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Abstract
Neural networks (NN) have been studied and used widely in the field of computational mechanics, especially to approximate
material behavior. One of their disadvantages is the large amount of data needed for the training process. In this paper,
a new approach to enhance NN training with physical knowledge using constraint optimization techniques is presented.
Specific constraints for hyperelastic materials are introduced, which include energy conservation, normalization and material
symmetries. We show, that the introduced enhancements lead to better learning behavior with respect to well known issues
like a small number of training samples or noisy data. The NN is used as a material law within a finite element analysis and its
convergence behavior is discussed with regard to the newly introduced training enhancements. The feasibility of NNs trained
with physical constraints is shown for data based on real world experiments. We show, that the enhanced training outperforms
state-of-the-art techniques with respect to stability and convergence behavior within FE simulations.

Keywords Neural networks · Material modeling · Constrained optimization · Regularization · Hyperelasticity · FEM · Shell
structures

1 Introduction

The quasi-static motion of an isothermal deformable solid
can be described with a set of three basic equations: equi-
librium of forces, definition of kinematics and constitutive
relations. The former is deeply rooted in physical balance
principles. The description of motion is at maximum a ques-
tion of the desired accuracy. Constitutive or material laws
on the other hand, as a link between the kinetic and kine-
matic quantities, are far more vague in their descriptions.
Phenomenological material models - which are the only ones
considered throughout this paper - are based on qualita-
tive real world observations and quantitative experimental
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results. Usually, a mathematical model is defined based on
physical principles the material has to fulfill, like elastic-
ity, see e.g. [14]. The free model parameters are then fitted
to experimental data. A good material model should have
as few parameters as possible, which can be determined by
experiment, but as many as necessary to represent arbitrary
deformation behavior [37]. The idea to replace the process of
model function definition and parameter identification with
an artificial neural network (NN) started in the early 1990s,
as [9] modeled the behavior of concrete in a plain stress state
with an incremental approach, even considering cyclic load-
ing. From this point on, a lot of progress has been made in
the field of artificial neural networks, their use as material
models and the field of computational mechanics itself. The
following is a subjective selection of publications, without
claim of completeness. In [23] an incrementally defined NN
material model was implemented in a finite element code,
while the corresponding material tangent was approximated
byfinite differences.An analytic tangentwas later introduced
in [13].NNmaterialmodelswere for example applied to rein-
forced concrete [41], composites [24] or human bones [12].
The data from which the NN is trained can either come from
real world experimental data or from numerical experiments
using homogenization techniques. The latter applies to most
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publications currently available. Furthermore, NN material
models are very well suited to be embedded in uncertainty
modeling, as they can easily be parameterized and are fast
to compute in comparison to e.g. numerical homogenization
techniques. For example, in [7] a recurrent NN is used to
model time dependentmaterial behavior based on fuzzy data,
whereas in [2,3] stochastic data from random representative
volume elements is used.

NN material models have some great advantages. They
use the experimental data - from the real worls or numeri-
cal homogenization - directly, without the need of defining a
specific function. Through analytic differentiation, the corre-
spondingmaterial tangent, which is needed in the framework
of a Newton iteration scheme, can always be computed in the
same way. It is therefore independent of the material one
wants to approximate. Furthermore, as universal function
approximators [6], it is theoretically possible to use them
on any material, as long as it can be defined as a contin-
uous function. On the other hand, there are some serious
disadvantages. NN training usually requires a lot of data,
which raises the question on how to generate or gather it
feasibly. Even if trained well, they are referred to as black
box functions. Their free parameters are large in number
and cannot be physically interpreted afterwards. In addi-
tion, the NN function as a material model is not restricted
to physical boundaries, like objectivity, material symmetries,
growth conditions, energy conservation, etc. The advantage
of no longer having to define a model is therefore coun-
tered by the disadvantage of no longer being able to take
physical restrictions into account that are well known and
have been used for decades. Considering prior knowledge is
therefore a subject of research nearly as long as NN develop-
ment itself. A subjectively good overview is given in [16]. In
[1], they introduce ”hints”, which is a penalty approach by
considering constraints as additional training patterns - vir-
tually the application-free basis of this paper. The Lagrange
multiplier method was investigated in [29], with sobering
results. Other approaches use application-related NN archi-
tectures, like the promising deep material networks from
[25]. Through reference configuration rotation, isotropy can
be indirectly considered as additional training samples, see
e.g. [35], whereas material objectivity can be considered by
rotation of the current configuration, see e.g. [23,44].

In this paper, the consideration of physical constraints in
the NN training process with application to a hyperelastic
NN material model is shown. Through the introduction of
constraints, the above listed disadvantages of sample size,
physical material properties, etc. are weakened down to a
point, were the NN material concept is feasible to use. This
includes comprehensive discussions of the numerical imple-
mentation, studies on NN and constraints’ settings and the
application to thewell knowndata for vulcanized rubber from
[39]. The highlights can be summarized as follows:

– Recap on how to generally enforce constraints in NN
training based on constraint optimization techniques,

– Definition and implementation of specific constraints for
hyperelastic materials,

– Investigations on the training behavior with respect to
physical error measures, sample sizes and noisy data,

– Investigations on the numerical behaviorwithin finite ele-
ment calculations,

– Application to real world data to show the practicability
of the used approach.

More precisely, the novelties of this paper are the intro-
duction of constrained neural network training to material
modeling and the definition of specific hyperelastic material
constraints.

The paper is organized as follows. In Sect. 2, the NN train-
ing under general constraints is described. The hyperelastic
material specific constraints are given in Sect. 3, as well as
their impact on the training process with respect to represen-
tative error measures within a parameter study. Numerical
implementation is shown in Sect. 4. In Sect. 5, the method is
applied to experimental data [39].

2 NN training as a constrained optimization
problem

A feedforward NN is a function

f N N (x,w) = zNN (1)

with the ni - dimensional input vector x and the no- dimen-
sional output vector zNN . The free parameters, called
weights, are collected in the nw- dimensional vector w. The
NN used for all calculations in this paper is the multilayer
perceptron (MLP) described in Appendix A.

2.1 Conventional NN training and notation

Given a set of P training samples

T = {(xk, zk)}, k = 1, ..., P, (2)

the goal of the training process is to determine a suitable
set of free parameters ŵ, so that the NN provides a good
approximation

f N N (xk, ŵ) = zNN !≈ zk, ∀ k = 1, ..., P (3)

of their input and output behavior. The NN should also gen-
eralize, thus providing a good approximation for points x not
included in the set of training samples. The sample points
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could be given e.g. by experiments, or arbitrarily generated
in the sample space Ω ⊂ R

ni . By defining an error function

E(w):= 1

2P

P∑

k=1

no∑

j=1

(
zNN
j (xk,w) − z jk

)2 (4)

considering deviation from the training data in amean square
sense, the determination of the weights ŵ can be defined as
the search for the solution of the following nonlinear opti-
mization problem:

min E(w) , (5)

with the global minimum wmin fulfilling the condition

E(wmin) ≤ E(w), ∀w ∈ R
nw . (6)

There are lots of first and second order methods known for
solving the optimization problem (5) in the literature. They
all need at least the gradient of the error function with respect
to the weights

∇ E(w) = 1

P

P∑

k=1

no∑

j=1

(
zNN
j (xk,w) − z jk

)∇ zNN
j (xk,w),

(7)

which can be calculated by backpropagation [34,45]. In
practical application, one is often satisfied with a solution
ŵ > wmin , leading to a sufficient approximation, which
depends on defined tolerances.

2.2 Conventional NN regularization

When training a NN there are lots of difficulties to face,
which are direct consequences of the large number of free
parameters and the nonlinearity of the error function. With
regularization techniques it is in general possible to reduce
overfitting and the influence of noisy data. In the following,
two well known representatives are shown to emphasize the
difference to the constraint training approach. It is only a
short recap. More in depth discussions can be found in [10].

