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Abstract

With the quality by design (QbD) initiative, regulatory authorities demand a consis-

tent drug quality originating from a well-understood manufacturing process. This

study demonstrates the application of a previously published mechanistic chromatog-

raphy model to the in silico process characterization (PCS) of a monoclonal antibody

polishing step. The proposed modeling workflow covered the main tasks of tradi-

tional PCS studies following the QbD principles, including criticality assessment of

11 process parameters and establishment of their proven acceptable ranges of opera-

tion. Analyzing effects of multi-variate sampling of process parameters on the purifi-

cation outcome allowed identification of the edge-of-failure. Experimental validation

of in silico results demanded approximately 75% less experiments compared to a

purely wet-lab based PCS study. Stochastic simulation, considering the measured var-

iances of process parameters and loading material composition, was used to estimate

the capability of the process to meet the acceptance criteria for critical quality attri-

butes and key performance indicators. The proposed workflow enables the imple-

mentation of digital process twins as QbD tool for improved development of

biopharmaceutical manufacturing processes.

K E YWORD S

antibody purification, cation exchange chromatography, in silico process characterization,
mechanistic chromatography modeling

1 | INTRODUCTION

The biopharmaceutical industry is under an unprecedented pres-

sure to implement technologies for rapid process development.

Main reasons are rising numbers of monoclonal antibodies (mAbs)

in development1,2 and strongly accelerated development time-

lines.3 While achieving a short time-to-market timeline, mAb man-

ufacturers have to ensure high product quality by following the

quality by design (QbD) concept. The QbD concept demands a

consistent product quality originating from an intrinsic quality built

into the design and the control of the manufacturing process. In

recent years, regulatory authorities and biopharmaceutical organi-

zations formulated clear concepts for the implementation of QbD

in pharmaceutical development.4–6 Yu et al.5 listed the key ele-

ments for a development strategy that complies with the QbD

concept:
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• A quality target product profile (QTPP) for the identification of crit-

ical quality attributes (CQAs) of the drug product

• Identification of critical material attributes (CMAs) and critical pro-

cess parameters (CPPs) potentially effecting CQAs

• Measuring the effect of CPPs and CMAs on CQAs

• Development of a control strategy

• Process capability and continual improvement.

Development workflows comprising the above listed QbD elements

make use of general process knowledge and statistical design of

experiments (DoE) for the characterization of a unit operation.7–9 For

many process steps, including preparative chromatography, it is not

feasible to include all controllable process parameters in a DoE study.

Even on small-scale systems,10 it is challenging to screen hundreds of

process conditions when considering the subsequent analytical bottle-

neck. Therefore, process parameters have to undergo a risk-based

criticality assessment considering their potential impact on CQAs

before designing an experimental process characterization study

(PCS).7,8 Risk-based decision trees for process parameter classification

are able to reduce the dimensionality of DoE studies, and thus reduce

the experimental burden for process development. However, parame-

ter criticality assessment can be influenced by subjective decision-

making caused by the lack of experimental data at this development

stage. As a result, incorrectly classified process parameters could lead

to avoidable experimental effort, or worse, to a poorly understood

control strategy. Further, PCS approaches based on DoE are limited

to regression models correlating CPPs to CQAs with a limited amount

of data points per CPP.

