Haider and Lev-

enspiel [47] used a least squares method to fit the four coefficients to their ex-

perimental data points (408 spherical particles, 419 isometric particles, 87 discs).

They presented the coefficients for correlations regarding nine different values for

the sphericity, thereby demonstrating the possibility to derive several specialized

correlations, and finally concluded with the general correlation

CD =
24
Rep
(1+ c1Rec2

p ) +
c3

1+ c4/Rep
, with

c1 = e2.329−6.458ψ+2.449ψ2
,

c2 = 0.096+ 0.557ψ ,

c3 = e4.905−13.894ψ+18.422ψ2−10.260ψ3
,

c4 = e1.468+12.258ψ−20.732ψ2+15.886ψ3
.

(2.49)

The measured deviations of general correlations to experimental data further re-

flected the high occurrence of different particle types in data. The most promising
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correlations regarding evaluation on different data-sets [7, 136] proposed in the

last two decades are given by Bagheri and Bonadonna [7] by

CD =
24KS

Rep

�

1+ 0.125
�RepKN

KS

�2/3
�

+
0.46KN

1+ 5330/(RepKN/KS)
, with

KS = 0.5
�

F1/3
S + F−1/3

S

�

,

KN = 10c1(− log FN)c2 ,

c1 = 0.45+
10

e2.5 logρ′ + 30
,

c2 = 1−
37

e3 logρ′ + 100
,

FS = F E1.3
d3

eq

aSaIaL
,

FN = F2E
d3

eq

aSaIaL
.

(2.50)

and by Hölzer and Sommerfeld [61]

CD =
8

Rep

Æ

ψ‖
+

16

Rep

p

ψ
+

3
Æ

Repψ3/4
+ 0.4210.4(− logψ)0.2 1

ψ⊥
. (2.51)

The first of these correlations also respects the density ratio ρ′ between fluid and

particle. Both correlations provide significantly better results compared to pre-

ceding ones, especially for shapes strongly deviating from that of a sphere. In

both studies this is achieved by a large number of better balanced data points.

Hölzer and Sommerfeld [61] compiled information about 683 spherical parti-

cles, 337 cubical and cylindrical particles, 665 isometric particles and 386 discs

and plates from literature, totaling in 2061 data points. Bagheri and Bonadonna

[7] added own experimental data to a set compiled from literature to 2166 data

points spread across the Stokes, intermediate and Newton regime. They further

considered analytical solutions for 104 ellipsoids in the Stokes regime. Despite the

improvements some effects are still not captured by currently available models,

reflected in a spread visible in the data [7]. Therefore more parameters need to be

considered and the development of a general process for the generation of such

correlations becomes sensible. This allows to face the complexity of the shape
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dependency with easily obtainable correlations, given an appropriate available

data set.

2.3.3 Correlations for Particle Collectives

Having discussed the deviation of the drag force from that of spherical particles

due to shape in the previous section, in this one the assumption of the particle

being solitary in an infinitely expanded medium is dropped. Correlations found

in literature usually describe the average settling velocity of the upper front to

the clear water zone for a suspension settling under gravity. Based on a terminal

settling velocity, most often according to Stokes [128] (referred to as uS), the

formulations depend on the solid volume fraction φ. The correlations are given

by

uSteinour(φ) = uS(1−φ)2e−4.19φ , (2.52a)

uHawksley(φ) = uS(1−φ)2e−2.5(1−φ)/(1−0.609φ) , (2.52b)

uRZ(φ) = uS(1−φ)n , (2.52c)

uOliver(φ) = uS

�

1− 0.75φ
1
3

�

(1− 2.15φ) , (2.52d)

uBM(φ) = uts
1−φ

(1+φ
1
3 )e

5φ
3(1−φ)

. (2.52e)

Further details on the correlations are given in Table 2.1. While most of the in-

vestigations are based on experimental data, Hawksley [51] based the formula on

theoretical reasoning using the effective relative viscosity of a suspension given by

Vand [142]. His results were found to be in good agreement with experiments for

a solid volume fraction up to 35% [101]. One of the most frequently applied corre-

lations regarding hindered settling is the one given by Richardson and Zaki, who

investigated the topic not merely from a theoretical perspective [112] but also

experimentally [111], considering not only the case of settling glass spheres, but

also the fluidization of glass particles and other materials, e.g., steel, or shapes,
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e.g., cylinders. They concluded with a formula containing an exponent, which is

chosen according to the particle Reynolds number and is given by

n=























4.65 , for Rep < 0.2

4.35Re−0.03
p , for 0.2< Rep < 1

4.45Re−0.1
p , for 1< Rep < 500

2.39 , for 500< Rep

. (2.53)

Later Garside and Al-Dibouni [42] proposed logistic curves describing the drag

coefficient regarding their experimental data. Deriving an exponent for the equa-

tion of Richardson and Zaki from their results yielded

n=
5.1+ 0.27Re0.9

p

1+ 0.1Re0.9
p

, (2.54)

finding this formulation similar in accuracy to their curves, however with signifi-

cant deviations for low solid volume fractions (φ < 0.1). Barnea and Mizrahi [8]
compiled their data from several sources in literature and deduced a formulation

for the creeping flow range. They state, however, that the correlation can be ex-

tended using drag correlations for single particles beyond the Stokes regime as

reference value, as discussed in Section 2.3.1.

Table 2.1: Information on the range of applicability for various correlations regarding the hindered
settling of suspensions. Data aggregated from the respective publications.

author year Equation Rep φ material
Steinour [127] 1944 (2.52a) 0.0025–0.0026 < 49,8% tapioca, glass
Hawksley [51] 1951 (2.52b) – < 35% theoretical
Richardson and 1954 (2.52c) < 7000 < 66% glass
Zaki [111, 112]

Oliver [101] 1961 (2.52d) < 0.39 < 35% Kallodoc
Barnea and 1973 (2.52e) < 1 < 60% various
Mizrahi [8]
Garside and 1977 (2.54) 3.84–1180 < 50% glass

Al-Dibouni[42]
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The comparability of the given correlations is limited [8], as definitions of relevant

parameters, like the Reynolds number, differ and the results are related to differ-

ent parameters, i.e., different velocities for the settling of a single sphere. Besides

for the drag coefficient, also correlations regarding the force have been proposed,

e.g., by Tenneti et al. [134]. Their investigation was based on IBM simulations

and they split the absolute of the drag force again in form and friction drag, nor-

malizing the term with the drag force according to Stokes. With the assumption

of the normalized form drag being linearly dependent on the Reynolds number

Rem, defined via the mean flow velocity, and the friction drag being independent

of it, they concluded with

FD =
FD,single

(1−φ)3
+RemFform + Ffriction , with

Fform = φ
3

�

0.95+
0.61φ3

(1−φ)2

�

,

Ffriction =
5.81φ
(1−φ)3

+ 0.48
φ1/3

(1−φ)4
.

(2.55)

For the drag force experienced by a single settling sphere FD,single they applied the

one given by Schiller and Naumann [116].

In a final step for a full correlation describing the settling of particle collectives

of various shapes, the correlations presented in this section need to be combined

with the ones in the previous section. This was done by He et al. [53], who

tested various combinations considering a solid volume fraction between 0.1 and

0.35 in IBM simulations with 10 ≤ Rep ≤ 200. The best agreement was found

using the correlation by Tenneti et al. [134] to depict the influence of the solid

volume fraction and combining it with the correlation by Hölzer and Sommerfeld

[61], describing the influence of particle shape. However, the orientation of the

particles has to be taken into account.
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Figure 2.3: Schematic of coupling between fluid, particles and the wall of the domain. (Source: Own
representation)

2.4 Coupling

In systems consisting of multiple components, the coupling between each of them

is important to depict all relevant physical effects. Omitting additional effects like

magnetic forces, all relevant remaining interactions are depicted in Figure 2.3.

The easiest approach is to consider only the influence of the fluid on the particles,

which is usually labeled as one-way-coupling and achieved via the forces dis-

cussed in Section 2.3. They are applied, e.g., in the calculation of the particle ve-

locity up applied in the advection–diffusion equation, discussed in Section 2.2.3.

This of course is only justified if the impact of the particles’ presence is negligible

and the solution is diluted.

Multiple models exist for dense suspensions. If a Lagrangian approach is used for

the particles, the multi-phase particle-in-cell method [5] can be applied, convert-

ing macroscopic parameters like the velocity of the flow field to Lagrangian points

and aggregating information like the particle concentration within a cell. Alter-

natively the concentration can be depicted directly using the advection–diffusion

equation. Having this Eulerian view on the particles, the VANS equations can be

used for the fluid to represent the presence of the solid objects. Another approach

would be to use interface tracking techniques considering the particles as a con-

tinuum, i.e., a suspension [100]. For this purpose also multi-component methods

like the free energy method [119] can be used, allowing for a blurred interface

and miscibility. Yamamoto et al. [151] compared the results of interface tracking
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and Lagrangian approaches to experimental data. For a surface-resolved repre-

sentation of the particles, the exchanged momentum is calculated directly at the

particles’ surface [109] and the surrounding fluid is displaced. Since for these

approaches the fluid and the particles influence each other, they are labeled as

two-way-coupling.

Finally also taking particle–particle and particle–wall collisions into account, one

achieves a four-way-coupling. For Lagrangian approaches each collision has to be

modeled [95] and for implementations the topics of contact detection and contact

treatment need to be covered. While the particles are depicted with an advection–

diffusion equation, the collisions are represented on a macroscopic level via the

diffusion.
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Having the model set, the equations need to be solved. Since in many cases like

for the Navier–Stokes equations, it is only possible to obtain analytical solutions

for very specialized cases [88, 121], thereby with significant restrictions, numeri-

cal methods have to be applied to approximate the correct solution [86]. To solve

the partial differential equations associated with the topic of particles settling in a

fluid, often the classical methods like finite differences are applied. More sophis-

ticated approaches are the finite volume method [99], considering the volume

leaving and entering a cell, and the finite element method [122]. The latter con-

siders macroscopic quantities via cell average values and can also be applied to

solid mechanics. However, it is also possible not to solve for this macroscopic

quantities directly but to describe the problem on a mesoscopic level via a sta-

tistical view on the molecular behaviour. This is what the Boltzmann equation is

applied for, leading to the LBM when discretized [131].

The method has been developed from the lattice gas cellular automata in the

late 80s with the aim of eradicating statistical noise [130], as the predecessor

relied on Boolean representations. During the past three decades the approach

was extended for various applications like multi-phase flows and made its way
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into mainstream. Not least due to its simplicity and good fitting for current dis-

tributed computing architecture the method has become popular, as the major

part of the calculations is at least semi-local, i.e., requiring only information of

directly neighbouring nodes [130]. Therefore the memory bandwidth is often

the limiting factor for LBM computing performance. On the downside the LBM is

from its basis formulated as time dependent and therefore usually inefficient in

finding steady-state solutions compared to classical methods, for which, e.g., the

Navier–Stokes equations can be formulated independent of time, directly calculat-

ing the steady-state solution. Since in this work dynamic cases are of interest, this

drawback can be ignored. A more comprehensive list of advantages and disad-

vantages of the LBM with further literature references was aggregated by Krüger

et al. [72].

3.1 Lattice Boltzmann Method for Fluid Flows

In this section the most common version of LBM is introduced, which is based on

the BGK collision operator, discussed in Section 2.1.3, with one single relaxation

time. Many sources in literature give a comprehensive overview, also discussing

schemes with multiple relaxations times, boundary conditions, forcing schemes

and various extensions to the method [2, 21, 72]. The method applied for the

simulations is based on the lattice Boltzmann equation and is obtained by the

end of this section. A Chapman–Enskog analysis [20] can be applied to ensure,

that it matches the model, i.e., the Navier–Stokes equations, on a macroscopic

level. Alternative approaches for the recovery of the macroscopic equations exist

and are discussed by Krüger et al. [72].

To formulate the discrete algorithm, non-dimensionalization and recovery of macro-

scopic moments is necessary as well as the discretization of the domain, i.e., the

phase space, the Maxwell–Boltzmann distribution, and the Boltzmann equation
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with BGK collision operator. These points will be discussed in the following sub-

sections.

3.1.1 System of Units

For ease of use and to simplify the calculations, all relevant parameters and vari-

ables are non-dimensionalized by the discretization parameters, therefore yield-

ing a spatial and time step size of one. To ensure that this scaling does not affect

the solution, the condition is that similarity numbers like the Reynolds number re-

main unchanged. Denoting non-dimensionalized values with the superscript L for

lattice system and introducing the spatial and temporal discretization parameters

δx and δt and finally using the fluid density as characteristic value yields

lL =
l
δx

, tL
s =

ts

δt
, ρL =

ρ

ρf
, (3.1)

for a length l, time span ts and density ρ. From this three basic parameters more

complex values like the velocity u, force F , viscosity ν, mass m and pressure p
can be non-dimensionalized by

uL = u
δt
δx

, F L = F
δt2

ρfδx4
, νL = ν

δt
δx2

,

mL = m
1

ρfδx3
, pL = p

δt2

ρfδx2
.

(3.2)

Recalling the definition of characteristic numbers like the Reynolds, Stokes or

Péclet number, their values remain unaffected by this operation and of course the

step sizes in lattice units are given by δxL = δtL = 1.

By changing the discretization parameters the accuracy can be increased, how-

ever, errors of different sources need to be balanced [72]. While the discretiza-

tion errors scale with δx2 and δt2, a compressibility error scaling with the squared

Mach number has to be factored in [123]. This number is defined as the ratio of

fluid velocity to the speed of sound. Since the latter error scales by δt2/δx2, the
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method is ensured to be second order accurate in space and first order accurate

in time, establishing the relation δt ∼ δx2, denoted as diffusive scaling [72].

3.1.2 Discretization of the Phase Space

One pillar of the LBM in its basic form is the approximation of the computational

domain by a structured uniform grid with step size δx , albeit approaches for

non-uniform meshes exist, too [117]. It remains to find a discrete set replacing

the continuous velocity space. Applying a Gauß–Hermite quadrature such sets

of q velocities can be found as nodes cL
i of the quadrature rule with according

weights wi [72], with i = 0, . . . , q − 1. Since the Navier–Stokes equations are to

be approximated some conditions have to be met besides mass and momentum

conservation. The moments, with the j-th moment given by

q−1
∑

i=0

wi

�

cL
i

� j
, (3.3)

have to obey conditions regarding isotropy up to the fifth moment [150]. Since

all weights also need to be non-negative, a sufficiently large set is required [72].
Furthermore the lattice speed of sound depends on the chosen discretization. For

most relevant sets in this thesis, it is given by cL
s = 1/

p
3 [150].

A found discretization of the phase space is by convention denoted as DdQq, for

a spatial dimension d and the number of discrete velocities q. For the Navier–

Stokes equations, typical sets are D2Q9 and D3Q19, while for simpler cases like

the advection–diffusion equation, the requirements regarding the isotropy are

lower and thereby allow for smaller velocity sets like D2Q5 and D3Q7 [72]. For

the latter a different lattice speed of sound is obtained, it is given by cL
s = 1/2 [31].

The velocities and weights for the most common sets are given in Table 3.1.
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Table 3.1: Discrete lattice velocities and weights according to different discretizations of the velocity
space. Data taken from Krüger et al. [72], and Deville and Gatsky [31].

discretization cL
i number |cL

i | wi

D2Q5 (0,0) 1 0 1/3
(±1, 0), (0,±1) 4 1 1/6

D2Q9 (0,0) 1 0 4/9
(±1, 0), (0,±1) 4 1 1/9
(±1,±1) 4

p
2 1/36

D3Q7 (0,0, 0) 1 0 1/4
(±1, 0,0), (0,±1, 0), (0, 0,±1) 6 1 1/8

D3Q19 (0,0, 0) 1 0 1/3
(±1, 0,0), (0,±1, 0), (0, 0,±1) 6 1 1/18
(±1,±1, 0), (±1,0,±1), (0,±1,±1) 12

p
2 1/36

3.1.3 Discrete Equilibrium Distribution

To derive a discrete version of the Maxwell–Boltzmann distribution given by Equa-

tion (2.13), the assumption of everything being isothermal is made. Krüger et al.

[72] presented a derivation via an Hermite series expansion, while Hänel [49]
approaches the topic by expanding the term in the exponential function and ap-

plying a low Mach number expansion. Cutting off the expansion after a finite

number of terms, a discretization error dependent on the Mach number is intro-

duced. Both approaches lead to the same result, given by

f eq
i (ρ

L, uL) = ρLwi

�

1+
ci · uL

c2
s

−
|uL|2

2c2
s

+
(ci · uL)2

2c4
s

�

, (3.4)

for the local density ρL = ρL(x , t) and local velocity uL = uL(x , t), which can

be computed from the moments, as discussed in Section 3.1.4. For reasons of

readability f eq(ci,ρ
L, uL) is identified with f eq

i (ρ
L, uL) and the superscript L is

dropped for the equilibrium distribution function, the lattice speed of sound and

the discrete velocities, as from this point on these quantities are always given

in lattice units. The discrete fi are obtained in a similar way, also using Gauß–

Hermite Polynomials and including the weights in the definition [72].
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3.1.4 Macroscopic Moments

Macroscopic quantities can be computed from the particle distribution function fi

via the moments, as frequently presented in literature [49, 72, 150]. Similar to

the equilibrium distribution function, the superscript L is also dropped for the dis-

crete particle distribution function obtained likewise as the discrete equilibrium

distribution function, since from now on it is always considered to be in lattice

units. Furthermore identifying f (x , ci, t) with fi(x , t) the moments are obtained

by
q−1
∑

i=0

fi(x , t) = ρL(x , t) ,

q−1
∑

i=0

ci fi(x , t) = ρL(x , t)uL(x , t) ,

q−1
∑

i=0

cic
t
i fi(x , t) = ΠL(x , t) ,

(3.5)

with ΠL being the stress tensor. In the context of the lattice Boltzmann equation,

the isothermal equation of state is given by

pL(x , t) = c2
sρ

L(x , t) . (3.6)

While the quantities fi, ρ
L, uL, F L, pL, ΠL and their alterations are defined for

a point x in the discrete fluid domain ΩL
f and point t in the discrete time inter-

val IL, the arguments will be omitted in the following if not necessary for the

understanding for reasons of readability.

3.1.5 Basic Algorithm

With everything discretized and recalling the BGK collision operator, finally the

lattice Boltzmann equation reads

fi(x + ciδtL, t +δtL)− fi(x , t) = −
δtL

τ

�

fi(x , t)− f eq
i (ρ

L, uL)
�

, (3.7)
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with the relaxation time τ= νL/c2
s +0.5. Introducing a post-collision particle dis-

tribution function denoted by f ∗i (x , t), allows to divide the equation in a collision

step

f ∗i (x , t) = fi(x , t)−
δtL

τ

�

fi(x , t)− f eq
i (ρ

L, uL)
�

, (3.8)

and a streaming step

fi(x + ciδtL, t +δtL) = f ∗i (x , t) . (3.9)

Physically this can be interpreted as the particles relaxing towards a thermody-

namic equilibrium with relaxation time τ during the collision step, while the be-

haviour of the particles between two collisions is described in the streaming step.

Due to the latter |ci|δx can be interpreted as mean free path length which, di-

vided by a characteristic length of the flow, yields the Knudsen number. Since it is

desired to approximate the incompressible Navier–Stokes equations, the Knudsen

number should be small. In fact this is an assumption in the process of recovering

the macroscopic equations [72] and thereby leads to the requirement of a high

spatial resolution for a good approximation.

3.1.6 Boundary Conditions

The formulation of boundary conditions in terms of the LBM is often equivalent

with reconstructing the unknown parts of a particle distribution function. Com-

pared to classical methods for which a pressure, velocity or even their rate of

change can be prescribed, the conditions need to be formulated on a mesoscopic

level. Considering the particle distribution function, the number of degrees of

freedom that is to be dealt with is higher, which can be challenging or enable the

formulation of more detailed, sophisticated conditions [72]. The discussions in

this section will be regarding a D2Q9 lattice, the application to other discretiza-

tions works analogously.
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Figure 3.1: Particle distribution functions for a boundary node in a D2Q9 setup. (Source: Own
representation based on Krüger et al. [72], Figure 5.21)

A boundary node is depicted in Figure 3.1, along with the post-streaming particle

distribution functions indicated by arrows. While the solid arrows indicate known

fi, the dashed ones indicate unknown fi, as they originate from outside the do-

main. A first approach can be to identify these incoming distributions with the

ones outgoing on the opposite side of the domain, leading to a periodic boundary

condition [72]. Yet, this does not always fit the physical setup which is to be con-

sidered. Conditions regarding the velocity to simulate an inflow boundary and a

no-slip condition for the walls are required.

To recover missing fi, many approaches and classifications of these exist, which

are discussed in literature [72, 79]. For conditions regarding velocity and pres-

sure, the regularized approach proposed by Latt [78] is applied for the simulations

in this work. It replaces all particle distributions on the boundary by the sum of

the equilibrium distribution and the off-equilibrium parts recovered via the stress

tensor

fi = f eq
i (ρ

L, uL) +
wi

2

�

cici

c4
s

−
I
c2

s

�

: ΠL,(1) . (3.10)

The colon operator denotes a tensor contraction and ΠL,(1) is computed similar

as in Equation (3.5), but basing the computation on the second term of a series

expansion of fi regarding a small value instead of fi. For these computations ρL or



3.1 Lattice Boltzmann Method for Fluid Flows 43

uL need to be recovered first, as the other one is chosen according to the desired

boundary condition. For a point in space x and in time t, it is apparent that

ρL = f−+ f++ f‖ if all fi were known. Herein f‖ identifies the sum of the particle

distribution functions tangential to the boundary, including f0, while f− denotes

the sum of the unknown ones and f+ the sum of the remaining. It is found from

Equation (3.5) and symmetry conditions that the density can be calculated by

ρL =
2 f+ + f‖
1+ u⊥

, (3.11)

with u⊥ being the projected velocity normal to the boundary [79]. The inflow

speed at the boundary can be computed similarly from a given density or pressure

[160] by

uin = 1−
f‖ + 2 f+
ρL

. (3.12)

Finally the off-equilibrium parts of the fi are required for the calculation of the off-

equilibrium stress tensor ΠL,(1) as stated before. They are obtained by a bounce-

back assumption for the off-equilibrium parts. Let ī be the index of the discrete

velocity and particle distribution function for which cī = −ci applies. Then the

stress tensor can be computed using f (1)i = f ī− f eq
ī
(ρL, uL) [79]. These temporary

values are sufficient for the recovery of the off-equilibrium stress tensor, but can

not completely fulfill the boundary condition on their own [79]. Additionally an

error is introduced since the series expansion is cut off after the second term.

Lastly a no-slip condition is required to describe the walls. Due to its simplicity

most frequently the bounce-back method is applied, which was discussed in detail

by Krüger et al. [72]. There are two approaches for implementation, the first one

is denoted as halfway bounce-back and reflects the particle distribution during the

streaming step by

fi(x , t +δtL) = f ∗
ī
(x , t) , (3.13)

while the other one, denoted as fullway bounce-back, takes care of that during a

collision step in the simulation by

f ∗i (x + cīδtL, t) = f ī(x + cīδtL, t) , (3.14)
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for an unknown fi. In this work the latter approach is applied.

3.1.7 Forcing Schemes

To incorporate external forces in the LBM, multiple schemes exist in literature,

three of which are presented here. They all share a common framework, first the

calculation of the first moment (see Equation (3.5)), yielding the momentum and

thereby the velocity, is modified. In the presence of a force F L : ΩL
f × IL→ R3 the

velocity is calculated by

uL =
1
ρL

q−1
∑

i=0

ci fi +
F LδtL

2ρL
, (3.15)

to maintain accuracy of the LBM [72]. Also the collision step is updated to

f ∗i = fi −
δtL

τ

�

fi − f eq
i (ρ

L, uL + A
F LδtL

ρL
)
�

+δtLSi , (3.16)

modifying the velocity argument in the equilibrium distribution function depend-

ing on a factor A and adding a source term Si : Ω
L
f × IL→ R. The models discussed

in the following only differ by the definition of A and Si.

Shan and Chen [120] proposed a scheme referred to as velocity shift method by

choosing

A=
τ

δtL
and Si = 0 , (3.17)

for single- and multi-phase flows. For this approach the force is equivalent to a ve-

locity difference in the equilibrium distribution. Another simple forcing approach

was published by Kupershtokh et al. [74], now only changing the source term, it

is given by

A= 0 and Si = f eq
i (ρ

L, uL +δuL)− f eq
i (ρ

L, uL) , (3.18)

with δuL = F LδtL/ρL being the change of mass velocity. It is to be noted that in

this scheme the unmodified version of uL according to Equation (3.5) is applied
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in the equilibrium distribution. This method was derived directly from the Boltz-

mann equation and is referred to as exact difference method. For the last method

Guo et al. [44] adapted both the velocity and the source term to

A=
1
2

,

Si =
�

1−
δtL

2τ

�

wi

�

ci − uL

c2
s

+
(ci · uL)ci

c4
s

�

· F L .
(3.19)

While all these formulations correctly recover the forced Navier–Stokes equations

[72], they differ in complexity and accuracy. The latter is investigated in Chap-

ter 5.

3.2 Extension for Dense Suspensions

Multiple approaches for the simulation of fluid flows containing a dense suspen-

sion have been proposed in literature, e.g., from the perspective of flow through

a porous medium [45] or multi-phase flows [126]. This section is concerned

with methods approximating the volume-averaged Navier–Stokes equations dis-

cussed in Section 2.1.2, based on the LBM. The approaches given in literature [12,

59, 154] mostly differ by the implementation of force, momentum exchange and

additional source terms. Recovering the macroscopic equations via a Chapman–

Enskog [20] analysis, differences in the pressure term are found [59], revealing

that some methods are not well suited for dynamic cases like the simulation of a

moving suspension [12].
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For all approaches however, the moments are redefined regarding the void frac-

tion εf : Ω
L
f × IL→ R [59] to

εfρ
L =

q−1
∑

i=0

fi ,

εfρ
L〈uL〉f =

q−1
∑

i=0

ci fi ,

(3.20)

also omitting the arguments of εf, if not necessary for understanding. From this

point, already the first simple approach labelled as direct forcing can be made.

The physical behaviour is approximated, considering Newton’s third law and thus

applying the negative of the hydrodynamic forces acting on the particles to the

fluid and using a forcing scheme as discussed in Section 3.1.7.

3.2.1 Force Conversion

Since the particles are underresolved in the simulations, the momentum exchange

term and subgrid stress in the volume-averaged Navier–Stokes equations (2.11)

need to be modeled. This is usually done by including the hydrodynamic force,

discussed in Section 2.3, which in turn is often simplified to be only comprised

of the drag force. Since all formulations regarding the drag force are given for a

single particle and not accumulated forces of the whole collective in a considered

cell, they need to be transformed.

Typically forces are considered as force densities, i.e., divided by the volume they

act upon, in fluid dynamics and the LBM. Considering Euler’s laws of motion and

denoting quantities regarding a single particle with the index p,1 and quantities

regarding the entirety of particles in a unit volume with the index p,coll, one finds

Fp,coll

ρp,coll
=

Fp,1

mp,1
, (3.21)
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which finally leads to

Fp,coll = (1− εf)
Fp,1

Vp,1
. (3.22)

Converting Fp,coll to lattice units finally gives the force which can be used in the

discussed schemes.

Another challenge is due to the drag force. As the recovery of the fluid’s velocity

is now dependent on the force as defined in Equation (3.15) and the drag force

in turn depends on the relative and therefore the fluid’s velocity, the method be-

comes implicit. This can be solved either by using the velocity of the previous

time step in the calculation of the force, introducing a time dependent error, or

by the introduction of an auxiliary variable as shown by Höcker et al. [59]. In

their publication they also describe the incorporation of non-linear drag schemes,

according to Guo and Zhao [45].

3.2.2 Pressure Correction Scheme

Zhang et al. [154] compared the Navier–Stokes equations to their volume-averaged

version and modified the equilibrium distribution function for reasons of similar-

ity to
Ýf eq

i (ρ
L, uL) = εf f

eq
i (ρ

L, uL) . (3.23)

Recovering the macroscopic equations regarding this change via a Chapman–

Enskog [20] analysis revealed differences to the actual volume-averaged equa-

tions. Therefore Zhang et al. [154] introduced an additional force term with

F L
pc = c2

s 〈ρ
L〉∇εf = 〈pL〉∇εf , (3.24)

utilizing the forcing approach by Guo et al. [44]. The change in the equilibrium

distribution function along with the additional force term are labelled as pressure
correction scheme. However, Blais et al. [12] found the scheme to be still insuffi-

cient, as for non-constant void fractions wrong solutions of the velocity field were

obtained and the simulations were found to be unstable.
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3.2.3 Rescaling Scheme

Höcker et al. [59] proposed the rescaling scheme from which the volume-averaged

Navier–Stokes equations can be properly recovered. Unlike other schemes it aims

at updating the streaming step. First splitting the particle distribution function

by

πi = wi

q−1
∑

j=0

f j , and ζi = fi −πi , (3.25)

allows to scale only the more pressure related part πi by the local void fraction

before and after streaming. Finally the scheme can be summed by the streaming

step being defined as

fi(x + ciδt, t +δt) = εf(x + ciδt, t +δt)
πi(x , t)
εf(x , t)

+ ζi(x , t)

= fi(x , t) +πi(x , t)
εf(x + ciδt, t +δt)− εf(x , t)

εf(x , t)
.

(3.26)

3.3 Extension to Advection–Diffusion Problems

The LBM can also be applied to solve the advection–diffusion equation. With

the quantity of interest being the particle concentration c, only minor changes

are required to the basic LBM scheme [97]. First the lattice relaxation time is

defined as τ = D/c2
s + 0.5 using the diffusion coefficient. Labelling the particle

distribution functions regarding the advection–diffusion equation by gi for bet-

ter discriminability, the simplest equilibrium distribution function, for which the

desired macroscopic equations are recovered, is linear in velocity and given by

geq
i (c

L, uL
p) = cLwi

�

1+
ci · uL

p

c2
s

�

. (3.27)
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However, it is also possible to use equilibrium distributions of higher order. For

this system only the concentration, calculated by

cL =
q−1
∑

i=0

gi , (3.28)

is conserved, not its momentum [72]. At this point the velocity uL
p is assumed to be

given, its calculation is discussed in Section 3.3.1. Overall the scheme’s accuracy

is found to be only of first order, however, Latt [78] proposed an extension to

achieve a second order accuracy.

The last difference concerning the Navier–Stokes equations in the LBM are the

reduced requirements regarding the moments, wherefore a simpler discretization

of the velocity space is adequate [97]. A square lattice configuration, i.e., D2Q5

or D3Q7, is sufficient [62]. It is even possible to drop the zero velocity, which de-

scribes the resting particles, leading to D2Q4. Considering the Courant number

C =
‖up‖2δt

δx
, (3.29)

Suga [132] investigated the stability and accuracy of the LBM for advection–

diffusion problems regarding different discretizations. He found the stability re-

gion to be

C≤
1
2

, for D2Q4 ,

C≤
2
5

, for D2Q5 ,

C≤
1
3

, for D2Q9 ,

(3.30)

decreasing with an increasing number of discrete velocities. Furthermore the

Péclet number is to be considered for stability. For a finite differences approach,

it is required that Pe < 2, otherwise stability and accuracy can not be ensured

[144]. This is due to the advective transport becoming the dominant part in the

equation, which has to be taken account for by the applied discretization scheme,

e.g., a streamline upwind scheme can be applied [144]. Suga’s investigations [132]
showed that the LBM approach is less restrictive regarding the Péclet number if
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D2Q9 is used. While the different discretizations produce results with a similar

accuracy for Pe ≤ 1 and C ≤ 0.2, no restrictions regarding Pe were found for

D2Q9 with C≤ 0.1, testing for Péclet numbers up to 1000.

3.3.1 Calculation of the Particle Velocity Field

The particle velocity field is obtained from a finite difference scheme, solving

mL
p

duL
p

d t
= F L

D . (3.31)

For the right hand side, a drag correlation from Section 2.3 can be used and

even completed to the full hydrodynamic force, adding the added mass force and

the Basset history force. The differential on the left hand side is the material

derivative, wherefore the equation takes the form

∂ uL
p

∂ t
+ uL

p∇ · u
L
p =

F L
D

mL
p

, (3.32)

leading to a convection-dominated problem. In this case the results are not nec-

essarily bounded applying a central difference scheme [144], which can lead to

unphysical results. To solve this issue, an upwind scheme is employed, for which

the spatial derivative is given as

dα(x)
d x

=

¨

α(x)−α(x−δx)
δx , for β > 0

α(x+δx)−α(x)
δx , for β < 0

, (3.33)

for a quantity α ∈ R advected by β ∈ R. This also respects the transportiveness

of the flow. Regarding the stability, the Courant–Friedrich–Lewy condition C < 1

has to be satisfied. Due to this biased difference quotient, the scheme introduces

an error in the form of added artificial diffusion [144]. An application of the

complete one-way coupled systems of particles submersed in a fluid was presented

by Trunk et al. [138], showing a case-dependent approach to handle the artificial

diffusion.
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3.4 Homogenized Lattice Boltzmann Method

In the HLBM, the particles are depicted as surface-resolved objects. This allows

for a direct computation of the hydrodynamic force at the surface, thereby drop-

ping the requirement to model the drag. It can be segmented into the following

parts:

• particle representation

• coupling fluid→ particles

• coupling particles→ fluid

• particle dynamics

The particle geometries can be drawn from analytical expressions, e.g., for spheres,

cuboids or superellipsoids, or from geometry data obtained by computer tomog-

raphy. From the chosen model, a voxel representation of the object is generated,

which does not necessarily have the same resolution as the grid, used for the sim-

ulation [139]. The relevant particle parameters like the volume or the moment of

inertia can also be computed from this, using the parallel axis theorem. For this

a homogeneous density is assumed. This data can be used to depict the particle

on the simulation grid, i.e., relating each node with the volume fraction covered

by a particle γ: ΩL
f × IL → R, which can also be reformulated to be interpreted

as porosity [71]. It is also possible to use γ to formulate a smooth transition be-

tween particle and fluid cells. This is required, e.g, for the application of shape

optimisation schemes [65].

The coupling of the fluid on the particles is achieved by calculating the exchanged

momentum. Since in contrast to other methods, no solid boundary is applied to

depict the particle surface, methods found in literature may need to be adapted.