2.2.1 Early stopping using a test set

During NN training, one usually splits the set of given sam-
ples into a training subset and a test subset: T = T trn ∪ T tst

with sample sizes P trn and P tst respectively. The NN only
sees the training set T trn, while the test set is used to check
whether the NN is overfitting with respect to the training data
or is globally approximating well. This behavior is princi-
pally depicted inFig. 1. This is usually a problem for ill-posed

Fig. 1 Principle overfitting phenomenon of ill-posed problems: while
the training error continues decreasing, the test error starts to grow,
indicating overfitting

problems, e.g. with an insufficient number of samples or spa-
tially not well represented input spaces as in the example of
Sect. 2.4. The method of early stopping breaks the training
process at epoch tmin , if the test set error

E tst(w) = 1

2P tst

P tst∑

k=1

no∑

j=1

(
zNN
j (xk,w) − z jk

)2 (8)

isminimal. In practical application it is not always clearwhen
to stop training. In contrast to the concept of constraint opti-
mization, the early stopping method does not modify the
training algorithm and does not add information to the train-
ing process.

2.2.2 L2-regularization

Adding the squared norm of the weights vector to the error
function is calledL2- orTikhonov-regularization inNN train-
ing:

EL2(w) = 1

2P

P∑

k=1

no∑

j=1

(
zNN
j (xk,w) − z jk

)2 + εL2

2

∥∥w
∥∥2 .

(9)

It pulls the solution of the optimization problem to smaller
values for w, leading to smaller curvature and therefore
preventing overfitting up to a point. The scalar factor εL2 con-
trols the desired smoothness of the NN response surface. In
practical application, the specification of this regularization
factor is problemdependent and therefore no straight forward
task. In contrast to the concept of constraint optimization,
the Tikhonov regularization does not add information in an
expert knowledge sense to the optimization process.

Similar to the L2-regularization, general constraint opti-
mization can also work with an extension to the error
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function. The advantage will be the possibility to add expert
knowledge to the training process, which can be used to
enhance NN performance, while keeping or even improving
the benefits of classical regularization. It should be noted,
that the following methods are well known and have proven
themselves in other applications. Therefore, the mathemati-
cal theory is shrunken to the needed minimum to follow the
motivation behind this approach.

2.3 Considering constraints by error term extension

In general, the optimization problem (5) can be extended by
neq equality and nie inequality constraints, leading to the
following constraint optimization problem:

min E(w) s.t. hi (w) = 0, i = 1, ..., neq

g j (w) ≤ 0, j = 1, ..., nie, (10)

where ‘s.t.’ means ‘subjected to’. Its solution wC
min fulfills

the condition

E(wC
min) ≤ E(w), ∀w ∈{Rnw |hi (w) = 0, i = 1, ..., neq ,

g j (w) ≤ 0, j = 1, ..., nie
}
. (11)

There are lots of methods in the literature related to con-
strained optimization for solving problems like (10), see e.g.
[8,19]. For differentiable error and constraint functions, a
suitable one is an appropriate extension to the error function

EC (w) := E(w) + Ē(w) , (12)

leading to an unconstrained optimization problem

min EC (w), (13)

which has the same solutionwC
min and is therefore equivalent

to the constrained optimization problem defined in (10). The
big advantage is the possibility to use the same optimiza-
tion algorithms as for (5). Accordingly, the calculation of the
corresponding gradient is needed:

∇ EC (w) = ∇ E(w) + ∇ Ē(w). (14)

2.3.1 Indirect enforcement with constraint samples

In NN training one has to distinguish between the network
input variables x and the function parameters, the weights
w. While the approximation condition (3) is defined in terms
of the network input and output variables, the optimization
problem (5) is done with respect to the weights. Because of
the non-linearity of the NN, the least squares condition can-
not be transformed in an explicit solution for the function

parameters - contrary to linear least squares approximations
- and must therefore be solved numerically. The constraints
behavemostly the same. The definition of the constraint func-
tions hi (w) and g j (w) solely in terms of the weights w is in
general not possible, because the desired constraints may be
defined in terms of the network output or even its derivatives.
In contrast to the definition in (10), the constraint functions
can take the following forms:

hi (w) = hi

(
w, zNN (x),

∂zNN
j

∂xi
(x), ...

)
,

g j (w) = g j

(
w, zNN (x),

∂zNN
j

∂xi
(x), ...

)
. (15)

Similar to the training samples, they have to be enforced on
a set of discrete sample points xk ∈ ΩC , k = 1, ..., PC ,
with PC being the total number of constraint samples. These
constraint sample points could be the original training sample
points, but in general they are independent.

In the following, only equality constraints will be taken
into account. The treatment of inequality constraints is possi-
ble but needs consideration of additional numerical methods
which would make it difficult to focus on the papers essen-
tials.

2.3.2 The classical penalty method

Thepenaltymethod (PM)defines the error function extension
for neq equality constraints with a mean squared error term.
Therefore, the additional error term writes

Ē PM (w) = ε

2PC

PC∑

k=1

neq∑

i=1

hi (xk)2, (16)

with the corresponding gradient

∇ Ē PM (w) = ε

PC

PC∑

k=1

neq∑

i=1

hi (xk)∇hi (xk). (17)

The gradient of the constraint function ∇hi (xk) is problem
dependent. The simplicity of its implementation is usually
contrasted by the handling of the scalar penalty factor ε,
which controls the hardness of penalization.Mathematically,
the constraints are only fulfilled exactly for ε → ∞, which is
only approximately possible from a numerical point of view.
This behavior is illustrated with the analytic optimization
problem from [28]:

min E(w) = w2 s.t. h(w) = w − 1 = 0, (18)

123



Computational Mechanics

Fig. 2 Penalty method (left) and exact penalty method (right) for optimization problem (18): unconstrained error function and extended error
functions for various penalty parameters, including corresponding minima

with the single exact solutionwC
min = 1. Theminimum value

w
C,PM
min = ε/(2 + ε) (19)

to the equivalent unconstrained penalty error function

EC,PM (w) = w2 + ε

2
(w − 1)2 (20)

is illustrated in Fig. 2. As can be seen graphically and ana-
lytically, only for ε → ∞ the exact solution is found.
Consequently, there is always a trade-off between exactness
and calculability. The problem gets worse if more constraints
are involved and the solution is not only dependent on the
absolute values but also on their ratios.

2.3.3 The exact penalty method

There are some methods known for imposing constraints
mathematically exact without the need of a scalar factor
going to infinity. The member which will be examined here
is the type of so called exact penalty functions (EP). It can be
shown, that they reach exactness in the constraints for a finite
value of the penalty parameter. The L1-penalty function used
here writes

Ē E P (w) = ε

PC

PC∑

k=1

neq∑

i=1

∣∣hi (xk)
∣∣, (21)

with its corresponding gradient

∇ Ē E P (w) = ε

PC

PC∑

k=1

neq∑

i=1

∇∣∣hi (xk)
∣∣. (22)

Thedisadvantageof these functions is their gradient not being
defined at hi = 0. It will be approximated with help of the
signum-function:

∇ Ē E P (w) ≈ ε

PC

PC∑

k=1

neq∑

i=1

sgn
(
hi (xk)

)∇hi (xk). (23)

Still, the gradient at hi = 0 is not continuous, which
could cause numerical problems for the optimization pro-
cess. Applied to the exemplary optimization problem (18),
the unconstrained exact penalty error function writes

min EC,EP (w) = w2 + ε|(w − 1)|, (24)

with the derivative approximation

dEC,EP

dw
≈ 2w + ε sgn(w − 1). (25)

As can be seen in Fig. 2, a penalty factor ε = 2 is already
large enough for leading to the exact solution.