In the ICH Q8/Q9/Q10 (R2) documents,11 regulatory

authorities propose the use of mathematical models to support

bioprocess development and manufacturing. These models

include mechanistic models describing the physical phenomena

within a unit operation, which can be used to predict process

outcomes under varying conditions.11 Digitalization initiatives in

biopharma industry and academia identified mechanistic chro-

matography modeling as a promising tool for in silico develop-

ment of downstream processes (DSP).12–15 After overcoming

the initial hurdle of model calibration,16–20 mechanistic chroma-

tography models show a broad applicability to bioprocess

development, including process optimization,21 robustness

analysis,22–24 or scale-up.10,25 Recently, Andris et al.26 devel-

oped a mechanistic model for the separation of antibody-drug

conjugates. Their work allowed the characterization of a design

space, revealing the relevance of digital process twins in the

light of QbD. For ion exchange chromatography, Jakobsson

et al.24 used mechanistic modeling to design a robust pooling

strategy under consideration of model uncertainty. A mechanis-

tic modeling study performed by Close et al.22 identified robust

operating conditions for a hydrophobic interaction chromatog-

raphy process, where resin and loading material had a consid-

erable impact on process performance. Following the QbD

concept, Rischawy et al.27 used mechanistic modeling for the

identification of CPPs for a cation exchange chromatography

step applied to the polishing of a bispecific mAb. Shekhawat

et al.28 developed a model that improved understanding around

resin fouling in Protein A chromatography. The here mentioned

mechanistic modeling studies increased process understanding

or solved specific problems regarding process robustness. How-

ever, as described earlier, regulatory authorities defined clear

perspectives on the implementation of QbD in process devel-

opment and the related tasks. To the best of our knowledge, it

is still to be shown how mechanistic models could be applied

to a PCS study addressing the essential QbD elements.

Our previous publications introduced a quality system for mecha-

nistic chromatography modeling in biopharmaceutical process devel-

opment. The selection of representative experiments for model

calibration ensured adequate model certainty with minimal

resources.17 This mechanistic model was validated against data of

multiple scales, including clinical manufacturing-scale.29 As a sequel

of this publication series, the mechanistic model is applied to the PCS

of a cation-exchange chromatography (CEX) step. Simulations are per-

formed at manufacturing-scale avoiding limitation of experimental

scale-down model studies. The in silico strategy aims to fulfill the fun-

damental tasks of a PCS following the QbD concept. This includes

criticality assessment of process parameters and measuring their

effect on CQAs and key performance indicators (KPIs). Further, simu-

lations provide the database to identify proven acceptable ranges

(PARs) for process parameters as part of the control strategy. An

experimental design is derived from mechanistic model predictions to

reduce the experimental effort compared to wet-lab driven DoE

approaches. As a last element, Monte-Carlo simulation allows the cal-

culation of process capability under consideration of CPP, KPP, KMA,

and CMA variances measured during clinical manufacturing. The pres-

ented methodology generates in-depth process understanding follow-

ing the QbD concept, while debottlenecking experimental limitation

of DoE approaches. Mechanistic modeling for in silico PCS can

improve decision-making in DSP development, assuring product qual-

ity throughout the entire value chain.

2 | MODELING

Details about model discrimination, model parameters, the model cali-

bration strategy, and scale-dependent considerations can be found in

our previous publications.17,29 Protein-specific model parameters are

listed in Table 1. This section gives an overview on the mechanistic

model and complementations necessary for model-guided scale-up.

The one dimensional (1D) transport dispersive model was selected as

column model, due to multiple successful case studies for the simula-

tion of ion exchange chromatography systems.16,20,30–32 Equation (1)

describes the macroscopic transport of component i through the chro-

matography column. The change of the concentration ci at position x

in time t is a function of convective mass transport in the interstitial

volume, peak broadening caused by axial dispersion Dax, and mass

transfer from the interstitial volume into the pore phase of the particle

with the radius rP. Further, mass transfer between the interstitial
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volume and the particle pores is affected by the interstitial porosity

ϵcol and the effective mass transfer coefficient keff,i. The accumulation

of mass in the pore phase cp,i with the particle porosity ϵp and the sta-

tionary phase qi is described in Equation (2). The Danckwerts' bound-

ary conditions are given in Equations (3) and (4).

∂ci x,tð Þ
∂t

¼� u
εcol

∂ci x,tð Þ
∂x

þDax
∂2ci x,tð Þ

∂x2

� 1�εcolð Þ
εcol

3
rp
keff,i ci x,tð Þ�cp,i x,tð Þ� �� �

ð1Þ

∂cp,i x,tð Þ
∂t

¼ 3
rp

keff,i
εp

ci x,tð Þ�cp,i x,tð Þ� ��1�εp
εp

∂qi x,tð Þ
∂t

ð2Þ

∂ci
∂x

0,tð Þ¼ u tð Þ
Dax

ci 0,tð Þ�cin,i tð Þð Þ ð3Þ

∂ci
∂x

L,tð Þ¼0 ð4Þ

Linear flow rates ranged from 155 cm/h to 360 cm/h between inves-

tigated scales, demanding the introduction of flow dependencies for

the axial dispersion coefficient Dax and effective mass transfer param-

eter keff,i. The penetration correlation allowed the direct calculation

keff,i for monomer and high molecular weight (HMW) species at rele-

vant flow rates, respectively.33,34 Within the investigated range, flow

dependencies for Dax and keff,i could be approximated using linear

regression according to Equation (5) and (6).