An overview on available methods is given in Section 3.4.2 and they are evaluated

regarding accuracy in Section 5.4.1.
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The presence of the particles is represented by a shift in velocity. Similarly to the

immersed boundary method, the fluid is forced to obey the particle velocity in the

covered regions. To achieve this and maintain the transition between fluid and

particles, the convex combination

ūL = (1− γ)uL
f + γuL

p , (3.34)

is introduced. A velocity difference is then obtained by δu = ūL − uL
f , which

in the LBM framework can be converted to a force, as seen in Section 3.1.7. A

comparative study regarding the forcing schemes is given in Section 5.4.1, finding

the exact difference method [74] and the forcing scheme given by Guo et al. [44]
to be similar in accuracy, while both are superior to the approach by Shan and

Chen [120]. The HLBM, originally proposed with the latter forcing approach, is

then updated accordingly.

The particle dynamics mainly follow Euler’s laws of motion, discussed in Sec-

tion 2.2.1. The equations are solved utilizing a velocity Verlet algorithm to update

the particle velocity and position of the center of mass.

3.4.1 Particle Dynamics

Considering the center of mass’ position and velocity, as well as angle and angular

velocity, they can be updated by

xcm(t +δt) = xcm(t) + vcm(t)δt +
1
2

acm(t)δt2 ,

vcm(t +δt) = vcm(t) +
δt
2
(acm(t +δt) + acm(t)) ,

θ (t +δt) = θ (t) +ωcm(t)δt +
1
2
αcm(t)δt2 ,

ωcm(t +δt) =ωcm(t) +
δt
2
(αcm(t +δt) +αcm(t)) ,

(3.35)

using a velocity Verlet algorithm with the acceleration acm and angular accelera-

tion αcm of the center of mass. The accelerations are obtained from the force, as
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stated in Equations (2.18) and (2.19). The final particle velocity field, relevant

for the coupling with the fluid is then obtained by

up(x , t) =

¨

vcm(t) +ωcm(t)× (x − xcm(t)) , for x ∈ Ωp(t)
0 , else

, (3.36)

with Ωp(t) denoting the volume covered by particles at a point in time t.

3.4.2 Momentum Exchange Algorithms

The first momentum exchange algorithm was proposed by Ladd [75, 76] and a

modified version of it was applied by Krause et al. [71] for simulations with the

HLBM. It is given by

F L
h (t) =

∑

x∈Ωp(t)

q−1
∑

i=1

ci ( fi(x + ciδt, t) + f ī(x , t)) , (3.37)

dropping the additional term regarding a moving no-slip boundary. Another ap-

proach was proposed by Wen et al. [147], incorporating the particle velocity not

in an extra boundary term, but in the node-wise calculations, given by

F L
h (t) =

∑

x∈Ωp(t)

q−1
∑

i=1

�

ci − uL
p(x , t)

�

fi(x + ciδt, t) +
�

ci + uL
p(x , t)

�

f ī(x , t) , (3.38)

thus achieving improvements regarding the Galilean invariance. Alternatively the

momentum lost by the fluid in the previous time-step can be applied. Recalling

the convex combination of velocity stated in Equation (3.34) and, e.g., applying

the exact difference method, the exchanged momentum is given by

F L
h (t) =

∑

x∈Ωp(t)

q−1
∑

i=1

ci

�

f eq
i (ρ

L, ūL)− f eq
i (ρ

L, uL
f )
�

. (3.39)

This approach as well as the other momentum exchange approaches are further

discussed in Section 5.3.3 and are evaluated within the HLBM framework in Sec-

tion 5.4.1.
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are automatically constructed from a geometry file, describing the surface. The proposed method relies 

on a discrete representation of the particle on a homogeneous grid rather than an approximation by a 

shape which can be described by a simple analytical equation or a combination of such. Results of nu- 

merical experiments are presented, validating the construction of the discrete particle representation, the 

particle dynamics as well as the acting forces. Moreover, an application of the method for the simulation 

of limestone particles based on geometry data generated from computer tomography scans is showcased. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Applications in a multitude of fields such as drug delivery in 

medicine or solid-liquid separation in process engineering rely on 

the physical laws of particulate flows [1,2] . Often a raw approxima- 

tion suffices for the design of facilities, however, a more in-depth 

understanding of the dynamics and impact of the acting forces 

is crucial in the process of improvement [3] . Especially the sep- 

aration efficiency and selectivity can be enhanced by taking the 

shape of particles into account for simulations [4] . This is relevant 

in separation processes, where a sharp particle size distribution is 

the desired result. In industrial production, the margins of error 

for such processes can be low, e.g. in the production of slurry for 

chemical-mechanical planarisation for the production of wafer [5] . 

To achieve such a high level of selectivity, the real shape of the par- 

ticles has to be taken into account. Since the described processes 

are not or only partly accessible for measurement devices, numeri- 

cal simulations are required. The applied methods have to be capa- 

∗ Corresponding author at: Institute for Mechanical Process Engineering and Me- 

chanics, Karlsruhe Institute of Technology, Karlsruhe. Germany 

E-mail address: robin.trunk@kit.edu (R. Trunk). 

ble of simulating a large amount of suspended particles, to capture 

effects relevant on the process scale, as well as depicting a high 

degree of detail to further extend the knowledge of the dynamics 

relevant e.g. for separation processes. 

Among existing methods, lattice Boltzmann methods (LBM) 

proved to excel in simple and efficient parallel processing, fitting 

current multi- and many-core computing architecture [6–9] . There- 

fore, they provide a reasonable base for simulations of a large 

amount of particles, which is computational expensive. Due to ad- 

vances in computing architecture and algorithms in recent years, 

it is possible to simulate a large amount of single particles [10] . 

Such Euler–Lagrange approaches have become a feasible approach 

since they can be based on simple differential equations and there- 

fore allow fast computations for a reduced complexity. In such dis- 

crete element methods (DEM) the particles can be approximated 

as spheres in a first step, which yields good accuracy for a lot 

of applications [11,12] . However, to increase the quality of results 

for highly specialised fields of application, more factors have to be 

considered [13] , including the shape of the particles, as shown by 

Wachs et al. [14] . For DEM simulations this can be achieved e.g. 

by considering compound particles as described by Favier et al. 

[15] and applied to industrial applications e.g. by Just et al. [16] . On 

https://doi.org/10.1016/j.compfluid.2018.02.027 

0045-7930/© 2018 Elsevier Ltd. All rights reserved. 
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the one hand, the DEM has been improved by such expansions, e.g. 

by considering the influence of the particles’ presence on the fluid 

[17] , on the other hand, new methods like the immersed boundary 

method (IB) [18,19] emerged to meet the challenge. For the lat- 

ter, a particle is represented by its boundary, consisting of several 

points moving independently of the Eulerian grid for the fluid. The 

coupling between particle and fluid is achieved by interpolation of 

hydrodynamic forces between the grid nodes of the fluid and the 

Lagrangian points of the particle. This however increases the de- 

mand on computational resources to simulate a certain amount of 

objects compared to basic DEM approaches. IB has already been 

applied to many applications, also due to its capability of consid- 

ering deformable objects like filaments [20,21] or flapping wings 

[22] , as well as rigid bodies [23] . For such shape-resolved meth- 

ods the complexity of contact detection and treatment rises if arbi- 

trary shapes are to be considered and efficient schemes may come 

with limitations, e.g. to convex shapes [24] . The challenge of par- 

ticle contact is topic of current research, e.g. a contact treatment 

scheme for non-convex particles has been proposed by Rakotoni- 

rina et al. [25] , which considers the objects to be a compound of 

convex particles. DEM and IB schemes for particle simulation are 

independent of the schemes applied for the fluid, as long as an 

underlying fluid velocity field exists, and have also been coupled 

with LBM fluid solvers [26,27] . 

Based on LBM, particles are also often expressed by a no-slip 

boundary condition. Various types of such interpolated bounce- 

back schemes are applicable for this purpose, as the one proposed 

by Bouzidi et al. [28] or the multireflection boundary described 

by Ginzburg and d’Humières [29] . An overview and comparison 

of this conditions is given in Peng et al. [30] . Combined with a 

momentum exchange algorithm (MEA) described by Ladd [31,32] , 

such boundaries lead to an efficient scheme which takes advan- 

tage of the good parallel scalability of the method [33,34] . Another 

approach in particle simulations is given by Noble and Torczynski 

[35] in their partially saturated cells method, where the LBM colli- 

sion is redefined dependant on the solid volume fraction, yielding 

a bounce-back boundary in the limit of pure solid. 

An alternative has recently been published by Krause et al. [36] , 

namely the homogenised lattice Boltzmann method (HLBM), which 

applies the MEA by Ladd but coupled with a porous media ap- 

proach, incorporating a smooth transition zone between fluid and 

solid instead of a Bouzidi boundary. Compared to IB it does not re- 

quire any interpolations, since the particle resides on the fluid grid 

instead of an independent representation by Lagrangian points. An 

overview of methods for particle simulations, regarding the scopes 

of flow and size can be found in [37] . 

The methods presented in this paper aim at giving a tool for 

simulations which yield results relevant on the process-scale and 

yet use a detailed representation of the particle. 

Furthermore, the aim is to obtain a method relying on less as- 

sumptions and restrictions (e.g. restriction of applicability to con- 

vex objects) regarding the particle shape. 

Furthermore, the long-time goal is to obtain a method relying 

on less assumptions and restrictions (e.g. restriction of applica- 

bility to convex objects) regarding the particle shape. As step to- 

wards this, an objective is the development of a processing strat- 

egy for real particle geometries generated from computer tomog- 

raphy scans. The challenge of contact treatment will be addressed 

in future works. 

Therefore, an additional objective is the development of a pro- 

cessing strategy for real particle geometries generated from com- 

puter tomography scans. 

Therefore, an extension to HLBM, proposed by Krause et al. [36] , 

to 3D is presented. The proposed method preserves the parallel 

scalability of LBM and therefore qualifies for large scale simula- 

tions. Furthermore, a processing scheme of arbitrary geometries 

for the simulation of particles is described, which relies on the 

construction of a grid-like discrete representation of the particle. 

To the knowledge of the authors, such extensions for HLBM, like 

the fully automated treatment of arbitrarily shaped particles from 

STL-files, have not been investigated yet. To show the capability of 

the described method, the sedimentation of 3D limestone particles 

is examined. For this case the collision like behaviour already ob- 

served in Krause et al. [36] again occurs indicating an momentum 

exchange between the particle intrinsic to the proposed method. 

To ensure physical correctness this however needs further investi- 

gations. 

In this paper, the equations as well as the underlying physical 

model are briefly described in Section 2 . Afterwards, the applied 

methods are described in Section 3 , which is divided in one sec- 

tion for HLBM in 3D, one characterizing the particle dynamics and 

one for the realisation of the scheme of the arbitrarily shaped par- 

ticles and implementation. In Section 4 , the results of numerical 

experiments are presented including a validation case for the com- 

putation of physical particle parameter, such as the moment of in- 

ertia. Moreover, convergence studies have been performed to val- 

idate the particle dynamics, considering a settling sphere, as well 

as the hydrodynamic forces, examining the flow around a cylinder. 

Finally, an application case is given, to demonstrate the capabilities 

of the proposed scheme. 

2. Mathematical modelling 

The equations covering the required physics for the model are 

related to fluid and rigid body dynamics. The flow of the fluid sur- 

rounding a particle and the flow induced by its motion is described 

by the incompressible Navier–Stokes equations, given by 

∂u f 

∂t 
+ (u f · ∇) u f − ν�u f + 

1 

ρf 

∇p = F f in � × (t 0 , t 1 ) , 

∇ · u f = 0 in � × (t 0 , t 1 ) . (1) 

The equations are defined on a domain � ∈ R 

d and time inter- 

val I = [ t 0 , t 1 ] ⊆ R for a spatial dimension d ∈ {2, 3}. Here u f : � ×
I → R 

d gives the fluids velocity and p : � × I → R the pressure, 

whereas the kinematic viscosity ν ∈ R > 0 and density ρf ∈ R > 0 are 

characteristic parameter of the considered fluid. The last variable 

F f represents external forces acting on the fluid. To fully describe 

the fluid dynamics, problem dependent boundary and initial con- 

ditions need to be added, this will be discussed in Section 3 and 

4 . 

The motion of the particle is governed by the equations of rigid 

body dynamics, based on Newton’s second law of motion. Let �p 

denote the domain covered by particles, which are considered to 

have a Dirichlet boundary regarding their velocity in order to rep- 

resent the surface. Since the particles are in motion, the parti- 

cle domain is time-dependent �p = �p (t) , accordingly the Navier–

Stokes equation are considered to be defined on �f (t) = � \ �p (t) 

from now on. For a particle p with mass m p and moment of inertia 

J p , this leads to the equations 

m p 
∂u p (t) 

∂t 
= F p (t) , 

J p 
∂ω p (t) 

∂t 
= T p (t) , 

where u p : I → R 

d and ω p : I → R 

d denote the particle’s transla- 

tional and angular velocity, with F p and T p being the force and 

torque acting on the particle. The hydrodynamic forces acting on 

the particle are denoted by F H . Since the model depicts the volume 

and surface of the particle, a combined hydrodynamic force can be 

computed from a momentum exchange discussed in Section 3.2 . 

Also, the gravitational force, given by F G = (0 , 0 , m p g) with gravi- 

tational acceleration g , is taken into account. Finally, the fluid and 
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solid component are coupled by the application of these forces 

F f = F H , F p = F H + F G , T p = r × F H , 

for a position vector r for the point of application of the force. 

3. Numerical methods 

3.1. Homogenised lattice Boltzmann method (HLBM) 

In LBM, the fluid is characterised by the distribution of fluid 

particles in the phase space, described by a function f , solving a 

discretised Boltzmann equation. A short overview of the discreti- 

sation is given below, however, since the basic LBM scheme is not 

the focus of this paper, the authors refer to existing literature for 

further information [38–40] . 

The spatial domain is approximated by a uniform grid �h with 

spacing h ∈ R > 0 , while the discrete velocity space is described by 

a set of q velocities. The resulting phase space is denoted by D d Q q . 

A common choice is D3Q19 for a 3 dimensional domain with a set 

of 19 velocities c i ∈ R 

3 (i = 0 , . . . , 18) [41] , given by 

c i = 

⎧ ⎨ 

⎩ 

(0 , 0 , 0) , i = 0 , 

(± 1 
h 
, 0 , 0) , (0 , ± 1 

h 
, 0) , (0 , 0 , ± 1 

h 
) , i = 1 , 2 , . . . , 6 , 

(± 1 
h 
, ± 1 

h 
, 0) , (± 1 

h 
, 0 ± 1 

h 
) , (0 , ± 1 

h 
, ± 1 

h 
) i = 7 , 8 , . . . , 18 . 

Furthermore, the collision term of the Boltzmann equation is re- 

placed with a simple approximation proposed by Bhatnagar, Gross 

and Krook, called BGK collision operator [42] . 

The lattice Boltzmann equation then is given by 

f i ( x + c i δt, t + δt ) − f i ( x , t ) = − 1 

τ

(
f i ( x , t ) − f eq 

i ( ρ, ū ) 
)

, (2) 

for a grid node x ∈ �h and t ∈ I h , with the temporal space I h result- 

ing from the chosen discretisation of space and velocity. 

The temporal spacing is given by δt ∈ O(| h | 2 ) . 
Furthermore, f i : �h × I h → R 

+ , i = 0 , . . . , q − 1 represents the 

fluid particle density at location x moving with velocity c i . The ve- 

locity ū applied here is given in Eq. (3) and will be discussed later. 

It is possible to recover macroscopic quantities for ( x , t ) ∈ �h × I h 
by considering the momenta of the particle distribution function, 

yielding 

ρ(x , t) = 

q ∑ 

i =0 

f i (x , t) , 

u f (x , t) = 

1 

ρ(x , t) 

q ∑ 

i =0 

f i (x , t) c i . 

The lattice Boltzmann equation can be decomposed into two steps, 

namely: 

1) Collision: A relaxation of the probability functions f i on each 

lattice node towards the local equilibrium distribution f 
eq 
i 

: 

˜ f i (x , t) = f i (x , t) − 1 
τ

(
f i (x , t) − f 

eq 
i ( ρ, ū ) (x , t) 

)
. 

2) Streaming: The distribution functions f i spreads in the direction 

of the assigned lattice vector c i to the next lattice node: 

f i ( x + δtc i , t + δt ) = 

˜ f i (x , t) . 

Here τ ∈ R > 0 is a characteristic relaxation time, depending on 

the fluid’s kinematic viscosity and the chosen discretisation param- 

eter. Furthermore, a discrete Maxwell–Boltzmann distribution f 
eq 
i 

, 

which depends on the fluids’ density and velocity, is used to de- 

scribe the thermodynamic equilibrium. 

To incorporate the presence of moving porous media [43] , the 

velocity has been replaced by a convex combination 

ū (x , t) = u f (x , t) + d(x , t) ( u B (x , t) − u f (x , t) ) . (3) 

For d : �h × I h → [0, 1] this yields a stationary porous medium if 

u B = 0 , see Spaid and Phelan [43] , or a moving porous medium 

which can be considered as a particle for u B = u p , see Krause et al. 

[36] . 

3.2. Representation of particle in HLBM 

The velocity u p is considered to be the translational velocity of 

the particle applied to its centre of mass. As can be seen in Eq. 3 , 

nodes with d(x , t) = 0 act like fluid, whereas d(x , t) = 1 results in 

movement of the fluid according to the rigid body motion. In order 

to keep a continuous transition from the fluid to the solid compo- 

nent a ε-boundary is added. Here εh = εh ∈ R > 0 is the smoothing 

parameter, describing the size of the transition zone for a particle. 

For further information on this smoothened boundary, see Krause 

et al. [36] . The interaction of the particle with the fluid is described 

as an external force. More precisely, the influence on the fluid is 

expressed by the velocity ū (see Eq. (3) ), which is included in the 

Maxwell–Boltzmann distribution function f 
eq 
i 

. Given that a porous 

particle is included into the lattice Boltzmann equation through 

a change of velocity, this alteration of velocity leads to a loss of 

momentum, which can be interpreted as a balancing force acting 

on the particle’s boundary. As a result of the given conditions, the 

MEA proposed by Ladd [31,32] is utilised to approximate the acting 

force on the boundary. Between a lattice node x and its neighbour- 

ing node x + c i δt the momentum exchange is calculated by 

g i (x , t) = c i f i (x , t) + c i ∗ f i ∗ ( x , t + c i δt ) , 

where c i ∗ = −c i and f i ∗ is the momentum distribution function ac- 

cording to c i ∗ . Krause et al. [36] extended this method for HLBM, 

which considers porous particles. As a result of the smooth poros- 

ity transition, momentum transfer takes place at the whole tran- 

sition zone, not only at the boundary. Thereby the hydrodynamic 

force F H and torque T H acting on the particle are calculated by 

F H (x , t) = 

∑ 

x ∈ p h 
s (x , t) 

∑ 

i 

g i (x , t) , 

T H (x , t) = 

∑ 

x ∈ p h 
s ( x , t ) ( x − X p (t) ) 

∑ 

i 

g i (x , t) , 

with the particle’s centre of mass X p ( t ), the set of nodes inside the 

particle boundary p h and the support of the function d ( x , t ) 

s (x , t) = 

{
1 , for d(x , t) > 0 

0 , for d(x , t) = 0 . 

3.3. Incorporation of arbitrary shapes 

Describing physical quantities, like the moment of inertia, of an 

arbitrarily shaped body is challenging, since there is no generic an- 

alytical way to calculate these. In order to simplify this problem, 

the representation of the particle on an uniform grid in HLBM, 

by the porosity parameter d residing on the grid nodes, is con- 

sidered. However, for the discrete representation of the particle, a 

second grid is applied, which is not necessarily constructed with 

the same spacing parameter h as the fluid grid. This allows for 

higher resolutions and more accurate solutions, while barely af- 

fecting the required computational effort. With this grid-approach, 

e.g. the volume V of a particle, described by n blocks with the vol- 

ume V B = h 3 p , is obtained by V = nV B using the grid spacing param- 

eter h p for the particle’s grid. While a variation in density can eas- 

ily be incorporated, a homogeneous mass distribution is assumed 

for now. Thereby, the mass of a particle is given by m p = ρp V . 

Moreover, the centre of mass X p is given by 

X p = 

∑ 

B ∈ p X B m B 

m p 
= 

∑ 

j X B 

n 

, (4) 
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Fig. 1. Offset of the particle grid to the fluid lattice caused by rotation (left) and 

translation (right). 

where X B is the centre of mass of block B belonging to the particle 

p and m B its mass. 

Since the rotation is described around the main axes by eu- 

ler angles, the moment of inertia J p ∈ R 

3 has to be computed 

accordingly. A single block’s moment of inertia is computed by 

J B = 

2 m B 
12 h 2 p . Utilizing the parallel axis theorem, the centre of mass 

of the particle p is moved into the origin of the coordinate system. 

A summation of the moment of inertia of each block finally yields 

J p = 

∑ 

B ∈ p 
J B = 

∑ 

B ∈ p 
m B 

(
h 

2 
p 

6 

+ D B 

)
, (5) 

with D B being the vector of distances to the rotation axes. 

As the particle moves, it can not be guaranteed that the nodes 

of the particle grid match the ones of the fluid lattice (see Fig. 1 ). 

Therefore it is checked whether a node of the fluid lattice is oc- 

cupied by a particle by applying the discrete representation as a 

stencil. 

To achieve this, the physical coordinates of the fluid node are 

translated and rotated into particle coordinate system in which the 

particle center of mass matches the origin and the Euler angles of 

the particle are zero. For a given set of Euler angles ( θ1 , θ2 , θ3 ) 

with the rotation matrix 

R θ = 

( 

cos θ2 cos θ3 cos θ2 sin θ3 − sin θ2 

cos θ1 ( sin θ2 cos θ3 − cos θ3 ) sin θ1 sin θ2 sin θ3 + cos θ1 cos θ3 sin θ1 cos θ2 

cos θ1 ( sin θ2 cos θ3 + cos θ3 ) cos θ1 sin θ2 sin θ3 − sin θ1 cos θ3 cos θ1 cos θ2 

) 

. 

the described transformation of a coordinate in the fluid system Y 

is given by 

Y 

∗ = R θ ( Y − X p (t) ) − X p . 

Here Y 

∗ ∈ �h are the physical coordinates of a fluid node in the 

particle system. From this point the coordinates are mapped to the 

closest node of the particle grid by a nearest neighbour approxi- 

mation. 

To reduce cost of the described coordinate transformation only 

fluid nodes within a circumradius of the particle’s centre of mass 

are checked and stored values of the rotation matrix, which is pre- 

computed each time step for each particle, are used. This proce- 

dure does not require updating the discrete particle representa- 

tion on the particle grid, whereby STL-data are not required for the 

simulation. To allow for fast checks whether a node is occupied by 

a particle, the data are stored in an octree structure. 

Since all this operations as well as the computations required 

for the momentum exchange are strictly local regarding the fluid 

lattice, the calculations can easily be parallelised along with LBM 

by domain decomposition methods. However, the scale-up de- 

pends heavily on the solid volume fraction and its distribution in 

the considered application case. 

Describing the smoothing ε region is more challenging in 3D, 

especially when arbitrary shapes are to be considered. As universal 

approach Gaussian smoothing is applied to the edges. The porosity 

of a certain point is calculated considering the surrounding poros- 

ity in the continuous, non-smoothed representation (e.g. a STL- 

file). Through utilisation of the Gaussian distribution function in 

3D 

f (x 1 , x 2 , x 3 ) = �3 
i =1 

1 

σi 

√ 

2 π
exp 

(
− (x i − μi ) 

2 

2 σ 2 
i 

)
, 

with the standard deviations σi = 1 and mean values μi = 0 

weights for the porosities around the considered node at x i = 0 are 

obtained. The new calculated porosity at that node is then given by 

the sum of all weighted porosities for x i ∈ { −εh , 0 , εh } . 

3.4. Rigid body dynamics 

Updates to the position and velocity are accomplished by the 

Verlet algorithm, given by 

X p (t + δt) = X p (t) + u p (t) δt + 

1 

m p 
F T (t) h 

4 , 

u p (t + δt) = u p (t) + 

F T (t) + F T ( t + δt ) 

2 m p 
δt, 

with the total force F T acting on the particle. This force is a sum of 

all acting forces, the hydrodynamic force F H and the gravitational 

force F G = (0 , 0 , −m p g) . The angles θ as well as angular velocity 

ω p are computed analogously. 

4. Results 

The presented method is validated in three steps, which corre- 

spond to the Section 4.1, 4.2 and 4.3 . First, the parameter compu- 

tation strategy is validated by considering an ellipsoid as well as 

a particle geometry obtained from CT-scans, for which the volume 

and moment of inertia are computed. As a second step, the com- 

putation of hydrodynamic forces is reviewed for the example of a 

flow around a cylinder. The resulting drag and lift coefficients are 

compared to literature as well as to computations with a cylinder 

represented by a fixed no-slip boundary. The third step in valida- 

tion addresses the particle dynamics, considering a falling sphere, 

for which the resulting settling velocity is compared to literature. 

Finally, in Section 4.4 the application case of sedimenting lime- 

stone particles is given. 

4.1. Calculation of moment of inertia 

At first, the generation of parameters, i.e. the volume and mo- 

ments of inertia, is validated. Therefore, an ellipsoid with half-axes 

a = 0 . 0692 , b = 0 . 08 and c = 0 . 098 (see Fig. 2 ), which is approx- 

imated by a grid, is studied. The values computed from this dis- 

crete representation are compared to the ones given by analytical 

formulas. Since an ellipsoid has curved boundaries with varying 

curvature, it is ensured that its borders won’t be grid-compliant. 

For a spacing parameter h p = 

1 
900 m the volume is recovered up to 

0.75% accuracy, the moment of inertia is computed according to 

(5) for the main axes. Here the grid spacing is varied according to 

h p = 

0 . 01 
N m for a scaling parameter N ∈ R > 0 . The results an be seen 

in Fig. 3–5 . 

The analytical solutions for the respective rotation axes are 

given by J an 
x = 0 . 00758 kg · m 

2 , J an 
y = 0 . 00682 kg · m 

2 and J an 
z = 

0 . 0053 kg · m 

2 , let the computed solutions further be denoted by 

J x , J y and J z . The deviation form the analytical solution is then 

given in Table 1 and shows convergence to the correct solution. 

Since arbitrary shapes are to be considered, the method is also 
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Fig. 2. Studied ellipsoid with half-axes a = 0 . 0692 m, b = 0 . 08 m and c = 0 . 098 m . 
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Fig. 3. Moment of inertia for rotation around the x-axis for an ellipsoid with half- 

axes a = 0 . 0692 m, b = 0 . 08 m and c = 0 . 098 m . 
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Fig. 4. Moment of inertia for rotation around the y-axis for an ellipsoid with half- 

axes a = 0 . 0692 m, b = 0 . 08 m and c = 0 . 098 m . 

Table 1 

Percental deviation of the moments of inertia of the main axes of an ellipsoid with 

half-axes a = 0 . 0692 m, b = 0 . 08 m and c = 0 . 098 m regarding the grid spacing h p . 

h p J x J y J z 

0.025 16.65 18.4 20.2 

0.01 2.06 2.39 3.37 

0.0025 0.9 0.99 1.09 

0.00125 0.83 0.92 0.98 
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Fig. 5. Moment of inertia for rotation around the z-axis for an ellipsoid with half- 

axes a = 0 . 0692 m, b = 0 . 08 m and c = 0 . 098 m . 

Fig. 6. Geometry representation of a limestone particle generated from a CT-scan 

(left) and a representation of the same particle approximated by 74781 blocks 

(right). 
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Fig. 7. Moments of inertia of the limestone particle. 

applied to the geometry of a limestone particle, which is de- 

picted together with the approximation on a grid with 74781 

blocks in Fig. 6 . The volume of the particle with dimension 

0.02295 m × 0.03745 m × 0.052 m is approximated to 1 . 6152 · 10 −5 m 

3 

for the spacing parameter h p = 0 . 0 0 06 m . Furthermore, the compo- 

nents of the moment of inertia are calculated and converge, as can 

be seen in Fig. 7 , towards a fixed value. For the mentioned grid 

spacing ( N = 16 . 6 ̄6 ) they are computed to be J x = 5 . 08 · 10 −6 kg ·
m 

2 , J y = 4 . 12 · 10 −6 kg · m 

2 and J z = 2 . 17 · 10 −6 kg · m 

2 . 
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2.5m
0.41m

0.41m

0.15m

0.16m

0.1m

1.95m

z

x

y

Fig. 8. Setup for the simulation of a flow around a cylinder [44] . 

Table 2 

Computed drag coefficients c D for the flow around a cylinder. 

c D N = 1 N = 2 N = 3 N = 4 N = 5 

ε = 2 9.83 7.57 7.05 6.81 6.68 

ε = 1 8.15 6.90 6.63 6.51 6.43 

ε = 0 . 5 6.93 6.44 6.35 6.30 6.27 

ε = 0 6.90 6.38 6.24 6.22 6.19 

Bouzidi 6.35 6.22 6.20 6.19 6.18 

Schäfer et al. [44] 6.05–6.25 

Table 3 

Computed lift coefficients c L for the flow around a cylinder. 

c L (×10 −2 ) N = 1 N = 2 N = 3 N = 4 N = 5 

ε = 2 0.00 1.04 1.11 1.11 1.09 

ε = 1 0.00 0.66 0.81 0.87 0.90 

ε = 0 . 5 0.00 0.77 0.88 0.91 0.92 

ε = 0 0.00 0.53 0.66 0.73 0.76 

Bouzidi 13.20 2.50 0.45 1.25 0.63 

Schäfer et al. [44] 0.80–1.00 

4.2. Flow around a cylinder 

For verification of the hydrodynamic forces of the presented 

method the benchmark case of a flow around a cylinder accord- 

ing to Schäfer et al. [44] is considered. The geometry used for 

the simulation can be seen in Fig. 8 . In our case the cylinder 

is represented by a spatial fixed HLBM object. While the walls 

have a bounce-back boundary as no-slip condition, the outflow at 

x = 2 . 5 m is treated by a regularized pressure boundary, while the 

inflow at x = 0 m is treated by a regularized velocity boundary, both 

described in [45] . The velocity profile is given according to Schäfer 

et al. [44] by 

u f (0 , y, z) = 7 . 2 yz 
(0 . 41 − y )(0 . 41 − z) 

0 . 41 

4 
. 

For reasons of comparability the kinematic viscosity and fluid den- 

sity are set to ν = 10 −3 m 

2 /s and ρf = 10 0 0 kg/m 

3 respectively. The 

drag and lift coefficients, denoted by c D and c L , computed by 

c D = 

2 F H x 

0 . 041 ρf ̃  u 

2 
, c L = 

2 F H y 

0 . 041 ρf ̃  u 

2 
, 

with the average inflow velocity ˜ u , are compared to the ones pre- 

sented by Schäfer et al. [44] and to a reference solution computed 

with the cylinder represented by a Bouzidi boundary condition. For 

a given grid spacing parameter h = 

0 . 01 
N m, the grid-independence 

has been investigated, the results can be seen in Table 2 and 3 . For 

the drag coefficient the results computed with HLBM are in good 

agreement with the ones obtained with a Bouzidi boundary con- 

dition and are also within the interval given by Schäfer et al. be- 

ginning with N = 3 . The approach with a static Bouzidi boundary 

Fig. 9. Magnitude of velocity of the sphere in z -direction for different ε with N = 3 

compared to the experimental results of Mordant and Pinton [46] . 

Fig. 10. Magnitude of velocity of the sphere in z -direction for different resolutions 

with ε = 1 compared to the experimental results of Mordant and Pinton [46] . 

yields similar results requiring less cells compared to HLBM and 

therefore performs better in the stationary case. However, consid- 

ering moving objects a Bouzidi boundary requires computational 

expensive distance calculations in each time step. 

The computed lift coefficient on the other hand closely re- 

sembles the interval given by Schäfer et al. however, fluctuations 

around this interval can be observed, for HLBM as well as for the 

computations performed with a Bouzidi boundary. For HLBM and 

N = 1 the lift coefficient is of the order of magnitude of compu- 

tational accuracy and therefore neglected. For this setup the size 

of a grid cell is 0.01 m . Therefore the deviation in y -direction of 

the cylinder from the centre of the channel falls below this value 

with 0.005 m . Since the flow field is symmetric, the lift force origi- 

nates from this deviation which may not be depicted correctly de- 

pendent on the implementation and discretisation for N = 1 as the 

problem is under-resolved. 

Furthermore the results show a dependency of the computed 

coefficients on the parameter ε, since it influences the simulated 

size of the object. However, the applied εh depends on the grid 

spacing and the deviation between the solutions for different ε de- 

creases for higher grid resolutions as can be seen in Table 2 and 3 . 

To show grid independence, the experimental order of conver- 

gence (EOC), given by 

EOC( j, k ) = 

log (er r ( j)) − log (er r (k )) 

log ( j) − log (k ) 
, (6) 
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Fig. 11. Velocity magnitude of 15 sedimenting limestone particles at t = 0 s (left), t = 0 . 576 s (mid) and t = 1 . 152 s (right). 

Fig. 12. Velocity magnitude of 15 sedimenting limestone particles at t = 1 . 656 s (left), t = 2 . 232 s (mid) and t = 2 . 736 s (right). 
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Fig. 13. Velocity magnitude of 15 sedimenting spheres at t = 0 s (left), t = 0 . 576 s (mid) and t = 1 . 152 s (right). 

Table 4 

Computed lift coefficients c L for the flow around a cylinder. 

EOC (1, 2) EOC (2, 3) EOC (3, 4) average EOC 

ε = 2 1.83 2.16 3.52 2.50 

ε = 1 1.87 2.10 3.30 2.42 

ε = 0 . 5 1.97 1.80 3.74 2.50 

ε = 0 1.91 3.30 1.18 2.13 

Bouzidi 2.07 3.12 3.77 2.99 

is computed. Here er r ( j) = ‖ c N= j 
D 

− c N=5 
D 

‖ denotes the deviation 

from the respective solution for N = 5 . The results are depicted 

along with the averaged EOC in Table 4 , showing a quadratic con- 

vergence. 