2.3.4 Discussion of exactness for NN training

InNN training, one candistinguish betweendifferent kinds of
errors regarding theNN approximation behavior with respect
to the ideal or exact function. A brief and good discussion
can be found in [36]. In the context of constrained NN train-
ing the ”representation error” is important to mention. It is
the theoretical error obtained with optimal weights wmin for
the particular network topology chosen, having theoretically
infinitely many training samples. If the topology is to restric-
tive, meaning not enough free parameters w for the NN to
reproduce the needed functional behavior, the NN can never
reach a perfect approximation. Keeping this in mind, the
expression ”exact” in terms of constrained training is only
to be understood as an ”exact within the scope of possibili-
ties” for the current topology.
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Fig. 3 Example: 2D-sinc function and visualization of the rotation sym-
metry constraint as orthogonality between the functions gradient and
the tangent vector to the contour lines

2.4 The sinc function as an example

Before the method is applied to hyperelastic materials, with
its own issues and solutions, the concepts’ advantages are
shown on an illustrative example. Therefore, the two dimen-
sional sinc function

z = f (x, y) = sin
(√

x2 + y2
)

√
x2 + y2

, (26)

which is shown in Fig. 3, will be approximated by the MLP
from Appendix A. It consists of two hidden layers with ten
neurons each, named [2-10-10-1], resulting in nw = 151
free weights to be determined by the training process. For
this example no input or output transformations are used. To
make things difficult, sampling will only be done on the x-
and y-axis, with 15 equidistantly distributed sample points
per axis, leading to P = 29 training samples in total. They
are depicted in Fig. 4. A Quasi Newton method with a Wolfe
condition line search strategy [46,47] is used to solve themin-
imization problems (5) and (13). We enforce the function’s
radial symmetry by defining the single constraint

h(zNN , x, y) =
[
zNN
,x
zNN
,y

]
·
[−y
x

]
= zNN

,y x−zNN
,x y = 0. (27)

It is motivated by the dot product between the sinc functions’
gradient and the tangent vector to concentric circles around
the origin, illustrated in Fig. 3. Using the classical penalty
approach, the additional term to the error function is

Ē PM (w) = ε

2PC

PC∑

k=1

(
zNN
,y (xk,w) xk − zNN

,x (xk,w) yk
)2

,

(28)

with the corresponding gradient

∇ Ē PM (w) = ε

PC

PC∑

k=1

(
zNN
,y (xk,w) xk − zNN

,x (xk,w) yk
)·

(∇zNN
,y (xk,w) xk − ∇zNN

,x (xk,w) yk
)
. (29)

The calculation of the gradient terms of network derivatives,
∇zNN

,y (xk,w) and ∇zNN
,x (xk,w), is done with a modified

backpropagationmethod described inAppendixB.The train-
ing results after 10 000 epochs are shown in Fig. 4, with
and without constraints. Besides: the same initial weights are
used in both cases. Using PC = 300 randomly distributed
constraint samples with ε = 1, the impact of enforcing the
radial symmetry is clearly visible: it adds information as
expert knowledge to the regions not sampled appropriately,
preventing overfitting and leading to good approximation
results. For comparison: the early stopping concept of Sect.
2.2.1 and the L2-regularization of Sect. 2.2.2 only reduce the
amplitude of the chaotic response surface. In the following
section, specific constraints for hyperelastic material model-
ing are introduced.

3 Material constraints for hyperelasticity

3.1 Hyperelastic material behavior

An isothermal material model is referred to as hyperelastic,
if a scalar strain-energy density function Ψ exists, whose
partial derivative defines the constitutive model

S(E) := ∂Ψ (E)

∂E
, (30)

with E and S beeing the Green-Lagrangian strain tensor and
itswork conjugate Second Piola-Kirchhoff stress tensor. Tak-
ing advantage of their symmetry, they can bewritten in vector
notation:

E =

⎡

⎢⎢⎢⎢⎢⎢⎣

E11

E22

E33

2E12

2E13

2E23

⎤

⎥⎥⎥⎥⎥⎥⎦
and S =

⎡

⎢⎢⎢⎢⎢⎢⎣

S11
S22
S33
S12
S13
S23

⎤

⎥⎥⎥⎥⎥⎥⎦
. (31)

In the following, no explicit distinction is made between the
symbols of tensors and their vector notation. A hyperelas-
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Fig. 4 NN approximation of 2D sinc function: left without and right with constraining radial symmetry. In both cases, the training samples are
approximated fine, but only with constraint radial symmetry, the overall functional behavior is met

tic material is by definition energy conserving, meaning the
entire energy stored during deformation can be regained after
unloading. Usually, there are four additional requirements
for strain-energy density functions when dealing with large
deformations:

(1) Normalization: S(0) = 0, (32)

(2) Positivity: Ψ ≥ 0, (33)

(3) Growth Conditions: lim
J→+∞ Ψ = ∞, (34)

lim
J→0

Ψ = ∞, (35)

with the volume ratio J being the determinant of the defor-
mation gradient. For more detailed descriptions, see e.g.
[14,31]. In this paper, only the normalization condition (32)
is addressed directly. At the E,S-level, the conditions (33)–
(35) are difficult to enforce, leaving it at this point up to future
research. For numerical implementation in the context of an
incremental Newton scheme, the material tangent

C(E):=∂S(E)

∂E
= ∂2Ψ (E)

∂E2 (36)

is needed, which is a forth order tensor. Matching the defini-
tions of (31), its matrix notation is:

C =

⎡

⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66

⎤

⎥⎥⎥⎥⎥⎥⎦
. (37)

The existence of a strain-energy density function Ψ (E) and
the major symmetry of the material tangent, meaning

CT = C, (38)

are equivalent [14]. This relation can be used to enforce
hyperelasticmaterial behavior. Fourmore notes on the choice
of E and S as strain and stress measures: (a) all methods are
applicable to anisotropic elasticmaterials without any limita-
tion, (b) further transformations of the constraints due to the
use of strain eigenvalues are not needed and therefore do not
complicate their introduction, (c) they are defined solely with
respect to the reference configuration, leading automatically
to an objective constitutive equation, (d) the use of their vec-
tor form is based on their tensor symmetry. Therefore, one
could interpret the restriction of the NN output being the six
independent stress variables as a symmetry constraint, which
is enforced exactly here.

3.2 Four constraints for hyperelastic materials

For material modeling the NN input vector is split into two
parts:

x =
[
E
a

]
, (39)

with the six strain components in E and na additional mate-
rial parameters a1, ..., ana . The latter could be anything,
from material parameters like Young’s modulus over vol-
ume proportions to testing humidity or temperature. The NN
output vector will only contain the six stress components:
zNN = SNN . Usually, the input and output spaces are trans-
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formed to a normalized training space:

{(xk, zk)}︸ ︷︷ ︸
T

→ {(x̂k, ẑk)}︸ ︷︷ ︸
=: T̂

, with x̂k ∈ Ω̂, k = 1, ..., P.

(40)

This accelerates convergence, see e.g. [22]. In the context of
this paper, only linear and independent transformations are
considered, meaning:

xi = sxi · x̂i + mxi , i = 1, ..., ni , (41)

z j = sz j · ẑ j + mzj , j = 1, ..., no. (42)

Common transformations seek for example unit variance of
the input and output space or fixed boundaries between −1
and1.Therefore, not the physical but the transformed training
sample error

Ê(w) = 1

2P

P∑

k=1

no∑

j=1

(
ẑN N
jk (xk,w) − ẑ jk

)2
(43)

is extended with properly transformed constraint terms:

ÊC (w):=Ê(w) + Ē(w). (44)

Mind, that this error term ÊC (w) is optimized eventually
and that we omit the hat for Ē(w) for better readability. In
the following, four material constraints are presented. The
derivation follows always the same scheme: (1) definition of
the physical restriction and (2) suitable transformation to the
training space.