Dax uð Þ¼Dax0þuDax1 ð5Þ

keff,i uð Þ¼ keff0,iþukeff1,i ð6Þ

Protein adsorption is simulated using the semi-mechanistic SMA

adsorption model.35 The multicomponent SMA model formulates

the equilibrium binding behavior of the protein in consideration of

the salt concentration in the pore phase cs, the ionic capacity of

the resin Λ, and the proteins characteristic charge νi. Equation (7)

shows the kinetic form of the SMA isotherm modified by Hahn

et al.,31 where keq,i = kads,i/kdes,i and kkin,i = 1/kdes,i describe adsorp-

tion and desorption rates of component i, respectively. In addition,

the steric shielding parameter σi denotes the number of functional

groups on the resin surface blocked by the protein.

kkin,i
∂qi
∂t

¼ keq,i pHð Þ Λ�
Xk
j¼1

v pHð Þjþσj
� �

qj

 !v pHð Þi
cp,i�qics

v pHð Þi ð7Þ

qsalt ¼Λ�
Xk

j¼1
vjqj ð8Þ

The introduction of pH-dependent isotherm parameters is crucial for

industrial applications. Equations (9) and (10) show the empirical pH

dependencies of the characteristic charge νi and the equilibrium con-

stant keq,i developed by Hunt et al.36 This model was found to be suf-

ficient for the process relevant pH range of pH 5.8 ± 0.3 used in this

study.17

keq,i pHð Þ¼ keq0,ie
keq1,ipHþkeq2,ipH

2 ð9Þ

νi pHð Þ¼ ν0,iþpHν1,i ð10Þ

3 | MATERIAL AND METHODS

3.1 | CEX unit operation

The investigated protein is an IgG1 mAb expressed in stably trans-

fected Chinese hamster ovary cells (Boehringer Ingelheim GmbH &

Co. KG, Biberach, Germany). The mAb was captured via Protein A

affinity chromatography and further polished using anion

exchange chromatography in flow-through mode. The presented

mechanistic model describes the subsequent CEX unit operation

TABLE 1 Protein specific model parameters for the pH-dependent SMA model. Details regarding the model calibration procedure are
described in our previous publication.17 For a clear representation of model parameters at pH 5.8, the pH was normalized to zero. pH 5.5 = �0.3,
pH 5.8 = 0, pH 6.1 = 0.3

Parameter APG Main BPG HMW

keff0,i [mm/s] 1.4E-3 1.4E-3 1.4E-3 1.2E-3

keff1,i [�] 4.7E-05 4.7E-05 4.7E-05 3.3E-05

νpH5.8,i [�] 7.38 7.50 7.70 10.97

ν1,i [�] �1.44 �1.44 �1.44 �6.77

keq,pH 5.8,i [�] 1.45 1.41 1.69 1.86

keq,1,i [�] �4.26 �4.26 �4.26 �5.39

keq,2,i [�] 2.19 2.19 2.19 5.59

kkin,i [sM
ν] 8.08E-06 1.00E-04 5.00E-04 3.4E-05

σi [�] 128.6 56.3 107.1 0

Abbreviations: APG, acidic; BPG, basic peak groups; HMW, high molecular weight species.
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using the strong CEX resin POROS 50 HS (Thermo Fisher Scien-

tific, Waltham, USA). The process was performed at constant

pH 5.8 in bind-elute mode and at a maximal load density of

45 g/Lresin. The column was equilibrated at a counter-ion concen-

tration of 87 mM Na+, with the same buffer applied to the wash

phase after column loading. Subsequently, elution was induced at

F IGURE 2 Decision tree for model-guided criticality assessment of process parameters and establishment of their proven acceptable ranges
(PARs). LAC, lower acceptance criterion; UAC, upper acceptance criterion

F IGURE 1 In silico process characterization of a unit operation for monoclonal antibody purification
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a counter-ion concentration of 247 mM Na+. For column regener-

ation and storage, 1 M and 0.1 M NaOH were applied respectively.