4.3. Sedimentation of a sphere 

To investigate the settling velocity of a spherical particle, it is 

placed at (0.0 025 m , 0.0 025 m , 0.0 049 m ) in a domain of the size 

0.005 m × 0.005 m × 0.05 m with periodic boundaries. The parame- 

ter are chosen according to the case # 1 of the experiments con- 

ducted by Mordant and Pinton [46] who measured the velocity of 

settling spheres. This setup has also been considered for numer- 

ical simulations by Uhlmann [19] , applying an immersed bound- 

ary method. The kinematic viscosity is given by ν = 0 . 89 · 10 −6 m 

2 

s , 

the radius of the sphere by r s = 0 . 0 0 025 m and the density of the 

sphere by ρp = 2560 kg/m 

3 , which corresponds to glass. The sur- 

rounding fluid in the experiments is water, assuming room tem- 

perature, the density is chosen to be ρf = 998 kg/m 

3 . 

To compare the results, the particle Reynolds number Re p is 

computed by 

Re p = 

2 r s ‖ 

u z ‖ ∞ 

ν
. 

Table 5 

Particle Reynolds number Re p of a settling sphere ( N = 4 and ε = 1 ) in comparison 

to Uhlmann (simulation) and Mordant and Pinton (experiment). 

Re p 

present 41.97 

Uhlmann [19] 41.12 

Mordant and Pinton [46] 41.17 

Here ‖ u z ‖ ∞ 

is the maximum velocity according to amount of the 

sphere in z -direction measured during the simulation. The grid 

spacing parameter is given by h = 

0 . 0 0 0 08 
N m for N ∈ {1, 2, 3, 4}. 

Thereby the sphere is resolved by at least 6 cells along the diam- 

eter. For the temporal discretisation δt = 

0 . 0 0 0 075 
N 2 

is applied. The 

temporal evolution of the velocity in the conducted simulations 

is depicted in Fig. 10 and Fig. 9 . Applying a smooth transition 

zone, described in Section 3.1 , it is found that ε = 1 yields the 

best results, as ε = 2 leads a strong deviation since the sphere ap- 

pears enlarged by the smooth transition zone. Studying the grid 

independence in Fig. 9 , the results show a convergent behaviour, 

as h → 0 and thereby εh → 0. While for N = 1 oscillations, proba- 

bly due to a discretisation error, can be observed they vanish for 

higher resolutions. Considering the resolution N = 4 and choosing 

ε = 1 the maximal occurring particle Reynolds number is given by 

Re p = 41 . 97 . This overestimates the results of Uhlmann by 2.1% and 

the meassurements of Mordant and Pinton by 1.9% (see Table 5 ). 

4.4. Simulation of 15 limestone particle 

The limestone particle discussed in Section 4.1 is placed 15 

times in a fluid domain with a size of 0.2 m × 0.2 m × 0.5 m . The par- 

ticles are randomly distributed in the top 40% of the domain with 

different angels, as depicted in Fig. 11 (left). The particles sediment 
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Fig. 14. Velocity magnitude of 15 sedimenting spheres at t = 1 . 656 s (left), t = 2 . 232 s (mid) and t = 2 . 736 s (right). 
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Fig. 15. Pathlines of the limestone particle up to t = 2 . 66 s . 

under the influence of gravity, inducing a fluid flow, that is shown 

in Fig. 11 and 12 for different points in time. For further stud- 

ies the same experiment has been conducted with spheres (see 

Fig. 13 and 14 ) with the same mass as the limestone particle and 

the same starting points. The equivalent radius has been computed 

to be 0.01568 m . The pathlines of the centres of mass of the parti- 

cle can be seen in Fig. 15 and Fig. 16 . As expected the paths of 

the spheres are smoother, which is reflected by the mean settling 

velocity, which is computed to ū l = 0 . 0865 m 

s for limestone parti- 

cle and to ū s = 0 . 1214 m 

s for spheres. For the calculations, veloci- 

ties from the start of the simulations up the time when the first 

particle reaches the bottom of the domain are considered. This 

0
0.05

0.1
0.15

0.2 0
0.05

0.1
0.15

0.2
0

0.1

0.2

0.3

0.4

0.5

z

x

y

z

Fig. 16. Pathlines of the spherical particle up to t = 2 . 66 s . 

demonstrates the influence of the particle shape on the settling 

behaviour. In the conducted experiments a momentum exchange 

between the particles has been observed, leading to a collision- 

like behaviour. This is probably caused by the relaxation towards 

the particle velocity of the fluid in combination with the smooth 

transition region. However, it yet has to be verified that this cor- 

rectly depicts the underlying physics. 

5. Conclusion 

An extension of HLBM to 3D is presented along with a strat- 

egy for the treatment of arbitrary particle shapes. The generation 
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of physical parameters like the moment of inertia and the volume 

from a surface representation of the particle is validated by the 

consideration of an ellipsoid, for which analytical solutions exist, as 

well as for a complex geometry. The dynamics and computations of 

hydrodynamic forces are verified by investigating a settling sphere 

and a flow around a cylinder as benchmark. The results for both 

cases show good agreement with existing literature. Furthermore, 

a grid independence study yields a quadratic convergence for the 

drag coefficient. 

For further works a closer investigation of observed repul- 

sive effects acting similar to the treatment of particle collisions 

is required. Therefore the applied momentum exchange algorithm 

needs to be examined for approaching particles regarding under- 

lying physical effects like lubrication forces or compressibility ef- 

fects. In this context also investigations regarding an ideal smooth- 

ing parameter ε are required. The here presented 3D implementa- 

tion provides the foundation for this investigations. Furthermore a 

study of the limits and influence regarding the Reynolds number is 

of interest. 

In the application case the settling of 15 limestone particles is 

investigated and compared to an analogue case utilising spheres 

instead. The finding is a difference in the average settling ve- 

locity of the bodies, which gives proof to the influence of par- 

ticle shape on the macroscopic flow behaviour of a suspension, 

thereby, implying the relevance, e.g. for solid-liquid separation 

processes. 
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Abstract: The simulation of surface resolved particles is a valuable tool to gain more insights in
the behaviour of particulate flows in engineering processes. In this work the homogenized lattice
Boltzmann method as one approach for such direct numerical simulations is revisited and validated
for different scenarios. Those include a 3D case of a settling sphere for various Reynolds numbers.
On the basis of this dynamic case, different algorithms for the calculation of the momentum exchange
between fluid and particle are evaluated along with different forcing schemes. The result is an
updated version of the method, which is in good agreement with the benchmark values based on
simulations and experiments. The method is then applied for the investigation of the tubular pinch
effect discovered by Segré and Silberberg and the simulation of hindered settling. For the latter, the
computational domain is equipped with periodic boundaries for both fluid and particles. The results
are compared to the model by Richardson and Zaki and are found to be in good agreement. As no
explicit contact treatment is applied, this leads to the assumption of sufficient momentum transfer
between particles via the surrounding fluid. The implementations are based on the open-source C++
lattice Boltzmann library OpenLB.

Keywords: homogenized lattice Boltzmann method; hindered settling; OpenLB; particle simulation;
momentum exchange algorithm; tubular pinch effect

1. Introduction

The simulation of particulate flows finds application in many fields as it permits a
detailed examination of an engineering process. It allows access to data on particle be-
haviour, for which experimental measuring is complex or costly. It was already applied for
the simulation of solid separation processes by Viduka et al. [1], testing different pulsation
profiles of a jigging device, or by Li et al. [2] regarding the separation of soybeans from
mustard seeds. The work presented here is the validation and improvement of a method
for direct numerical simulation, also depicting the particle’s shape. The industrial relevance
of this topic has been shown, e.g., by Champion et al. [3] who showed that particle shape
significantly influences the performance of drug carriers. A discussion on the industrial
relevance of particle shape for products and processes is also given by Davies [4], who
references, e.g., the relevance for the production of rubber, as also stated by Scotti et al. [5].
On the most coarse level, particles can be depicted as a continuum by considering dis-
tributions with Euler–Euler approaches utilising an advection–diffusion equation [6–8].
Approaches which treat each particle as separate entity yield more details. With the dis-
crete element method (DEM), e.g., separation processes in a cyclone can be studied [9]

Computation 2021, 9, 11. https://doi.org/10.3390/computation9020011 https://www.mdpi.com/journal/computation

68 5 Homogenized Lattice Boltzmann Method – Validation and Applications



Computation 2021, 9, 11 2 of 31

considering the particles as solid spheres. Furthermore, adsorption processes in a static
mixer [10] or packing characteristics of powder [11] are of interest. The DEM can be used
together with various approaches and models for the simulation and representation of the
fluid. The coupling of DEM particles with a model for a non-Newtonian turbulent fluid is
for example relevant in the simulation of anaerobic digestion [12]. A review of applications
for DEM simulations is given by Zhu et al. [13].

For more sophisticated studies, hydrodynamic forces on a particle and its shape can be
resolved by direct numerical simulations (DNS) [14]. This enables, e.g., the calculation of
drag correlations [15]. Focusing on the shape, the investigation of the interaction between
particles and a rough surface is possible [16]. At this point, however, proper collision
treatment becomes important. For the absence of a significant influence of a fluid, the
framework Grains3D [17,18] has been presented to investigate arbitrarily shaped convex
particles under the influence of gravity and contact forces applying the Gilbert–Johnson–
Keerthi algorithm for contact detection and distance calculation. The framework has
later been extended to concave shapes by representing them as glued convex shapes [19].
Considering particles submersed in fluid, a simple approach is the one of glued spheres [20]
to approximate various particle shapes and get more information on the distribution of
acting forces. For this approximation, however, the accuracy is limited as the required
number of spheres increases drastically for better approximations of a shape. To circumvent
this problem, the object can be described by several Lagrange points on the surface, at
which the hydrodynamic forces are calculated. This points can be independent of the
underlying grid, which represents the fluid. This allows for a high accuracy in depiction
of the shape, but requires frequent interpolation between fluid and particle points. This
common approach is called immersed boundary method (IBM) [21]. One of its advantages
is that it can be coupled with various approaches to solve the fluid system like the finite
element method, the finite volume method or the lattice Boltzmann method (LBM) [22,23].

The coupled IBM–LBM has been frequently applied for the investigation of fluid
structure interaction problems [24]. While many studies of, e.g., vortex induced vibra-
tions [22,25] or the flow around a torus by Wu and Shu [26] only consider simpler ge-
ometries with analytical representations, mappings for more complex polygons exist, as
discussed by Owen et al. [27]. Nevertheless, more complex structures can be simulated as
well as described by Beny and Latt [28], who simulated multiple propellers on a GPU sys-
tem. In IBM–LBM, it is possible to also consider simple strings as shown by Tian et al [22]
who simulated filaments in a flow. A comparative study of IBM approaches was per-
formed by Kang and Hassan [29], who investigated the flow past a cylinder and decaying
Taylor–Green vortices.

The homogenized lattice Boltzmann method (HLBM) used in this work, in turn,
has very few restrictions regarding the shape, since a voxel representation of almost
any object can be chosen for simulations, as shown in [30]. Very thin objects, however,
remain problematic, as they may not be captured by the lattice resolution. The main
difference between IBM and HLBM is the way the objects are represented. The former
employs Lagrangian points, which allows thin structures but requires interpolations and
the creation of a distribution of those points on the surface of the object. The latter directly
uses points on the fluid grid. The correct depiction of a structure, in this case, mainly
depends on the grid resolution.

The LBM proved to be easy to parallelize due to the fact that most calculations are
carried out in a strictly local collision step. This has been investigated for the use on
computing clusters with GPU systems [31] as well as mixed CPU–GPU systems [32]. For
LBM, additional approaches for the simulation of arbitrarily shaped particles are available,
which are specific to their method. The most common one is the partially saturated cells
method (PSM), in its original version proposed by Noble and Torczynski [33]. It depicts the
object on the fluid grid by assigning a linear combination of a no-slip condition and bulk
flow to a grid cell depending on its distance to the actual physical particle boundary. This
is possible as LBM operates on a mesoscopic level considering the fluid by distributions
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of fluid-particles in a phase space. There are several aspects to this approach if moving
objects are considered, e.g., the refilling of cells that were previously covered by a particle
or the chosen no-slip condition. This has been investigated by Peng et al. [34].

Another topic is the way the hydrodynamic force is calculated. The stress integration
method, e.g., described in [35,36], is also applicable for other simulation approaches and
not specific to LBM but proved to be inefficient [37,38]. An alternative is the momen-
tum exchange algorithm (MEA) [39,40], which calculates differences in the momentum
via the mentioned particle distributions in the phase space. For this method, various
formulations and improvements have been proposed [41–44] and are subject to current
investigations [34].

In this study three applications are presented. For the first case of a settling sphere,
the results are validated against ten Cate et al. [45], who performed simulations of a
single sphere for different Reynolds numbers and compared the data to particle imaging
velocimetry experiments. In addition, the results are compared to various drag correlations
discussed in Section 2.1.

The second case simulates the tubular pinch effect first described by Segré and Sil-
berberg [46]. They found that a neutrally buoyant particle in a tube flow equilibrates at a
position between the tube’s center and its wall and that the results for single particles can
be extended to mixtures by linear combination [47]. Later, Tachibana et al. [48] found that
the equilibrium position depends on the ratio of sphere diameter to tube diameter, which
should be larger than 0.2 for the effect to be clearly visible. Karnis et al. [49] studied further
the influence of the Reynolds number and the distance between two spheres on this effect.

The case of hindered settling is also relevant in many applications of process engi-
neering as usually collectives of particles are processed. This is reflected in many studies
simulating this case [50–53]. The results are usually compared to an empirical correlation
found by Richardson and Zaki [54]. However, more correlations exist as discussed in
Section 2.2. The results in this study are compared to different correlations to give a
better overview.

In this work, the HLBM proposed by Krause et al. [30,55] is applied. Contrary to
other approaches for moving objects, HLBM does not represent objects by a sharp no-slip
boundary but rather with interior fluid utilising a forcing scheme and a transition region to
mimic such a condition. This is a similarity to the IBM and leads to the need for further
research as existing MEA approaches are developed for no-slip boundaries in the first
place. Therefore, a novel momentum loss algorithm (MLA) is tested in this study. The
semi-locality (depending on the chosen approach for the calculation of hydrodynamic
forces) of the HLBM allows for an easy and efficient implementation on parallel systems
without the need of costly interpolations. On the other hand, no refilling of cells is required
as in PSM approaches. Besides the new MLA the HLBM is revisited and for the first time
evaluated for different forcing schemes and methods for the calculation of hydrodynamic
forces. To the knowledge of the authors such a comparative study for HLBM has not
been performed before. This finally leads to a new improved scheme, which is validated
for the simple case of a settling sphere but also tested for the application in hindered
settling simulations and the tubular pinch effect. The results are compared to common
experimentally determined correlations and reference simulations. This shows the range
of applicability of the presented method, e.g., regarding the Reynolds number. Such tests
are currently not found in literature for HLBM, however, this information is of interest
when choosing a proper simulation approach depending on an application. Therefore,
additionally different cases are examined for the first time with HLBM, which is important
as, e.g., the tubular pinch effect can’t be reproduced by all approaches for DNS particle
simulations as stated by Li et al. [35] and Peng et al. [34]. Additionally, considering
the case of hindered settling the investigation of particle interactions, first mentioned
by Krause et al [55], is continued, which was not found in other publications. To the
knowledge of the authors, the investigations and findings for HLBM presented in this work
have not been shown before.
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The remainder of this paper is organized as follows: in Section 2 the physical back-
ground and correlations found in the literature are discussed. Then, in Section 3 the
methods used for the simulations are discussed along with various forcing and MEA
schemes to be tested. Finally, in Section 4 the results of the numerical investigation are pre-
sented and the conclusion is drawn in Section 5. All simulations presented are performed
with the open-source lattice Boltzmann C++ framework OpenLB [56].

2. Modelling

This study focuses on two component systems of rigid particles submersed in a
water-like fluid. The latter is described by the incompressible Navier–Stokes equations,
given by

∂uf
∂t

+ (uf · ∇)uf − ν∆uf +
1
ρf
∇p = Ff in Ω× I ,

∇ · uf = 0 in Ω× I .
(1)

The equations are defined on a spatial domain Ω ∈ Rd of dimension d ∈ 2, 3 and a
time interval I ⊆ R. The fluid velocity is denoted by uf : Ω× I → Rd, while p : Ω× I → R
describes the pressure, ρf ∈ R>0 the fluid’s density and ν ∈ R>0 its kinematic viscosity.
Ff : Ω× I → Rd represents the total of external forces acting on the fluid.

The dynamics of the second component, the rigid particles, are governed by the
equations based on Newton’s second law of motion

mp
∂up

∂t
= Fp and Jp

∂ωp

∂t
= Tp . (2)

With the particle mass mp ∈ R>0, the particle velocity up : Ω× I → Rd and the force
acting on the particle Fp : Ω× I → Rd, the trajectory of motion can be calculated. The

rotational behaviour is modelled analogously with the moment of inertia Jp ∈ Rd̂, the

angular velocity ωp : Ω× I → Rd̂ and the torque Tp : Ω× I → Rd̂. Here d̂ = 1 for d = 2
and d̂ = 3 for d = 3.

In this study, only the gravitational and buoyancy forces are considered as external
forces. They are given by FG = (0, 0, mpg) and FB = (0, 0,−mp

ρf
ρp

g) for d = 3 (FG =

(0, mpg) and FB = (0,−mp
ρf
ρp

g) for d = 2) for a gravitational acceleration of g. This means,
forces regarding particle-particle and particle-wall contact are neglected in this study and
momentum between particles is only transferred via the fluid. As most cases consider
only single particles with no relevant wall contact this is reasonable. The only exception is
the investigation of hindered settling in Section 4.3. Here the system is discretized with
a decent resolution to allow for sufficient momentum transfer via the fluid. Along with
the hydrodynamic force FH : Ω× I → Rd accounting for the momentum transfer between
fluid and particles, the combined forces are given by

Ff = FH , Fp = FG − FB − FH and Tp = r×
(
−FH

)
, (3)

for a vector r ∈ Rd denoting the distance to the center of mass of a particle.

2.1. Drag Force

While in this study a DNS approach is chosen, for methods considering the particles
as single points the hydrodynamic force has to be modelled. This is done via a drag force,
accounting for the resistance an object experiences when moving relative to a surrounding
fluid. It is defined by

FD =
1
2

ρf(up − uf)
2CD A , (4)

with A ∈ R>0 being the area of the projection of the object in flow direction. While the
determination of the drag coefficient CD ∈ R for various shapes is subject to current
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research [57,58], for spheres many correlations depending on the Reynolds number Re
have been given. The latter is defined as

Re =
dp‖up‖

ν
, (5)

for the cases considered in this work, with a particle’s diameter dp ∈ R>0. For small
Reynolds numbers the drag coefficient is described by Stokes’ law [59]

CD =
24
Re

, for Re < 1 . (6)

While in the Newton regime between Re = 103 and Re = 105 the coefficient is defined
by CD = 0.44, many correlations exist for the transition region of Reynolds numbers
between 1 and 103. Notable here is among others the contribution by Abraham [60], who
took the boundary layer into account for a theoretical derivation, leading to

CD =

(
0.5407 +

√
24
Re

)2

, for 0 < Re < 5000 . (7)

Schiller and Naumann [61] used an empirical approach to obtain the commonly used
approximation of

CD =
24
Re

(
1 + 0.15Re0.687

)
, for Re < 800 (8)

for the drag coefficient. As many more correlations can be found, the authors refer to
Dey et al. [62] for a comprehensive overview.

2.2. Hindered Settling

The above mentioned drag correlations consider the case of free settling, more precisely
the settling of a single sphere in an infinitely extended medium. In practical applications,
collectives of particles are more common, which leads to the case of hindered settling
caused by interactions between particles. The empirical correlations developed in many
past studies proved to be sensible approaches in modeling such behaviour.

The oldest recapitulated here is the one by Steinour [63], who investigated spheres con-
sisting of tapioca and glass, for a solid volume fraction φ of up to 49.8%. The experimental
conditions correspond to Re = 0.0025 and Re = 0.0026, leading to

uSteinour(φ) = uS(1− φ)2e−4.19φ . (9)

The hindered settling velocity is here expressed relative to the terminal settling velocity
according to Stokes’ uS, obtained by inserting Equation (6) in Equation (4).

Another correlation was found by Oliver [64]. In the experiments with Kallodoc
particles, Reynolds numbers up to 0.39 were reached with solid volume fractions up to
35%. The results are reflected in the formula for the hindered settling velocity given by

uO(φ) = uS

(
1− 0.75φ

1
3

)
(1− 2.15φ) . (10)

One of the most commonly used expressions was found in investigations performed
by Richardson and Zaki, who approached the topic from both, an analytical [54] and an
experimental [65] perspective. Their formulation was subject to many adaptions regarding
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accuracy, convenience and extension of applicability [66–69]. In the original form it is given
by uRZ(φ) = uS(1− φ)n, with

n =





4.65 for Re < 0.2
4.35Re−0.03 for 0.2 < Re < 1
4.45Re−0.1 for 1 < Re < 500
2.39 for 500 < Re

. (11)

In a more comprehensive study taking also the results of other authors into account
along with their findings, Barnea and Mizrahi [70] concluded with the general correlation

uBM(φ) = uS
1− φ

(1 + φ
1
3 )e

5φ
3(1−φ)

, (12)

which is independent of the Reynolds number. While this is the finding for the creeping
flow regime (Re � 1), Barnea and Mizrahi suggest the application of drag correlations
beyond Stokes’ law. Therefore in contrast to other publications, for higher Re the hindered
settling velocity is not based on uS anymore, but on a terminal settling velocity determined,
e.g., by Equation (8).

3. Methods

For the simulations, the lattice Boltzmann method was applied, which operates on
a uniform cubical grid Ωh approximating the computational domain. This structure is,
together with the discrete phase space, spanned by the d spatial dimensions and a discrete
set of q velocities ci ∈ Rd, i = 0, . . . , q− 1, denoted as lattice. The latter is usually labeled
as DdQq. Choosing commonly used sets, the simulations in this study were performed
on a D2Q9 and a D3Q19 lattice. As usual, the computations were conducted in lattice
units meaning all values were scaled such that the grid spacing and time step size became
δxL = 1 and δtL = 1, respectively. The superscript L indicates that a value is given in lattice
units. For reasons of readability, all values in this section were assumed to be in lattice
units if not stated otherwise omitting the superscript.

The propagation of particle distributions fi : Ωh × Ih → R, i = 0, . . . , q − 1, for a
discretized time interval Ih, on the given lattice is described by the lattice Boltzmann
equation. Together with the Bhatnagar—Gross—Krook (BGK) collision operator [71]
it reads

fi(x + ci, t + 1)− fi(x, t) = − 1
τ

(
fi(x, t)− f eq

i (ρ, u)
)

, for x ∈ Ωh, t ∈ Ih, i = 0, . . . , q− 1 . (13)

The lattice relaxation time τ is related to the lattice kinematic viscosity by

ν = c2
s

(
τ − 1

2

)
. (14)

Beside a streaming of particle distributions, Equation (13) describes the relaxation of a
system towards an equilibrium state given by the discrete Maxwell–Boltzmann distribution

f eq
i (ρ, u) = wiρ

(
1 +

ci · u
c2

s
+

(ci · u)2

2c4
s

+
u2

2c2
s

)
, for i = 0, . . . , q− 1 . (15)

Here, wi are weights originating from a Gauss–Hermite quadrature rule and
cs =

1√
3

is the lattice speed of sound, valid for both lattice configurations used in this work.
The density and velocity on a grid point can be calculated by moments of the discrete
distributions

ρ(x, t) =
q−1

∑
i=0

fi(x, t) and u(x, t) =
1
ρ

q−1

∑
i=0

ci fi(x, t) , for x ∈ Ωh, t ∈ Ih , (16)

5.3 Methods 73



Computation 2021, 9, 11 7 of 31

respectively. Furthermore, the pressure p is related to the density ρ in LBM by
p(x, t) = ρ(x, t)c2

s . In the rest of this section, the arguments for density and velocity
are omitted for better comprehensibility. For a more comprehensive overview on this
simulation approach, the authors refer to [23].

3.1. Homogenized Lattice Boltzmann Method

The DNS simulations in this study were performed utilizing the HLBM, which was
first published by Krause et al. [55] and was extended to 3D by Trunk et al. [30]. The
extensions of the method to the standard LBM with BGK collision could be divided into
three parts. Namely, the representation of an object on the lattice, the forcing scheme
applied to the fluid to account for the particles’ presence and a method to calculate the
exchanged momentum between an object and fluid for the calculation of forces acting on
the object. From this point, the trajectory of a particle is calculated according to Equation (2)
in combination with a velocity-Verlet algorithm [72,73].

Object Representation. The depiction of arbitrary shapes within the HLBM is described
in detail by Trunk et al. [30]. Here, only a brief overview is given. From a voxel repre-
sentation of the object, which did not necessarily have the same spatial resolution as the
lattice, parameters like the moment of inertia and the mass were calculated. For a smooth
transition between fluid and particle domain, a Gaussian filter was applied. If an analytical
representation of the shape was given, a smooth transition could also be defined utilizing
trigonometric functions as described by Krause et al. [55]. This led to a mapping function
dB : Ω× I → [0, 1], which took on the value of 0 in the fluid domain and 1 in the area
covered by the object. In the transition region it yielded values in between. Along with the
current position of the object xp ∈ Ω this defined a domain B(t) = {x ∈ Ω : dB(x, t) 6= 0}
which was covered by the body. To account for the presence of particles, the velocity used
in the equilibrium distribution Equation (15) was replaced by the convex combination

ũ(x, t) = u(x, t) + dB(x, t)
(
up(x, t)− u(x, t)

)
for x ∈ B(t), t ∈ Ih . (17)

The velocity difference ∆u = ũ− u could be used in forcing schemes as stated in the
next Section.

Forcing Schemes. As the effect on the fluid is given via a velocity difference, in pre-
vious publications a forcing scheme according to Shan and Chen [74] has been chosen,
which only modifies the velocity inserted in the Maxwell–Boltzmann distribution. In this
study, several forcing schemes (proposed by Shan and Chen [74], Guo et al. [75] and
Kupershtokh et al. [76]) were considered (see Section 3.2) and then tested in Section 4.1.

Momentum Exchange. Various methods to calculate the exchanged momentum are
given in Section 3.3 and are applied in Section 4.1. They were evaluated regarding the
accuracy of the velocity profile of a falling sphere. In previous publications [30,55] an
adapted version of the momentum exchange according to Ladd [39,40] was used.

3.2. Forcing Schemes

To incorporate a force in LBM, the definition of the velocity handed to the Maxwell–
Boltzmann distribution, from now on labeled ueq, was modified and/or a source term Si
was added to the right hand side of Equation (13). In all cases, the fluid velocity given in
Equation (16) was redefined in the presence of a force F to

u =
1
ρ

q−1

∑
i=0

ci fi(x, t) +
Fδt
2ρ

, for x ∈ Ωh, t ∈ Ih . (18)

For a more comprehensive discussion on forcing schemes the authors again refer
to Krüger et al. [23], however, the three forcing schemes used in this study are briefly
summarized here.
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The approach of Shan and Chen [74] only modifies the equilibrium velocity to

ueq =
1
ρ

q−1

∑
i=0

ci fi(x, t) + τ
F
ρ

, for x ∈ Ωh, t ∈ Ih . (19)

This scheme originates from methods for multi-component and multi-phase flows, but
is also applicable to single-component systems. It is frequently used due to its simplicity
and performance advantage, however, a dependency of the results on τ is found, e.g., by
Huang et al. [77] examining various forcing schemes for multi-phase LBM. Along with this
scheme, a velocity shift method is proposed by Shan and Chen [74], which states F = ρ

τ ∆u.
Guo et al. [75] proposed a scheme modifying both the velocity and the source term to

ueq =
1
ρ

q−1

∑
i=0

ci fi(x, t) +
Fδt
2ρ

, for x ∈ Ωh, t ∈ Ih , (20)

Si(x, t) =
(

1− δt
2τ

)
wi

(
ci − u

c2
s

+
(ci · u)ci

c4
s

)
· F , for x ∈ Ωh, t ∈ Ih . (21)

At last, the exact difference method (EDM) by Kupershtokh et al. [76] only introduces
a source term Si(x, t) = f eq

i (ρ, u + ∆u)− f eq
i (ρ, u) to the system. The velocity difference

∆u it is based upon is calculated by ∆u = Fδt/ρ, since δt = δx = 1 in lattice units as stated
before. In this approach the velocity u remains just as defined in Equation (16).

3.3. Methods for Momentum Exchange

In this study, different schemes for the momentum exchange between fluid and particle
are also discussed. The first is an adaptation of the MEA by Ladd [39,40] which has been
applied in [30,55]. As shown in [37,38], it can be written as

FH(t) = ∑
x∈B(t)

q−1

∑
i=1

ci( fi(x + ci, t) + f ī(x, t)) , for t ∈ Ih . (22)

Here f ī is defined as distribution function according to the velocity cī, which is
opposite to ci, i.e., cī = −ci. Various Improvements have been suggested [41,78], as this
approach fails, e.g., in the simulation of the tubular pinch effect described by Segré and
Silberberg [46,47], as stated by Peng et al. [34]. In their study, they compared different MEA
approaches and tested them along with other aspects of moving boundary implementations.
One of the most common approaches is the one by Wen et al. [42]

FH(t) = ∑
x∈B(t)

q−1

∑
i=1

(
ci − up

)
fi(x + ci, t) +

(
ci + up

)
f ī(x, t) , for t ∈ Ih . (23)

It incorporates the particle velocity for higher accuracy and in order to achieve Galilean
invariance.

Lastly, a new approach is proposed by the authors denoted as momentum loss algo-
rithm. As in the HLBM objects are depicted with interior fluid rather than with a sharp
no-slip boundary, the investigation for alternative approaches to calculate exchanged mo-
mentum is of interest. Examined in this work is the method of computing the momentum
directly from the introduced forcing for the approaches by Kupershtokh et al. [76] and
Shan and Chen [74]. For the latter this means

FH(t) =
1
τ ∑

x∈B(t)

q−1

∑
i=1

ci

(
f eq
i (ρ, ũ)− f eq

i (ρ, u)
)

, for t ∈ Ih , (24)
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while for the EDM it is slightly different namely,

FH(t) = ∑
x∈B(t)

q−1

∑
i=1

ci

(
f eq
i (ρ, ũ)− f eq

i (ρ, u)
)

, for t ∈ Ih . (25)

The forcing schemes and methods for momentum exchange discussed in this section
allow for a comparative study. The previously used HLBM approach is based on the
forcing introduced by Shan and Chen [74] and the momentum exchange by Ladd [39,40].
According to literature [34], there are methods available which yield a higher accuracy.
This will be investigated in Section 4.1 leading to an updated version of HLBM which is
expected to yield higher accuracy.

4. Results and Discussion of Numerical Experiments

In this Section, various schemes for forcing and momentum exchange are tested
along with the remaining HLBM implementation. In Section 4.1 first, the approaches are
compared regarding the settling velocity of a sphere and the best performing combination
is selected for further validation against existing drag correlations for spheres. Afterwards,
the implementation is applied to the cases of a neutrally buoyant particle in a pipe in
Section 4.2 and hindered settling in Section 4.3, respectively.

4.1. Settling Sphere

In this section, simulation results are first compared to experimental data by ten
Cate et al. [45] for evaluation and validation of the chosen methods and subsequently
against empirical correlations discussed in Section 2.1.

4.1.1. Simulation Setup—Comparison to Literature

The settling of a single sphere has been investigated by ten Cate et al. [45] both,
experimentally and numerically. Therefore a sphere of diameter dp = 0.015 m with density
ρp = 1120 kg m−3 was placed 0.12 m from the bottom in a container of height 0.16 m and a
width and depth of 0.1 m, as shown in Figure 1. This setup was used to examine the settling
for different Reynolds numbers by varying the fluid density ρf and dynamic viscosity µf.
The same setup was chosen for the simulations with different discretization parameters for
each case. The values were given along with the simulation results of ten Cate et al. [45]
for a resolution of four cells per particle radius in Table 1. The Reynolds number was given
in this case according to the values in the table by Re = dpu∞ρf/µf. For the boundaries, a
no-slip halfway bounce-back condition [79] was chosen.

Table 1. Values of the setup of the four cases for a settling sphere investigated by ten Cate et al. [45] along with the deviation
of their results to the maximum settling velocity u∞ predicted with the drag correlation by Abraham [60].

Case ρf in kg m−3 µf in kg m−1s−1 Re δx in m δt in s u∞ in m s−1
Error in %(Abraham [60])

1 970 0.373 1.5 1.671× 10−3 3.891× 10−4 0.038 10.6
2 965 0.212 4.1 1.645× 10−3 2.41× 10−4 0.06 5.0
3 962 0.113 11.6 1.61× 10−3 1.526× 10−4 0.091 4.5
4 960 0.058 31.9 1.559× 10−3 1.01× 10−4 0.128 5.3

In this study, the given setup is investigated for different combinations of forcing
and momentum exchange schemes described in Sections 3.2 and 3.3. Additionally, a
convergence study is performed.
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FH(t) = ∑
x∈B(t)

q−1

∑
i=1

ci

(
f eq
i (ρ, ũ)− f eq

i (ρ, u)
)

, for t ∈ Ih . (25)

The forcing schemes and methods for momentum exchange discussed in this section allow for a286

comparative study. The previously used HLBM approach is based on the forcing introduced by Shan287

and Chen [74] and the momentum exchange by Ladd [43,44]. According to literature [38], there are288

methods available which yield a higher accuracy. This will be investigated in Section 4.1 leading to an289

updated version of HLBM which is expected to yield higher accuracy.290

4. Results and Discussion of Numerical Experiments291

In this Section, various schemes for forcing and momentum exchange are tested along with the292

remaining HLBM implementation. In Section 4.1 first, the approaches are compared regarding the293

settling velocity of a sphere and the best performing combination is selected for further validation294

against existing drag correlations for spheres. Afterwards, the implementation is applied to the cases295

of a neutrally buoyant particle in a pipe in Section 4.2 and hindered settling in Section 4.3, respectively.296

4.1. Settling Sphere297

In this Section, simulation results are first compared to experimental data by ten Cate et al. [49]298

for evaluation and validation of the chosen methods and subsequently against empirical correlations299

discussed in Section 2.1.300

4.1.1. Simulation Setup - Comparison to Literature301

The settling of a single sphere has been investigated by ten Cate et al. [49] both, experimentally302

and numerically. Therefore a sphere of diameter dp = 0.015 m with density ρp = 1120 kg m−3 was303

placed 0.12 m from the bottom in a container of height 0.16 m and a width and depth of 0.1 m, as shown304

in Figure 1. This setup was used to examine the settling for different Reynolds numbers by varying the305

fluid density ρf and dynamic viscosity µf. The same setup is chosen for the simulations with different306

discretisation parameters for each case. The values are given along with the simulation results of ten307

Cate et al. [49] for a resolution of 4 cells per particle radius in Table 1. The Reynolds number is given in308

this case according to the values in the table by Re = dpu∞ρf/µf. For the boundaries, a no-slip halfway309

bounce-back condition [79] is chosen.310

Figure 1. Setup of the simulation according to ten Cate at al. [49].Figure 1. Setup of the simulation according to ten Cate at al. [45].