3.2.1 Zero stress constraint

The normalization condition (32) can be treated as a special
set of additional training samples. With definition of the na-
dimensional subset Ωa ⊂ Ω regarding the parameters a,
with Ω being the sample space defined in Sect. 2.1, one can
generate a set

TC0 =
{([

0
ak

]
, 0
)∣∣∣∣ak ∈ Ωa

}
, k = 1, ..., PC0 (45)

of PC0 artificial training samples. For simplicity, we define

x0k :=
[
0
ak

]
. (46)

The neq = nstrain = 6 equality constraints per constraint
sample x0k are

h0j = zNN
j (x0k ,w) = 0 j = 1, ..., 6 . (47)

Keeping in mind the output vector transformation (42), the
constraints transform to

ĥ0j = ẑ j (x0k ,w) +
(
mzj

sz j

)
= 0 j = 1, ..., 6, (48)

with their gradients

∇ĥ0j = ∇ ẑ j (x0k ,w) j = 1, ..., 6. (49)

Continuing in the transformed space, with the classical
penalty approach the additional error term is

Ē0,PM (w) = ε

2PC0

PC0∑

k=1

6∑

j=1

(
ĥ0j (xk)

)2
. (50)

For the exact penalty approach, the additional error term in
the transformed space is

Ē0,EP (w) = ε

PC0

PC0∑

k=1

6∑

j=1

∣∣ĥ0j (xk)
∣∣. (51)

The corresponding gradients are defined analogously to their
introductions in Sects. 2.3.2 and 2.3.3.

3.2.2 Energy conservation constraint

As mentioned in Sect. 3.1 the existence of a strain-energy
density function, and therefore the energy conserving mate-
rial behavior, is equivalent to the material tangents major
symmetry. This condition is fulfilled if all 15 off-diagonal
pairs have zero difference: C ji − Ci j = 0. Therefore, the
neq = 15 equality constraints per constraint sample xk are

hSji = zNN
j,i (xk,w)− zNN

i, j (xk,w) = 0,

{
j = 1, ..., 5

i = j + 1, ..., 6

}
.

(52)

In this case, the sample space for the constraint is the entire
training sample space: xk ∈ Ω, k = 1, ..., PC . The NN
partial derivatives can be calculated with the forward loop
described in Appendix B, Eqs. (97)–(102). The transformed
version of constraint h ji at sample xk is

ĥSji =
(
sz j
sxi

)
∂ ẑ j (xk,w)

∂ x̂i
−
(
szi
sx j

)
∂ ẑi (xk,w)

∂ x̂ j
= 0, (53)

with the gradient

∇ĥSji =
(
sz j
sxi

)
∇
(

∂ ẑ j (xk,w)

∂ x̂i

)
(54)
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−
(
szi
sx j

)
∇
(

∂ ẑi (xk,w)

∂ x̂ j

)
.

The gradients of the NN partial derivatives ∇(∂ ẑ j/x̂i ) and
∇(∂ ẑi/x̂ j ) can be calculated with the modified backpropa-
gation algorithm written in Appendix B.

It turns out, that a combination with the transformed train-
ing sample error (43) is not readily possible, since the latter
is usually normalized in a unit range or variance kind of way.
Keeping in mind common stress and strain magnitudes, of
course depending on chosen units, the ratios sz/sx can take
huge values, leading to unbalanced error term components.
This implies poor convergence for the optimization process.
Therefore, an additional normalization number

αS
ji :=max

{∣∣∣
sz j
sxi

∣∣∣,
∣∣∣
szi
sx j

∣∣∣
}

(55)

is introduced, which leads to satisfying results in numerical
application. Continuing with the classical penalty approach
the additional transformed error term is

Ē S,PM (w) = ε

2PC

PC∑

k=1

5∑

j=1

6∑

i= j+1

( ĥSji (xk)
αS
ji

)2
. (56)

For the exact penalty approach the formula writes

Ē S,EP (w) = ε

PC

PC∑

k=1

5∑

j=1

6∑

i= j+1

∣∣∣∣
ĥSji (xk)

αS
ji

∣∣∣∣ . (57)

The corresponding gradients are defined analogously to their
introductions in Sects. 2.3.2 and 2.3.3.

3.2.3 Material symmetry constraints for linear elasticity

The first two constraints are in any case mandatory for a
hyperelastic material and should therefore always be con-
sidered. Material symmetries on the other hand can be used
additionally if one has further information about the observed
material, e.g. orthotropy or isotropy. For example, for the lin-
ear elastic isotropic case, the material tangent (37) takes the
following form:

Ciso =

⎡

⎢⎢⎢⎢⎢⎢⎣

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

⎤

⎥⎥⎥⎥⎥⎥⎦
. (58)

It has only three independent components left, which are
dependent on two material constants, e.g. Young’s modulus

Fig. 5 Rotation of the reference configuration with a rotation vector n
and a rotation angle θ ∈ [0, 2π ]. The cartesian coordinate system ei is
rotated to e*i

E and Poisson’s ratio ν. It should be noted, that these kind of
material symmetry conditions do not apply for the nonlinear
elastic case. Furthermore, they can vary if the material is not
described in its major axes. However, if linearity is assumed,
the constraints can take two forms: setting a specific tangent
component to zero,

ĥM
ji =

(
sz j
sxi

)
∂ ẑ j (xk,w)

∂ x̂i
= 0, (59)

or setting the difference of a specific component pair to zero:

ĥM
jivu =

(
sz j
sxi

)
∂ ẑ j (xk,w)

∂ x̂i
−
(
szv
sxu

)
∂ ẑv(xk,w)

∂ x̂u
= 0 , (60)

which are already written in the transformed form. The num-
ber of equality constraint terms neq per constraint sample
xk depends on the kind of material symmetry one wants to
enforce in the NN training process. For the first form, the
normalization number αM

ji is simply the ratio sz j/sxi . The
second one is defined similar to definition (55):

αM
jivu :=max

{∣∣∣
sz j
sxi

∣∣∣,
∣∣∣
szv
sxu

∣∣∣
}

. (61)

The respective gradients and penalty and exact penalty terms
can be defined analogously to the tangent symmetry condi-
tion in Sect. 3.2.2.

3.2.4 Material isotropy constraint for nonlinear elasticity

The simple correlation between tangent components and
material symmetry is not transferable to nonlinear elastic
materials. Therefore, a more general approach with help of
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reference configuration rotations is presented. For visualiza-
tion, see Fig. 5. Given a unit rotation vector n and a rotation
angle θ , one can define a rotation matrix with the well known
Rodrigues’ formula

R = I + sin θ n× + (1 − cos θ)(n×)2, (62)

with the cross-product matrix form of n:

n× =
⎡

⎣
0 −n3 n2
n3 0 −n1

−n2 n1 0

⎤

⎦ . (63)

Subsequently, one can transform the strain and stress tensors
from the coordinate system ei to the rotated one e*i :

E* = RERT ,

S* = RSRT . (64)

By for example random generation of rotation matrices, one
could now create artificial training samples to enrich the sam-
ple size, which has been done in e.g. [35]. This is surely
not harmful to the training process, but restricted in the way
information is added. We desire a material symmetry con-
straint, which adds information to all regions in the input
domain,without the needof training samples in thefirst place.
Assuming the existence of a strain-energy density function
Ψ NN (E), we demand zero tangential slope with respect to a
rotation around the unit vector n:

∂Ψ NN

∂θ

∣∣∣
θ=0

= ∂Ψ NN

∂E* · ∂E*

∂θ

∣∣∣
θ=0

= SNN · E× != 0 , (65)

with the matrix

E× := n×E − En×. (66)

Due to the symmetry of E×, one can define a vector form
E×,v = nvE,with

nv :=

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 0 −n3 n2 0
0 0 0 n3 0 −n1
0 0 0 0 −n2 n1
2n3 −2n3 0 0 −n1 n2

−2n2 0 2n2 n1 0 −n3
0 2n1 −2n1 −n2 n3 0

⎤

⎥⎥⎥⎥⎥⎥⎦
. (67)

Therefore, the vector form SNN can also be used, which
simplifies numerical implementation. The single training
constraint per constraint sample xk and rotation vector n

writes in the physical space

hR = ETnvTSNN =
6∑

j=1

E×,v
j (xk,n) zNN

j (xk,w) = 0.