Selected experiments from wet-lab PCS studies were used to vali-

date the most critical relationships between process parameters

and CQAs/KPIs. Bench-scale experiments were performed on an

Äkta Avant 25 (Cytiva, Uppsala, Sweden) using an experimental

scale down model (SDM) column with a bed height of 300 mm and

an inner diameter of 10 mm.

Charge variant and HMW concentrations in the elution pool

were quantified using analytical CEX chromatography and analyti-

cal size exclusion chromatography, respectively. Acidic (APG), neu-

tral (Main) and basic peak groups (BPG), as well as HMW species

were considered as CQAs. Process step yield and elution volume

were defined as KPIs and quantified using protein concentration

determined via absorbance at 280 nm and gravimetric volume

measurement. Details of the model calibration and validation, as

well as analytical chromatography methods, are presented in one

of our previous publications.17

3.2 | In silico PCS workflow

This chapter describes the methodology of an in silico PCS following

the QbD concept. The PCS workflow consisted of three major build-

ing blocks: (1) Process parameter criticality assessment and establish-

ment of PARs; (2) Identification and validation of the edge-of-failure;

(3) Calculation of process capabilities. Protein- and system-specific

mechanistic model parameters were kept constant and were obtained

from our previous publications.17,29 Only process parameters were

varied during in silico sampling. All simulations were performed at

manufacturing-scale, under consideration of system and column

dimensions. Before starting in silico experimentation, the applied

mechanistic model was validated as digital representation of the real-

world process. Model validation must consider the intended purpose

of the model and its potential impact on the control strategy at

manufacturing-scale. Small-scale experiments validated that the model

captures the impact of process parameter variation on the purification

outcome.17 Model validation across scales showed that the model

captures relevant system effects and proofed equivalence between

the mechanistic model and manufacturing-scale.29 Based on this pre-

viously published validation strategy, it is reasonable to use the model

for in silico PCS.

Figure 1 depicts the three different parameter-sampling methods.

Initially, a one-factor-at-a-time sampling (OFAT) scheme enabled criti-

cality assessment of process parameters and definition of PARs. Dur-

ing OFAT sampling, one parameter was sampled in a wide range

around its intended set point, while the other process parameters

were kept constant. The loading density was sampled below its upper

limit of 45 g/Lresin. Following the decision tree in Figure 2, process

parameters were ranked as non-KPP, CPP, KPP, CMA or KMA based

on their effect on CQAs and KPIs.

• non-KPP: Process parameter does not affect a CQA or KPP

• CPP: Critical process parameter affects at least one CQA

• KPP: Key process parameter affects at least one KPI and not

affects CQAs

• CMA: Critical material attribute affects at least one CQA

• KMA: Key material attribute affects at least one KPI and not

affects CQAs

Subsequently, the same data obtained from OFAT sampling allowed

definition of PARs for all investigated process parameters. The estab-

lishment of PARs is a fundamental part of the control strategy and

represents the main goal of a PCS. According to the European Medi-

cines Agency (EMA) and ICH Q8 R2 guideline,11,37 the PAR is defined

as the operating range of a process parameter for which the unit oper-

ation will produce a drug substance meeting the relevant quality

criteria. When all process parameters are kept constant, but one

parameter varies within its PAR, all CQAs and KPIs measured in the

F IGURE 3 Monte-Carlo simulation for the calculation of process
capability. The stochastic simulation procedure considered loading
material compositions and input parameter distributions resulting in
the calculation of process capabilities for six critical quality attributes
(CQAs) and key performance indicators (KPIs). Exemplary input and
output distributions are shown
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elution pool must be located within their predefined acceptance

criteria (AC). Thus, OFAT sampling of input parameters is a suitable

method for the establishment of PARs. As presented in Figure 2, the

intersection of ACs and the curve obtained via in silico sampling

defined the lower and upper boundary of the PAR. If a process param-

eter did not cause CQAs or KPIs to violate the AC, the entire in silico

screened parameter range of this process parameter was defined

as PAR.

