KIT | KIT-Bibliothek | Impressum | Datenschutz

Effective field theory versus UV-complete model: vector boson scattering as a case study

Lang, Jannis 1; Liebler, Stefan 1; Schäfer-Siebert, Heiko 1; Zeppenfeld, Dieter 1
1 Institut für Theoretische Physik (ITP), Karlsruher Institut für Technologie (KIT)


Effective field theories (EFT) are commonly used to parameterize effects of BSM physics in vector boson scattering (VBS). For Wilson coefficients which are large enough to produce presently observable effects, the validity range of the EFT represents only a fraction of the energy range covered by the LHC, however. In order to shed light on possible extrapolations into the high energy region, a class of UV-complete toy models, with extra SU(2) multiplets of scalars or of fermions with vector-like weak couplings, is considered. By calculating the Wilson coefficients up to energy-dimension eight, and full one-loop contributions to VBS due to the heavy multiplets, the EFT approach, with and without unitarization at high energy, is compared to the perturbative prediction. For high multiplicities, e.g. nonets of fermions, the toy models predict sizable effects in transversely polarized VBS, but only outside the validity range of the EFT. At lower energies, dimension-eight operators are needed for an adequate description of the models, providing another example that dimension-eight can be more important than dimension-six operators. A simplified VBFNLO implementation is used to estimate sensitivity of VBS to such BSM effects at the LHC. ... mehr

Verlagsausgabe §
DOI: 10.5445/IR/1000136946
Veröffentlicht am 06.09.2021
DOI: 10.1140/epjc/s10052-021-09428-7
Zitationen: 5
Web of Science
Zitationen: 5
Zitationen: 6
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Theoretische Physik (ITP)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2021
Sprache Englisch
Identifikator ISSN: 1434-6044, 1434-6052
KITopen-ID: 1000136946
Erschienen in European Physical Journal C
Verlag Springer Verlag
Band 81
Heft 7
Seiten 659
Nachgewiesen in Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page