(68)

The transformed training space form is

ĥ R =
6∑

j=1

E×,v
j (xk,n)(sz j ẑ j (xk,w) + mzj ) = 0, (69)

with its gradient

∇ĥ R =
6∑

j=1

E×,v
j (xk,n)sz j∇ ẑ j (xk,w) . (70)

Again, it is advisable to define an additional normalization
number, for better numerical convergence behavior of the
training process. With a similar approach as for the tangent
symmetry constraint, we define

αR := max
j

{|sx j sz j |}. (71)

The corresponding error term extensions for one specific
rotation vector n, using either the classical penalty approach
or the exact one, are

Ē R,PM (w) = ε

2PC

PC∑

k=1

(
ĥ R(xk)

αR

)2
(72)

and

Ē R,EP (w) = ε

PC

PC∑

k=1

∣∣∣∣
ĥ R(xk)

αR

∣∣∣∣ . (73)

The corresponding gradients are defined analogously to their
introductions in Sects. 2.3.2 and 2.3.3. By defining the rota-
tion vectors arbitrarily, isotropy is enforced. If the rotations
are restricted to specific axes, one could enforce other forms
of material symmetries.

3.3 Studies on constrained training performance

3.3.1 Description of study framework

In order to evaluate the effects of constrained NN training,
the following strain-energy function for rubber-like solids

Ψ =
nr∑

r=1

[μr

αr
(λ

αr
1 + λ

αr
2 + λ

αr
3 − 3) − μr ln (J )

]
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+ Λ

4
(J 2 − 1 − 2 ln (J )), (74)

is used to generate artificial samples from an imaginary com-
pressible material, with λi beeing the principal stretches, J
the volume ratio, Λ Lamé’s first parameter and μi and αi

parameters related to the shear modulus. This form is taken
from [30]. The material parameters are chosen academi-
cally as follows: nr = 2, μ1 = 50, μ2 = −14, α1 = 2,
α2 = −2, Λ = 100, motivated by [21]. Strain samples
for training, testing and constraints are generated randomly
and evenly distributed. Their components are restricted with
Eii ∈ [−0.3, 1.5] and Ei j ∈ [−0.5, 0.5] for i �= j , with
the additional restriction J ∈ [0.75, 1.5]. This ensures phys-
ically reasonable stress values, sufficiently far away from the
singularities of (74). The six studyvariableswhose influences
are under investigation are:

– The number of training samples P trn,
– The penalty parameter ε,
– The number of constraint samples PC ,
– The NN topology, defined by the number of weights nw

in nh hidden layers and
– The factor sσ [%] for the local standard deviation σS =

sσ · Si j to simulate artificial noise.

The constraints of Sects. 3.2.1, 3.2.2 and 3.2.4 are applied to
the training process. For the isotropy constraint 100 random
rotation vectors are defined for each constraint sample. No
bunch parameters a are considered. Additionally to the test
error E tst from (8) taken at the early stopping epoch tmin, the
average Frobenius norm of the skew symmetric part of the
material tangent, taken from the same epoch, is introduced
as error measure:

Cskew := 1

P tst

P tst∑

k=1

||Cskew,NN
T (Ek)||F . (75)

Both error measures are evaluated at P tst = 1000 equally
distributed, randomly generated control samples. A Quasi
Newton method with a Wolfe condition line search strategy
[46,47] is used to solve the minimization problems (5) and
(13). The maximum number of epochs is 10000. Due to the
randomness of weight initialization and sampling, the error
measures are averaged over nav = 10 independent NN train-
ing processes, keeping the set of study variables constant:

Ē tst := 1

nav

nav∑

T=1

√
E tst
T , (76)

C̄skew := 1

nav

nav∑

T=1

Cskew
T . (77)

The square root is taken to assure correct stress units. The
evaluation of all error measures at the same training epoch
tmin is due to the fact, that one would use the NN from this
particular training state to get the best result.

3.3.2 Presentation and discussion

In the following, selected studies are shown, where some
study variables are held constant, whereas two are varied.
All error measures are plotted logarithmic. It will be seen,
that the less data available and the more noise included, the
greater is the effect of the constrained approach.
Topology in terms of depth and neurons, see Fig. 6

First of all, the range of possible NN topologies is investi-
gated with a study depending on the number of layers nh and
the number of weights nw. The latter should be understood
as a lower bound, because the number of neurons must be
an integer. No constraints are activated and the number of
training samples is large with P trn = 105 in order to get an
idea of the ”representation error” described in Sect. 2.3.4.
The fact that ”deep networks with lots of weights” seems to
be a good choice, gives an impression about the underlying
nonlinearity of the material model in the E,S-space.
Training and Constraint sample sizes, see Fig. 7

Next, the influence of the training and constraint sam-
ple sizes is under investigation. Both samples sets, P trn and
PC , show a convergence behavior with respect to their corre-
sponding error terms, Ē tst and C̄skew. The relative limits they
approach depend on the relative magnitudes of the penalty
factors, with εtrn = 1, and the spatial density of the respec-
tive samples. In the case of sparse training data, the positive
effect of the constraints is greatest. However, if lots of data
is available, the compromise in the minimization of data and
constraint errors can lead to a higher test error Ē tst, while
still having advantages of the lower constraint error terms. In
Sect. 5.2.2 this is discussed in terms of numerical stability.
Training sample size and penalty factor, see Fig. 8

Next, the influence of the penalty factor is under investi-
gation with different amounts of training data available. One
can observe that the higher the penalty factor, the better the
constraint for symmetric tangent is fulfilled. This behavior
is practically independent of the number of training samples
andwas to be expected by constraint optimization theory. The
sample test error on the other hand shows a negative trend up
from a specific penalty factor. This can also be expected by
theory, but in addition can be very well due to the maximum
number of epochs of 104. Therefore, the Ptrn = 1000-line is
also shown for 105 epochs training time. This time, there is no
strong test error increase for larger ε. This indicates, that the
classic disadvantage of the penalty approach, the choice of
the penalty parameter for different error terms, is weakened
for NN training. We believe this is due to the high dimension
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Fig. 6 Influence of NN topology in terms of number of layers nh and the number of weights nw on the mean test error Ē tst and the mean skew
symmetric tangent norm C̄skew taken from epoch tmin. No constraints were activated. The number of training samples is constant with P trn = 105.
No noise is considered

Fig. 7 Influence of constraint sample size PC and the number of training samples P trn on the mean test error Ē tst and the mean skew symmetric
tangent norm C̄skew taken from epoch tmin. Classical penalty method is used with ε = 100. The topology is constant [6-35-35-35-6]. No noise is
considered

of the weight space and lots of equally valued local minima.
However, training time increases.
Classical and exact penalty method, see Fig. 9

The same study as in Fig. 8 is done, but the classical
penalty method (PM) is compared to the exact one (EP).
There are several observations: the EP can in fact lead to
better performance regarding the parameter C̄skew, while
keeping the Ē tst error low, as can bee seen in the range
ε ∈ [10−4, 10−2], which is approximately the equivalent for
the range [102, 104] for the PM. On the other hand, up from
ε = 100 the EP fails. This is because both constraints have
a trivial solution: if all weights and therefore all stresses are
constant zero. This leads to the conclusion, that it is possi-
ble to enforce constraints successfully with the exact penalty
method but it is more sensitive to the penalty factor, which

could lead to non reasonable results. Thus, we do not recom-
mend this method at this point.
Constraint sample set and penalty factor, see Fig. 10