Process parameters ranked as CPPs and KPPs were analyzed in

subsequent multi-parametric sampling studies. The multi-parametric

sampling study represented the second building block of the in silico

PCS. Here, CPPs and KPPs were varied jointly to study the worst-case

operating scenarios. This procedure enabled the identification of the

edge-of-failure under consideration of the AC. Historical wet-lab

experiments at process conditions around the edge-of-failure were

used to validate the in silico findings.

In a last step, the process capability of the unit operation was cal-

culated based on stochastic simulation (Monte-Carlo simulation), as

described in Figure 3. Therefore, probability functions of process

parameters and loading material composition were calculated based

on 20 chromatographic cycles at clinical manufacturing-scale. Subse-

quently, 1000 simulations were performed using random samples of

the previously determined probability function as model input. The

resulting CQA and KPI distributions were then plotted and compared

to the AC. The standard deviations bσ obtained from in silico gener-

ated CQA and KPI distributions enabled calculation of the

corresponding process capabilities Cpl and Cpu for the lower and upper

AC (LAC and UAC), respectively,

Cpl ¼Mean�LAC
3bσ ð11Þ

Cpu ¼UAC�Mean
3bσ ð12Þ

Cpk ¼min cpl;cpu
� �

: ð13Þ

For each CQA or KPI, the overall process capability Cpk was defined

as the minimum of Cpl and Cpu. When only an LAC or an UAC was

defined, the overall process capability could be simplified to Cpk = Cpl

or Cpk = Cpu.

4 | RESULTS AND DISCUSSION

In the following chapters, a previously published mechanistic chroma-

tography model was applied to the in silico PCS of a CEX unit opera-

tion.17,29 The multi-stage modeling workflow aimed to fulfill essential

tasks of PCS following the QbD concept. This includes CPP identifica-

tion and PAR definition. Multi-parametric effects on the purification

outcome were identified and validated with wet-lab experiments.

Monte-Carlo simulation allowed the determination of process capabil-

ity under consideration of real CPP, KPP, CMA, and loading material

composition variability.

4.1 | Parameter criticality assessment and control
strategy

Before starting characterization of a unit operation, process

parameters must be classified according to their impact on CQAs

and KPIs. The mechanistic chromatography model enabled effect

analysis of process parameters following an OFAT sampling

scheme. Table 2 lists the results of the parameter criticality assess-

ment following the decision tree in Figure 2. In silico investigation

of one process parameter consisted of 50 simulations, with equi-

distant steps in a wide range around the set-point condition. While

one parameter was varied, all other process parameters were kept

on the set point. Five process parameters were ranked as CPPs or

CMAs, showing effects on at least one CQA. Salt concentration in

the equilibration/wash buffer was ranked as KMA, since it only

affected the KPI step yield. All remaining process parameters were

TABLE 2 Criticality assessment of in silico screened process parameters of the CEX unit operation. Process parameters were classified
according to the decision tree depicted in Figure 2

Process parameter Unit Tested range Effect on CQA Effect on KPI Classification

pH elution buffer pH 5.5–6.1 Yes Yes CMA

Salt elution buffer mM Na+ 230–265 Yes Yes CMA

Flow rate elution cm/h 100–350 Yes Yes CPP

pH equilibration/wash buffer pH 5.5–6.1 Yes Yes CMA

Loading density g/Lresin 22.5–45 Yes Yes CPP

Salt equilibration/wash buffer mM Na+ 74–99 No Yes KMA

Flow rate loading cm/h 100–350 No No non-KPP

pH load pH 5.5–6.1 No No non-KPP

Salt load mM Na+ 62–85 No No non-KPP

Flow rate wash cm/h 100–350 No No non-KPP

Column length mm 270–330 No No non-KPP

Abbreviations: CEX, cation-exchange chromatography; CQA, critical quality attributes; KPI, key performance indicators.