4.1.2. Results and Discussion—Comparison to Literature

For reasons of readability, further abbreviations are introduced. Here, GUO and SCF
refer to the respective forcing schemes by Guo et al. [75] and Shan and Chen [74] (see
Section 3.2). Additionally, MEA-L and MEA-W refer to the momentum exchange algo-
rithms by Ladd [39,40] and Wen et al. [42]. As different resolutions are studied a factor N
is introduced to scale the effective grid spacing to δx/N.

From the simulations, the root mean squared error (RMSE) relative to the maximum
absolute velocity of the respective case and the deviation of the maximum settling velocity
compared to the one calculated according to the drag correlation by Abraham [60] are
given in Table 2 for N = 1 and in Table 3 for N = 8. To further compare the whole curves,
similarity measures were calculated [80], i.e., a partial curve mapping (PCM) [81] and the
area between curves according to Jekel et al. [80]. The latter was less influenced by noisy
data or outliers. As reference solution in this calculation, the experimental data of ten
Cate et al. [45] were used and approximated by a polynomial fit of 18-th order. The RMSE
of the fit for case 1 to 4 was given by 0.01447, 0.01481, 0.01838, and 0.02093. The values
were rounded to six decimal places to demonstrate that some differences (e.g., between
MEA-L and MEA-W) were on a negligible level for this case.

For better comprehensibility, the values in Tables 2 and 3 are averaged over the four
cases for each setup in Table 4. The mean error regarding the maximum settling velocity in
the reference was given by 6.35%. For the same grid spacing, the combinations EDM and
MEA-W, EDM and MEA-L and GUO and MEA-W performed best (about 5.5%) with the
first one yielding slightly better results. The same holds for the area between the curves,
PCM and RMSE. While for smaller grid spacing the results were predominantly better, the
same conclusions could be drawn as for N = 1, with the combination of EDM and MEA-W
performing better or equal to all other combinations. Only for PCM, the combination of
EDM and MLA yielded the best results while it performed worst in all other cases. Looking
only at the results for the cases with lower Reynolds numbers however, this setup yielded
the highest accuracy in all values except in the prediction of the maximum settling velocity.
This might also be due to the fact that the latter was not calculated from experimental
values, but from a given correlation.

A possible reason for this behaviour is that forcing terms for points in the interior of
the particle domain did not cancel out in contrast to MEA approaches. While for static
objects no difference in the results was observed for the MLA, the error increased with
the Reynolds number. This can also be seen in Figure 2. Since the objects did not have
strict no-slip boundaries, simply omitting contributions to the force of points beyond the
physical boundary was no solution. The transition region between the cells relevant and
the ones not relevant for the hydrodynamic force within the particle domain seemed to be
dependent on both the discretization parameters and the velocity. Further research in the
future is required at this point. In empirical studies the influence of different parameters
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like grid spacing and the velocity or Reynolds number need to be quantified to deduce
further steps in improving the proposed MLA.

Some configurations are plotted in Figure 2 for N = 8, along with the experimental
results by ten Cate et al. [45]. At this point, it can be concluded that all combinations
tested in this study yielded reasonable results with the RMSE being the same order of
magnitude as the RMSE for the utilized fit. While the application of EDM and MLA should
be restricted to low Reynolds numbers only, where it performed best among the considered
schemes. The combination of SCF and MEA-L, which was used in previous publications of
HLBM [30,55] was among the worst, therefore the overall best performing configuration of
EDM and MEA-W was chosen for the remaining calculations.

To further validate the implementation, a convergence study was performed. The
experimental order of convergence (EOC) given by

EOC(N, N̂) =
log(err(N))− log(err(N̂))

log(N)− log(N̂)
, (26)

was calculated for two different grid spacings δx/N and δx/N̂ with N < N̂. The function
err : [1, 2, 4, 8]→ R gives the difference of a chosen error or similarity measure for a given
N to the value in the same setup but with a grid spacing according to N = 8. This way, for
each case and setup, two values, i.e., EOC(1, 2) and EOC(2, 4) were obtained. Averaging
all values for the experimental order of convergence of a given combination of schemes for
a measure leads to Table 5.

Table 2. Different error measures [80] for the four cases described by ten Cate et al. [45] for various combinations of
momentum exchange and forcing schemes. The error in terminal velocity is given relative to the analytical values according
to Abraham [60]. The results in the table refer to N = 1.

Case Forcing Momentum RMSE PCM Area between Error in %
Exchange Curves Maximum Velocity

1 EDM MEA-W 0.04191 3.63347 0.00386 4.69880
1 EDM MLA 0.02722 2.17069 0.00292 4.91581
1 EDM MEA-L 0.04187 3.61223 0.00386 4.71524
1 GUO MEA-W 0.04190 3.63317 0.00386 4.69881
1 SCF MEA-W 0.02616 3.86421 0.00323 6.73646
1 SCF MEA-L 0.02618 3.87909 0.00323 6.73834

2 EDM MEA-W 0.07019 1.96464 0.00703 6.08454
2 EDM MLA 0.11885 4.41254 0.01115 6.71691
2 EDM MEA-L 0.07028 1.96609 0.00704 6.08627
2 GUO MEA-W 0.07019 1.96473 0.00703 6.08455
2 SCF MEA-W 0.10945 3.48661 0.01082 7.83986
2 SCF MEA-L 0.10952 3.49102 0.01082 7.85094

3 EDM MEA-W 0.04287 1.50668 0.00409 6.23779
3 EDM MLA 0.08819 2.58684 0.01000 8.01712
3 EDM MEA-L 0.04289 1.50718 0.00409 6.23545
3 GUO MEA-W 0.04287 1.50659 0.00409 6.23780
3 SCF MEA-W 0.05442 2.00959 0.00585 7.27864
3 SCF MEA-L 0.05443 2.00904 0.00585 7.28794

4 EDM MEA-W 0.02578 0.50550 0.00271 4.88694
4 EDM MLA 0.10395 2.71061 0.01302 9.27789
4 EDM MEA-L 0.02580 0.50635 0.00271 4.89684
4 GUO MEA-W 0.02578 0.50551 0.00271 4.88695
4 SCF MEA-W 0.03347 0.86398 0.00401 5.84097
4 SCF MEA-L 0.03349 0.86637 0.00402 5.84066
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Table 3. Different error measures [80] for the four cases described by ten Cate et al. [45] for various combinations of
momentum exchange and forcing schemes. The error in terminal velocity is given relative to the analytical values according
to Abraham [60]. The results in the table refer to N = 8.

Case Forcing Momentum RMSE PCM Area between Error in %
Exchange Curves Maximum Velocity

1 EDM MEA-W 0.03241 4.35586 0.00422 8.24923
1 EDM MLA 0.03399 2.84034 0.00448 8.27399
1 EDM MEA-L 0.03241 4.35589 0.00422 8.24930
1 GUO MEA-W 0.03241 4.35586 0.00422 8.24923
1 SCF MEA-W 0.03442 4.41524 0.00457 8.49026
1 SCF MEA-L 0.03442 4.41527 0.00457 8.49039

2 EDM MEA-W 0.03224 1.11747 0.00347 4.32345
2 EDM MLA 0.05467 1.03172 0.00550 4.44263
2 EDM MEA-L 0.03224 1.11747 0.00347 4.32358
2 GUO MEA-W 0.03224 1.11748 0.00347 4.32345
2 SCF MEA-W 0.03326 1.10431 0.00359 4.59350
2 SCF MEA-L 0.03326 1.10431 0.00359 4.59360

3 EDM MEA-W 0.02349 0.64709 0.00162 4.43872
3 EDM MLA 0.06483 1.49952 0.00563 4.83740
3 EDM MEA-L 0.02349 0.64703 0.00162 4.43877
3 GUO MEA-W 0.02349 0.64709 0.00162 4.43872
3 SCF MEA-W 0.02079 0.76920 0.00152 4.67580
3 SCF MEA-L 0.02079 0.76898 0.00152 4.67593

4 EDM MEA-W 0.08260 1.06138 0.00223 4.96350
4 EDM MLA 0.08638 1.67762 0.00927 6.09874
4 EDM MEA-L 0.08259 1.06147 0.00223 4.96360
4 GUO MEA-W 0.08260 1.06139 0.00223 4.96350
4 SCF MEA-W 0.08877 1.03403 0.00251 5.16140
4 SCF MEA-L 0.08875 1.03418 0.00251 5.16147

Table 4. Mean values of the results presented in Tables 2 and 3. The averages are taken over the four application cases.

N Forcing Momentum Exchange RMSE PCM Area between Curves Error in % Maximum
(Mean) (Mean) (Mean) Velocity (Mean)

1 EDM MEA-W 0.04519 1.90257 0.00442 5.47702
1 EDM MLA 0.08455 2.97017 0.00927 7.23193
1 EDM MEA-L 0.04521 1.89796 0.00443 5.48345
1 GUO MEA-W 0.04519 1.90250 0.00442 5.47703
1 SCF MEA-W 0.05588 2.55610 0.00598 6.92398
1 SCF MEA-L 0.05590 2.56138 0.00598 6.92947

8 EDM MEA-W 0.04268 1.79545 0.00288 5.49373
8 EDM MLA 0.05997 1.76230 0.00622 5.91319
8 EDM MEA-L 0.04268 1.79546 0.00288 5.49381
8 GUO MEA-W 0.04268 1.79545 0.00288 5.49373
8 SCF MEA-W 0.04431 1.83069 0.00305 5.73024
8 SCF MEA-L 0.04430 1.83069 0.00305 5.73035
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Table 5. Mean experimental order of convergence (EOC) for different error and similarity measures regarding N = 8.
Results are averaged over all values for a given combination of forcing and momentum exchange scheme as well as all cases.

Forcing Momentum EOC EOC EOC EOC
Exchange (RMSE) (PCM) (Area between Curves) (Error in % Maximum Velocity)

EDM MEA-W 1.79 1.81 2.06 1.39
EDM MLA 1.37 2.00 1.49 1.66
EDM MEA-L 1.79 1.81 2.05 1.36
GUO MEA-W 1.79 1.81 2.06 1.39
SCF MEA-W 1.57 1.03 1.72 1.55
SCF MEA-L 1.57 1.03 1.72 1.55
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Table 4. Mean values of the results presented in Table 2 and 3. The averages are taken over the four
application cases.

N Forcing Momentum RMSE PCM Area between Error in %
exchange (mean) (mean) curves maximum velocity

(mean) (mean)

1 EDM MEA-W 0.04519 1.90257 0.00442 5.47702
1 EDM MLA 0.08455 2.97017 0.00927 7.23193
1 EDM MEA-L 0.04521 1.89796 0.00443 5.48345
1 GUO MEA-W 0.04519 1.90250 0.00442 5.47703
1 SCF MEA-W 0.05588 2.55610 0.00598 6.92398
1 SCF MEA-L 0.05590 2.56138 0.00598 6.92947

8 EDM MEA-W 0.04268 1.79545 0.00288 5.49373
8 EDM MLA 0.05997 1.76230 0.00622 5.91319
8 EDM MEA-L 0.04268 1.79546 0.00288 5.49381
8 GUO MEA-W 0.04268 1.79545 0.00288 5.49373
8 SCF MEA-W 0.04431 1.83069 0.00305 5.73024
8 SCF MEA-L 0.04430 1.83069 0.00305 5.73035

Some configurations are plotted in Figure 2 for N = 8, along with the experimental results by351

ten Cate et al. [49]. At this point, it can be concluded that all combinations tested in this study yield352

reasonable results with the RMSE being the same order of magnitude as the RMSE for the utilised fit.353

While the application of EDM & MLA should be restricted to low Reynolds numbers only, where it354

performed best among the considered schemes. The combination of SCF and MEA-L, which was used355

in previous publications of HLBM [34,56] was among the worst, therefore the overall best performing356

configuration of EDM & MEA-W is chosen for the remaining calculations.357

358

Figure 2. Settling velocity in the four defined cases for different combinations of forcing and momentum
exchange schemes along with the experimental results by ten Cate et al. [49].

To further validate the implementation, a convergence study is performed. The experimental359

order of convergence (EOC) given by360

EOC(N, N̂) =
log(err(N))− log(err(N̂))

log(N)− log(N̂)
, (26)

Figure 2. Settling velocity in the four defined cases for different combinations of forcing and momentum exchange schemes
along with the experimental results by ten Cate et al. [45].

The mean EOC values were between 1 and 2 for all schemes, thereby superlinear
convergence can be assumed. Similar to the results in previous tables, combinations of
EDM or GUO with MEA-W or MEA-L performed best while combinations with SCF were
falling behind. The MLA yielded the highest convergence rate for PCM and the maximum
settling velocity while it also yielded the worst for the other measures. The results for
Re = 11.6 with EDM and MEA-W are depicted for different grid spacings according to the
parameter N in Figure 3.

The combination of EDM and MEA-W was chosen for all further computations, as it
proved best in overall performance. The applicability of the MLA, however, seemed to be
limited to some low Reynolds number cases.

Thereby the HLBM was updated, while in previous publications a combination of
SCF and MEA-L was used for the calculations the new approach consisting of EDM and
MEA-W yielded better results and a higher accuracy.
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Table 5. Mean EOC for different error and similarity measures regarding N = 8. Results are averaged
over all values for a given combination of forcing and momentum exchange scheme as well as all cases.

Forcing Momentum EOC EOC EOC EOC
exchange (RMSE) (PCM) (Area between (Error in %

curves) maximum velocity)

EDM MEA-W 1.79 1.81 2.06 1.39
EDM MLA 1.37 2.00 1.49 1.66
EDM MEA-L 1.79 1.81 2.05 1.36
GUO MEA-W 1.79 1.81 2.06 1.39
SCF MEA-W 1.57 1.03 1.72 1.55
SCF MEA-L 1.57 1.03 1.72 1.55

The mean EOC values are between 1 and 2 for all schemes, thereby superlinear convergence can367
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other measures. The results for Re = 11.6 with EDM and MEA-W are depicted for different grid371
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The combination of EDM and MEA-W is chosen for all further computations, as it proved best in373

overall performance. The applicability of the MLA, however, seems to be limited to some low Reynolds374

number cases.375

Thereby the HLBM is updated, while in previous publications a combination of SCF and MEA-L was376

used for the calculations the new approach consisting of EDM and MEA-W yields better results and a377

higher accuracy.378

Figure 3. Extract of the results for the case of Re = 11.6 with EDM and MEA-W for different grid
spacings along with the experimental data by ten Cate et al. [49].

Figure 3. Extract of the results for the case of Re = 11.6 with exact difference method (EDM) and
momentum exchange algorithm (MEA)-W for different grid spacings along with the experimental
data by ten Cate et al. [45].

4.1.3. Simulation Setup—Comparison to Correlations

To check if the drag correlations presented in Section 2.1 can be reproduced by the
HLBM, again the setup of a single settling sphere was chosen. It was placed with the center
0.021 m above the bottom of a domain of size 0.0055 m× 0.0055 m× 0.022 m. The top and
bottom of the domain were equipped with no-slip boundaries again, but in contrast to
the previous case the sides were chosen to be periodic. The densities of the fluid and the
sphere were ρf = 1000 kg m−3 and ρp = 2500 kg m−3, respectively. The dynamic viscosity
was varied to change the Reynolds number, the sphere had a diameter of dp = 0.0005 m
and the gravitational acceleration was given by g = 9.81 m s−2. In this subsection Re is
defined via the given ρf and dp, while u∞ is defined by the used drag correlation and µf as
shown in Table 6.

The grid spacing was given by δx = 3.125× 10−5 m, this means the particle diameter
was equivalent to 8 grid cells. As stated by ten Cate et al. [45], DNS methods experience a
non-physical dependency of the drag force on the kinematic viscosity. This has also been
investigated by Rohde et al. [82] for a boundary taking the actual, non-voxelized, surface.
This effect is described to be less significant for Re� 1 and a scaling procedure is proposed
to estimate the hydrodynamic radius for the simulation. In this study, the radius and grid
spacing were kept fixed, only the temporal discretization was adapted. LBM simulations
required the maximum occurring velocity in lattice units to be much smaller than cs to
ensure incompressible flow conditions and stability. Estimating the maximum velocity
u∞ by the drag correlation in Equation (8) and choosing the discretization such that this
velocity was equivalent to 0.01 in lattice units finally led to

δt =
0.01
u∞

δx . (27)
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Table 6. Deviation of of the drag coefficients calculated by homogenized lattice Boltzmann method (HLBM) simulations to
different drag correlations.

µf CD Stokes Abraham Schiller and Naumann

in kg m−1s−1 (Simulated) Re Error in % Re Error in % Re Error in %

2.0× 10−2 86.6942 0.26 −7.72 0.23 −24.93 0.24 −17.33
1.5× 10−2 56.7155 0.45 7.33 0.40 −17.98 0.42 −8.42
1.0× 10−2 29.6648 1.02 26.31 0.84 −14.14 0.90 −2.68
5.0× 10−3 10.5937 4.09 80.42 2.90 −9.38 3.08 2.74
2.5× 10−3 4.5797 16.35 212.00 9.18 −1.61 9.57 6.94

1.25× 10−3 2.2965 65.40 525.82 26.57 3.29 26.83 5.34
6.25× 10−4 1.2539 261.60 1266.86 70.48 −0.79 69.50 −3.52

3.125× 10−4 0.7339 1046.40 3100.03 173.68 −11.84 170.80 −14.74
1.5625× 10−4 0.5213 4185.60 8992.70 404.05 −15.27 406.40 −14.28
7.8125× 10−5 0.4543 16,742.40 31,595.60 900.47 −8.31 948.67 1.76

4.1.4. Results and Discussion—Comparison to Correlations

In all simulations, the sphere reached a stable settling velocity, which was used to
calculate the drag coefficient using Equation (4) with the fluid velocity assumed to be zero.
The results are presented in Table 6 along with Reynolds numbers according to the terminal
velocity of the drag correlations by Stokes, Abraham and Schiller and Naumann, discussed
in Section 2.1. Additionally, the deviation in % from the analytical value of the respective
correlation is given.

Here, the closest correlation was the one by Schiller and Naumann with an average
error of 7.78% calculated from the absolute values of the ones given in Table 6. The results
yielded a slightly worse error of 10.75% comparing to Abraham. Additionally, as expected
for Re < 1 the results were closer to the prediction using Stokes drag.

On the other hand, deviations in this region might also be due to the stronger viscosity
dependency for low Re discussed in Section 4.1.3. Another reason for deviations might
be the lattice relaxation time entering the region of under-relaxation [23] for Re < 1 and
approaching the value of 0.5 for the high Re considered here. For a stable simulation
τ > 0.5 is required [23]. This, however, is related to the chosen discretization. For reasons
of comparability between the data points δx was kept constant, however, adapting it to
achieve a reasonable τ can presumably improve the results. Increasing the grid resolution
and also the gravitational acceleration, Reynolds numbers up to 1591 were reached in tests.
At this point, a further increase was limited by available computational resources, as not
only did δx need to be lowered, but also the domain size had to be increased to allow
the particle to reach its terminal velocity. Overall, the results are in good agreement with
the discussed correlations, this can be seen in Figure 4, where the Reynolds number was
defined via the maximum settling velocity in the simulation.

For further analysis, δt was varied by choosing a different lattice velocity to be equiv-
alent to the one calculated by Schiller and Naumann in Equation (27). These results can
be used in further simulations for an a-priori estimate of the error regarding the temporal
resolution, for cases that allow an estimation of the maximum occurring velocity.

The results in Table 7 show that uL should be at least smaller or equal to 0.04 as this
gave a 7.5% deviation from the finest tested temporal resolution. A value of uL = 0.01
would be most desirable since from this point on the deviation was smaller than most errors
measured in this work. Then again, this meant the computational cost quadruple compared
to the just found minimum requirement regarding the lattice velocity, since uL was directly
proportional to δt. Using uL = 0.0025 as a reference was justified as halving uL = 0.005
only led to a change below 1% regarding the maximum settling velocity. Overall, almost
perfect linear convergence was observed considering the average EOC = 0.97 regarding the
maximum settling velocity. The results are also depicted in Figure 5, where a convergence
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towards a value in between the predictions by Abraham [60] and Schiller and Naumann [61]
is shown.
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Figure 4. Drag coefficient of correlations discussed in Section 2.1 along with the simulation results
plotted against the Reynolds number, computed using the maximum settling velocity measured in the
simulation.
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simulations for an a-priori estimate of the error regarding the temporal resolution, for cases that allow423

an estimation of the maximum occurring velocity.424
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Table 7. Maximum settling velocity for µf = 0.005 kg m−1 s−1 for a chosen lattice velocity uL (see
Equation (27)). Also given is the deviation to the velocity obtained with uL = 0.0025 and the change of
maximum velocity to the value obtained with the next smaller uL.

uL 0.0025 0.005 0.01 0.02 0.04 0.08 0.16

u∞ in m s−1 0.02975 0.03002 0.03042 0.03102 0.031981 0.03375 0.03768
Deviation in % 0 0.89 2.24 4.25 7.50 13.45 26.64

Change in % - 0.89 1.33 1.97 3.11 5.54 11.6

The results in Table 7 show that uL should be at least smaller or equal to 0.04 as this gives a 7.5%426

deviation from the finest tested temporal resolution. A value of uL = 0.01 would be most desirable427

since from this point on the deviation is smaller than most errors measured in this work. Then again,428

this means the computational costs quadruple compared to the just found minimum requirement429

Figure 4. Drag coefficient of correlations discussed in Section 2.1 along with the simulation results
plotted against the Reynolds number, computed using the maximum settling velocity measured in
the simulation.

Table 7. Maximum settling velocity for µf = 0.005 kg m−1 s−1 for a chosen lattice velocity uL (see Equation (27)). Addition-
ally, given is the deviation to the velocity obtained with uL = 0.0025 and the change of maximum velocity to the value
obtained with the next smaller uL.

uL 0.0025 0.005 0.01 0.02 0.04 0.08 0.16

u∞ in m s−1 0.02975 0.03002 0.03042 0.03102 0.031981 0.03375 0.03768
Deviation in % 0 0.89 2.24 4.25 7.50 13.45 26.64
Change in % - 0.89 1.33 1.97 3.11 5.54 11.6
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regarding the lattice velocity, since uL is directly proportional to δt. Using uL = 0.0025 as reference is430

justified as halving uL = 0.005 only lead to a change below 1% regarding the maximum settling velocity.431

Overall, almost perfect linear convergence is observed considering the average EOC = 0.97 regarding432

the maximum settling velocity. The results are also depicted in Figure 5, where a convergence towards433

a value in between the predictions by Abraham [61] and Schiller and Naumann [62] is shown.434

Figure 5. Maximum settling velocity for µf = 0.005 kg m−1 s−1 over the chosen lattice velocity uL (see
Equation (27)).

4.1.5. Further Discussion - Onset of Unsteadiness435

Spheres settling under the influence of gravity experience a range of regimes of motion, depending436

on the density ratio between the spheres and the fluid as well as the Reynolds or Galileo number. This437

has been shown and experimentally investigated by Horowitz and Williamson [83]. Later, Rahmani438

and Wachs [84] investigated the same behaviour via simulations. Following their definition of the439

Galileo number as440
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∣∣ gd3

p

ν
, (28)

the simulations presented in Section 4.1.4 cover a range of Ga = 2.14 up to Ga = 548.97. For this441

discussion, the size of the domain has been extended to 0.0375 m in z-direction. In this context, it is442

notable that the unsteadiness observed in experiments can only be reproduced in simulations if the443

setup is not perfectly symmetrical, i.e., if the sphere does not perfectly align with the grid for a domain444

free of disturbance. Therefore, the sphere is moved 0.3δx from the center of the domain in x- and445

y-direction respectively. It can be observed that for Ga = 137.24, a sphere follows a slightly oblique446

path, while all spheres with lower Ga settle vertically straight, as depicted in Figure 6. This fits the447

results by Jenny et al. [85], who found the onset of oblique motion at about Ga = 150, and Rahmani448

and Wachs [84].449
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Figure 5. Maximum settling velocity for µf = 0.005 kg m−1 s−1 over the chosen lattice velocity uL

(see Equation (27)).
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4.1.5. Further Discussion—Onset of Unsteadiness

Spheres settling under the influence of gravity experience a range of regimes of motion,
depending on the density ratio between the spheres and the fluid as well as the Reynolds
or Galileo number. This has been shown and experimentally investigated by Horowitz
and Williamson [83]. Later, Rahmani and Wachs [84] investigated the same behaviour via
simulations. Following their definition of the Galileo number as

Ga =

√∣∣1− ρp/ρf
∣∣gd3

p

ν
, (28)

the simulations presented in Section 4.1.4 cover a range of Ga = 2.14 up to Ga = 548.97.
For this discussion, the size of the domain has been extended to 0.0375 m in z-direction.
In this context, it is notable that the unsteadiness observed in experiments can only be
reproduced in simulations if the setup is not perfectly symmetrical, i.e., if the sphere does
not perfectly align with the grid for a domain free of disturbance. Therefore, the sphere
is moved 0.3δx from the center of the domain in x- and y-direction respectively. It can be
observed that for Ga = 137.24, a sphere follows a slightly oblique path, while all spheres
with lower Ga settle vertically straight, as depicted in Figure 6. This fits the results by
Jenny et al. [85], who found the onset of oblique motion at about Ga = 150, and Rahmani
and Wachs [84].
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Figure 6. Path in the x-z-plane for spheres with different Ga.

For higher Galileo numbers, the motion seems to be characterized by an oblique oscillation.451

However, to ensure this classification, a closer evaluation with a longer settling path is required,452

especially since Rahmani and Wachs [84] as well as Jenny et al. [85] predicted a chaotic motion for453

this parameters. The vortex structure shown in Figure 7 also seems to be rather chaotic. A thorough454

investigation of the different settling regimes including the vortex shedding, which was found as455

depicted in Figure 7, however, exceeds the scope of the present work at this point.456

Figure 6. Path in the x-z-plane for spheres with different Ga.

For higher Galileo numbers, the motion seems to be characterized by an oblique
oscillation. However, to ensure this classification, a closer evaluation with a longer settling
path is required, especially since Rahmani and Wachs [84] as well as Jenny et al. [85]
predicted a chaotic motion for this parameters. The vortex structure shown in Figure 7
also seems to be rather chaotic. A thorough investigation of the different settling regimes
including the vortex shedding, which was found as depicted in Figure 7, however, exceeds
the scope of the present work at this point.
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Figure 7. Contours of the stream-wise vorticity for a sphere with Ga = 548.97 at t = 0.19 s.

4.2. Tubular Pinch Effect

In this section, 2D simulations regarding the tubular pinch effect are presented. It
was first discovered [46] and then further investigated [47] by Segré and Silberberg. The
effect describes the motion of neutrally buoyant particles in a tube flow towards an equilib-
rium position between the tube’s center and its wall. As reference simulation, results by
Li et al. [35] and Inamuro et al. [36] are considered.

4.2.1. Simulation Setup

For all considered cases, the base setup depicted in Figure 8 was the same, only the
parameters change. The tube with diameter D and length L was equipped with pressure
boundary conditions at front and back. A flow was induced by a pressure difference

5.4 Results and Discussion 85
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∆pL, considering the relation between pressure and density this was equivalent to setting
ρL = 1± pL/6, for an initial density of ρL = 1 across the domain. For the particle, a
periodic boundary was chosen. As contact with the given boundary implementation
distorted the particle movement, the particle was always kept one particle diameter dp
away. While pressure boundaries were applied to the fluid domain, the particle experienced
the periodic boundary before the actual end of the domain and got cut off one particle
diameter before the pressure outlet. The part of the particle having left the domain via
this boundary entered the domain also one particle diameter from the pressure inlet. This
is done similarly by Li et al. [35] while Inamuro et al. [36] present a boundary condition
capable of handling particles passing through it. To account for this difference, the domain
was enlarged by 2dp in flow direction so that the domain length stayed the same from
perspective of the circle. The top and bottom of the domain had a no-slip condition for
the fluid as well as the submersed object. The periodicity for the particles was required
to reduce computational load since, as depicted in Figure 9, the domain would require
between 15 and 60 times the size, depending on the case. It also allowed us to study
the influence of the distance between spheres by varying the domain length as presented
by Inamuro et al. [36]. The application of periodicity as described by Li et al. [35] was
required as the improved periodic particle boundary presented in Inamuro et al. [36] was
formulated for particles represented by a bounce-back boundary and could therefore not
be applied straightforward for HLBM.
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Table 8. Parameters of the simulations investigating the tubular pinch effect along with the results for
multiple cases according to Inamuro et al. [40] and the one described by Li et al. [39].

Case τ ∆p D L dp/D yc/D Error in %

Inamuro et al. case 2 1.4 8.167× 10−4 200 200 0.25 0.2642 −3.33%
Inamuro et al. case 6 0.757 2.337× 10−4 200 200 0.25 0.2548 −5.83%
Inamuro et al. case 11 1.4 1.633× 10−3 200 400 0.25 0.2726 −4.35%
Inamuro et al. case 14 0.95 3.207× 10−3 100 400 0.5 0.3590 −5.48%
Li et al. 0.75 2.670× 10−4 100 400 0.25 0.2756 −4.10%

Figure 8. Computational domain for the investigation of the tubular pinch effect.

Version January 18, 2021 submitted to Computation 21 of 34

Inamuro et al. [40] investigated the influence of various parameter like Re, dp/D and the distance502

between two circles, which is reflected in the area covered by particles. They found the same relations503

as Karnis et al. in their experiments [51]. Namely that the equilibrium position of the circle gets closer504

to the wall for higher Re, but closer to the center for more distance between two objects and also gets505

closer to the center for increasing dp/D. Inamuro et al. [40] defined the Reynolds number for this case506

as the ratio of time- and space-averaged velocity times the distance between the walls to the kinematic507

viscosity. The values were chosen to approximately achieve a maximum lattice velocity of uL = 0.04,508

this was also found in the current simulations with uL ≈ 0.041 across all runs. With an average509

absolute error of 4.75% across the cases the results show good agreement to the ones obtained by510

Inamuro et al. [40]. The most probable source of the deviation is the difference in boundary conditions511

at the in- and outflow.512

513

Figure 9. Results of various starting positions of the circle according to case 2 of Inamuro et al. [40].

With an error of −4.1%, the last case is also in good agreement with Li et al. [39], however, they514

also stated an error of 5.16% comparing with case 2 of Inamuro et al. [40]. As the parameter do not515

fully match any of those reference cases, a comparison between the two reference publications is516

complicated, especially since for the last case in Table 8, a maximum lattice velocity of uL ≈ 0.096 was517

measured.518

Additionally, the applicability of the MEA-L was tested for HLBM in this case. As already stated by519

Li et al. [39] and Peng et al. [38], it is found that the MEA according to Ladd [43,44] is not able to520

reproduce the tubular pinch effect. In all cases, the circle reaches its final position in the middle of the521

tube.522

523

4.3. Hindered Settling524

In this Section, the phenomenon of hindered settling is simulated with HLBM. Although there is525

no explicit collision model implemented, the particles affect each other by momentum transfer via the526

fluid. This, of course, is only sufficient if the spatial and temporal resolution is chosen fine enough that527

the transferred momentum prevents an overlapping of particles by several cells. This effect has been528

observed in previous publications regarding HLBM, e.g., by Krause et al. [56], but has up to now529

only been described qualitatively. Therefore, the study of hindered settling is used to investigate the530

Figure 9. Results of various starting positions of the circle according to case 2 of Inamuro et al. [36].

86 5 Homogenized Lattice Boltzmann Method – Validation and Applications



Computation 2021, 9, 11 20 of 31

The calculations in the reference literature were performed in lattice units, therefore
the discretization parameters were chosen accordingly. Additionally, all values in this
subsection and the one regarding the results of this case are therefore non-dimensionalized
by those discretization parameters, just like shown in the references. As no value was
affiliated with a unit, the superscript L, indicating lattice units, is also dropped in this
section for reasons of readability. The viscosity is defined by Equation (14) for a given τ.
Since, as also stated by Inamuro et al. [36], the error was proportional to the maximum
occuring lattice velocity squared, it was monitored for the presented cases.

The trajectory of the submersed circle is described by the coordinates of its center
(xc, yc). All simulations are run for 6× 105 time steps to ensure convergence according the
the results shown in Figure 9.

4.2.2. Results and Discussion

The results of the simulations are printed in Table 8 for different cases with the
respective parameters. For each case, the simulations were run for different starting points
ystart/D ∈ {0.2, 0.250.35, 0.4, 0.45} of the circle and the simulations showed a convergence
towards a single position for each case as depicted in Figure 9. The resulting yc/D was
averaged over the last 20, 000 time steps of each simulation and over the results of all
starting points.

Table 8. Parameters of the simulations investigating the tubular pinch effect along with the results for multiple cases
according to Inamuro et al. [36] and the one described by Li et al. [35].

Case τ ∆p D L dp/D yc/D Error in %

Inamuro et al. case 2 1.4 8.167× 10−4 200 200 0.25 0.2642 −3.33%
Inamuro et al. case 6 0.757 2.337× 10−4 200 200 0.25 0.2548 −5.83%

Inamuro et al. case 11 1.4 1.633× 10−3 200 400 0.25 0.2726 −4.35%
Inamuro et al. case 14 0.95 3.207× 10−3 100 400 0.5 0.3590 −5.48%

Li et al. 0.75 2.670× 10−4 100 400 0.25 0.2756 −4.10%

Inamuro et al. [36] investigated the influence of various parameter like Re, dp/D
and the distance between two circles, which is reflected in the area covered by particles.
They found the same relations as Karnis et al. in their experiments [49], namely that the
equilibrium position of the circle gets closer to the wall for higher Re, but closer to the
center for more distance between two objects and also gets closer to the center for increasing
dp/D. Inamuro et al. [36] defined the Reynolds number for this case as the ratio of time-
and space-averaged velocity times the distance between the walls to the kinematic viscosity.
The values were chosen to approximately achieve a maximum lattice velocity of uL = 0.04,
this was also found in the current simulations with uL ≈ 0.041 across all runs. With an
average absolute error of 4.75% across the cases the results showed good agreement to the
ones obtained by Inamuro et al. [36]. The most probable source of the deviation was the
difference in boundary conditions at the in- and outflow.