A convergence behavior of the constraint sample set can
also be observed in Fig. 10. Additionally, one can see that
this convergence behavior with respect to the constraints’
samples is independent of the penalty factor. This is conve-
nient, because in practical terms the simple rule ”as many
constraint samples as possible” holds.
Relative stress noise and penalty factor, see Fig. 11

Finally, the effect of noise on the training behavior is
investigated. Therefore, every stress component Si j will be
multiplied with a noise term Snoisei j = Si j ·u ·sσ , with u being
a standard normal distributed Gaussian random number and
sσ the weighting factor in %. The corresponding study is
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Fig. 8 Influence of training sample size P trn and the penalty factor ε on the mean test error Ē tst and the mean skew symmetric tangent norm C̄skew

taken from epoch tmin. Classical penalty method is used with PC = 1000 constraint samples. The topology is constant [6-35-35-35-6]. No noise
is considered. The dashed line is also for P trn = 1000, but with 10 times more epochs of training

Fig. 9 Influence of training sample size P trn and the penalty factor ε on the mean test error Ē tst and the mean skew symmetric tangent norm C̄skew

taken from epoch tmin. Comparison between exact (EP) and classical penalty method (PM) with PC = 1000 constraint samples. The topology is
constant [6-35-35-35-6]. No noise is considered

depicted in Fig. 11. In general, this kind of noise has only a
weak effect on the test set error. This can be explained with
the early stopping method, see Sect. 2.2.1: this regulariza-
tion technique is already used in the scope of the parameter
studies. What can be observed is, that if the penalty factor is
chosen high enough, the noise has no effect at all on the train-
ing process, up to sσ = 32%, which approximately means a
scattering range of the noise-free stress component itself.

3.4 Computational time with and without
constraints

Due to the additional constraint terms in the error function
and its gradient the computational time for the NN training
is higher than the conventional one. This, of course, does not

affect the computational time of the execution as a material
model. For a brief overview it is convenient to compare the
number of backward passes through the NN per sample. One
single training sample needs one backward pass for the delta
values of Eq. (94). The normalization constraint of Sect. 3.2.1
behaves similarly, as it can be considered as adding additional
samples. The energy conservation constraint of Sect. 3.2.2
can be implemented efficiently in twelve backward passes per
sample, which is the two variables δ and γ fromEqs. (94) and
(95) times the number of input strains. They can be defined
not only in terms of one partial derivative, but for all output
variables derivated after one single input variable. This is not
shown in Appendix B but can be found in [4]. The isotropy
constraint of Sect. 3.2.4 also needs only one backward pass
per sample. This is independent of the number of rotation
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Fig. 10 Influence of constraint sample size PC and the penalty factor ε on the mean test error Ē tst and the mean skew symmetric tangent norm
C̄skew taken from epoch tmin. Classical penalty method is used. The topology is constant [6-35-35-35-6]. P trn = 100 training samples are used. No
noise is considered

Fig. 11 Influence of penalty factor ε and local noise in terms of the ratio sσ between the local standard deviation and the noise-less stress components
on the mean test error Ē tst and the mean skew symmetric tangent norm C̄skew taken from epoch tmin. Classical penalty method is used. The topology
is constant [6-35-35-35-6]. P trn = 100 training samples and PC = 1000 constraint samples are used

vectors, because the corresponding generalized delta values
can be defined in terms of all vectors given, using the same
idea as for the energy conservation constraint.

4 Implementation into a FEmodel

The implementation of the NN material into a FE model
is briefly described in the following. The reader is referred
to the wide range of literature for FE details, e.g. [17,48].
Considering a three dimensional solid with volume V and
arbitrary loading and boundary conditions, the principle of

virtual work can be written in the following form:

δπ(u, δu) =
∫

V

δETS dV − δπext = 0 . (78)

We assume throughout this section only the vector forms of
E and S, as defined in (31). The virtual work of external loads
δπext is assumed to be independent of the displacement field
u for the sake of simplicity. Displacement dependent loads,
as used in the example of Sect. 5.2.1, would lead to addi-
tional contributions to the following linearization. In order
to solve this nonlinear equation in a Newton iteration scheme
the virtual work δπ is linearized, leading to

L[δπ ] = δπ + Δδπ
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= δπ +
∫

V

δETΔS dV +
∫

V

ΔδETS dV = 0 (79)

being the linear equation to solve in each iteration step. In the
context of the finite element method, the terms of residual δπ
and its linearizationΔδπ are calculated on a subset V e ⊂ V ,
the volume of the finite element e, and then assembled later.
They are discretized based on the element displacement field
ansatz ue = Nve with nodal displacements ve, from which
also the ansatz for the virtual and linearized strains follows
respectively: δE = Bδve and ΔE = BΔve. Without going
too much into detail, both terms can be written on element
level in the following way:

δπe = δvTe Ge = δvTe
{
Fe − Pe

}
, (80)

Δδπe = δvTe
{
KT eΔve

} = δvTe
{
(KMe + KGe)Δve

}
. (81)

The element residual vector Ge consists of the element load
vector Pe and the element vector of internal forces

Fe =
∫

Ve

BTS dV . (82)

The element tangential stiffness matrix KT e consists of a
geometric part KGe(S) depending on the current stress state
and the material part

KMe =
∫

Ve

BTCB dV , (83)

which follows from the linearization of the constitutive law

ΔS = CΔE. (84)

After assembling all quantities and assuming arbitrary but
non-zero virtual displacements δv, this eventually leads to
the system of linear equations

KTΔv = −G, (85)

for the vector of unknown nodal displacement increments
Δv. The detailed definitions ofN,B, etc., depend on the cho-
sen element formulation. For more information about the
shell and solid shell element used in the following examples,
see e.g. [20,42].

The by definition nonlinearNNmaterialmodel can readily
be implemented in the described finite element framework.
The NN stresses SNN are part of the vector of internal
forces FNN

e and the geometric tangential stiffness matrix
KNN

Ge (SNN ). The NN material tangent CNN is part of the
material tangential stiffnessmatrixKNN

Me . It can be calculated
with the forward loop described in Appendix A with Eqs.

Table 1 Material parameters for Ogden material from Eq. (74) with
nr = 3 summands, taken from [14] used as reference solution to
NN calculations. The Lamé parameter Λ acts as penalty parameter for
the incompressibility constraint and is chosen according to the nearly
incompressible material from “Appendix C”

r 1 2 3

μr [MPa] 0.63 0.0012 −0.01

αr [−] 1.3 5.0 −2.0

Λ [MPa] 3.8

(97)–(101). This is independent of the material one wants
to approximate. In the context of this paper, the NN and its
derivative are added as a material model in an extended ver-
sion of the general purpose finite element program FEAP
[38].

5 Application to rubber-like material data

5.1 Training NNmaterials on Treloar’s data

5.1.1 Notes on training space and samples

In this section the feasibility of NN training with constraint
optimization techniques applied to scarce data taken from
Treloar [39] is shown. The data is directly taken from [37],
who provided it in tabular form. The reader is referred to
Appendix C for the full data set which is transformed from
the given principal stretch and nominal stress pairs to the
associated nearly incompressible E and S components. Par-
ticular attention should be paid to the described assumptions
for the data transformation. Eventually, P = 121 sample
pairs {E,S} are available for the NN training process. In
contrast to the studies in Sect. 3.3, the training samples are
not evenly distributed in the whole training space, but given
by the loading curves defined in the experimental setups.
Thus, they form lower dimensional subspaces inside the
whole six dimensional training space, leaving the space in
between without information. This is the same problem as
in the motivation example shown in Sect. 2.4. Furthermore,
the majority of the space is physically not reasonable due to
the material’s incompressibility. Due to the data transforma-
tion, the nearly incompressibility constraint is approximately
J ∈ [0.95, 1.45] in accordance to the training data from
Appendix C. To summarize: the training space is highly
non-convex and the noisy data is sparsely and not evenly
distributed within it. As one can imagine, it is impossible
to train a usable NN material model from this basis without
proper regularization techniques.
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Fig. 12 Comparison of the NN responses with the given data and the Ogden reference material for the following loading configurations: top left
uniaxial, top right equibiaxial, bottom left simple shear, bottom right pure shear