6 of 13 SALEH ET AL.



ranked as non-KPPs and did not affect CQAs or KPIs within the

screened parameter ranges.

Mobile phase pH and salt concentrations were amongst the pro-

cess parameters showing the strongest impact on CQAs and KPIs.

Thus, Figure 4 highlights the effects of mobile phase conditions during

equilibration/wash and elution on the purification result. The non-

linear correlation between elution pH and HMW concentration was

identified as the most considerable effect. The mechanistic model

predicted that an elution buffer with pH above pH 5.9 results

in HMW levels violating the upper AC. Typically, the initial

criticality-assessment of process parameters is based on failure mode

and effect analysis (FMEA). The FMEA allows a risk-ranking

depending on initial experiments and available data from process

development, historical knowledge from different mAbs at compara-

ble process steps, and process understanding of subject matter

experts. A validated mechanistic model could be used to support a

F IGURE 4 Criticality assessment of process parameters via in silico one-factor-at-a-time sampling (OFAT) sampling. The figure shows effects
of mobile phase conditions during elution and wash phase on critical quality attributes (CQAs) and key performance indicators (KPIs). Each sub-
figure contains the information of 50 simulations at varying process conditions (black line). Dashed red lines indicate the acceptance criteria for
CQAs and KPIs
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knowledge-based FMEA. The effects of potential CPPs and KPPs

identified via FMEA on CQAs and KPIs are then screened in a DoE

approach. The in silico OFAT screening allowed a rationalized identifi-

cation of critical input parameters without experimental limitations.

Process understanding leveraged from 550 simulations was used to

generate the parameter classifications given in Table 2. Such a number

of experiments containing similar amount of information cannot be

screened economically in wet-lab.

Following the methodology described in Section 3.2, upper and

lower limits for PARs (not presented in numbers) were directly derived

from the intersection of simulated data and predefined AC in

Figure 4. PARs can be established using wet-lab data obtained from

OFAT or DoE studies. Due to experimental limitations, data

evaluation is often limited to first- or second-degree regression

modeling. The data in Figure 4 reveals how the non-linear correlations

between CQAs and CPPs affect the establishment of PARs. Simple

regression modeling based on a small number of experiments would

result in different PARs. The in silico established PARs could be used

as part of the control strategy during commercial manufacturing. From

a regulatory perspective, the process understanding obtained via

OFAT sampling based on mechanistic modeling represents a Level

3 control strategy.5 The process control assures product quality meet-

ing the specifications when a single process parameter deviates within

its PAR. Further, the effect of deviating process parameters on CQAs

and KPIs is well-understood enabling the possibility to adapt controls

upstream in the process chain. Potentially, the mechanistic model

could be applied to a Level 1 control strategy, substituting traditional

testing of the intermediate product. In this case, continual generation

of in silico data would enable automated adjustment of process

parameters assuring a consistent product quality within the AC.5

Application of mechanistic models as soft-sensors in a Level 1 control

strategy could be useful for continuous manufacturing,38,39 when the

adoption of process analytical technology (PAT) is not feasible.

The applied mechanistic model considered large-scale column

dimensions and properties. Further, the model was validated against

manufacturing-scale data. Consequently, the mechanistic model

enabling in silico PAR definition was representative to the final

manufacturing-scale. Traditional DoE approaches rely on scale-down

experimentation. The ICH guidelines support the establishment of

PARs using small-scale experimentation. However, all simplifications

and assumptions made during SDM experimentation must be justified

during approval process. A pure in silico PCS is currently not rec-

ommended if not all CQAs are fully covered by the mechanistic model.

Therefore, the following section focusses on a minimal amount of

wet-lab experiments for validating the relevant correlations between

process parameters and CQAs and KPIs.

4.2 | Identification and validation of the edge-of-
failure

In the previous section, in silico OFAT screening enabled classification

of process parameters and establishment of PARs. This chapter aims

to validate the identified effects of process parameters on CQAs and

KPIs using experimental data obtained from previous wet-lab PCS

experiments. Here, the minimal number of experiments demanded for

validation of in silico results was compared to the experimental effort

of an entirely wet-lab based PCS. The multi-variate sampling investi-

gated effects on step yield and aggregate concentration.