With an error of −4.1%, the last case is also in good agreement with Li et al. [35],
however, they also stated an error of 5.16% comparing with case 2 of Inamuro et al. [36].
As the parameter did not fully match any of those reference cases, a comparison between
the two reference publications is complicated, especially since for the last case in Table 8,
a maximum lattice velocity of uL ≈ 0.096 was measured.

Additionally, the applicability of the MEA-L was tested for HLBM in this case. As
already stated by Li et al. [35] and Peng et al. [34], it was found that the MEA according to
Ladd [39,40] is not able to reproduce the tubular pinch effect. In all cases, the circle reached
its final position in the middle of the tube.
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4.3. Hindered Settling

In this section, the phenomenon of hindered settling is simulated with HLBM. Al-
though there was no explicit collision model implemented, the particles affected each other
by momentum transfer via the fluid. This, of course, was only sufficient if the spatial and
temporal resolution was chosen fine enough that the transferred momentum prevented
an overlapping of particles by several cells. This effect has been observed in previous
publications regarding HLBM, e.g., by Krause et al. [55], but has up to now only been
described qualitatively. Therefore, the study of hindered settling was used to investigate
the occurring error regarding the velocity and solid volume fraction. This case aimed at
testing the quality of results without collision model and if the effect could be reproduced
at all. Therefore, the simulations were compared to various correlations presented in
Section 2.2.

4.3.1. Simulation Setup

For this simulations, random distributions of spheres were created in the bottom half
of a domain of size 0.00625 m × 0.00625 m × 0.025 m. The latter was equipped with no-slip
boundary conditions at the bottom and top and was periodic for fluid and particles at the
sides. The considered solid volume fractions in the bottom half are 5%, 10%, 15%, 20% and
25%, which required 373, 746, 1119, 1492 and 1865 spheres, respectively. The starting setup
for the solid volume fraction φ = 0.2 is depicted in Figure 10.

The spheres had a diameter of dp = 0.0005 m and a density of ρp = 2500 kg m−3, while
the physical parameters of the fluid were given by ρf = 1000 kg m−3 and
ν = 10−6 m2 s−1. To study the effect regarding different Reynolds numbers the gravi-
tational acceleration was varied. For an a-priori estimation of Re, the terminal settling
velocity u∞ of a sphere according to Schiller and Naumann was used (see Section 2.1).
Investigated are the cases of Re = 0.53 (g = 0.056 m s−2), Re = 5.29 (g = 0.748 m s−2) and
Re = 49.64 (g = 15.22 m s−2).

For spatial discretization δx = 2.27× 10−5 m was chosen, thereby the diameter of a
sphere was equivalent to 11 grid cells. Furthermore

δt =
u∞

uL δx (29)

was chosen to ensure a sufficient temporal resolution, with uL = 0.005, for all cases.

Figure 10. Random distribution of spheres in the computational domain for the hindered settling
simulations with a solid volume fraction of 20%.
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4.3.2. Results and Discussion

The hindered settling velocity of the particle collective was calculated by tracking
the upper front to the clear water zone. Therefore, the settling velocity in direction of
gravitation was averaged over the highest 5% of particles. The velocity field during the
process is visualized in Figure 11.

Figure 11. Velocity field around the sphere at t = 0.23 s for the case of Re = 5.29 with a solid volume
fraction of φ = 0.2.

Since the number of simulated particles was low compared to an experimental setup,
especially for low solid volume fractions, the calculated velocity is prone to oscillations.
Therefore, it was further averaged over time, beginning with the first point, for which the
absolute of the averaged velocity decreases. The endpoint was defined by the the time the
first particle of the considered 5% reached the bottom 15% of the domain. The results of
the averaging over the particles for Re = 49.64 are depicted in Figure 12 along with the
part used for temporal averaging, represented by the dashed line. In the following, this
latter average will be denoted as simulated hindered settling velocity usim.
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Figure 12. Averages over the settling velocity of the top 5% of particles for various φ and Re = 49.64.
The part used for temporal averaging is depicted as dashed line.
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Figure 12. Averages over the settling velocity of the top 5% of particles for various φ and Re = 49.64. The part used for
temporal averaging is depicted as dashed line.
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While a comparison to Steinour [63] resulted in throughout large errors, the devia-
tions to different other correlations based on a single particle settling velocity according
to Stokes [59] and to Schiller and Naumann [61] (here denoted by uS-N) are given in Ta-
ble 9. The best agreement was achieved with the results by Barnea and Mizrahi [70] in
combination with the drag correlation by Schiller and Naumann with an average error of
8.07%. This was expectable since they already stated to use drag correlations beyond Stokes
with their formula for higher Reynolds numbers. For the case of Re = 0.53 the used drag
correlation had negligible influence as it yielded 4.77% deviation to the results with Stokes
and 4.82% to the results in combination with uS-N. Except for the correlation of Oliver
built upon Schiller and Naumann yielding an average error of 7.05%, mainly the case of
Re = 49.46 contributed to the error. This was to be expected since the discretization re-
mained the same, but the spheres moved faster, increasing the possibility of large particle
volumes overlapping and thereby making further momentum transfer via the fluid im-
possible. Additionally, high solid volume fractions seemed to have a negative effect on
the results, this is shown in the last column of Table 9. Similar as for the high Reynolds
number cases the error likely originated from the missing explicit contact model. For this
comparably large number of spheres the occurrence of multiple contacts in a short time
was possible, which pushed spheres to overlap each other. Despite these errors it was
shown that hindered setting could be simulated with this approach however, with limita-
tions to the solid volume fraction and velocity in combination with spatial and temporal
discretization.

Table 9. Simulated hindered settling velocity regarding different Re and φ in comparison to different correlations.

Re φ
usim Error in % Error in % Error in % Error in % Error in % Error in %

in m s −1 (uRZ, uS) (uO, uS) (uBM, uS) (uRZ, uS-N) (uO, uS-N) (uBM, uS-N)

0.53 0.05 −0.00071 −23.38 −10.17 −3.97 −15.90 −1.46 5.35
0.53 0.1 −0.00055 −24.69 −16.87 −7.46 −17.28 −8.81 1.51
0.53 0.15 −0.00045 −20.36 −19.03 −6.15 −12.46 −11.18 2.95
0.53 0.2 −0.00037 −15.63 −21.35 −5.47 −7.19 −13.73 3.70
0.53 0.25 −0.00031 −5.06 −18.20 0.80 4.52 −10.27 10.57
5.29 0.05 −0.00691 −46.58 −34.75 −30.24 −20.82 −4.00 2.63
5.29 0.1 −0.00551 −48.15 −37.75 −30.71 −22.56 −8.41 1.95
5.29 0.15 −0.00444 −48.68 −40.61 −31.16 −22.72 −12.61 1.29
5.29 0.2 −0.00367 −47.08 −41.07 −29.17 −19.62 −13.29 4.22
5.29 0.25 −0.00295 −46.26 −41.77 −28.24 −17.62 −14.32 5.58
49.46 0.05 −0.06962 −74.81 −67.71 −65.47 −18.17 3.13 10.26
49.46 0.1 −0.05656 −76.34 −68.63 −65.08 −21.76 0.19 11.53
49.46 0.15 −0.04757 −76.80 −68.71 −63.73 −21.83 −0.06 15.84
49.46 0.2 −0.03889 −77.69 −69.34 −63.14 −23.30 −2.07 17.71
49.46 0.25 −0.03300 −77.49 −68.01 −60.58 −20.96 2.17 25.90

In this setup the only boundary conditions applied were periodic boundaries and a
bounce-back no-slip condition, which are both mass conserving. Since the collision step
executed a standard BGK collision with forcing, which was also mass conserving [23],
this was also true for the whole scheme. Additionally, during the simulations no notable
accumulation or dilution of mass within the areas covered by particles were observed.

Independent of the used drag formula, the correlation according to Richardson and
Zaki [54] yielded the worst results among the more precisely studied ones. The average
error was 47.27% for the combination with uS, intended by the originators. However,
it dropped to 17.78% using uS-N. The varying deviations to the drag correlations and
obviously also between those correlations show the complexity of this application case.

Many reasons for errors and deviations can be found for this application case. Besides
the possible influence of the starting distribution of the spheres, it can also be deduced
from Figure 12 that a larger domain with more particles was required for more reliable
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results. Since the clear water front was not necessarily sharp and easy to track, a broader
domain with more particles would smooth oscillations in this chaotic top region. Lowering
the percentage of tracked particles e.g., to 2%, improved the results in comparison to
the correlations, however, it also increased the oscillations. Using the top 5% was a
compromise between reliable results and a precise tracking of the front by only considering
the uppermost particles. A broader domain and clear water front would therefore be
beneficial. The extend of the simulation, however, was limited for DNS approaches due to
high computational costs.

Furthermore, the probable main point is that no explicit particle-particle collision
model is applied and the momentum is solely exchanged via the fluid. This, of course, can
be a main source of error, especially if the particles start to overlap by several cells. The latter
is caused by a resolution chosen too coarse in comparison to the velocity of the spheres,
so that the repelling effect of momentum exchange via the fluid is diminished. The good
agreement, e.g., with the results by Barnea and Mizrahi and the obvious dependency of the
simulated hindered settling velocity on φ however, show that it is possible to sufficiently
depict the effect of hindered settling with the chosen setup. While capable of properly
simulating the settling phase, the presented method is not suitable for the study of bed
formation, as particles start to overlap once sedimented due to the absence of an explicit
collision model. No influence of this nonphysical behaviour back on the settling process
was observed.

4.4. Computational Efficiency

The performance of the algorithm has been recently investigated by Bretl et al. [86].
In their study, also based on OpenLB [56], they investigated the speedup S, which was de-
fined as ratio of execution times using a single process T1 to using np processes. Comparing
to the theoretical value for a code which is 99.5% parallelizable given by

S =
T1

T1(0.005 + 0.995/np)
, (30)

they found the results to be in good agreement. These, however, are results for the algorithm
in the case of a single settling particle. Considering the case of hindered settling presented
in Section 4.3, the dependency of the performance on the number of simulated objects
was studied. As measure, the amount of million lattice site updates per second and core
(MLUPps) was used. The cases for Re = 49.64 were evaluated with the simulations run on
a system equipped with Intel Xeon E5-2660 v3 processors.

Each simulation used a lattice with 83,717,424 cells and took 176,000 time-steps utiliz-
ing 80 cores. The results are depicted in Figure 13 together with a fit to a rational function
f with

f (φ) =
a1φ + a2

a3φ + a4
, (31)

and fitting parameters a1, a2, a3, a4 ∈ R. The function yielded 0.45 MLUPps for φ = 1 and
approached 0.35 MLUPps asymptotically as φ→ ∞. Despite the questionable physicality
regarding such a solid volume fraction for a set of spherical particles, those numbers were
useful to estimate the lower bounds of single core performance for this method. The
decrease in MLUPps was to be expected, since for each cell covered by a particle, additional
computations regarding the hydrodynamic force were required (see e.g., Equation (23)).
The influence of the number of particles on the performance, however, did not only depend
on the solid volume fraction, but also on the distribution of the objects. Since for the
parallelization MPI was used, each particle was treated by the process responsible for the
domain it resided in. As in this simulation the particles accumulated at the bottom of the
domain, a small number of processors had to take care of the calculation of hydrodynamic
forces for all particles. A discussion on distribution strategies of computational load among
the processors (load optimal strategy vs. communication optimal strategy) is given by
Henn et al. [87].
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5. Conclusions

The homogenized lattice Boltzmann method has been revisited and various forcing
schemes and approaches to calculate exchanged momentum have been evaluated. Among
the latter is a new proposed algorithm based on the momentum loss on a cell. However, it
showed substandard accuracy except in the case of low Reynolds numbers. It is assumed
that the hydrodynamic force is overestimated due to effects correlated to the interior fluid.
The amount of force contributed by the latter is hardly distinguishable from the amount
related to momentum exchanged with the bulk fluid. As most MEAs are constructed for
a sharp solid boundary, further research at this point should be considered in the future.
Since issues related to the interior fluid also exist for the immersed boundary method, it
might be possible to adapt improvements.

Besides this a combination of Kupershtokh forcing and the MEA by Wen et al. [38]
gave the overall best results. This finally leads to an updated version of HLBM, for which
the results are in good agreement to literature (e.g., regarding the velocity profile of a
settling sphere).

Furthermore, the reproducibility of drag correlations was tested yielding an error of
7.78% compared to the one by Schiller and Naumann in the range from Re = 0.24 up to
Re = 948.67. Therefore, the applicability of HLBM for Reynolds numbers up to the Newton
regime is shown.

In the next application case, the tubular pinch effect was investigated in 2 dimensions.
Here, the error to reference simulations in the literature regarding the influence of the
Reynolds number, the ratio of circle to tube diameter and the distance between the circles,
never exceeded 5.83%.

The authors furthermore showed that the cases of hindered settling can be investi-
gated with HLBM for a sufficient resolution, even without an explicit collision model. With
a deviation of 8.07% to the correlation by Barnea and Mizrahi, the results are in excellent
agreement, especially considering the error regarding a single settling particle. For more re-
liable computations regarding hindered settling, particularly for higher Reynolds numbers,
and for bed formation processes an additional collision model is mandatory. The implemen-
tation of such is planned for future research, especially to evaluate the actual improvement
in the quality of results as an effect of the addition of an explicit contact model.
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Overall, the updated version of HLBM performed well across all application cases
with good agreement to existing literature regarding experimental and theoretical results.
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Abbreviations
The following abbreviations are used in this manuscript:

BGK Bhatnagar–Gross–Krook
DNS direct numerical simulation
EDM exact difference method
EOC experimental order of convergence
GUO Guo forcing
HLBM homogenised lattice Boltzmann method
LBM lattice Boltzmann method
MEA momentum exchange algorithm
MEA-L momentum exchange algorithm according to Ladd [39,40]
MEA-W momentum exchange algorithm according to Wen et al. [42]
MLA momentum loss algorithm
MLUPps million lattice site updates per second and per processor
PCM partial curve mapping
RMSE root mean squared error
SCF Shan–Chen forcing scheme
Roman
A projected area of an object in flow direction
B domain covered by a particle
CD drag coefficient
ci i-th discrete lattice velocity
cs lattice speed of sound
d, d̂ spatial dimension
dB mapping function of an object on the lattice
dp particle diameter
D tube diameter
fi particle distribution function in the phase space according to the i-th lattice velocity
f eq
i Maxwell–Boltzmann distribution function according to the i-th lattice velocity
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F force
Ff force acting on the fluid
Fp force acting on the particle
FB Buoyancy force
FD drag force
FG gravitational force
FH hydrodynamic force
g gravitational acceleration
I time interval
Ih discrete time interval
Jp moment of inertia
L tube length
mp particle mass
N, N̂ resolution parameter
np number of processes
p pressure
pL pressure in lattice units
q dimension of the velocity space of a lattice
r distance to the center of mass of an object
Re Reynolds number
S speedup
Si source term in the LBM collision step according to the i-th lattice velocity
t time
Tp torque
u velocity
ũ redefined velocity in the presence of a particle
uBM hindered settling velocity according to Barnea and Mizrahi
ueq velocity used in the Maxwell–Boltzmann distribution
uf fluid velocity
uO hindered settling velocity according to Oliver
up particle velocity
uRZ hindered settling velocity according to Richardson and Zaki
uS terminal settling velocity according to Stokes
uS−N terminal settling velocity according to Schiller and Naumann
usim simulated hindered settling velocity
uSteinour hindered settling velocity according to Steinour
u∞ maximum settling velocity
uL velocity in lattice units
wi weighting function according to the i-th lattice velocity
x coordinates of a lattice point
xc x-coordinate of particle center
yc y-coordinate of particle center
ystart initial y-coordinate of particle center
Greek
δt time step size in SI units
δx grid spacing in SI units
δtL time step size in lattice units
δxL grid spacing in lattice units
∆u difference between fluid velocity and the velocity in presence of an object
µf dynamic viscosity
ν kinematic viscosity
ρ density in lattice units
ρf fluid density
ρp particle density
τ lattice relaxation time
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φ solid volume fraction
ω angular velocity
Ω spatial domain
Ωh discrete approximation of the spatial domain Ω
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Abstract: A detailed knowledge of the influence of a particle’s shape on its settling behavior is useful
for the prediction and design of separation processes. Models in the available literature usually
fit a given function to experimental data. In this work, a constructive and data-driven approach
is presented to obtain new drag correlations. To date, the only considered shape parameters are
derivatives of the axis lengths and the sphericity. This does not cover all relevant effects, since the
process of settling for arbitrarily shaped particles is highly complex. This work extends the list of
considered parameters by, e.g., convexity and roundness and evaluates the relevance of each. The
aim is to find models describing the drag coefficient and settling velocity, based on this extended set
of shape parameters. The data for the investigations are obtained by surface resolved simulations of
superellipsoids, applying the homogenized lattice Boltzmann method. To closely study the influence
of shape, the particles considered are equal in volume, and therefore cover a range of Reynolds
numbers, limited to [9.64, 22.86]. Logistic and polynomial regressions are performed and the quality
of the models is investigated with further statistical methods. In addition to the usually studied
relation between drag coefficient and Reynolds number, the dependency of the terminal settling
velocity on the shape parameters is also investigated. The found models are, with an adjusted
coefficient of determination of 0.96 and 0.86, in good agreement with the data, yielding a mean
deviation below 5.5% on the training and test dataset.

Keywords: single particle settling; non-spherical; particle shape; OpenLB; lattice Boltzmann method;
homogenised lattice Boltzmann method

1. Introduction

Describing the settling of particles of various shapes is relevant for a wide range of
applications. Fu et al. [1] found, e.g., that modifying the shape of lactose powder can be an
efficient way to change its flow properties. Furthermore, the particle shape is related to the
efficiency of classification processes in hydro cyclones [2]. It is also relevant for medical
applications: Champion et al. [3] identified the shape as being critical to the performance of
drug carriers. More recently, Waldschläger and Schüttrumpf [4] investigated the velocities
of micro-plastic settling and rising—among other things—for different shapes, such as
fragments, pellets, and fibers. They found that shapes make a big difference.

A challenge is the classification of the different shapes. A first approach is categoriza-
tion in classes. Based on elongation and flatness (defined via main axis lengths), Zingg [5]
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introduced four different classes (blade, disc, rod and sphere). Sneed and Folk [6] distin-
guish ten classes, including, in particular, compactness. This, however, does not cover all
aspects of shape and further parameters are required. The need for a uniform definition is
also reflected in the existence of a specific international standard ISO 9276-6 [7]. Due to the
interdependence of many parameters, the construction of a set covering most aspects of
shape while also ensuring pairwise independence is complicated. Therefore, Hentschel
and Page [8] performed a cluster analysis to identify a minimal set, finding the aspect ratio
and a form factor, describing the ruggedness as most important. Later, a more granular
classification system with 25 classes was proposed by Blott and Pye [9], also taking the
roundness and sphericity into account. To find a correlation applicable to a wide range of
shapes, however, there should not be a sharp distinction between classes, but a smooth
transition between shapes.

In addition to those parameters, the orientation of the particle is also relevant, as some
correlations regarding the settling of particles depend on the crosswise sphericity, which
also depends on it. This is, furthermore, of importance in the formation of sediments,
as discussed by Allen [10], who stated that the orientation is mainly influenced by the
Reynolds number. Sheikh et al. [11] performed simulations to study the orientation of
spheroid settling under turbulent conditions. An overview of the orientation of parti-
cles for a broad range of Reynolds numbers was given by Bagheri and Bonadonna [12];
for Reynolds numbers up to 100, the particles tend to settle in an orientation which maxi-
mizes the drag [13], while many particles have no preferred orientation in the Stokes regime.
However, the shape additionally affects the orientation, as shown by Shao et al. [14], who
found differences in orientation not only for triangular and rectangular particles, but also
for rectangular particles with different aspect ratios for the same Reynolds number.

Extending the drag correlations for spheres [15–17] to other particle shapes has been a
topic of ongoing research for a long time. McNown [18] proposed a formula for ellipsoids
in the Stokes regime in 1950. It is still present in current research, e.g., Sommerfeld and
Qadir [19] presented a study investigating the drag and lift depending on the angle of eight
particles with different sphericity via lattice Boltzmann simulations in 2018. While the
correlation by Leith [20] is restricted to the Stokes regime, it is based on the differentiation
between form and friction drag, which depend on the surface tangential and are normal
to the settling direction. This differentiation is also visible in later works by Ganser [21],
Loth [22], and Hölzer and Sommerfeld [23]. Most correlations are, therefore, based on
a similar model with values fitted according to predominantly experimental, but also
analytical data. The calculation of drag correction factors for the Stokes and Newton
regime, used in the correlations, is common. Bagheri and Bonadonna [12] introduced the
additional requirement that shape parameters need to be accessible without extensive
measurement effort. They concluded with a correlation solely based on the axis lengths,
volume and density ratio, thereby omitting the otherwise commonly used sphericity. Their
correlation, together with the one presented by Hölzer and Sommerfeld [23], is among
the best performing correlations currently available in the literature for a wide range
of Reynolds numbers and shapes. However, all presented correlations mimic a similar
structure, based on the assumptions by Leith [20], only modifying terms and adding
parameters and further correction terms. This leads to the situation where, even for the best
models, a remaining spread is visible, which is not explained by the correlation. As hinted
by Bagheri and Bonadonna [12], the range of considered shape parameters needs to be
extended to capture more effects; this was also found by Tran-Cong et al. [24].

Depending on the considered particles, more specific correlations are available.
Dellino et al. [25] and Dioguardi and Mele [26] presented correlations for pumice particles,
namely samples of material from eruptions at the Vesuvius and Camp Flegrei volcanoes.
Since the topic of settling non-spherical particles proved to be complex and affected by
many factors, investigations of such specific sets as well as additional effects are sensible.
For the latter, Hölzer and Sommerfeld [27] investigated, among other things, the influence
of the Magnus effect. Few investigations exist which do not correlate the drag coefficient
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with a Reynolds number, but aim to directly describe the terminal settling velocity. The cor-
relations considered here are the ones by Haider and Levenspiel [28] and Dellino et al. [25].
Such correlations, in addition to being an easy, accessible, a-priori estimate for the terminal
settling velocity, might help to improve other models. A broad range of investigations of
particle behavior, e.g., in the lung [29,30] or in mixing processes [31], could benefit from
such models. For such more specific applications, a tool to obtain correlations, best fit for
the considered purpose and the available data, might be more beneficial than a general
correlation aiming to describe all cases.

Furthermore, the quality and abundance of data are crucial for a regression analysis
and model development. Experimental data might be expensive to obtain, especially
in large scales, since one has to measure all relevant parameters for existing particles.
This is also discussed by Bagheri and Bonadonna [12], who restricted the model to shape
parameters that are easily accessible. This is handy for application, since the required data
of a new particle system can be obtained comparably simply, and increases the amount
of available datapoints; however, some not-captured effects might be related to more
sophisticated shape parameters.

The aim of this work is to provide a tool capable of delivering drag correlations
with a good fit for a given set of data, and also apply it to the results of simulations
yielding correlations for the drag coefficient and terminal settling velocity. The available
literature usually only addresses new correlations, based on the modification and extension
of existing models, which are obtained by extending the data basis. This work takes a
data-driven approach, obtaining a database not through experimental studies, but through
simulations. Depending on the availability of computational resources and preexisting
models and implementations, simulations of arbitrarily shaped particles [32] might be an
efficient alternative, with the information regarding the settling behavior of the particles
becoming more accessible. Therefore, the procedure described in this work allows for
a larger database to be obtained, along with advances in available computing power
and algorithmics.

Here, the particles were modeled by superellipsoids, as this allows for the depiction
of a broad range of shapes. Since the particle shapes can be analytically described, a vast
amount of shape parameters can be calculated, which might not be accessible to experi-
mental measurement devices. Therefore, in this work, multiple shape parameters besides
axis length, elongation, flatness and sphericity are considered,such as roundness, convexity
and further constructed parameters like the Corey shape factor [18], which are displayed in
Section 2.2. The considered parameters are also evaluated regarding their relevance during
the investigation. As with this representation via superellipsoids, edges are usually, at least
to some extent, rounded and not sharp, except for extreme values; this reflects the nature
of real particle systems, since corners and edges are usually rounded due to collisions.
Therefore, 200 particles, with different shapes and densities, were simulated individually
in this work. The shapes were constructed to provide a dataset with preferably equally
distributed shape parameters, to reduce the effect of a stronger weighting of a specific class
of particles.

One aim of this study is to find a new, improved correlation in a constructive way,
by applying a polynomial regression and investigating the statistical relevance of various
existing shape parameters and their interactions. To the knowledge of the authors, such an
investigation has not been performed before, especially also considering the multicollinear-
ity and statistical relevance of each term by various measures. In addition, a correlation for
the terminal settling velocity is proposed.

The simulations were performed applying the homogenized lattice Boltzmann method
(HLBM), introduced by Krause et al. [33] and validated in a previous work by Trunk et al. [34].
It is used within the open-source C++ simulation framework OpenLB [35,36].

The remainder of this work is organised as follows. In Section 2, the model for the
settling of particles is given as well as an overview of relevant existing drag correlations
for spheres and non-spherical particles. The shape parameters considered in this work
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are defined and the depiction of particles by superellipsoids is described. Following this,
in Section 3, the necessary information regarding the applied simulation method and the
generation process of the particle dataset is given. In Section 3.2, the applied statistical
tools, later applied in the investigation, are introduced. Finally, in Section 4, the conduction
and validation of numerical experiments is discussed, and the results are presented in
Section 5. The latter is divided into a general inspection of results (Section 5.1), and the
regression analyses regarding the drag coefficient (Section 5.2.1) and the terminal settling
velocity (Section 5.2.2). A brief overview of the findings is then given in the conclusion in
Section 6.

2. Mathematical Modeling

In this work, the behavior of single settling particles in a liquid is studied. Since this
is similar to previous studies, this rather general part of the section strongly follows the
one given in the preceding publication by Trunk et al. [34]. The dynamic behavior of the
system is defined by the motion of the particle and the fluid. The latter is governed by the
incompressible Navier–Stokes equations

∂uf
∂t

+ (uf · ∇)uf − ν∆uf +
1
ρf
∇p = Ff in Ωf × I ,

∇ · uf = 0 in Ωf × I .
(1)

They are defined for a time interval I ⊆ R on a spatial domain Ωf which, together
with the area covered by the particle Ωp, spans the computational domain Ωf ∪Ωp = Ω ⊆
R3. Since the considered particles are not stationary, it is Ωf = Ωf(t) and Ωp = Ωp(t).
uf : Ωf × I → R3 denotes the fluid velocity, while p : Ωf × I → R describes the pressure,
ρf ∈ R>0 the fluid’s density and ν ∈ R>0 its kinematic viscosity. The total force experienced
by the fluid is denoted by Ff, and is solely composed of the hydrodynamic force due to the
exchange of momentum with the submersed particle.

The rigid particle’s motion follows Newton’s second law of motion

mp
dup

dt
= Fp and

d(Jpωp)

dt
= Tp . (2)

Here, mp ∈ R>0 is the particle’s mass, up : I → R3 the particle’s velocity and
Fp : I → R3 the force acting on the particle. The rotation can be described in an equivalent
way to the moment of inertia Jp ∈ R3, the angular velocity ωp : I → R3 and the torque
Tp : I → R3. Together with an expression for the force Fp, this enables the calculation of a
particle’s trajectory.

The only external forces relevant in this work are the gravitational and buoyancy
forces, given by FBG = (0, 0, mp(1− ρf

ρp
)g). The gravitational acceleration of g is equal to

9.81 m s−2 throughout this paper. Since only a single particle is considered, contact forces
are neglected. Therefore, with the hydrodynamic force FH : I → R3, responsible for the
momentum transfer between fluid and particle, and the vector r ∈ R3 yielding the distance
to the center of mass for a point in the particle, the force in Equation (2) is given by

Fp = FBG +
∫

S

[
−pI +

1
Re

(∇uf +∇ut
f)

]
· ndS ,

Tp =
∫

S
r×

[
−pI +

1
Re

(∇uf +∇ut
f)

]
· ndS ,

(3)

with n being the normal on the surface S of an object.
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2.1. Drag Coefficient

The force mainly responsible for interaction between particle and fluid is the drag force,
which depends on the relative velocity between the considered object and the surrounding
fluid. In general, it is given by

FD =
1
2

ρf(up − uf)
2CD A , (4)

with A denoting the projected surface of the considered object in the direction of the relative
flow. The drag coefficient CD depends on the shape of the particle [24,37], but mainly on
the Reynolds number

Re =
dequts

ν
, (5)

with the terminal settling velocity uts. In this work, the diameter of the volume equivalent
sphere deq, described in the next section, is used as characteristic length. This allows the
calculation of Re for arbitrary shapes.

For the simple shape of a sphere, numerous correlations for CD have been proposed
based on experimental and analytical investigations [38]. This has already been investigated
by the authors in a previous work [34]. The most common correlation is given by Stokes [15]
for Re < 1 with CD,S = 24/Re. Inserting this in Equation (4), and assuming a force balance,
as stated in Equation (3), this leads to the terminal settling velocity

uts,S =

√
4
3

gdeq

CD,S

ρp − ρf

ρf
. (6)

Another common drag correlation for Reynolds numbers up to 800 has been proposed
by Schiller and Naumann [16]. It is given by

CD,SN =
24
Re

(
1 + 0.15Re0.687

)
, (7)

and has been extended by Clift and Gauvin [17] for the full intermediate and Newton
regime by

CD,CG =
24
Re

(
1 + 0.15Re0.687

)
+ 0.42

(
1 +

42500
Re1.16

)−1
. (8)

2.2. Shape Parameter

Some of the challenges in the selection of particle shape parameters are caused by
the numerous ways of defining the measures and the correlation between the parameters.
Additionally, since a particle’s shape can be arbitrarily complex, it cannot be fully described
by a small set of values, which usually are not fully independent of each other. In this
section, the measures used in this work are briefly introduced.

A first approach is the definition of the diameter of a sphere with a volume equal to
the one of the particle Vp. It is given by

deq =
3

√
6
π

Vp . (9)

Since this parameter alone does not carry any information about the shape, additional
values like the aspect ratio, defined as the ratio of minimum to maximum of the Feret
diameter, are required. In previous studies by the authors [39], it was shown that this
parameter is still too generic; therefore, it is split in elongation

E = aI/aL , (10)
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and flatness
F = aS/aI , (11)

in this work. Here, aL, aI and aS denote the longest, intermediate and shortest half-axis of
the particle, respectively.

Another common parameter is the convexity κcon, defined as the ratio of the particle’s
volume to the volume of its convex hull, taking values between 0 and 1. The sphericity ψ,
as defined by Wadell [40], has already been used in many studies regarding the particle
shape [19,23]. It also takes values between 0 and 1, with the latter being a perfect sphere.
Defined as the ratio between the surface of a volume-equivalent sphere and the particle’s
surface Ap, it is given as

ψ =
1

Ap

3
√

π
(
6Vp

)2 . (12)

While the sphericity describes the particle’s resemblance to a sphere, the roundness
κrnd is related to the curvature of its corners and edges. While the definition based on the
measurements by Krumbein [41] or by Wadell [40] are rather inconvenient to calculate, it is
defined here as

κrnd =
Vp

Ap(8aLaIaS)
1/3 . (13)

This formula was proposed by Hayakawa and Oguchi [42], who found a strong
correlation with the results by Krumbein [41].

Further parameters can be created, e.g., by combining the lengths of the main axes.
A common parameter is the Corey shape factor λCSF [18,43], yielding lower values with a
flatter particle. It is defined by

λCSF =
aS√
aIaL

. (14)

The Hofmann shape entropy λH [44], which was found to properly describe the
dynamics of settling ellipsoids [45], is defined in a more complex way as

λH = − ãS ln(ãS) + ãI ln(ãI) + ãL ln(ãL)

ln(3)
, (15)

for axis lengths normalized as ãi = ai/(aS + aI + aL) for i ∈ {S, I, L}. Le Roux investigated
the settling of grains with a database containing (prolate and oblate) spheroids, discs, cylin-
ders, and ellipsoids, finding correlations for the settling velocity of the particles and also
performing a hydrodynamic classification regarding the shape [46]. The found parameter

λLR =

(
1− aS

aL

)σ

, (16)

depends on a value σ which is dependent of the class of shape; it is given, e.g., by σ = 2.5
for ellipsoids and σ = 1.6 for discs.

2.3. Particle Representation

For the depiction of arbitrary particle shapes, superellipsoids are chosen in this work,
as they represent a compromise between a diversity of possible shapes (e.g., rectangu-
lar, spheroidal or cylindrical) and analytical manageability. Information on the model-
ing parameter and transformations of a superellipsoid are given, e.g., by Williams and
Pentland [47] or Barr [48]. Even contact-detection algorithms exist, as presented by Well-
mann et al. [49]. An extensive discussion on the geometric properties is given by Jaklič [50].

Let (X, Y, Z) be the coordinates of a point in R3; then, a superellipsoid is described by

(∣∣∣∣
X
a

∣∣∣∣
ξ1

+

∣∣∣∣
Y
b

∣∣∣∣
ξ1
)ξ2/ξ1

+

∣∣∣∣
Z
c

∣∣∣∣
ξ2

≤ 1 , (17)
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for half-axis lengths a, b, c in x-, y- and z-direction, respectively. The exponents ξ1 and
ξ2 control the roundness of the superellipsoid. Considering a = b = c, this geometric
primitive, e.g., takes on the shape of a sphere for ξ1 = ξ2 = 2, a cube for ξ1, ξ2 → ∞ or the
the shape of a cylinder for ξ1 = 2 and ξ2 → ∞. Overall, the shape is convex for ξ1 ≥ 1 and
tends to be flatter for ξ2 → 0.