5.1.2 Training different NNmaterials

In the following, three different training setups for corre-
sponding NN materials are presented. Similar to the param-
eter study, a Quasi Newton method with a Wolfe condition
line search strategy [46,47] is used to solve the minimiza-
tion problems (5) and (13). For reasons of comparability, all
networks will have the same topology [6-60-60-60-6], with
nw = 8 106 weights. This high number of weights is due to
the highly non-convex training space in combinationwith the
choice of S and E, which can be expected from the behav-
ior in Fig. 6. All samples created in the following, whether
artificial training or constraint samples, meet the following
restrictions regarding the strain space:

J ∈ [0.95, 1.45], ||E|| < 4.1, |2Ei j | < 0.6, i �= j . (86)

This matches the training data from Appendix C. The || · ||
denotes the vector norm, | · | the absolute value. The training
phase of the following three NN materials is terminated if

the maximum number of 10 000 epochs is reached. The NNs
at epoch tmin are used for calculation. Therefore, 10% of the
available samples are randomly taken as a test set within the
early stopping strategy of Sect. 2.2.1.

As a state-of-the-art (SOTA) NN material, the first net-
work NNSOTA is trained without the introduced constraints.
The training sample set is extended by rotating the given
P = 121 samples randomly, see Eqs. (64), leading eventu-
ally to P = 3000 samples. They allmeet the restrictions (86).
At this point it should be mentioned, that even more artificial
samples do not change the results of the following sections.
In addition, L2-regularization from Sect. 2.2.2 is applied.
The in our opinion best choice εL2 = 0.001 for this exam-
ple was found by trial and error. The second NN material
NNCONS is trained with the three constraints of Sects. 3.2.1,
3.2.2 and 3.2.4. No additional training samples through ref-
erence configuration rotation are considered. They all share
the same penalty factor ε = 1000 within the classical penalty
method.The tangent andmaterial symmetry constraints share
the same PC = 5000 constraint samples, with 100 random
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rotation vectors for the latter. The samples are randomly gen-
erated in the strain space of E with the restrictions (86). The
third NN material NNMIX is trained as a mix of both pre-
vious settings. The given P = 121 samples are artificially
rotated, again, leading eventually to P = 3000 samples with
restrictions (86). In addition, the three constraints are applied
with ε = 10 and PC = 5 000 within the classical penalty
method. L2-regularization with εL2 = 0.0001 is applied,
with the penalty factor being found by trial and error.

5.1.3 NNmaterial performance on simple tests

The numerical solutions obtained from NN materials are
compared to ones calculated with a reference Ogden mate-
rial of the form (74), with the material parameters taken
from [14], given in Table 1. Note that the Lamé parameter
Λ = 3.8MPa matches the nearly incompressible pseudo
material from Appendix C with ν0 = 0.45, which is under
investigation here. Theminimum requirement for aNNmate-
rial trained from scarce data is to represent this particular data
reliably. Therefore, we compare the three NN materials and
the Ogden reference one with the original data in Fig. 12 for
uniaxial and equibiaxial tension and compression as well as
pure shear and simple shear, which for the data was trans-
formed from the latter with J = 1. It should be noted, that
the pure shear data was not directly transformed to the asso-
ciated E,S pairs and is not included in the training processes.
If the data point is filled, the associated data was known to
the NN from the training process. The calculations are done
with one eight-node solid element by defining the boundary
conditions and deformations as indicated by the deformation
states in Fig. 12.

Discussion:without interpreting toomuch into the figures,
one can state two conservative statements. First, the consider-
ation of constrained optimization techniques does not affect
the NN material’s ability to represent the given data reli-
ably. This would be a strong argument against the method,
if not true. And second, the pure shear behavior, which is
not directly used as samples during training, can be approx-
imated well with all three NNs, even with the NNCONS to
which not even rotated samples are known.

5.2 Numerical examples within FE simulations

Next, the NN materials are used within FE simulations for
the inflation of a rubber balloon and the stretching of a thin
sheet with a hole. Despite being simple in their descriptions,
they both face some numerical subtleties like local stabil-
ity points and global softening behavior. The NN results are
again compared to the referenceOgdenmaterial. The balloon
calculation is done with an eight node solid shell element
with tri-linear shape functions, see e.g. [20]. It is extended
with assumed natural strain and enhanced assumed strain

Fig. 13 Rubber balloon: initial geometry, pressure loading pi and FE
mesh of one eighth of the system with corresponding boundary condi-
tions with respect to the convective coordinates ξ1, ξ2 symbolizing the
latitude and longitude direction, respectively

(EAS) methods to improve the element behavior for exam-
ple with respect to locking. The rubber sheet calculation is
done with a quadrilateral shell element. The robust shell ele-
ment formulation, which was originally published 2005 in
[42], is based on Reissner-Mindlin theory and a three-field
variational formulation.Later itwas extendedby independent
thickness strains [21], which allow incorporation of arbitrary
3D constitutive equations, in our case theNNmaterialmodel.
The present version [11] is additionally capable of calculat-
ing the complicated three-dimensional stress state in layered
structures, including elasto-plastic behavior. For the present
calculation, two EAS parameters formembrane, bending and
shear strains are used, respectively.

5.2.1 Inflation of a rubber balloon

This classic example examines the inflation behavior of a
spherical balloon under internal pressure and is discussed
e.g. in [14]. With respect to the problem’s symmetry only
one eighth of the balloon is considered with corresponding
boundary conditions, see Fig. 13. The FE mesh consists of
10 × 10 solid shell elements, with one element in thickness
direction. A regular FE mesh is obtained by the chosen dis-
cretization with a small hole at the top. The internal pressure
load pi is defined as a follower load at the inner surface
to take into account the large increase of the inflated area
with respect to the reference one. What makes the example
interesting from an algorithmic point of view is the soft-
ening phenomenon, which can easily be seen in reality. A
purely load controlled Newton’s method diverges at the limit
point. Therefore, an arc length method with prescribed dis-
placement of node 1 (see Fig. 13) is used. In addition, the
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Fig. 14 Rubber balloon: inner pressure pi depending on the stretching
λ as ratio between inflated and initial radius for different NN materials.
Convergence breaks are highlighted with larger markers

Fig. 15 Rubber balloon: convergence behavior in terms of residual
norm ||G||with respect to theNewton iteration step for theNNmaterials
for load step six, see Fig. 14. Dashed lines are for calculations with the
unsymmetric NN material tangent

example is numerically sensitive to stress disturbances. This
challenges especially the NN material model. The inflation
pressure pi with respect to the circumferential stretch λ is
shown in Fig. 14. The stretch can be calculated as ratio
between inflated and initial radius. To highlight the effect of
the CNN

T symmetry constraint, we compare the convergence
behavior of the Newton scheme for the NN materials near
the limit point. The residual for the sixth load step is shown
with respect to the iteration number in Fig. 15. In addition,
the convergence behavior is shown for a formulation with a
symmetrized tangent

CNN,sym = 1

2

((
CNN)T + CNN

)
, (87)

Fig. 16 Sheet with a hole: initial geometry, stretching load 2F as reac-
tion force to the prescribed displacement u and the FEmesh of a quarter
of the system, with corresponding boundary conditions

which are the solid lines in Fig. 15. This is often used within
FE formulations, saves time computing the element stiffness
matrices, reduces required storage and allows the use of sym-
metric solvers.