Amongst the investigated parameters, mobile phase properties

showed the strongest impact on HMW removal and step yield. Mech-

anistic model predictions showed that an increased counter ion con-

centration and mobile phase pH during the wash phase caused an

early desorption of protein, negatively affecting step yield. Both

process parameters, wash salt concentration and wash pH, were

simultaneously varied in silico using a parametric sweep study

F IGURE 5 Effect of mobile phase conditions on step yield (a) and
HMW removal (b). Scatter plots show the results of wet-lab
experiments performed at process conditions close to the edge-of
-failure (green = within AC, red = outside AC). Red contours
represent the edge-of-failure, as the cutting line of model prediction
and AC. Each contour plot is calculated based on 400 simulations at
varying process conditions
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consisting of 400 simulations. As a result, Figure 5A shows step

yield as a function of mobile phase conditions during the wash

phase. The edge-of-failure was defined as the cutting curve of the

surface function calculated based on in silico results and the AC

for step yield. Set-point conditions for wash salt and pH conditions

are located in the center of x- and y-axis, respectively. Therefore,

the contour plot reveals that step yield cannot fall below the AC

when varying only one factor at a time. When increasing both, salt

and pH during wash above set-point conditions the step yield

drops from >98% to a minimum of 77% within the investigated

parameter space. Elution of protein during the wash phase resulted

in non-linear correlations between process parameters and step

yield, which would be difficult to cover using an experimentally

limited DoE approach coupled with empirical response surface

modeling. The selection of wet-lab experiments at conditions close

to the edge-of-failure (scatter plot in Figure 5) validated that a

F IGURE 6 Monte-Carlo simulation of the CEX unit operation at pH 5.8 during elution phase. Dashed red lines indicate acceptance criteria.
Each data point represents a simulation at 12000 L manufacturing-scale. Measurement data of 20 clinical manufacturing runs was used to
simulate the variance of load material composition, loading density, pH, and salt concentrations of the different chromatographic phases
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simultaneous increase of salt concentration and pH during the

wash phase would result in a violation of the AC for step yield.

Instead of conducting wet-lab experiments in the entire parameter

space, in silico identification of the edge-of-failure enabled a

reduction of the experimental design to process conditions rele-

vant for proofing process robustness.

The identical methodology was applied to mobile phase condi-

tions during the elution phase and their effect on HMW concen-

tration in the elution pool. Figure 5B depicts HMW concentration

as a function of elution salt concentration and elution

pH. Compared to elution salt concentration, the elution pH had a

strong impact on the HMW levels in the product. Again, wet-lab

experiments around the edge-of-failure could validate the correla-

tions obtained using in silico data. With targeted experiments close

to the in silico determined edge-of-failure, the total number of

wet-lab experiments was reduced from 35 to 9 compared to the

traditional DoE-based PCS. The contour plot in Figure 5B supports

the finding of the previous OFAT analysis, that elution pH 5.7

F IGURE 7 Monte-Carlo simulation of the CEX unit operation at pH 5.7 during elution phase. Dashed red lines indicate acceptance criteria.
Each data point represents one simulation at 12000 L manufacturing-scale. Measurement data of 20 clinical manufacturing runs was used to
simulate the variance of load material composition, loading density, pH, and salt concentrations of the different chromatographic phases
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could be a more robust set point, showing an increased distance to

the edge-of-failure compared to pH 5.8. The true capability of the

process to deplete HMW species in the desired quantity demands

further in silico analysis considering material and process parame-

ter variability.

4.3 | Process capability and continual
improvement

Following the QbD elements described by Yu et al., process capability

and continual improvement represents the final building block of the

in silico PCS.5 Process capability cpk describes the ability of the purifi-

cation process to achieve CQAs and KPIs located within the AC under

consideration of the intrinsic process variability. As depicted in

Figure 3, Monte-Carlo simulation enabled calculation of process capa-

bilities. Feed stream and process parameter variances were used as

model input. The input distributions were obtained from 20 CEX chro-

matography cycles at clinical manufacturing-scale. Variance in load

composition and mobile phase properties were approximated with

Gaussian functions. The input variance of the loading density was

described by a Gaussian function limited to a maximum of 45 g/Lresin.