While Equation (17) allows a description of the surface, the volume and moment of
inertia are also required for the simulation. They can be defined utilizing the moments
given by Jaklič and Solina [51] as

mi,j,k =
2

i + j + 2
ai+1bj+1ck+1ξ1ξ2B

(
(k + 1)

ξ1

2
, (i + j + 2)

ξ1

2
+ 1
)

B
(
(j + 1)

ξ2

2
, (i + 1)

ξ2

2

)
, (18)

for i, j, k ∈ N0. The beta function is given by

B(x, y) =
∫ 1

0
tx−1(1− t)y−1dt for x, y > 0 , (19)

or can alternatively be represented as combination of gamma functions. Based on
Equation (18), the volume Vp and the moment of inertia Jp = (Jxx, Jyy, Jzz) are now de-
fined as

Vp = m0,0,0 , (20)

Jxx = m0,2,0 + m0,0,2 , (21)

Jyy = m2,0,0 + m0,0,2 , (22)

Jzz = m2,0,0 + m0,2,0 . (23)

2.4. Drag Correlations for Non-Spherical Particles

There have been many attempts to find and improve a drag correlation for different
particle shapes and different ranges of Reynolds numbers. The oldest discussed here is
derived by Leith [20] for the Stokes region. Considering the form drag originating from
pressure on the particle’s surface and friction drag caused by a tangential shear stress, Leith
proposed a formula based on the diameter of a surface-equivalent sphere and the diameter
of a sphere with the same projected area in the direction of motion. His parameters were
later interpreted as sphericity ψ and crosswise sphericity ψ⊥, i.e., the ratio of projected area
of a volume-equivalent sphere to the projected area of the particle normal to the direction
of motion, leading to the most commonly used version

KS =
1
3
√

ψ⊥ +
2
3
√

ψ . (24)

Here, KS denotes the drag correction factor for a particle in the Stokes regime regarding
a volume-equivalent sphere. As Leith [20] found evaluating his results, these do not fully
explain the experimental reference data; he proposed the application of a least-squares fit
for additional terms regarding the axis lengths. Likely because these results are specific to
the considered data basis, usually, only the formula depicted here is referenced.

Later, Haider and Levenspiel [28] performed a non-linear regression analysis on a data
basis of 409 polyhedrons and 87 discs for Reynolds numbers up to 2.6× 105. The result is
the comparably complex formulation of

CD,HL =
24
Re

(1 + c1Rec2) +
c3

1 + c4/Re
, with

c1 = e2.329−6.458ψ+2.449ψ2
,

c2 = 0.096 + 0.557ψ ,

c3 = e4.905−13.894ψ+18.422ψ2−10.260ψ3
,

c4 = e1.468+12.258ψ−20.732ψ2+15.886ψ3
.

(25)
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The error for the disc-like particles was found to be approximately four times the one
of the polyhedral particles, probably due to the unbalanced data basis. In addition, Haider
and Levenspiel [28] proposed a formulation to estimate the terminal settling velocity for
isometric particles with a sphericity between 0.5 and 1, by

uts,HL =

(
gν(ρp − ρf)

ρf

)1/3(18
d2∗

+
2.335− 1.744ψ√

d∗

)−1
, with

d∗ = deq

(
g(ρp − ρf)

ν2ρf

)1/3

.

(26)

A study by Ganser [21] considering 731 datapoints aggregated from the literature
concluded with

CD,G =
24KS

Re

(
1 + 0.1118

(
ReKN

KS

)0.6567
)
+

0.4305KN

1 + 3305KS/(ReKN)
, with

KS =
1
3
+

2
3
√

ψ ,

KN = 101.8148(− log ψ)0.5743
.

(27)

As well as the new correction factor for the Stokes regime, an additional one was
introduced for the Newton regime, along with the assumption that these two factors are
sufficient for an adequate prediction of the drag coefficient for Reynolds numbers up to
ReKSKN ≤ 105. While the formula presented here is mainly applicable to isometric objects,
alternatives for disc-like particles were also presented; however, these require knowledge
of the orientation of the particle. These shape-dependent differences were found to mainly
affect KS. Ganser [21] further concluded that the introduction of a third parameter for the
intermediate regime could reduce the remaining variance.

Loth [22] extended the investigations of Ganser [21] and Leith [20], also providing
a more differentiated discussion on the behavior in the intermediate Reynolds number
regime. Their finding was that different formulations are required regarding the circularity
of the projected area of the particle in the direction of motion. This, of course, also required
knowledge of orientation. Despite this, an additional correction factor for the Stokes regime

KS =

(
aLaI

a2
S

)0.09

=

(
1

λ2
CSF

)0.09

, (28)

was proposed, describing irregular particles.
To incorporate the particle orientation without differentiation between shape classes,

Hölzer and Sommerfeld [23] proposed taking the lengthwise sphericity ψ‖, defined as “the
ratio between the cross-sectional area of the volume equivalent sphere and the difference
between half the surface area and the mean longitudinal (i.e., parallel to the direction of
relative flow) projected cross-sectional area of the considered particle” [23] into account.
Their correlation, which was evaluated on 2061 datapoints, is given by

CD,HS =
8

Re
√

ψ‖
+

16
Re
√

ψ
+

3√
Reψ3/4

+ 0.4210.4(− log ψ)0.2 1
ψ⊥

, (29)

and showed a tremendous improvement in the prediction of the drag coefficient for disc-
like objects. They also showed that replacing lengthwise with crosswise sphericity only
leads to a drop in the mean deviation from 14.1% to 14.4% from the experimental results.

Finally, Bagheri and Bonadonna [12] compiled a large dataset of 2166 particles from
the literature and their own experiments across sub-critical Reynolds numbers, paired
with analytical data for 104 ellipsoids in the Stokes regime. Based on the assumption by
Ganser [21], they concluded with a formula based on Stokes and Newton correction factors
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CD,BB =
24KS

Re

(
1 + 0.125

(
ReKN

KS

)2/3
)
+

0.46KN

1 + 5330/(ReKN/KS)
, with

KS = 0.5
(

F1/3
S + F−1/3

S

)
,

KN = 10c1(− log FN)c2 ,

c1 = 0.45 +
10

e2.5 log ρ′ + 30
,

c2 = 1− 37
e3 log ρ′ + 100

,

FS = FE1.3 d3
eq

aSaIaL
,

FN = F2E
d3

eq

aSaIaL
.

(30)

The formula here is not taken directly from the publication, but a corrected version
by Bagheri and Bonadonna [52]. They further argued that the sphericity, in addition to
being harder to measure, is inferior to a shape descriptor based on the axis lengths. In an
extensive discussion of particle behavior in the Stokes and Newton regime, it was found
that the density ratio ρ′ is also relevant, especially in the Newton regime. This is supported
by various studies, suggesting that the trajectory might change depending on the density
ratio [53–55]. A comparison showed their formula yielded the lowest deviation across all
correlations discussed up to this point, and thereby is currently among the best-performing,
together with the one proposed by Hölzer and Sommerfeld [23], to the knowledge of the
authors. However, a spread in results is still visible. This hints that further effects and
parameters might need to be considered to further improve the formulation.

More specific to a set of pumice particles from volcanic eruptions, Dioguardi and
Mele [26] proposed a correlation depending on the drag coefficient for spheres, computed
according to Clift and Gauvin [17], and the ratio of sphericity to circularity φ. The latter
is given as ratio of maximum projected area to the projected area of a volume-equivalent
sphere. Their formula finally reads

CD,DM =
CD,CG

Re2(ψ/φ)Re−0.23

(
Re

1.1883

)1/0.4826
. (31)

Dellino et al. [25] used the same dataset to develop a direct correlation between
the terminal settling velocity and particle parameters, also relying on the ratio between
sphericity and circularity. This is given by

uts,D =
1.2065ν

deq

(
d3

eqg(ρp − ρf)(ψ/φ)1.6

ν2ρf

)0.5206

. (32)

This allows for a direct estimation of the terminal settling velocity without the need
for an iterative algorithm, as is required when using the correlations regarding the drag co-
efficient.

3. Numerical and Statistical Methods

For the numerical simulations in this paper, the homogenized lattice Boltzmann
method is applied. The method and implementation have been extensively tested and
validated in a previous publication by Trunk et al. [34]; therefore, only the relevant parts
are summarized here.
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The HLBM was first proposed by Krause et al. [33] and later updated by Trunk et al. [34].
In this work, the version used in the latter publication is used, which is based on a forcing
scheme by Kupershtokh et al. [56] and the momentum exchange algorithm by Wen et al. [57].
The extension to 3D and the incorporation of arbitrary particle shapes was described by
Trunk et al. [32]. A setup similar to the one used in this work was studied by Trunk et al. [34]
for spheres, yielding an error of approximately 6% compared to the drag correlation by
Schiller and Naumann [16] and approximately 3% to the drag correlation by Abraham [58].

Since this approach is a specialisation of the more general lattice Boltzmann method
(LBM), all values are non-dimensionalized by the spatial and temporal discretization
parameter δx and δt and the density ρf during processing. The resulting system is denoted
as a “lattice system”. It was found by Trunk et al. [34] that the quality of the results depends
on the maximal occurring velocity in the lattice system uL

max for the investigation of settling
processes, defined by

uL
max =

δt
δx2 umax , (33)

with umax as the maximum fluid velocity observed in the simulation. For a sufficiently low
error, uL

max should be smaller than 0.04. A further condition exists regarding the lattice
relaxation time

τ = ν
δt
δx

1
c2

s
+ 0.5 , (34)

where c2
s is the lattice speed of sound [59]. For the simulation to be stable, τ may not be

too close to 0.5. For further information on the LBM, the interested reader is referred to
Krüger et al. [59].

3.1. Particle Generation

According to the approach described in Section 2.3, a particle is defined by 5 parame-
ters. To create a collection, parameter ranges are defined, for which the half-axis lengths
are defined via elongation and flatness, starting with a = 0.01 m. Varying the particle’s
density, the parameters

E ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1} ,

F ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1} ,

ξ1 ∈ {8, 2, 1, 0.933, 0.9, 0.866, 0.833, 0.8, 0.766, 0.733, 0.7, 0.666} ,

ξ2 ∈ {8, 2, 1} ,

ρp ∈ {2360 kg m−3, 2460 kg m−3, 2560 kg m−3, 2660 kg m−3, 2760 kg m−3} ,

(35)

lead to a group of 6480 particles. For comparability, the half-axes of all generated objects
are scaled equally, such that the resulting particle has a volume of 1.667 42× 10−11 m3.
Thereby, the equivalent sphere diameter of all generated particles is deq = 3.1697× 10−4 m.
During the creation process, all shape parameters given in Section 2.2 are calculated along
with the volume, according to Equation (20). Furthermore, the terminal settling velocity
obtained using the drag correlation by Stokes (Equation (6)) and the surface are computed.
For the latter, a triangulation of the parametric representation in terms of the modified
spherical coordinates of Equation (17) is used [51].

From this set of particles, 200 are selected, such that a chi-squared test [60] for an equal
distribution of frequencies yields a p-value above 0.99 for all considered parameters; some
of them are shown in Figure 1. The frequencies are given for a sensible choice of numbers
of bins for each parameter, as shown in Table 1. For the density, 5 bins wwere used, as only
this number of discrete values is considered. For reference, the data and parameters for all
200 particles are given in Appendix A.
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Figure 1. Some examples of particle shapes considered via superellipsoids. Depicted (from left to right and top to bottom) are the
particles with ID 5, 17, 28, 143, 166 and 200, according to Appendix A.

Table 1. Results of a chi-squared test for equal distribution of frequencies of different shape
parameters.

Elongation Flatness Convexity Sphericity Density

numberof bins 6 6 6 5 5
p-value 0.998 0.995 0.999 1.000 1.000

As a first step, the Pearson correlation coefficients [60,61] for the shape parameters are
calculated; their absolute values are depicted in Table 2. The results show three clusters
of strong correlation. Firstly the constructed shape factors, i.e., the Corey shape factor,
the Hofmann shape entropy and the Le Roux shape parameter; this is to be expected, as
all of them depend on the axis lengths of the investigated objects. This also explains the
second correlation between the first cluster and the elongation and flatness. The third
group contains the convexity, sphericity and roundness. This suggests that adding more
than one of these parameters to a model will have a weaker influence on the quality of the
results. Lastly, a weaker correlation between this third cluster and the exponent ξ1 used in
the particle creation process can be observed. Furthermore, the axis lengths are correlated
to almost every other parameter, except the density, as it is varied independently.
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Table 2. Absolute Values of the correlation coefficients according to Pearson [61] for the considered shape parameters.

aL aI aS ξ1 ξ2 ρp E F κcon ψ ψ⊥ κrnd λCSF λH λLR

aL 1.0 0.55 0.04 0.41 0.17 0.03 0.74 0.51 0.65 0.52 0.64 0.68 0.67 0.73 0.75
aI 0.55 1.0 0.57 0.39 0.47 0.08 0.13 0.13 0.63 0.61 0.47 0.85 0.05 0.04 0.02
aS 0.04 0.57 1.0 0.18 0.57 0.03 0.44 0.72 0.41 0.45 0.31 0.61 0.73 0.64 0.65
ξ1 0.41 0.39 0.18 1.0 0.02 0.08 0.19 0.15 0.47 0.44 0.31 0.57 0.18 0.21 0.21
ξ2 0.17 0.47 0.57 0.02 1.0 0.03 0.16 0.36 0.07 0.05 0.23 0.34 0.34 0.32 0.31
ρp 0.03 0.08 0.03 0.08 0.03 1.0 0.02 0.1 0.03 0.05 0.04 0.05 0.08 0.02 0.03
E 0.74 0.13 0.44 0.19 0.16 0.02 1.0 0.45 0.33 0.2 0.47 0.17 0.72 0.85 0.84
F 0.51 0.13 0.72 0.15 0.36 0.1 0.45 1.0 0.07 0.01 0.0 0.01 0.94 0.79 0.83

κcon 0.65 0.63 0.41 0.47 0.07 0.03 0.33 0.07 1.0 0.93 0.75 0.86 0.17 0.22 0.23
ψ 0.52 0.61 0.45 0.44 0.05 0.05 0.2 0.01 0.93 1.0 0.73 0.86 0.08 0.1 0.12

ψ⊥ 0.64 0.47 0.31 0.31 0.23 0.04 0.47 0.0 0.75 0.73 1.0 0.74 0.18 0.2 0.23
κrnd 0.68 0.85 0.61 0.57 0.34 0.05 0.17 0.01 0.86 0.86 0.74 1.0 0.06 0.08 0.11
λCSF 0.67 0.05 0.73 0.18 0.34 0.08 0.72 0.94 0.17 0.08 0.18 0.06 1.0 0.92 0.95
λH 0.73 0.04 0.64 0.21 0.32 0.02 0.85 0.79 0.22 0.1 0.2 0.08 0.92 1.0 0.99
λLR 0.75 0.02 0.65 0.21 0.31 0.03 0.84 0.83 0.23 0.12 0.23 0.11 0.95 0.99 1.0

3.2. Statistical Tools

To find the correlation between a dependent variable Y (here, e.g., the drag coefficient)
and multiple independent variables Xi, i ∈ {1, . . . , k; k ∈ N} (here e.g., sphericity), often,
regression analysis is applied to find a model, yielding approximations of the dependent
variable Ŷ. The quality of a model is evaluated by the amount of variance in the data it can
describe; this is given by the coefficient of determination

R2 = 1−
∑n

j=1 r2
j

∑n
j=1(Yj − Ȳ)2 , with n ∈ N , (36)

for the residuals rj = Yj− Ŷj. Here, Ȳ represents the mean and n is the number of datapoints.
Considering multiple independent variables, the adjusted version given by

R2
a = 1− (1− R2)

n− 1
n− k− 1

, (37)

is more appropriate. This further allows the definition of the variance inflation factor VIF
as a measure of multicollinearity [62] by

VIFi =
1

1− R2
i

, (38)

with R2
i being the coefficient of determination of a linear regression, choosing Xi as the

dependent variable. Values > 10 are considered critical since they indicate a high level of
multicollinearity, which negatively affects the stability of the method chosen to calculate
the regression coefficients.

To further obtain an a priori estimation regarding the dependency between two
explanatory variables, the mutual information MI introduced by Shannon [63], defined
as the difference between the sum of entropy of the two variables and the joint entropy,
is calculated. Later, Kraskov et al. [64] introduced an estimate for this, using k-nearest
neighbor distances, which is applied in this work. MI reaches its minimum of 0 for strictly
independent variables. Another measure is the F-value of a linear regression, with only
one explanatory variable regarding the desired dependent variable, given as

Fsample =
R2/k

(1− R2)/(n− k− 1)
. (39)
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A high value indicates the relevance of the explanatory variable in the description of
the dependent one [62]; however, this test is more suited to the detection of linear depen-
dency.

To evaluate the significance of an explanatory variable for a performed regression,
a t-test is performed. Here, a large t-value implies a high significance of the explanatory
variable. Since the values can also be negative, the absolute has to be considered. For the
variable Xi, with the associated regression coefficient βi, the score is given as

Tsample =

∣∣∣∣∣∣∣
βi




√
(n− k− 1)−1 ∑n

j=1 r2
j√

∑n
j=1(Xi,j − X̄i)2



−1∣∣∣∣∣∣∣

, (40)

for the mean of an explanatory variable for all observations, X̄i. With the T-distribution, an
additional p-value can be computed to check if a term is significant above a threshold level,
usually chosen as α = 0.05. Another measure to evaluate the significance of an explanatory
variable is the permutation importance introduced by Breiman [65]. It requires a score to
evaluate the quality of a model, which is here chosen asthe coefficient of determination R2.
For each considered variable, the regression is performed five times, with the values of the
variable being shuffled each time over the observations, thereby destroying the correlation
between feature and dependent variable. The mean R2 across this runs is subtracted from
the one obtained with not-permuted data, yielding the permutation importance PI.

Finally, the observations are evaluated regarding the regression performed to identify
outliers. The first approach is to standardize the residuals: observations yielding an
absolute value above three are considered to be outliers. In the following, Cook’s distance

dCook =
∑n

j=1(Ŷj − Ŷj(l))

(n− k− 1)−1 ∑n
j=1 rj

, l ∈ {1, . . . , n} , (41)

is computed to evaluate the influence of an observation on the model. Here, Ŷj(l) is
the approximation of the dependent variable by a model unaware of the l-th observation.
For this measure, a value above 0.5 marks an influential point, while values above 1 indicate
an outlier.

4. Numerical Experiments

In this section, some preparatory calculations regarding the starting conditions are
presented, as well as the simulation setup for the investigation of settling particles. For the
latter, some preliminary studies validating the setup are discussed.

4.1. Preparation

Depending on the Reynolds number, the initial conditions, i.e., the orientation of the
particle, should be checked. For low Re, objects tend to keep their angle; for intermediate
Re, axis-symmetric particles rotate such that the maximum projected area is normal to the
flow or settling direction. Using the equivalent spherical diameter for the Reynolds number
and utilising the drag correlation by Schiller and Naumann [16], it can be estimated that
Re = 15.41 with ν = 10−6 m2 s−1. The later-observed terminal settling velocities lead to
Reynolds numbers between Re = 9.64 and Re = 22.86. As this is in the intermediate
regime, the angle for which the projection in settling direction yields the maximum surface
is calculated.

For these calculations, a voxel representation of the superellipsoid is used and the
projected surface is calculated. To find the maximum, the particle is rotated in 1◦ steps
around the x-axis and y-axis. Since superellipsoids are rotational symmetric, in this case,
around the z-axis, this suffices. This additional information is required to ensure that all
objects have the same starting conditions, especially for the investigation of the initial
phase of the particle leveling out at its equilibrium position.
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4.2. Simulation Setup

For the investigation of single particle settling, the superellipsoids are placed in a
domain with 0.007 m width and depth and a height of 0.0175 m, as depicted in Figure 2.
The center of mass of the object is initially located in the middle of the domain, 2amax
from the top. The latter corresponds to the maximum half-axis length across all particles
amax = 4.777× 10−4 m. For the fluid ρf = 998 kg m−3 and ν = 10−6 m2 s−1 is chosen, while
the gravitational acceleration is given as g = 9.81 m s−2.

Figure 2. Initial configuration of the simulation.

The discretization is chosen such that the volume-equivalent sphere diameter is
resolved by 20 cells; this represents a grid spacing of δx = 1.584 84× 10−5 m. The resulting
domain thereby consists of 215,877,220 cells. Since it was found by Trunk et al. [34] that the
maximum occurring lattice velocity should not exceed 0.04, the temporal discretization is
chosen such that the maximum velocity of a volume-equivalent sphere according to Schiller
and Naumann [16] equals a lattice velocity of 0.02, leading to δt = 6.519 15× 10−6 s. This
proved to be sufficient as, in the later-performed simulation, the lattice velocity did not
exceed uL

max = 0.0319. Furthermore, the chosen parameters yield a lattice relaxation time
of τ = 0.5779 for the simulations. The top and bottom of the domain are equipped with a
no-slip bounce-back boundary condition, while the sides are periodic for the fluid as well
as the particle.

To observe how a particle equilibrates to its final orientation from a given initial
orientation, equal starting conditions have to be ensured for comparability. Therefore, each
superellipsoid is placed in the domain rotated by 45◦ from its assumed final orientation
(according to Section 4.1) regarding the x-axis and y-axis. The rotation is performed around
axes through the geometric center of the object, as the density distribution is assumed to be
homogeneous. Each simulation runs until the center of the considered superellipsoid is
1.1amax above the ground.

4.3. Validation

While the method itself has been extensively validated by Trunk et al. [34], this
subsection deals with the validation of the chosen setup, i.e., the chosen domain size and
resolution of the computational grid.
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As previously found by Rahmani and Wachs [55], grid convergence can be complicated
in DNS simulations of settling particles. Some turbulent effects are influenced by the
resolution, and slight deviations in the shape can lead to a different settling path.

Grid convergence can be complicated in DNS simulations of settling particles with
complex shapes. Slight deviations in the representation of the object’s shape in the sim-
ulation, depending on the resolution, might lead to deviations in some of the tracked
parameters, such as the path or the angle.

In this way, convergence might not be observed in a quantitative way, comparing two
paths, but rather a qualitative way. While the amplitude and exact positions of maxima
and minima, e.g., in settling velocity, may vary, other aspects, such as the frequency of
oscillation and settling regime, can be compared, as described in [55]. To achieve high-
quality results, the resolution should be high enough to depict all relevant features, while
also being as low as possible to allow for a large domain and, therefore, a long settling path.
To find the lowest required resolution, the particle with ID 96 is selected for resolution
tests, since it has the smallest half-axis (9.1× 10−5 m). For the tests, the setup described
in Section 4.2 is used and the number of cells N per equivalent sphere diameter is varied.
The voxel representation of the particle for N = 20 is depicted in Figure 3.

Figure 3. Voxel representation of the particle with the shortest half-axis length of 9.1× 10−5 m for
N = 20.

While the lowest tested resolution of N = 8 yields a terminal settling velocity of
0.049 m s−1, all other resolutions lead to a velocity of 0.047 m s−1, with a deviation of
less than 1%. Therefore, a resolution of at least N = 12 is required to correctly depict
the terminal settling velocity. The results regarding the settling velocity are depicted in
Figure 4. The fluctuations in the angle around the y-axis depicted in Figure 5 are below
10◦ and seem to oscillate around θy = 0◦. The differences in deflection in the y-direction
were of size 0.05deq, and therefore small. To ensure a sufficiently high resolution, N = 20 is
chosen for all further simulations.

Figure 4. Coordinates of the center of mass of the particle, projected on a plane normal to the settling
direction. Results printed for different grid spacings, for the particle with the shortest half-axis.
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Figure 5. Plot of the angle for rotation around the y-axis over time during the settling. Results printed
for different grid spacings, for the particle with the shortest half-axis.

To study the influence of the domain size on the particle settling, the setup described
in Section 4.2 was used, now with the particle (ID 138) with the longest half-axis of
4.78× 10−4 m. The size of the domain in the directions normal to the settling direction was
varied between 0.003 m and 0.011 m. Here, the influence on the terminal settling velocity
was completely negligible, as, for all cases, the deviation from the average of 0.035 m s−1

was below 1%. The differences regarding the path were also quite low, as depicted in
Figures 6 and 7. Since the settling regime, e.g., described by Horowitz and Williamson [66]
for spheres, is significantly influenced by perturbations, as described by Bagheri et al. [12],
the chosen domain should still not be the smallest one possible, to allow for settling
paths with more deflection from the midst. To ensure a domain large enough for particles
with an oblique settling path to sediment without perturbation via the periodic boundary,
the domain size was chosen as 0.007 m in all further computations.

Figure 6. Plot of the angle for rotation around the y-axis over time during the settling. Results printed
for different grid spacings, for the particle with the longest half-axis.
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Figure 7. Coordinates of the center of mass of the particle projected, on a plane normal to the settling
direction. Results printed for different grid spacings, for the particle with the longest half-axis.

5. Results and Discussion

The results are presented in two sections. First, in Section 5.1, an overview of the
data processing and performance of a shape classification is given. Furthermore, a first
impression of the dependency of the drag coefficient on the shape parameters is given. Then,
in Section 5.2, two regression analyses are presented, one regarding the drag coefficient
and one regarding the terminal settling velocity.

5.1. Examination of Simulation Data

In this section, the processing of the simulation data is described, e.g., the calculation
of relevant parameters like the terminal settling velocity in Section 5.1.1. Furthermore,
the particle shape is classified and the influence of some shape parameters is investigated.
Finally, in Section 5.1.3, some exceptions, like particles which did not reach a stable terminal
settling velocity, are analysed.

5.1.1. Data Processing

Each of the 200 particles was tracked during the simulations described in Section 4.2.
The terminal settling velocity was calculated by averaging the velocity in a settling direction
between 0.15 s and 0.23 s, as, during this time, all particles have reached a stable velocity
and the influence of the bottom wall was not noticeable. An exception were 11 particles
(with IDs 60–64, 80, 96 and 100–103), which did not reach a stable velocity, as still a slow but
continuous increase in velocity was observed up to the bottom of the domain, where the
influences of the bottom wall were also noticeable. These shapes need to be investigated
in a domain allowing for a longer settling path. For all others, the maximum deviation to
the calculated average in the given time interval was below 1.35%. The range of terminal
settling velocities observed across all simulations spans from 0.030 m s−1 to 0.072 m s−1,
leading to Reynolds numbers between Re = 9.64 and Re = 22.86.

Similar to the terminal settling velocity, the force was calculated by averaging over
the same time interval, to calculate the drag coefficient via Equation (4). Using the drag
correlation by Schiller and Naumann [16] for a volume-equivalent sphere, a drag correction
factor can be calculated, which was found to be between 0.92 and 2.32 for the particles
considered in this work.

Regarding the orientation of the particles, the angle around each of the three rotation
axes was considered separately for the last 30% of the settling duration. The orientation
was considered to be stable if, for each angle, the deviation from the average over the
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given time interval did not exceed two degrees and the angle did not increase or decrease
monotonically over time. The latter was considered to be the case if the time derivative
was positive or negative for more than 95% of the time steps in the considered interval.
By this reasoning, 25 particles were found to be not stable in orientation, i.e., the ones with
IDs 12, 29, 30–32, 48–50, 60–64, 70, 79, 84, 100–103, 175, 185, 186, 199 and 200. For all other
particles, the final angles were calculated by averaging over the given time interval. This
allows for the calculation of the crosswise sphericity, as described in Section 2.4.

5.1.2. Shape Classes and Influence of Shape Parameters

Investigating the particle behavior regarding the shape parameter, the influence of
elongation and flatness is clearly visible, as depicted in Figure 8. Bagheri and Bonadea [12]
found a similar dependency for the Stokes and Newton regime.

Figure 8. Dependency of the drag correction factor on elongation and flatness.

In most works regarding the drag correlation of non-spherical particles, the particles
were labeled by different shape classes, e.g., discs. Since, in this work, the particles
were generated from shape parameters, they were not selected according to such a class;
however, as applied by Szabó and Domokos [67], different classification systems exist.
Those usually depend on the main axis lengths. Zingg [5] proposed 4 classes, namely, discs
(27), spheres (109), blades (40) and rods (24). The frequencies of the considered dataset
in this investigation are given in parentheses, according to the classification. Another
approach was given by Sneed and Folk [6]. They suggested ten shape classes, given as
compact (82), compactly platy (21), compactly bladed (4), compactly elongated (14), platy
(0), bladed (33), elongated (31), very platy (0), very bladed (5) and very elongated (10).
The classification results are also visualised in Figures 9 and 10.
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Figure 9. The particles considered in this study are plotted for a shape classification according to
Zingg [5]. The four shape classes are 1: discs, 2: spheres, 3: blades and 4: rods.

Figure 10. The particles considered in this study are plotted for a shape classification according to
Sneed and Folk [6]. They are also classified regarding the compactness, leading to the ten shape
classes 1: compact, 2: compactly platy, 3: compactly bladed, 4: compactly elongated, 5: platy,
6: bladed, 7: elongated, 8: very platy, 9: very bladed and 10: very elongated.

Plotting the drag coefficient against the Reynolds number, as depicted in Figure 11,
revealed that a differentiation by shape classes, i.e., regarding coefficients defined via
the main axes lengths, is sensible. Rods have a significantly higher drag coefficient than
spherical particles. Bagheri and Bonadonna [12], therefore, found a good description of
the drag coefficient, relying only on the main axes lengths for elongation and flatness
and the density ratio, discarding the sphericity. Here, in Figure 11, however, a spread is
observable, e.g., for spheres and discs. Further dividing the shape classes into particles
with a sphericity higher than 0.8 and the ones below hints that this parameter is able to
describe this spread. Therefore, an improved model should rely on both the main axes
lengths and the sphericity to cover more aspects of single particle settling.
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Figure 11. The drag coefficient plotted against the Reynolds number, color with shape classification
according to Zingg [5]. A spread is revealed, describable via the sphericity (marker style).

It was furthermore observed that the particles with the 15 highest drag correction
factors are labeled as bladed according to Sneed and Folk [6].

5.1.3. Analysis of Exceptions

The particles not reaching a terminal velocity during the simulations were studied
separately. Therefore, a logistic regression was applied with a L2-regularisation for a
feature space consisting of the shape parameters given in Section 2.2 and the parameters
for the construction of the superellipsoids given in Section 2.3 up to the power of three.
For the regression, three of the parameters and their powers were considered at a time,
with a combination of ξ2, flatness and convexity yielding the best result of a classification
accuracy of 98.5%, i.e., three false negatives. In fact, inspecting the data of the particles not
reaching the terminal settling velocity, all have a comparably low flatness of 0.5 or 0.6 and
ξ2 = 8 for all of them.

The same analysis was performed for particles which did not reach a stable orientation.
However, the highest achieved classification accuracy was 90%, which is insufficient in
this context, as 20 particles were still falsely classified, of a total of 25 particles with no
stable orientation. The main influencing parameters at this point seem to be ξ2 and the
elongation, as they were part of every model yielding this classification accuracy.

5.2. Regression Analysis

This section covers the regression analyses of the computed data in more depth,
e.g., regarding the drag coefficient or the terminal settling velocity. The latter is of interest
for a direct correlation, as already mentioned by Haider and Levenspiel [28], since the
interdependence between drag coefficient and Reynolds number in the usually presented
correlations requires the application of iterative methods for a priori estimations. For the
analyses presented here, the additional dataset in Appendix B served as test data for valida-
tion of the computed correlations. With the 200 datapoints used for training, the available
data were split 18% to 82% into test and training data.

5.2.1. Polynomial Regression Regarding the Drag Coefficient

To evaluate which features might be relevant before the analysis, two approaches were
applied. The first one was performing an F-test [62] for a linear regression considering
only one independent variable at a time. Since it is a linear regression, predominantly
linear relations are detected. The second approach was to calculate the mutual information
between two variables [64], which is a measure usually applied in information theory. It
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is zero only when the variables are strictly independent, and is better in the detection of
non-linear dependencies. Both scores were normalized and are depicted for the considered
independent variables in Table 3.

Table 3. Normalized results of a F-test and the mutual information for feature selection regarding the drag coefficient.

aL aI aS ρp E F κcon ψ ψ⊥ κrnd λCSF λH λLR Re

Fsample 1.0 0.33 0.03 0.01 0.12 0.03 0.23 0.18 0.46 0.45 0.07 0.08 0.09 0.36
MI 0.92 0.73 0.65 0.01 0.37 0.12 0.71 0.55 0.74 0.83 0.3 0.51 0.47 1.0

The low F-value, in combination with high MI, e.g., for the Reynolds number, suggests
the existence of non-linear dependencies for the drag coefficient. Therefore, at least a
polynomial regression is required. As already shown in the literature (see Section 2.4),
the crosswise sphericity has a higher impact than the normal sphericity. For the actual
feature selection, the results depicted in Table 2 have to be taken into account, to minimise
effects due to multicollinearity. While this phenomenon does not necessarily harm the
reliability of the calculated model, it impacts the numerical stability of the method applied
to find the regression coefficients and complicates the evaluation of the significance of
a single regression parameter. Therefore, the main axis lengths were not selected for
regression, as they are strongly correlated with almost all parameters. Due to the high
MI score, the Reynolds number was chosen as a parameter for the polynomial regression,
together with one parameter from each cluster identified in Table 2. These were the
roundness, the elongation and the Hofmann shape entropy, as they yielded the highest
F-values and MI scores. While the last two parameters showed a correlation, both were
selected to capture all effects due to aspect ratio. The impact of this correlation will be
monitored in the following.

Due to the non-linear dependencies, second-order polynomials were considered for
the regression, including interaction terms. The degree was not further increased, since,
for a polynomial of third order, the error in the test data started to increase, indicating
overfitting. As the higher-order terms introduced structured multicollinearity, the data
were standardized, i.e., mean-centered and divided by the standard deviation. Finally,
the regression coefficients were computed, applying a least squares approach with L2-
regularisation.

For the resulting model, the variance inflation factor was computed as a measure of
multicollinearity; the results are depicted in Table 4. Dropping all terms with a VIF above
10 leads to

CD =− 0.386E− 0.496κrnd − 0.575Re + 0.097Eκrnd − 0.322ERe + 0.0497κ2
rnd

− 0.128κrndλH + 0.106κrndRe− 0.296λHRe + 0.161Re2 ,
(42)

for standardized dependent and independent variables. To apply this model, the data
need to be scaled according to the mean values and standard deviations given in the
Appendix A. The adjusted coefficient of determination of the found model is R2

a = 0.96,
implying that most of the relevant effects have been captured. Further data of the model
performance are depicted in Table 5. Dropping terms with a high VIF affected the mean
deviation from the simulation data by less than 0.3%.

Table 4. Variance inflation factor for the considered regression variables.

parameter 1 E κrnd λH Re E2 Eκrnd EλH
VIF 10.15 6.43 6.30 11.49 4.51 12.94 2.62 45.61

parameter ERe κ2
rnd κrndλH κrndRe λ2

H λHRe Re2

VIF 7.90 2.37 5.71 2.72 20.65 8.05 2.84
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Table 5. Performance of the model obtained by polynomial regression on the training and test data,
along with errors of models from literature on the training data.

