KIT | KIT-Bibliothek | Impressum | Datenschutz

Performance of ECG-based seizure detection algorithms strongly depends on training and test conditions

Jahanbekam, Amirhossein; Baumann, Jan; Nass, Robert D.; Bauckhage, Christian; Hill, Holger 1; Elger, Christian E.; Surges, Rainer
1 Institut für Sport und Sportwissenschaft (IfSS), Karlsruher Institut für Technologie (KIT)

Abstract:

Objective
To identify non-EEG-based signals and algorithms for detection of motor and non-motor seizures in people lying in bed during video-EEG (VEEG) monitoring and to test whether these algorithms work in freely moving people during mobile EEG recordings.

Methods
Data of three groups of adult people with epilepsy (PwE) were analyzed. Group 1 underwent VEEG with additional devices (accelerometry, ECG, electrodermal activity); group 2 underwent VEEG; and group 3 underwent mobile EEG recordings both including one-lead ECG. All seizure types were analyzed. Feature extraction and machine-learning techniques were applied to develop seizure detection algorithms. Performance was expressed as sensitivity, precision, F$_{1}$ score, and false positives per 24 hours.

Results
The algorithms were developed in group 1 (35 PwE, 33 seizures) and achieved best results (F$_{1}$ score 56%, sensitivity 67%, precision 45%, false positives 0.7/24 hours) when ECG features alone were used, with no improvement by including accelerometry and electrodermal activity. In group 2 (97 PwE, 255 seizures), this ECG-based algorithm largely achieved the same performance (F$_{1}$ score 51%, sensitivity 39%, precision 73%, false positives 0.4/24 hours). ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000136998
Veröffentlicht am 08.09.2021
Originalveröffentlichung
DOI: 10.1002/epi4.12520
Scopus
Zitationen: 14
Web of Science
Zitationen: 10
Dimensions
Zitationen: 13
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Sport und Sportwissenschaft (IfSS)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2021
Sprache Englisch
Identifikator ISSN: 2470-9239
KITopen-ID: 1000136998
Erschienen in Epilepsia Open
Verlag Wiley Open Access
Band 6
Heft 3
Seiten 597-606
Vorab online veröffentlicht am 12.07.2021
Nachgewiesen in Web of Science
Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page