The 1000 samples were taken from the distributions calculated based

on manufacturing-scale data. The intended mobile phase pH value of

the unit-operation was pH 5.8 for all chromatographic phases.

Although a pH range of pH 5.8 ± 0.1 is well controllable, simulations

in Figure 4 suggest that pH 5.7 is a more robust set point for HMW

removal. Therefore, both elution pH scenarios were evaluated using

the Monte-Carlo method. Figure 6 and Figure 7 show the resulting

distribution of CQAs and KPIs for pH 5.8 and 5.7, respectively.

The comparison between Figure 6 and Figure 7 reveals that a

reduction of the elution pH from pH 5.8 to pH 5.7 increases process

capability for HMW removal when considering the intrinsic variance

of the CEX unit operation. The capability of the process to achieve an

HMW concentration below the AC increased from 0.43 to 1.54.

Assuming normal distribution of model outputs, the probability for an

HMW concentration be located outside the AC reduced to 0.0004%

from 19.4%. The adaption of the elution set point pH had no negative

effect on process capabilities of other CQAs and KPIs. Consequently,

Monte-Carlo simulation could support the decision to shift the set

point pH from pH 5.8 to pH 5.7.

Despite the simplification of assuming normal distribution for the

majority of CPPs, KPIs, CMAs, and KMAs as model input, step yield

and elution volume showed an asymmetric distribution at pH 5.7.

These trends underline the importance of considering non-linear cor-

relations in preparative chromatography. Similar to the loading mate-

rial compositions, charge variant concentrations in the elution pool

were found to be normally distributed. Process capabilities for charge

variants ranged between 0.92 and 1.23. A cpk = 1 corresponds to a

distance of 3 sigma between the mean output value and the AC,

resulting in a 0.27% probability for a CQA or KPI to be located outside

the AC.

Probabilistic simulation using mechanistic modeling is a simple

and effective way to estimate process capabilities before a sufficient

amount of real data from commercial manufacturing campaigns is

available. Here, adaption of the set point pH based on Monte-Carlo

simulation improved process robustness with regards to aggregate

removal and reduced the risk of an out of specification (OOS) event.

During the product lifecycle, input distributions for CMAs, KMAs,

CPPs. and KPPs can be continuously updated and fed-back into the

mechanistic model. This procedure would allow an early identification

of root-causes for process variability enabling an adjustment of the

control strategy if needed.

5 | CONCLUSION

In the present study, a mechanistic chromatography model was

applied to the PCS of mAb polishing step. The in silico method-

ology fulfilled the essential elements of the QbD concept. OFAT

sampling allowed classification of process parameters and estab-

lishment of PARs. Wet-lab studies derived from in silico screen-

ing can lead to a significantly reduced experimental effort

compared to purely DoE driven PCS studies. Calculation of pro-

cess capability considering a posteriori variabilities of feed

stream materials and process parameters at manufacturing-scale

enabled the identification of a robust set point condition. In this

study, in silico PCS results were complemented with experimen-

tal data, which reduced the overall impact of mechanistic model-

ing on the control strategy. When relying exclusively on in silico

predictions, consideration of the effects of model parameter

uncertainty on model predictions will further increase the trust

in the final control strategy.

Considering the complexity of polishing chromatography steps

compared to other unit operations in mAb purification processes

and the related experimental efforts that must be invested for

their characterization, the here presented in silico techniques have

the potential to debottleneck process development timelines.

While accelerating development and disrupting experimental con-

straints, mechanistic modeling generated a deep process under-

standing ensuring consistent product quality in the light of QbD.

This work represents a possible concept for the application of digi-

tal process twins to QbD related tasks in biopharmaceutical pro-

cess development, with the focus on preparative chromatography.

The proposed methods could further enable the in silico PCS of

other unit operations when validated mechanistic models are

available.
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