Error in % RMSE

Mean Max

this work (training data) 2.84 17.46 0.18
this work (test data) 2.65 7.26 0.19

Haider and Levenspiel [28] 17.50 40.13 0.85
Ganser [21] 86.26 98.65 4.05

Leith [20] 84.47 98.64 3.97
Loth [22] 89.33 98.72 4.20

Hölzer and Sommerfeld [23] 23.65 39.16 1.30
Bagheri and Bonadonna [52] 17.70 35.07 0.88

Dioguardi and Mele [26] 26.97 69.03 1.43

Since the models by Leith [20] and Loth [22] focused on the Stokes regime and were
used in combination with the formula by Ganser [21], these three approaches had very
similar performances. The correlations found by Haider and Levenspiel [28], Hölzer and
Sommerfeld [23] and Bagheri and Bonadonna [52] performed far better on the current
dataset, with the last one yielding the best results regarding all error measures. The cor-
relation by Dioguardi and Mele [26] performed only slightly worse, despite being based
towards a specific dataset for pumice particles. The deviations of the models from the
dataset obtained by simulations in this work are similar to the ones reported by Bagheri
and Bonadonna [12], who also compared various models regarding data compiled from
the literature, analytical expressions and own experiments. This further validates the
simulation results. While this investigation considers far more shape parameters, which
improves the results, it has to be noted that the small range of Reynolds numbers covered
in this investigation might lead to a result that better fits the considered range. Therefore,
this model might outperform approaches intended for a larger range of Reynolds numbers
due to its higher specialization.

For further investigation of the model’s quality, the error was investigated in a QQ-
plot [68,69] in Figure 12, depicting the standardized residuals r = CD,sim − CD,fitted plotted
against the quantiles of a normal distribution. Since the points closely follow the angle
bisecting line, the errors can be assumed to be normally distributed, meaning that the
relevant effects are captured by the model. In addition, a Tukey–Anscombe plot [70] is
printed in Figure 13 for further analysis. As no clear structure is visible for the depicted
datapoints, except a slight aggregation on the left side, this supports the assumption
that most of the relevant effects were captured by the model. The points are colored by
shape classes according to Zingg [5], showing that the existing errors are not related to a
specific shape.

The plot is also a first visual approach for an outlier analysis. Points with an absolute
standardized residual above three are usually considered to be outliers; this was only the
case for particle number 17, with standardized a residual of 7.42. With a value of 2.99,
particle 132 can also be considered to be an outlier, while the value was well below 2.4 for
all other points. For all particles, the Cook distance [71] was also computed; a point with a
value above 0.5 is considered to have a large impact, while values above 1 indicate a model
that is not well fitted. The latter is only the case for particle 1, with a value of 1.28. The next
highest Cook distances are 0.4 for particle 121 and 0.35 for particle 17. The latter indicates
that the single-point influence of the outlier depicted in Figure 13 on the model is limited
and might be neglected.
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Figure 12. QQ-plot [68,69] of the standardized residuals against the theoretical quantiles of a normal
distribution, revealing an approximately normal distributed error.

Figure 13. Tukey–Anscombe plot [70] showing the standardized residuals plotted against the fitted
values, colored by shape classes according to Zingg [5].
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If the regression parameters with a high VIF in Table 4 were not dropped, only particle
17 remains, with a high Cook’s distance and standardized residual. Inspection of the
particle data showed the lowest flatness and sphericity values among all particles, with the
combination of both only appearing for particle 17. Since this is the only clear outlier,
it indicates that some features of the particle might not be correctly captured during
simulations. The particle is also depicted in Figure 1; it is clear that the particle grows
thinner the further it gets from its center. Therefore, the most probable source of error is
that the resolution was not sufficient to depict the outer regions.

Performing a t-test, all regression parameters in the model are relevant on a α = 0.05
basis. The resulting t-values are in good accordance with the computed permutation
importance PI, identifying Re, κrnd, E and ERe as the most relevant in this order. Except for
the lower relative significance of λH, this is in good accordance with the predictions based
on the F-value and MI presented in Table 3.

5.2.2. Polynomial Regression Regarding Terminal Settling Velocity

Except for Haider and Levenspiel [28] and Dellino [25], none of the literature consid-
ered in this work presented a correlation between shape parameters and terminal settling
velocity. Since it would be interesting for a priori estimation of the particle behavior,
the dependencies between shape and settling velocity are investigated in this section by
regression analysis, similar to Section 5.2.1.

As before, the data and dependent variable were standardized. From the MI and
F-values in Table 6, it is apparent that the density ratio, roundness and Hofmann shape
entropy are the most relevant parameters for regression, considering the correlations found
in Table 2. The density ratio is here represented by the particle’s density, as the density of
the fluid is constant across all simulations. In tests, it was found that adding the sphericity
contributes to the quality of the model.

Table 6. Normalized results of a F-test and the mutual information for feature selection regarding the
terminal settling velocity.

ρp E F κcon ψ ψ⊥ κrnd λCSF λH λLR

Fsmaple 0.76 0.0 0.25 0.06 0.01 0.42 1.0 0.14 0.09 0.07
MI 0.39 0.0 0.0 0.59 0.61 0.52 1.0 0.08 0.29 0.16

Increasing the polynomial degree of the model until the error on the test data increased
again yielded a polynomial order of 2 for the regression. Computing the VIF for the result-
ing model showed that the terms ψκrnd and κ2

rnd predominantly introduce multicollinearity,
with scores of 25.52 and 12.46, respectively. The elimination of one of these two explanatory
variables sufficed; due to the nonlinear dependency on the roundness, the first one was
chosen. Further removing the constructed parameter regarding a significance level of
α = 0.05 leads to the model given in Table 7.

Table 7. Variance inflation factor of the remaining explanatory variables and regression coefficients
for the standardized values.

Parameter ρp ψ κrnd λH ψ2 ψλH κ2
rnd κrndλH λ2

H

VIF 1.02 5.23 4.17 4.69 6.83 3.97 3.88 4.30 4.52
coefficient 0.30 −1.23 1.44 −0.45 −0.30 −0.37 −0.34 0.27 0.30

For the remaining model, the t-test and permutation importance identified the param-
eters κrnd, ψ and κ2

rnd as the most important. An adjusted coefficient of determination of
R2

a = 0.86 was obtained. The errors on the datasets considered in this work are presented in
Table 8, showing good accordance with the simulation data, expect for a single significant
outlier in the training data.
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Table 8. Performance of the model obtained by polynomial regression on the training and test data,
along with errors of the model of Haider and Levenspiel [28] and the one by Dellino [25] on the
training data.

Error in % RMSE

Mean Max

this work (training data) 5.50 72.90 0.0037
this work (test data) 4.36 28.52 0.0022

Haider and Levenspiel [28] 57.85 74.22 0.029
Dellino [25] 27.85 53.31 0.016

This artifact was also visible in the QQ-plot [68,69] in Figure 14. Besides a deviation
on the left side, the plot shows a predominantly normal distributed error. The Tukey–
Anscombe [70] plot (Figure 15), however, indicates that not all effects were captured by the
model, as a slightly quadratic behavior of the standardized residuals is recognizable, and a
spread on the left hand side is visible. The coloring by the shape classes according to Sneed
and Folk [6] suggests a dependency on the ratio of the main axis lengths, as the upper
string predominantly consists of elongated particles, while the lower one is composed of
compactly platy and (compactly) bladed particles.

Figure 14. QQ-plot [68,69] of the standardized residuals against the theoretical quantiles of a normal
distribution, revealing a predominantly normal distributed error.

The single outlier visible in Figures 14 and 15, with a standardized residual of ap-
proximately 6.75, is particle number 17, which has already been discussed in Section 5.2.1.
Beside this artifact, no standardized residuals above 2.5 were found. Computing Cook’s
distance resulted in only two points above 0.25, namely particle 17 with a value of 2.81 and
particle 1 with a value of 0.87.

124 6 Correlating the Settling Behavior of Single Particles with Shape Parameters



Computation 2021, 9, 40 26 of 35

Figure 15. Tukey–Anscombe plot [70] showing the standardized residuals plotted against the fitted
values, colored by shape classes according to Sneed and Folk [6].

6. Conclusions

In this work, a constructive way to obtain correlations for the drag coefficient and
terminal settling velocity is described, utilizing statistical approaches and measures. It can
easily be applied to an enlarged data basis, extending the considered Reynolds numbers.
In addition to increasing the number of considered shape parameters, it is also possible to
obtain a highly specialized correlation for a considered particle collective. The statistical
tools discussed in Section 3.2 allow for a data-driven construction of new models by
identifying the most relevant parameters and consideration of interaction terms and also
maintaining statistical stability.

By performing a polynomial regression regarding the drag coefficient, also taking
interaction terms into account, a model was found which is in good agreement with the
data, which is reflected in an adjusted coefficient of determination of R2

a = 0.96. The mean
deviation, considering training and test data, of about 2.75%, is below the uncertainty by
the simulation reported by Trunk et al. [34], and outperforms other correlations from the
literature on the dataset considered in this study. This might be related to the higher number
of considered shape parameters, but also to the higher specialization to the limited range
of Reynolds numbers Re ∈ [9.64, 22.86]. By statistical analysis, the elongation, roundness,
Reynolds number and the Hofmann shape entropy were found to be the most relevant.

In addition, a polynomial regression regarding the terminal settling velocity was
performed, for which only a few references were found in the literature. The found
model yielded an adjusted coefficient of determination of R2

a = 0.86, relying on the
particle density, sphericity, roundness and Hofmann shape entropy as the most relevant
parameters. The mean deviation across training and test data was found to be 4.93%, which
is approximately a fifth of the other models considered here. An error and outlier analysis
also found good agreement between the simulated data and the model.

The considered particle collective was chosen to cover a wide range of equally dis-
tributed shape parameters to increase the significance of statistical results. Therefore,
superellipsoids were used to describe the particles in numerical simulations. To focus on
the influence of shape parameters, the particles are scaled to be equal in volume. Therefore,
only a very limited range of Reynolds numbers in the intermediate regime was covered in
this investigation. A first inspection showed that particles with a low value in flatness and
ξ2 = 8 did not reach their terminal settling velocity in the considered setup. To guarantee
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that particles reach the terminal settling velocity before reaching the bottom in future
works, the domain is to move vertically along with the particle. This would also allow
for a shorter domain, compared to the one in this study, thereby reducing the necessary
computational effort.

It is, furthermore, possible to extend the described scheme to other setups, considering
further effects like Brownian motion or additional external forces, and thereby obtain more
specialized correlations.
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Abbreviations
The following abbreviations are used in this manuscript:

HLBM homogenized lattice Boltzmann method
LBM lattice Boltzmann method
Roman
aI intermediate half-axis
aL longest half-axis
aS shortest half-axis
A projected particle surface in direction of motion
Ap particle surface
CD drag coefficient
CD,BB drag coefficient according to Bagheri and Bonadonna [52]
CD,CG drag coefficient according to Clift and Gauvin [17]
CD,DM drag coefficient according to Dioguardi and Mele [26]
CD,G drag coefficient according to Ganser [21]
CD,HL drag coefficient according to Haider and Levenspiel [28]
CD,HS drag coefficient according to Hölzer and Sommerfeld [23]
CD,S drag coefficient according to Stokes [15]
CD,SN drag coefficient according to Schiller and Naumann [16]
dCook Cook’s distance [71]
deq diameter of a volume equivalent sphere
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E elongation
Ff force acting on the fluid
Fp force acting on the particle
FBG combined buoyancy and gravitational force
FD drag force
FH hydrodynamic force
F flatness
Fsample score of an F-test
g gravitational acceleration
Jp moment of inertia
KN drag correction factor for the Newton regime
KS drag correction factor for the Stokes regime
mp particle mass
MI mutual information
N resolution related parameter (number of cells per deq)
p pressure
PI permutation importance
r residual
R2 coefficient of determination
R2

a adjusted coefficient of determination
Re Reynolds number
t time
Tp torque
Tsample score of a t-test
uf fluid velocity
uL

max maximum lattice velocity in a simulation
uts terminal settling velocity
uts,D terminal settling velocity according to Dellino [25]
uts,HL terminal settling velocity according to Haider and Levenspiel [28]
uts,S terminal settling velocity according to Stokes [15]
up particle velocity
Vp particle volume
VIF variance inflation factor
Greek
δt temporal discretization parameter
δx spatial discretization parameter
κcon convexity
κrnd roundness
λCSF Corey shape factor [18]
λH Hofmann shape entropy [44]
λLR Le Roux shape factor [46]
ν kinematic viscosity
ξ1, ξ2 exponents determining the shape of a superellipsoid
ρ′ ratio of particle to fluid density
ρf fluid density
ρp particle density
τ lattice relaxation time
φ circularity
ψ sphericity
ψ⊥ crosswise sphericity
ψ‖ lengthwise sphericity
ωp particle angular velocity
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Appendix A

Table A1. Data of the particles in the training set.

ID aL in m aI in m aS in m ξ1 ξ2 E F ρp κcon ψ ψ⊥ κrnd uts Re CD

1 1.47× 10−4 1.47× 10−4 1.03× 10−4 8.0 8.0 1.0 0.7 2360 0.99 0.87 0.96 0.18 3.52× 10−2 11.16 4.57
2 2.17× 10−4 1.52× 10−4 1.21× 10−4 2.0 2.0 0.7 0.8 2360 0.95 0.88 0.77 0.15 3.54× 10−2 11.23 4.5
3 1.83× 10−4 1.65× 10−4 1.32× 10−4 2.0 2.0 0.9 0.8 2560 0.96 0.91 0.83 0.15 4.10× 10−2 12.98 3.87
4 2.08× 10−4 1.46× 10−4 1.31× 10−4 2.0 2.0 0.7 0.9 2660 0.95 0.9 0.83 0.15 4.24× 10−2 13.43 3.85
5 2.08× 10−4 1.46× 10−4 1.31× 10−4 2.0 2.0 0.7 0.9 2760 0.95 0.9 0.83 0.15 4.43× 10−2 14.03 3.74
6 1.90× 10−4 1.52× 10−4 1.37× 10−4 2.0 2.0 0.8 0.9 2460 0.95 0.9 0.86 0.15 3.94× 10−2 12.48 3.92
7 1.90× 10−4 1.52× 10−4 1.37× 10−4 2.0 2.0 0.8 0.9 2560 0.95 0.9 0.86 0.15 4.14× 10−2 13.12 3.79
8 1.90× 10−4 1.52× 10−4 1.37× 10−4 2.0 2.0 0.8 0.9 2660 0.95 0.9 0.86 0.15 4.33× 10−2 13.74 3.68
9 2.01× 10−4 1.41× 10−4 1.41× 10−4 2.0 2.0 0.7 1.0 2360 0.95 0.9 0.89 0.15 3.74× 10−2 11.86 4.04

10 2.01× 10−4 1.41× 10−4 1.41× 10−4 2.0 2.0 0.7 1.0 2460 0.95 0.9 0.89 0.15 3.95× 10−2 12.52 3.9
11 2.01× 10−4 1.41× 10−4 1.41× 10−4 2.0 2.0 0.7 1.0 2760 0.95 0.9 0.89 0.15 4.55× 10−2 14.41 3.54
12 1.84× 10−4 1.47× 10−4 1.47× 10−4 2.0 2.0 0.8 1.0 2360 0.96 0.91 0.93 0.15 3.81× 10−2 12.08 3.89
13 1.84× 10−4 1.47× 10−4 1.47× 10−4 2.0 2.0 0.8 1.0 2560 0.96 0.91 0.93 0.15 4.23× 10−2 13.41 3.62
14 1.84× 10−4 1.47× 10−4 1.47× 10−4 2.0 2.0 0.8 1.0 2660 0.96 0.91 0.93 0.15 4.44× 10−2 14.06 3.51
15 1.84× 10−4 1.47× 10−4 1.47× 10−4 2.0 2.0 0.8 1.0 2760 0.96 0.91 0.93 0.15 4.63× 10−2 14.69 3.41
16 1.70× 10−4 1.53× 10−4 1.53× 10−4 2.0 2.0 0.9 1.0 2360 0.95 0.92 0.96 0.15 3.87× 10−2 12.28 3.77
17 2.92× 10−4 2.34× 10−4 1.17× 10−4 2.0 1.0 0.8 0.5 2760 0.91 0.65 0.39 0.09 3.24× 10−2 10.26 7.16
18 2.18× 10−4 2.18× 10−4 1.31× 10−4 1.0 2.0 1.0 0.6 2760 0.97 0.87 0.84 0.13 4.91× 10−2 15.56 3.57
19 2.23× 10−4 2.00× 10−4 1.40× 10−4 1.0 2.0 0.9 0.7 2360 0.94 0.87 0.88 0.13 4.13× 10−2 13.09 3.91
20 2.23× 10−4 2.00× 10−4 1.40× 10−4 1.0 2.0 0.9 0.7 2460 0.94 0.87 0.88 0.13 4.35× 10−2 13.79 3.78
21 2.23× 10−4 2.00× 10−4 1.40× 10−4 1.0 2.0 0.9 0.7 2560 0.94 0.87 0.88 0.13 4.57× 10−2 14.47 3.67
22 2.23× 10−4 2.00× 10−4 1.40× 10−4 1.0 2.0 0.9 0.7 2660 0.94 0.87 0.89 0.13 4.78× 10−2 15.15 3.56
23 2.23× 10−4 2.00× 10−4 1.40× 10−4 1.0 2.0 0.9 0.7 2760 0.94 0.87 0.89 0.13 4.99× 10−2 15.83 3.46
24 2.07× 10−4 2.07× 10−4 1.45× 10−4 1.0 2.0 1.0 0.7 2460 0.96 0.88 0.9 0.13 4.40× 10−2 13.95 3.7
25 2.07× 10−4 2.07× 10−4 1.45× 10−4 1.0 2.0 1.0 0.7 2560 0.96 0.88 0.9 0.13 4.62× 10−2 14.65 3.58
26 2.07× 10−4 2.07× 10−4 1.45× 10−4 1.0 2.0 1.0 0.7 2660 0.96 0.88 0.9 0.13 4.84× 10−2 15.35 3.47
27 2.07× 10−4 2.07× 10−4 1.45× 10−4 1.0 2.0 1.0 0.7 2760 0.96 0.88 0.9 0.13 5.06× 10−2 16.04 3.37
28 2.13× 10−4 1.92× 10−4 1.53× 10−4 1.0 2.0 0.9 0.8 2460 0.94 0.87 0.85 0.13 4.44× 10−2 14.07 3.63
29 1.98× 10−4 1.98× 10−4 1.59× 10−4 1.0 2.0 1.0 0.8 2360 0.97 0.88 1.03 0.13 4.31× 10−2 13.66 3.59
30 1.98× 10−4 1.98× 10−4 1.59× 10−4 1.0 2.0 1.0 0.8 2460 0.97 0.88 1.03 0.13 4.54× 10−2 14.4 3.46
31 1.98× 10−4 1.98× 10−4 1.59× 10−4 1.0 2.0 1.0 0.8 2560 0.97 0.88 1.03 0.13 4.78× 10−2 15.14 3.35
32 1.98× 10−4 1.98× 10−4 1.59× 10−4 1.0 2.0 1.0 0.8 2760 0.97 0.88 1.03 0.13 5.23× 10−2 16.59 3.15
33 2.05× 10−4 1.84× 10−4 1.66× 10−4 1.0 2.0 0.9 0.9 2360 0.94 0.87 0.74 0.12 4.13× 10−2 13.1 3.91
34 1.91× 10−4 1.91× 10−4 1.72× 10−4 1.0 2.0 1.0 0.9 2360 0.97 0.89 1.06 0.13 4.27× 10−2 13.54 3.65
35 1.91× 10−4 1.91× 10−4 1.72× 10−4 1.0 2.0 1.0 0.9 2560 0.97 0.89 1.06 0.13 4.73× 10−2 15.0 3.41
36 1.91× 10−4 1.91× 10−4 1.72× 10−4 1.0 2.0 1.0 0.9 2660 0.97 0.89 1.06 0.13 4.96× 10−2 15.73 3.3
37 1.91× 10−4 1.91× 10−4 1.72× 10−4 1.0 2.0 1.0 0.9 2760 0.97 0.89 1.06 0.13 5.19× 10−2 16.44 3.2
38 1.98× 10−4 1.78× 10−4 1.78× 10−4 1.0 2.0 0.9 1.0 2360 0.95 0.87 0.73 0.12 4.08× 10−2 12.95 4.0
39 2.32× 10−4 2.32× 10−4 2.32× 10−4 1.0 1.0 1.0 1.0 2360 1.0 0.89 0.87 0.1 3.66× 10−2 11.6 4.22
40 2.32× 10−4 2.32× 10−4 2.32× 10−4 1.0 1.0 1.0 1.0 2460 1.0 0.89 0.87 0.1 3.86× 10−2 12.24 4.07
41 2.32× 10−4 2.32× 10−4 2.32× 10−4 1.0 1.0 1.0 1.0 2560 1.0 0.89 0.87 0.1 4.06× 10−2 12.87 3.93
42 2.32× 10−4 2.32× 10−4 2.32× 10−4 1.0 1.0 1.0 1.0 2660 1.0 0.89 0.87 0.1 4.26× 10−2 13.49 3.81
43 2.31× 10−4 2.08× 10−4 1.46× 10−4 0.9 2.0 0.9 0.7 2760 0.9 0.85 0.92 0.12 5.23× 10−2 16.57 3.35
44 2.61× 10−4 1.83× 10−4 1.46× 10−4 0.9 2.0 0.7 0.8 2360 0.89 0.82 0.68 0.11 4.03× 10−2 12.78 4.35
45 2.61× 10−4 1.83× 10−4 1.46× 10−4 0.9 2.0 0.7 0.8 2560 0.89 0.82 0.68 0.11 4.46× 10−2 14.14 4.07
46 2.61× 10−4 1.83× 10−4 1.46× 10−4 0.9 2.0 0.7 0.8 2660 0.89 0.82 0.68 0.11 4.67× 10−2 14.8 3.95
47 2.61× 10−4 1.83× 10−4 1.46× 10−4 0.9 2.0 0.7 0.8 2760 0.89 0.82 0.67 0.11 4.87× 10−2 15.44 4.05
48 2.21× 10−4 1.99× 10−4 1.59× 10−4 0.9 2.0 0.9 0.8 2360 0.89 0.85 1.0 0.12 4.26× 10−2 13.5 3.9
49 2.21× 10−4 1.99× 10−4 1.59× 10−4 0.9 2.0 0.9 0.8 2460 0.89 0.85 1.0 0.12 4.49× 10−2 14.22 3.77
50 2.21× 10−4 1.99× 10−4 1.59× 10−4 0.9 2.0 0.9 0.8 2560 0.89 0.85 1.0 0.12 4.71× 10−2 14.93 3.65
51 2.21× 10−4 1.99× 10−4 1.59× 10−4 0.9 2.0 0.9 0.8 2660 0.89 0.85 0.73 0.12 4.93× 10−2 15.63 3.56
52 2.21× 10−4 1.99× 10−4 1.59× 10−4 0.9 2.0 0.9 0.8 2760 0.89 0.85 0.73 0.12 5.15× 10−2 16.31 3.45
53 2.06× 10−4 2.06× 10−4 1.65× 10−4 0.9 2.0 1.0 0.8 2560 0.89 0.84 1.03 0.12 4.90× 10−2 15.54 3.4
54 2.06× 10−4 2.06× 10−4 1.65× 10−4 0.9 2.0 1.0 0.8 2760 0.89 0.84 1.03 0.12 5.36× 10−2 17.0 3.18
55 2.30× 10−4 1.84× 10−4 1.66× 10−4 0.9 2.0 0.8 0.9 2360 0.9 0.83 0.67 0.12 4.12× 10−2 13.05 4.17
56 2.30× 10−4 1.84× 10−4 1.66× 10−4 0.9 2.0 0.8 0.9 2460 0.9 0.83 0.67 0.12 4.33× 10−2 13.74 4.04
57 2.30× 10−4 1.84× 10−4 1.66× 10−4 0.9 2.0 0.8 0.9 2560 0.9 0.83 0.67 0.12 4.55× 10−2 14.42 3.92
58 2.30× 10−4 1.84× 10−4 1.66× 10−4 0.9 2.0 0.8 0.9 2760 0.9 0.83 0.68 0.12 4.96× 10−2 15.73 3.72
59 2.13× 10−4 1.91× 10−4 1.72× 10−4 0.9 2.0 0.9 0.9 2460 0.9 0.84 0.7 0.12 4.43× 10−2 14.03 3.87
60 2.04× 10−4 2.04× 10−4 1.22× 10−4 0.87 8.0 1.0 0.6 2360 0.91 0.81 1.11 0.12 - - -
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Table A2. Data of the particles in the training set.

ID aL in m aI in m aS in m ξ1 ξ2 E F ρp κcon ψ ψ⊥ κrnd uts Re CD

61 2.04× 10−4 2.04× 10−4 1.22× 10−4 0.87 8.0 1.0 0.6 2460 0.91 0.81 1.11 0.12 - - -
62 2.04× 10−4 2.04× 10−4 1.22× 10−4 0.87 8.0 1.0 0.6 2560 0.91 0.81 1.11 0.12 - - -
63 2.04× 10−4 2.04× 10−4 1.22× 10−4 0.87 8.0 1.0 0.6 2660 0.91 0.81 1.11 0.12 - - -
64 2.04× 10−4 2.04× 10−4 1.22× 10−4 0.87 8.0 1.0 0.6 2760 0.91 0.81 1.11 0.12 - - -
65 1.78× 10−4 1.78× 10−4 1.60× 10−4 0.87 8.0 1.0 0.9 2360 0.93 0.82 0.97 0.13 5.62× 10−2 17.83 3.34
66 1.78× 10−4 1.78× 10−4 1.60× 10−4 0.87 8.0 1.0 0.9 2460 0.93 0.82 0.98 0.13 5.93× 10−2 18.78 3.23
67 1.78× 10−4 1.78× 10−4 1.60× 10−4 0.87 8.0 1.0 0.9 2660 0.93 0.82 0.99 0.13 6.51× 10−2 20.63 3.04
68 2.51× 10−4 2.26× 10−4 1.36× 10−4 0.83 2.0 0.9 0.6 2660 0.84 0.82 0.85 0.11 4.99× 10−2 15.81 3.65
69 2.51× 10−4 2.26× 10−4 1.36× 10−4 0.83 2.0 0.9 0.6 2760 0.84 0.82 0.85 0.11 5.21× 10−2 16.5 3.55
70 2.38× 10−4 2.15× 10−4 1.50× 10−4 0.83 2.0 0.9 0.7 2760 0.84 0.82 0.95 0.11 5.37× 10−2 17.02 3.33
71 2.28× 10−4 2.05× 10−4 1.64× 10−4 0.83 2.0 0.9 0.8 2360 0.84 0.82 0.68 0.11 4.32× 10−2 13.7 3.99
72 2.28× 10−4 2.05× 10−4 1.64× 10−4 0.83 2.0 0.9 0.8 2560 0.84 0.82 0.69 0.11 4.78× 10−2 15.15 3.72
73 3.94× 10−4 2.36× 10−4 1.65× 10−4 0.83 1.0 0.6 0.7 2360 0.84 0.77 0.57 0.08 3.04× 10−2 9.64 6.4
74 3.94× 10−4 2.36× 10−4 1.65× 10−4 0.83 1.0 0.6 0.7 2560 0.84 0.77 0.57 0.08 3.37× 10−2 10.69 5.97
75 3.94× 10−4 2.36× 10−4 1.65× 10−4 0.83 1.0 0.6 0.7 2660 0.84 0.77 0.57 0.08 3.53× 10−2 11.18 5.81
76 3.94× 10−4 2.36× 10−4 1.65× 10−4 0.83 1.0 0.6 0.7 2760 0.84 0.77 0.57 0.08 3.68× 10−2 11.67 5.66
77 3.40× 10−4 2.38× 10−4 1.90× 10−4 0.83 1.0 0.7 0.8 2460 0.84 0.78 0.63 0.08 3.47× 10−2 10.99 5.28
78 3.40× 10−4 2.38× 10−4 1.90× 10−4 0.83 1.0 0.7 0.8 2660 0.84 0.78 0.63 0.08 3.80× 10−2 12.06 4.99
79 3.62× 10−4 2.17× 10−4 1.95× 10−4 0.83 1.0 0.6 0.9 2460 0.85 0.79 0.67 0.08 3.47× 10−2 10.99 5.29
80 3.15× 10−4 1.89× 10−4 9.45× 10−5 0.8 8.0 0.6 0.5 2360 0.84 0.78 0.85 0.12 - - -
81 3.15× 10−4 1.89× 10−4 9.45× 10−5 0.8 8.0 0.6 0.5 2660 0.84 0.78 0.87 0.12 6.24× 10−2 19.77 3.61
82 3.15× 10−4 1.89× 10−4 9.45× 10−5 0.8 8.0 0.6 0.5 2760 0.84 0.78 0.86 0.12 6.52× 10−2 20.66 3.51
83 3.35× 10−4 1.67× 10−4 1.00× 10−4 0.8 8.0 0.5 0.6 2760 0.84 0.78 0.73 0.12 6.00× 10−2 19.02 4.14
84 2.67× 10−4 1.87× 10−4 1.12× 10−4 0.8 8.0 0.7 0.6 2360 0.84 0.77 1.02 0.11 5.48× 10−2 17.38 3.83
85 2.67× 10−4 1.87× 10−4 1.12× 10−4 0.8 8.0 0.7 0.6 2460 0.84 0.77 0.69 0.11 5.77× 10−2 18.28 3.72
86 2.67× 10−4 1.87× 10−4 1.12× 10−4 0.8 8.0 0.7 0.6 2560 0.84 0.77 0.68 0.11 6.05× 10−2 19.16 3.61
87 2.67× 10−4 1.87× 10−4 1.12× 10−4 0.8 8.0 0.7 0.6 2660 0.84 0.77 0.68 0.11 6.31× 10−2 20.01 3.53
88 2.67× 10−4 1.87× 10−4 1.12× 10−4 0.8 8.0 0.7 0.6 2760 0.84 0.77 0.69 0.11 6.57× 10−2 20.84 3.45
89 1.98× 10−4 1.78× 10−4 1.60× 10−4 0.8 8.0 0.9 0.9 2560 0.85 0.77 0.65 0.11 6.18× 10−2 19.59 3.46
90 4.02× 10−4 2.01× 10−4 1.00× 10−4 0.8 2.0 0.5 0.5 2460 0.85 0.83 0.68 0.11 3.92× 10−2 12.42 5.36
91 3.78× 10−4 1.89× 10−4 1.13× 10−4 0.8 2.0 0.5 0.6 2360 0.84 0.83 0.76 0.11 3.89× 10−2 12.33 5.07
92 3.78× 10−4 1.89× 10−4 1.13× 10−4 0.8 2.0 0.5 0.6 2460 0.84 0.83 0.76 0.11 4.08× 10−2 12.94 4.94
93 3.78× 10−4 1.89× 10−4 1.13× 10−4 0.8 2.0 0.5 0.6 2560 0.84 0.83 0.76 0.11 4.29× 10−2 13.6 4.78
94 3.78× 10−4 1.89× 10−4 1.13× 10−4 0.8 2.0 0.5 0.6 2660 0.84 0.83 0.76 0.11 4.49× 10−2 14.23 4.65
95 3.78× 10−4 1.89× 10−4 1.13× 10−4 0.8 2.0 0.5 0.6 2760 0.84 0.83 0.75 0.11 4.67× 10−2 14.81 4.54
96 3.63× 10−4 1.81× 10−4 9.07× 10−5 0.77 8.0 0.5 0.5 2360 0.85 0.8 0.85 0.12 - - -
97 4.08× 10−4 2.45× 10−4 1.72× 10−4 0.77 1.0 0.6 0.7 2760 0.78 0.77 0.59 0.08 3.78× 10−2 11.97 5.55
98 3.39× 10−4 2.37× 10−4 2.14× 10−4 0.77 1.0 0.7 0.9 2360 0.78 0.76 0.59 0.08 3.37× 10−2 10.67 5.4
99 3.39× 10−4 2.37× 10−4 2.14× 10−4 0.77 1.0 0.7 0.9 2660 0.78 0.76 0.58 0.08 3.88× 10−2 12.31 4.96

100 3.70× 10−4 1.85× 10−4 9.26× 10−5 0.73 8.0 0.5 0.5 2360 0.84 0.8 0.88 0.11 - - -
101 3.70× 10−4 1.85× 10−4 9.26× 10−5 0.73 8.0 0.5 0.5 2460 0.84 0.8 0.88 0.11 - - -
102 3.70× 10−4 1.85× 10−4 9.26× 10−5 0.73 8.0 0.5 0.5 2560 0.84 0.8 0.88 0.11 - - -
103 3.70× 10−4 1.85× 10−4 9.26× 10−5 0.73 8.0 0.5 0.5 2660 0.84 0.8 0.88 0.11 - - -
104 2.24× 10−4 2.01× 10−4 1.41× 10−4 0.73 8.0 0.9 0.7 2360 0.78 0.75 0.66 0.11 6.02× 10−2 19.09 3.53
105 2.24× 10−4 2.01× 10−4 1.41× 10−4 0.73 8.0 0.9 0.7 2460 0.78 0.75 0.67 0.11 6.33× 10−2 20.06 3.44
106 2.24× 10−4 2.01× 10−4 1.41× 10−4 0.73 8.0 0.9 0.7 2560 0.78 0.75 0.68 0.11 6.63× 10−2 21.02 3.35
107 2.24× 10−4 2.01× 10−4 1.41× 10−4 0.73 8.0 0.9 0.7 2660 0.78 0.75 0.66 0.11 6.92× 10−2 21.95 3.27
108 2.24× 10−4 2.01× 10−4 1.41× 10−4 0.73 8.0 0.9 0.7 2760 0.78 0.75 0.66 0.11 7.21× 10−2 22.86 3.19
109 3.70× 10−4 2.22× 10−4 1.11× 10−4 0.73 2.0 0.6 0.5 2360 0.78 0.8 0.73 0.1 4.09× 10−2 12.96 4.94
110 3.70× 10−4 2.22× 10−4 1.11× 10−4 0.73 2.0 0.6 0.5 2460 0.78 0.8 0.73 0.1 4.30× 10−2 13.63 4.79
111 3.70× 10−4 2.22× 10−4 1.11× 10−4 0.73 2.0 0.6 0.5 2560 0.78 0.8 0.73 0.1 4.53× 10−2 14.37 4.6
112 3.70× 10−4 2.22× 10−4 1.11× 10−4 0.73 2.0 0.6 0.5 2660 0.78 0.8 0.73 0.1 4.74× 10−2 15.03 4.47
113 3.70× 10−4 2.22× 10−4 1.11× 10−4 0.73 2.0 0.6 0.5 2760 0.78 0.8 0.73 0.1 4.91× 10−2 15.56 4.43
114 3.74× 10−4 1.87× 10−4 1.31× 10−4 0.73 2.0 0.5 0.7 2360 0.79 0.8 0.63 0.1 3.89× 10−2 12.33 5.45
115 3.74× 10−4 1.87× 10−4 1.31× 10−4 0.73 2.0 0.5 0.7 2460 0.79 0.8 0.63 0.1 4.09× 10−2 12.97 5.29
116 3.74× 10−4 1.87× 10−4 1.31× 10−4 0.73 2.0 0.5 0.7 2560 0.79 0.8 0.63 0.1 4.29× 10−2 13.6 5.14
117 3.74× 10−4 1.87× 10−4 1.31× 10−4 0.73 2.0 0.5 0.7 2660 0.79 0.8 0.63 0.1 4.48× 10−2 14.21 5.0
118 3.74× 10−4 1.87× 10−4 1.31× 10−4 0.73 2.0 0.5 0.7 2760 0.79 0.8 0.63 0.1 4.67× 10−2 14.82 4.89
119 3.58× 10−4 1.79× 10−4 1.43× 10−4 0.73 2.0 0.5 0.8 2560 0.79 0.78 0.58 0.1 4.27× 10−2 13.54 5.18
120 3.57× 10−4 1.78× 10−4 1.07× 10−4 0.7 8.0 0.5 0.6 2460 0.78 0.76 0.68 0.11 5.63× 10−2 17.86 4.61
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Table A3. Data of the particles in the training set.

ID aL in m aI in m aS in m ξ1 ξ2 E F ρp κcon ψ ψ⊥ κrnd uts Re CD

121 3.57× 10−4 1.78× 10−4 1.07× 10−4 0.7 8.0 0.5 0.6 2560 0.78 0.76 0.68 0.11 5.90× 10−2 18.71 4.48
122 3.57× 10−4 1.78× 10−4 1.07× 10−4 0.7 8.0 0.5 0.6 2660 0.78 0.76 0.68 0.11 6.16× 10−2 19.53 4.39
123 3.57× 10−4 1.78× 10−4 1.07× 10−4 0.7 8.0 0.5 0.6 2760 0.78 0.76 0.68 0.11 6.41× 10−2 20.33 4.3
124 3.39× 10−4 1.69× 10−4 1.19× 10−4 0.7 8.0 0.5 0.7 2360 0.79 0.74 0.61 0.1 5.34× 10−2 16.93 4.79
125 3.39× 10−4 1.69× 10−4 1.19× 10−4 0.7 8.0 0.5 0.7 2460 0.79 0.74 0.61 0.1 5.61× 10−2 17.79 4.65
126 3.39× 10−4 1.69× 10−4 1.19× 10−4 0.7 8.0 0.5 0.7 2560 0.79 0.74 0.61 0.1 5.87× 10−2 18.62 4.54
127 3.39× 10−4 1.69× 10−4 1.19× 10−4 0.7 8.0 0.5 0.7 2660 0.79 0.74 0.61 0.1 6.13× 10−2 19.42 4.44
128 3.39× 10−4 1.69× 10−4 1.19× 10−4 0.7 8.0 0.5 0.7 2760 0.79 0.74 0.61 0.1 6.38× 10−2 20.22 4.33
129 2.37× 10−4 1.90× 10−4 1.52× 10−4 0.7 8.0 0.8 0.8 2360 0.73 0.7 0.61 0.1 5.95× 10−2 18.86 3.86
130 2.37× 10−4 1.90× 10−4 1.52× 10−4 0.7 8.0 0.8 0.8 2560 0.73 0.7 0.59 0.1 6.55× 10−2 20.75 3.67
131 2.37× 10−4 1.90× 10−4 1.52× 10−4 0.7 8.0 0.8 0.8 2660 0.73 0.7 0.59 0.1 6.82× 10−2 21.63 3.58
132 2.37× 10−4 1.90× 10−4 1.52× 10−4 0.7 8.0 0.8 0.8 2760 0.73 0.7 0.59 0.1 7.11× 10−2 22.54 3.49
133 4.28× 10−4 2.14× 10−4 1.07× 10−4 0.7 2.0 0.5 0.5 2360 0.78 0.82 0.73 0.1 4.05× 10−2 12.83 5.27
134 4.28× 10−4 2.14× 10−4 1.07× 10−4 0.7 2.0 0.5 0.5 2460 0.78 0.82 0.73 0.1 4.24× 10−2 13.44 5.15
135 4.28× 10−4 2.14× 10−4 1.07× 10−4 0.7 2.0 0.5 0.5 2560 0.78 0.82 0.73 0.1 4.46× 10−2 14.14 4.97
136 4.28× 10−4 2.14× 10−4 1.07× 10−4 0.7 2.0 0.5 0.5 2660 0.78 0.82 0.73 0.1 4.64× 10−2 14.71 4.88
137 4.78× 10−4 2.87× 10−4 1.43× 10−4 0.7 1.0 0.6 0.5 2660 0.74 0.73 0.52 0.07 3.34× 10−2 10.58 6.99
138 4.78× 10−4 2.87× 10−4 1.43× 10−4 0.7 1.0 0.6 0.5 2760 0.74 0.73 0.52 0.07 3.49× 10−2 11.05 6.81
139 4.31× 10−4 3.02× 10−4 1.51× 10−4 0.7 1.0 0.7 0.5 2460 0.74 0.73 0.52 0.07 3.17× 10−2 10.04 6.83
140 4.31× 10−4 3.02× 10−4 1.51× 10−4 0.7 1.0 0.7 0.5 2660 0.74 0.73 0.52 0.07 3.48× 10−2 11.04 6.43
141 4.31× 10−4 3.02× 10−4 1.51× 10−4 0.7 1.0 0.7 0.5 2760 0.74 0.73 0.53 0.07 3.61× 10−2 11.44 6.36
142 3.94× 10−4 3.15× 10−4 1.58× 10−4 0.7 1.0 0.8 0.5 2360 0.73 0.73 0.54 0.07 3.09× 10−2 9.81 6.67
143 3.94× 10−4 3.15× 10−4 1.58× 10−4 0.7 1.0 0.8 0.5 2460 0.73 0.73 0.54 0.07 3.25× 10−2 10.29 6.5
144 3.94× 10−4 3.15× 10−4 1.58× 10−4 0.7 1.0 0.8 0.5 2560 0.73 0.73 0.54 0.07 3.42× 10−2 10.86 6.26
145 3.94× 10−4 3.15× 10−4 1.58× 10−4 0.7 1.0 0.8 0.5 2660 0.73 0.73 0.54 0.07 3.58× 10−2 11.35 6.09
146 4.50× 10−4 2.70× 10−4 1.62× 10−4 0.7 1.0 0.6 0.6 2360 0.74 0.75 0.57 0.07 3.08× 10−2 9.78 6.72
147 4.50× 10−4 2.70× 10−4 1.62× 10−4 0.7 1.0 0.6 0.6 2460 0.74 0.75 0.56 0.07 3.24× 10−2 10.27 6.55
148 4.50× 10−4 2.70× 10−4 1.62× 10−4 0.7 1.0 0.6 0.6 2560 0.74 0.75 0.56 0.07 3.40× 10−2 10.77 6.36
149 4.50× 10−4 2.70× 10−4 1.62× 10−4 0.7 1.0 0.6 0.6 2660 0.74 0.75 0.56 0.07 3.56× 10−2 11.3 6.14
150 4.50× 10−4 2.70× 10−4 1.62× 10−4 0.7 1.0 0.6 0.6 2760 0.74 0.75 0.57 0.07 3.70× 10−2 11.73 6.05
151 4.06× 10−4 2.84× 10−4 1.70× 10−4 0.7 1.0 0.7 0.6 2360 0.73 0.74 0.58 0.07 3.18× 10−2 10.09 6.3
152 4.06× 10−4 2.84× 10−4 1.70× 10−4 0.7 1.0 0.7 0.6 2460 0.73 0.74 0.58 0.07 3.36× 10−2 10.64 6.09
153 4.06× 10−4 2.84× 10−4 1.70× 10−4 0.7 1.0 0.7 0.6 2560 0.73 0.74 0.58 0.07 3.52× 10−2 11.17 5.91
154 4.06× 10−4 2.84× 10−4 1.70× 10−4 0.7 1.0 0.7 0.6 2660 0.73 0.74 0.58 0.07 3.69× 10−2 11.7 5.74
155 4.06× 10−4 2.84× 10−4 1.70× 10−4 0.7 1.0 0.7 0.6 2760 0.73 0.74 0.58 0.07 3.86× 10−2 12.22 5.56
156 4.08× 10−4 2.45× 10−4 1.96× 10−4 0.7 1.0 0.6 0.8 2360 0.74 0.75 0.6 0.07 3.29× 10−2 10.44 5.9
157 4.08× 10−4 2.45× 10−4 1.96× 10−4 0.7 1.0 0.6 0.8 2460 0.74 0.75 0.6 0.07 3.46× 10−2 10.97 5.73
158 4.08× 10−4 2.45× 10−4 1.96× 10−4 0.7 1.0 0.6 0.8 2560 0.74 0.75 0.59 0.07 3.63× 10−2 11.49 5.57
159 4.08× 10−4 2.45× 10−4 1.96× 10−4 0.7 1.0 0.6 0.8 2760 0.74 0.75 0.59 0.07 3.95× 10−2 12.51 5.31
160 3.45× 10−4 2.07× 10−4 1.03× 10−4 0.67 8.0 0.6 0.5 2360 0.73 0.75 0.7 0.1 5.85× 10−2 18.54 4.3
161 3.45× 10−4 2.07× 10−4 1.03× 10−4 0.67 8.0 0.6 0.5 2460 0.73 0.75 0.7 0.1 6.14× 10−2 19.46 4.18
162 3.45× 10−4 2.07× 10−4 1.03× 10−4 0.67 8.0 0.6 0.5 2560 0.73 0.75 0.7 0.1 6.43× 10−2 20.37 4.08
163 3.45× 10−4 2.07× 10−4 1.03× 10−4 0.67 8.0 0.6 0.5 2660 0.73 0.75 0.69 0.1 6.71× 10−2 21.26 3.98
164 3.45× 10−4 2.07× 10−4 1.03× 10−4 0.67 8.0 0.6 0.5 2760 0.73 0.75 0.7 0.1 6.99× 10−2 22.16 3.89
165 3.48× 10−4 1.74× 10−4 1.22× 10−4 0.67 8.0 0.5 0.7 2460 0.76 0.73 0.6 0.1 5.77× 10−2 18.29 4.72
166 3.09× 10−4 1.85× 10−4 1.85× 10−4 0.67 2.0 0.6 1.0 2460 0.69 0.69 0.5 0.08 4.32× 10−2 13.69 5.19
167 3.09× 10−4 1.85× 10−4 1.85× 10−4 0.67 2.0 0.6 1.0 2660 0.69 0.69 0.5 0.08 4.72× 10−2 14.96 4.95
168 2.79× 10−4 1.95× 10−4 1.95× 10−4 0.67 2.0 0.7 1.0 2460 0.7 0.69 0.52 0.08 4.46× 10−2 14.15 4.9
169 2.79× 10−4 1.95× 10−4 1.95× 10−4 0.67 2.0 0.7 1.0 2560 0.7 0.69 0.52 0.08 4.67× 10−2 14.82 4.71
170 2.55× 10−4 2.04× 10−4 2.04× 10−4 0.67 2.0 0.8 1.0 2360 0.69 0.7 0.54 0.08 4.36× 10−2 13.81 4.76
171 2.55× 10−4 2.04× 10−4 2.04× 10−4 0.67 2.0 0.8 1.0 2460 0.69 0.7 0.54 0.08 4.58× 10−2 14.53 4.62
172 2.55× 10−4 2.04× 10−4 2.04× 10−4 0.67 2.0 0.8 1.0 2560 0.69 0.7 0.54 0.08 4.80× 10−2 15.23 4.49
173 2.55× 10−4 2.04× 10−4 2.04× 10−4 0.67 2.0 0.8 1.0 2660 0.69 0.7 0.54 0.08 5.02× 10−2 15.91 4.37
174 3.28× 10−4 3.28× 10−4 1.97× 10−4 0.67 1.0 1.0 0.6 2760 0.67 0.73 0.65 0.07 4.24× 10−2 13.45 4.74
175 2.98× 10−4 2.98× 10−4 2.39× 10−4 0.67 1.0 1.0 0.8 2560 0.68 0.69 0.78 0.07 4.17× 10−2 13.21 4.35
176 3.33× 10−4 2.66× 10−4 2.40× 10−4 0.67 1.0 0.8 0.9 2360 0.69 0.7 0.55 0.07 3.45× 10−2 10.95 5.51
177 3.33× 10−4 2.66× 10−4 2.40× 10−4 0.67 1.0 0.8 0.9 2460 0.69 0.7 0.55 0.07 3.64× 10−2 11.53 5.36
178 3.33× 10−4 2.66× 10−4 2.40× 10−4 0.67 1.0 0.8 0.9 2560 0.69 0.7 0.54 0.07 3.81× 10−2 12.09 5.19
179 3.33× 10−4 2.66× 10−4 2.40× 10−4 0.67 1.0 0.8 0.9 2660 0.69 0.7 0.55 0.07 3.99× 10−2 12.64 5.06
180 3.08× 10−4 2.77× 10−4 2.49× 10−4 0.67 1.0 0.9 0.9 2460 0.68 0.69 0.55 0.07 3.74× 10−2 11.85 5.07
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Table A4. Data of the particles in the training set.

ID aL in m aI in m aS in m ξ1 ξ2 E F ρp κcon ψ ψ⊥ κrnd uts Re CD

181 3.08× 10−4 2.77× 10−4 2.49× 10−4 0.67 1.0 0.9 0.9 2560 0.68 0.69 0.57 0.07 3.92× 10−2 12.42 4.92
182 3.08× 10−4 2.77× 10−4 2.49× 10−4 0.67 1.0 0.9 0.9 2660 0.68 0.69 0.56 0.07 4.09× 10−2 12.98 4.8
183 3.08× 10−4 2.77× 10−4 2.49× 10−4 0.67 1.0 0.9 0.9 2760 0.68 0.69 0.55 0.07 4.27× 10−2 13.52 4.69
184 2.87× 10−4 2.87× 10−4 2.58× 10−4 0.67 1.0 1.0 0.9 2360 0.68 0.68 0.72 0.06 3.69× 10−2 11.7 4.82
185 2.87× 10−4 2.87× 10−4 2.58× 10−4 0.67 1.0 1.0 0.9 2660 0.68 0.68 0.83 0.06 4.28× 10−2 13.58 4.38
186 2.87× 10−4 2.87× 10−4 2.58× 10−4 0.67 1.0 1.0 0.9 2760 0.68 0.68 0.83 0.06 4.47× 10−2 14.18 4.25
187 3.51× 10−4 2.46× 10−4 2.46× 10−4 0.67 1.0 0.7 1.0 2360 0.69 0.69 0.53 0.07 3.32× 10−2 10.53 5.97
188 3.51× 10−4 2.46× 10−4 2.46× 10−4 0.67 1.0 0.7 1.0 2460 0.69 0.69 0.53 0.07 3.50× 10−2 11.09 5.79
189 3.51× 10−4 2.46× 10−4 2.46× 10−4 0.67 1.0 0.7 1.0 2560 0.69 0.69 0.53 0.07 3.67× 10−2 11.62 5.63
190 3.51× 10−4 2.46× 10−4 2.46× 10−4 0.67 1.0 0.7 1.0 2660 0.69 0.69 0.52 0.07 3.83× 10−2 12.15 5.48
191 3.21× 10−4 2.57× 10−4 2.57× 10−4 0.67 1.0 0.8 1.0 2360 0.68 0.68 0.53 0.07 3.41× 10−2 10.82 5.67
192 3.21× 10−4 2.57× 10−4 2.57× 10−4 0.67 1.0 0.8 1.0 2460 0.68 0.68 0.53 0.07 3.59× 10−2 11.39 5.48
193 3.21× 10−4 2.57× 10−4 2.57× 10−4 0.67 1.0 0.8 1.0 2560 0.68 0.68 0.54 0.07 3.77× 10−2 11.95 5.31
194 3.21× 10−4 2.57× 10−4 2.57× 10−4 0.67 1.0 0.8 1.0 2660 0.68 0.68 0.53 0.07 3.94× 10−2 12.49 5.16
195 3.21× 10−4 2.57× 10−4 2.57× 10−4 0.67 1.0 0.8 1.0 2760 0.68 0.68 0.54 0.07 4.11× 10−2 13.02 5.06
196 2.97× 10−4 2.67× 10−4 2.67× 10−4 0.67 1.0 0.9 1.0 2460 0.68 0.68 0.54 0.06 3.69× 10−2 11.69 5.21
197 2.97× 10−4 2.67× 10−4 2.67× 10−4 0.67 1.0 0.9 1.0 2660 0.68 0.68 0.56 0.06 4.04× 10−2 12.79 4.95
198 2.97× 10−4 2.67× 10−4 2.67× 10−4 0.67 1.0 0.9 1.0 2760 0.68 0.68 0.56 0.06 4.20× 10−2 13.33 4.82
199 2.77× 10−4 2.77× 10−4 2.77× 10−4 0.67 1.0 1.0 1.0 2460 0.69 0.67 0.89 0.06 3.83× 10−2 12.14 4.81
200 2.77× 10−4 2.77× 10−4 2.77× 10−4 0.67 1.0 1.0 1.0 2560 0.69 0.67 0.89 0.06 4.02× 10−2 12.75 4.67

Table A5. Mean values and standard deviations for the parameters relevant to the calculated models.

E ρp ψ κrnd λH Re CD uts

mean 0.757 2563.17 0.786 0.101 −0.962 14.380 4.544 0.045
standard deviation 0.166 141.01 0.072 0.026 0.038 3.103 0.970 0.010

Appendix B

Table A6. Data of the particles in the test set.

ID aL in m aI in m aS in m ξ1 ξ2 E F ρp κcon ψ ψ⊥ κrnd uts Re CD

1 5.39× 10−4 2.70× 10−4 1.35× 10−4 0.7 1.0 0.5 0.5 2460 0.75 0.75 0.51 0.07 2.89× 10−2 9.17 8.21
2 4.78× 10−4 2.87× 10−4 1.43× 10−4 0.7 1.0 0.6 0.5 2460 0.74 0.73 0.52 0.07 3.06× 10−2 9.71 7.33
3 3.65× 10−4 3.28× 10−4 1.64× 10−4 0.7 1.0 0.9 0.5 2460 0.72 0.73 0.55 0.07 3.32× 10−2 10.54 6.21
4 3.40× 10−4 3.40× 10−4 1.70× 10−4 0.7 1.0 1.0 0.5 2460 0.72 0.73 0.56 0.07 3.40× 10−2 10.76 5.96
5 5.08× 10−4 2.54× 10−4 1.52× 10−4 0.7 1.0 0.5 0.6 2460 0.76 0.77 0.57 0.08 3.08× 10−2 9.75 7.28
6 3.71× 10−4 2.97× 10−4 1.78× 10−4 0.7 1.0 0.8 0.6 2460 0.72 0.74 0.59 0.07 3.45× 10−2 10.95 5.75
7 3.43× 10−4 3.09× 10−4 1.85× 10−4 0.7 1.0 0.9 0.6 2460 0.71 0.74 0.61 0.07 3.54× 10−2 11.22 5.5
8 3.20× 10−4 3.20× 10−4 1.92× 10−4 0.7 1.0 1.0 0.6 2460 0.71 0.73 0.64 0.07 3.60× 10−2 11.4 5.31
9 4.82× 10−4 2.41× 10−4 1.69× 10−4 0.7 1.0 0.5 0.7 2460 0.75 0.77 0.61 0.08 3.24× 10−2 10.28 6.53

10 4.27× 10−4 2.56× 10−4 1.79× 10−4 0.7 1.0 0.6 0.7 2460 0.73 0.76 0.62 0.07 3.40× 10−2 10.79 5.92
11 3.85× 10−4 2.70× 10−4 1.89× 10−4 0.7 1.0 0.7 0.7 2460 0.72 0.75 0.63 0.07 3.54× 10−2 11.22 5.48
12 3.53× 10−4 2.82× 10−4 1.97× 10−4 0.7 1.0 0.8 0.7 2460 0.71 0.74 0.65 0.07 3.64× 10−2 11.53 5.19
13 3.26× 10−4 2.93× 10−4 2.05× 10−4 0.7 1.0 0.9 0.7 2460 0.7 0.73 0.67 0.07 3.71× 10−2 11.77 4.98
14 3.04× 10−4 3.04× 10−4 2.13× 10−4 0.7 1.0 1.0 0.7 2460 0.7 0.73 0.69 0.07 3.76× 10−2 11.93 4.85
15 4.61× 10−4 2.31× 10−4 1.84× 10−4 0.7 1.0 0.5 0.8 2460 0.75 0.77 0.59 0.08 3.28× 10−2 10.4 6.37
16 3.69× 10−4 2.58× 10−4 2.06× 10−4 0.7 1.0 0.7 0.8 2460 0.72 0.74 0.61 0.07 3.61× 10−2 11.45 5.27
17 3.37× 10−4 2.70× 10−4 2.16× 10−4 0.7 1.0 0.8 0.8 2460 0.71 0.74 0.66 0.07 3.73× 10−2 11.83 4.94
18 3.12× 10−4 2.81× 10−4 2.24× 10−4 0.7 1.0 0.9 0.8 2460 0.7 0.72 0.69 0.07 3.83× 10−2 12.15 4.67
19 2.91× 10−4 2.91× 10−4 2.32× 10−4 0.7 1.0 1.0 0.8 2460 0.7 0.72 0.75 0.07 3.96× 10−2 12.56 4.38
20 4.43× 10−4 2.22× 10−4 2.00× 10−4 0.7 1.0 0.5 0.9 2460 0.75 0.75 0.55 0.07 3.23× 10−2 10.24 6.59
21 3.93× 10−4 2.36× 10−4 2.12× 10−4 0.7 1.0 0.6 0.9 2460 0.72 0.74 0.56 0.07 3.39× 10−2 10.76 5.96
22 3.54× 10−4 2.48× 10−4 2.23× 10−4 0.7 1.0 0.7 0.9 2460 0.72 0.73 0.57 0.07 3.53× 10−2 11.17 5.53
23 2.79× 10−4 2.79× 10−4 2.51× 10−4 0.7 1.0 1.0 0.9 2460 0.71 0.71 0.76 0.07 3.88× 10−2 12.31 4.54
24 4.28× 10−4 2.14× 10−4 2.14× 10−4 0.7 1.0 0.5 1.0 2460 0.75 0.73 0.53 0.07 3.22× 10−2 10.2 6.62
25 3.79× 10−4 2.28× 10−4 2.28× 10−4 0.7 1.0 0.6 1.0 2460 0.73 0.72 0.54 0.07 3.38× 10−2 10.7 6.02
26 4.28× 10−4 2.14× 10−4 2.14× 10−4 0.7 1.0 0.5 1.0 2360 0.75 0.73 0.53 0.07 3.06× 10−2 9.7 6.83
27 4.28× 10−4 2.14× 10−4 2.14× 10−4 0.7 1.0 0.5 1.0 2460 0.75 0.73 0.53 0.07 3.22× 10−2 10.2 6.62
28 4.28× 10−4 2.14× 10−4 2.14× 10−4 0.7 1.0 0.5 1.0 2560 0.75 0.73 0.53 0.07 3.37× 10−2 10.69 6.44
29 4.28× 10−4 2.14× 10−4 2.14× 10−4 0.7 1.0 0.5 1.0 2660 0.75 0.73 0.53 0.07 3.53× 10−2 11.18 6.27
30 4.28× 10−4 2.14× 10−4 2.14× 10−4 0.7 1.0 0.5 1.0 2760 0.75 0.73 0.53 0.07 3.68× 10−2 11.66 6.11
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Table A6. Cont.

ID aL in m aI in m aS in m ξ1 ξ2 E F ρp κcon ψ ψ⊥ κrnd uts Re CD

31 3.79× 10−4 2.28× 10−4 2.28× 10−4 0.7 1.0 0.6 1.0 2360 0.73 0.72 0.53 0.07 3.21× 10−2 10.16 6.23
32 3.79× 10−4 2.28× 10−4 2.28× 10−4 0.7 1.0 0.6 1.0 2460 0.73 0.72 0.54 0.07 - - -
33 3.79× 10−4 2.28× 10−4 2.28× 10−4 0.7 1.0 0.6 1.0 2560 0.73 0.72 0.53 0.07 3.54× 10−2 11.21 5.87
34 3.79× 10−4 2.28× 10−4 2.28× 10−4 0.7 1.0 0.6 1.0 2660 0.73 0.72 0.53 0.07 - - -
35 3.79× 10−4 2.28× 10−4 2.28× 10−4 0.7 1.0 0.6 1.0 2760 0.73 0.72 0.53 0.07 - - -
36 3.42× 10−4 2.40× 10−4 2.40× 10−4 0.7 1.0 0.7 1.0 2660 0.72 0.71 0.54 0.07 - - -
37 3.42× 10−4 2.40× 10−4 2.40× 10−4 0.7 1.0 0.7 1.0 2760 0.72 0.71 0.55 0.07 - - -
38 3.13× 10−4 2.50× 10−4 2.50× 10−4 0.7 1.0 0.8 1.0 2560 0.72 0.71 0.56 0.07 3.77× 10−2 11.94 5.16
39 2.89× 10−4 2.60× 10−4 2.60× 10−4 0.7 1.0 0.9 1.0 2360 0.72 0.7 0.56 0.07 3.50× 10−2 11.09 5.23
40 2.89× 10−4 2.60× 10−4 2.60× 10−4 0.7 1.0 0.9 1.0 2560 0.72 0.7 0.56 0.07 - - -
41 2.89× 10−4 2.60× 10−4 2.60× 10−4 0.7 1.0 0.9 1.0 2660 0.72 0.7 0.57 0.07 - - -
42 2.70× 10−4 2.70× 10−4 2.70× 10−4 0.7 1.0 1.0 1.0 2360 0.71 0.69 0.71 0.07 - - -
43 2.70× 10−4 2.70× 10−4 2.70× 10−4 0.7 1.0 1.0 1.0 2660 0.71 0.69 0.75 0.07 4.20× 10−2 13.32 4.42
44 2.70× 10−4 2.70× 10−4 2.70× 10−4 0.7 1.0 1.0 1.0 2760 0.71 0.69 0.76 0.07 4.39× 10−2 13.91 4.29
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This thesis aims to incorporate the particle shape in models regarding the drag and

dynamics of particles settling under gravity, by a study based on simulations. Be-

sides the extension, implementation and validation of methods, new approaches

are proposed, e.g., for the calculation of exchanged momentum. While various

applications of the new method are investigated, new correlations regarding the

drag and terminal settling velocity are also obtained. Moreover a constructive

way based on statistical measures and methods from machine learning is pre-

sented for the creation of such correlations from available data sets, thus yielding

a valuable contribution to a data driven design of, e.g., processing machines, in

the future.

Extension of Simulation Methods This thesis is mainly concerned with sim-

ulations of individual surface-resolved particles. The simulations are based on

the homogenized lattice Boltzmann method, first proposed by Krause et al. [71].
Originally described for shapes whose surface and parameters, like the moment

of inertia, can be described analytically, the method was extended to depict arbi-

trary shapes in Chapter 4. This is achieved by applying the parallel axis theorem

and utilizing a voxel representation. Furthermore the performance is improved
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by optimization of the load balancing across the computing cores, by also par-

allelizing the computation of momentum exchanged between fluid and particles

for simulations with multiple objects. Finally the components of the method are

revised after a comparative study. Regarding accuracy it is found that the origi-

nally applied forcing scheme by Shan and Chen [120] and the adapted version of

the momentum exchange method by Ladd [75, 76] perform inferior to the exact

difference method [74] for the forcing and momentum exchange algorithm pro-

posed by Wen et al. [147]. Therefore the method is updated to benefit from these

schemes.

Newly Developed Simulation Methods Additionally to the extension of meth-

ods, a new approach for the calculation of exchanged momentum denoted as mo-
mentum loss algorithm is proposed. In contrast to other approaches, for which the

momentum is calculated via the particle distribution functions close to a no-slip

condition at the particle surface, this new method directly calculates the momen-

tum lost by the fluid during the application of the force. Considering the way

particles are represented in the HLBM, this approach is a better fit, since objects

are not depicted via a no-slip boundary. Due to the latter, an adaption of other

approaches calculating the exchanged momentum is often required for HLBM. In

other works concomitant to this thesis, the groundwork is performed for further

exploitation of the results regarding the link between shape parameters and the

experienced drag, as given in Chapter 6. A macroscopic approach for simulations

of a large number of entities, relevant on a processing scale, was described and

applied by Trunk et al. [138] by considering the particles as a continuum via an

advection–diffusion equation. The method extends the Euler–Euler approach by

coupling with a turbulence scheme to increase stability for cases with higher flow

velocity. In another concomitant publication by Höcker et al. [59], a new LBM ap-

proach for the VANS equations is described, accounting for moving objects, and

also coupled to a particle simulation by an advection–diffusion approach.

Validation and Application The capability of the new HLBM to depict arbi-

trary particle shapes is demonstrated in Chapter 4 by presenting the results of
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simulations of 16 settling realistic limestone particles. The geometry is obtained

from computer tomography scans and, as described, processed automatically for

the simulations. The comparative study presented in Section 5.4.1 considered

various combinations of forcing schemes, i.e., the velocity shift method of Shan

and Chen [120], the scheme by Guo et al. [44], and the exact difference method

by Kupershtokh [74], with momentum exchange approaches, i.e., the ones by

Ladd [75, 76], Wen et al. [147], and Trunk et al. [147]. As mentioned in the last

paragraph, the best combination is selected for further validation. Considering

the drag of a single settling sphere, it is shown in Section 5.4.1 by comparison

to correlations from literature, that the updated method is capable of recovering

the correct drag coefficient in the whole intermediate Reynolds number regime.

Considering the range from Re = 0.24 to Re = 948.67, the best agreement is

found with the correlation proposed by Schiller and Naumann [116], yielding an

average error of 7.78%, Furthermore vortex structures as described in literature

are observed. Another case is the flow of a neutrally buoyant particle through a

pipe. Due to a balance of pressure and friction forces, the particle positions itself

in a certain distance to the mid, denoted as tubular pinch effect. It is found in

Section 5.4.2 that the updated HLBM is also well suited for this application. Lastly

the case of hindered settling is considered for validation. Simulating the settling

of 373 up to 1865 spheres, various solid volume fractions are depicted. Compar-

ing to experimentally obtained correlations found in literature, the results are in

good agreement, as shown in Section 5.4.3. Also validating the setup for various

Reynolds numbers, i.e., Re= 0.53, Re= 5.29, and Re= 49.46, the settling veloc-

ities match best with the correlation proposed by Barnea and Mizrahi [8]. Finally

a guideline for a sensible parameter selection, regarding accuracy and stability, is

presented in Chapter 5.

Newly Developed Models To find a new, improved shape-dependent correla-

tion regarding the drag acting on the particles, the settling of 200 superellipsoids

is considered in Chapter 6. Calculating measures from statistics like the Pearson

correlation coefficient [103, 152] and the F-value or the mutual information [68]
used in information theory, the most relevant shape parameters for a regression
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analysis are identified. From this set a polynomial up to a desired degree is con-

structed for a multiple linear regression, also containing interaction terms. To

reduce effects due to multicolinearity, terms with a high variance inflation factor

are dropped. The optimal degree for the polynomial is evaluated, splitting the

data in a training and test set, increasing the degree up to the order for which the

error on the test data starts to increase. This is a common approach in the field of

machine learning. The obtained models are evaluated regarding the significance

of each term, considering the permutation importance [15] and T-values. The

whole model is evaluated calculating the adjusted coefficient of determination

and mean error. Also an outlier analysis is performed, considering the standard-

ized residuals and Cook’s distances. Comparing to literature, the newly calculated

models regarding the drag coefficient and terminal settling velocity perform bet-

ter than every reference on the data calculated by HLBM simulations. Although

a splitting in test and training data is performed to prevent overfitting of the

model, it is to be noted that most correlations in literature aim to be applicable

for a broader range of parameters than considered in this thesis, thereby being

possibly outperformed on a narrowed subset. In fact, comparing reference corre-

lations regarding the data they are based on, often a bias in accuracy is observed

towards the type of particles given more weight to in the data. It is concluded

at this point that the calculation of correlations specific to a particle collective is

sensible, as the complexity of the link between particle shape and dynamic par-

ticle behaviour can not be reduced to a single general equation without loss of

information. Considering the approach given in Section 6.5.2, this is the way, for

the reliable determination of such specific correlations.

By this means the aim of this thesis is reached. Not only new correlations for

drag and terminal settling velocity regarding various shape parameters in a con-

fined range are presented, but also the most relevant parameters are identified.

Rather than a general correlation, a general approach for the creation of such is

presented, as the claim of generality of a correlation is often limited by the size

and balance of the given data set.
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Outlook In the future, the described approach and simulation method can be

applied not only to generate correlations regarding a specific particle collective,

but also regarding specific process machines and process conditions. In a further

concomitant publication, the method was applied for the investigation of settling

under conditions in an ultra centrifuge [16]. These studies can be extended to

more complex geometries, thereby obtaining or improving guidelines for the de-

sign of process machines. To increase the feasibility of the simulations, the perfor-

mance of the implementation needs to be further improved. Considering that due

to recent advances in GPU-computing, for which the LBM is a good fit, significant

speedups are achievable. By this means a more general tool for the investigation

of particle dynamics in processes can be created by the coupling of several parts.

First a large data base is required as a foundation, since the exchange of data

between research groups can be tedious and often requires conversion of data

to the required format, whereby an open source solution is desired to establish

a comprehensive reference and define a uniform format for the data. Such an

approach is proposed with the PARROT archive by Ditscherlein et al. [36]. From

this, sets of particles can be selected and used for simulations to obtain correla-

tions as described in Chapter 6. It is possible to automate the procedure from

the selection of particles up to the final correlation. In a further step, the new

results can be used for large scale simulations in a processing geometry, applying

an Euler approach for the particlesand coupling it with the VANS equations. This

allows for a thorough investigation of particle dynamics in processes aiding in the

design of machines.
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B List of OpenLB Test and Application Cases
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