Discussion: it turns out, that the inflating balloon example
is very challenging for NN materials. Without constraints,
we were not able to train a neural network purely with L2-
regularization to overcome the limit point. The constraints
do not guarantee a stable calculation for arbitrary stretches
either, but they make it possible in the first place. More inter-
esting is the Newton method convergence study, which is
depicted in Fig. 15. It seems that the symmetrized tangent
leads to a better convergence behavior, even for the state-of-
the-art NN material. Furthermore, the NN materials trained
with the energy conserving constraint of Sect. 3.2.2 converge
considerably faster and one can barely distinguish the conver-
gence behavior from that of the Ogden material. Moreover,
since the behavior of NN materials trained with constraints
hardly changes with the forced symmetrization, it can be
assumed that their material tangents are already very sym-
metric from the start. On the other hand, the computation
time for the material law at every Gauss integration point
increases with the number of weights in the NN. However,
this is independent of the constraints in the training phase.

5.2.2 Square sheet with a hole

In this numerical example, which was previously analyzed
in e.g. [21,32], a thin sheet of rubber with a central hole is
subjected to a stretching load. With respect to the problem’s
symmetry only one quarter of the sheet is considered with
associated boundary conditions, which can be seen in Fig.
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Fig. 17 Sheet with a hole: reaction force F curves with respect to the longitudinal elongation displacement u (left) and the vertical displacement
w at the hole’s pressure zone (right). Convergence breaks are highlighted with larger markers

Fig. 18 Sheet with a hole: detail of load deflection curve F(w) near
the stability point

16. The FE mesh consists of 16× 16 quadrilateral shell ele-
ments. The shell formulation is symmetric, thus needs the
symmetrization (87) of the NN material tangent. The load-
ing is done with a prescribed displacement ux (L) = u at
the right edge, leading to a corresponding reaction force 2F .
Due to compression forces occurring perpendicular to the
stretching direction, a stability problem can be observed at
(x, y) = (R, 0). This leads to an out of plane buckling in
z-direction. A constant perturbation load P = 10−6 N is
applied at the hole’s edge to follow the secondary equilib-
rium path which is characterized by a vertical displacement
w normal to the plane, see Fig. 16. After the secondary path
is entered, the load P is removed. It should be noted, that a
switch to the secondary path at the bifurcation point is pos-
sible as well, see e.g. [43]. In Fig. 17 the load deflection
curves with respect to the longitudinal displacement u and

the vertical displacement w are shown for the different NN
material models. The load at which the stability point occurs
is of special interest. Therefore, in Fig. 18 this part of the
load deflection curve is depicted in more detail.

Discussion: in this example it is interesting to note, that
there is a relatively large variation of the bifurcation point at
approximately F = 1 N . Due to the compromise between
data and constraint error minimization, this behavior can
be expected. One should keep this behavior in mind when
aiming for precise quantitative studies based on sparse data.
However, talking again about the possibility of stable calcu-
lations it is apparent, that the NN materials with constraints
allow a complete example calculation, while the state-of-
the-art (SOTA) material fails at an earlier stage. Moreover,
during the whole loading process, the load-deflection behav-
ior is met very well and the variation is smaller compared
to the bifurcation point. In our opinion the major message
from both numerical examples is, that even with the original
121 samples alone, it is possible to train a numerically stable
NN material and use it within complex finite element calcu-
lations. It should be noted, that a NN material trained only
with the 121 samples and a L2-regularization is hardly able
to run a single successful load step, which is because of the
overfitting phenomenon described in Sect. 2.2.1.

6 Conclusions

In this paper, a new approach for considering physical
knowledge for the training of NN material models is pre-
sented. After a short recapitulation of constraint optimization
basics, the approach is motivated by an analytical example.
Afterwards, specific constraints for hyperelastic materials
are introduced and discussed in a comprehensive parameter
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study. Following a short overview of their implementation in
a finite element scheme, the constrained training approach is
applied to a pseudo material based on Treloar’s well known
data of vulcanized rubber. The advantages of enhancing NN
trainingwith physicallymotivated constraints are highlighted
and shown by numerical examples.

One of the major problems that has always accompanied
the NN material topic is how to get the large amount of data
that is needed to train a NN sufficiently. Despite challenging
boundary conditions we showed that it is possible to trainNN
materials from scarce real world data and use them within
complicated finite element computations. This represents an
essential innovation compared to most publications, which
have to generate a large amount of analytical or artificial data
for their studies. The consideration of constraints during the
NN training process is applicable on every NN architecture
based on optimization strategies. It is not limited to elasticity
or the explicit material formulation used here. It can be used
on data based on real world or numerical experiments, e.g.
from numerical homogenization. Whenever the amount of
available data is limited, this approach seems to be an excel-
lent way to add information to the training process. The only
drawback is the data error being not weighted as much as
without constraints. This is in our opinion no concern. We
argue that one wants a NNmaterial law which is computable
in the first place and does not perfectly represent the given
data.

As we have emphasized in Sect. 3.1, the choice for E and
S as strain and stress measures and not, as usual for isotropic
materials, the principal stretches and stresseswas for the sake
of introduction and the easy transfer to anisotropic materials.
This, of course,makesNN trainingmuchmore difficult due to
the additional three input and output dimensions, which leads
to far more degrees of freedom needed. Additionally, inelas-
tic or anisotropic materials need other constraints, which can
be formulated in the same way as the ones introduced here.
Further developments may deal with some of this concerns.
After all, we think the NN material approach is a promising
way of generating a material model relatively quick, without
the need of finding an analytical function.
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AMultilayer perceptron topology and defini-
tions

The class of feed forward NN used in this paper’s studies is
a fully connected multilayer perceptron (MLP). Its topology
and used terminologies are shown in Fig. 19. It consists of
one input layer L = 0, several hidden layers L = 1, ..., nh
and an output layer L = nh + 1. To avoid confusion regard-
ing variables, the layer number is added in square brackets
as superscript. A specific MLP topology is labeled with its
neuron quantities summarized in square brackets: [ni - n1 - ...
- nnh - no]. Input and output transformations are considered
as defined in Eqs. (41) and (42). Neurons are named after
their output values y[L]

m = g(s[L]
m ), with g(s) denoting the

activation function depending on the weighted sum of the
previous layer outputs

s[L]
m = (−1) · w[L]

m0 +
nL−1∑

l=1

w
[L]
ml · y[L−1]

l =
nL−1∑

l=0

w
[L]
ml · y[L−1]

l .

(88)

The activation threshold is defined with bias neurons giving
the constant output y0 ≡ −1. The weights are defined with
the ’receiving’ neuron index as first subscript, in front of the
index of the ’giving’ neuron. For easy formula reading: the
layer indices are defined as l(eft), m(id), r (ight). With this
definitions in mind, a complete forward calculation of the
MLP mapping (1) takes the following steps.

1. Input variable transformation: x �→ x̂.
2. First hidden layer L = 1:

y[1]
m = g

( ni∑

i=0

w
[1]
mi · x̂i

)
, m = 1, ..., n1. (89)

3. Remaining sequential hidden layers L = 1, ..., nh :

y[L]
m = g

( nL−1∑

l=0

w
[L]
ml · y[L−1]

l

)
, m = 1, ..., nL . (90)

4. Output layer L = nh + 1:

y[nh+1]
j = gout

( nnh∑

l=0

w
[nh+1]
jl · y[nh ]

l

)
= ẑ j , j = 1, ..., no.

(91)

5. Output variable back transformation: ẑ �→ zNN .
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Fig. 19 MLP topology: definition of layers, weights and neurons

Fig. 20 Neuronal neighborhood for weight w[L]
ml

Within this paper the hyperbolic tangent is used as activa-
tion function g(s) for the hidden layers, whereas the identity
function is applied at the output layer as gout(s). Input and
output transformations seek unit variance for each compo-
nent. The training process for the described MLP, including
all constraint related methods, are programmed in Matlab
[26].

B Backpropagation for derivative compo-
nents

The backpropagation algorithm shown here is a slight modi-
fication of the work of e.g. [4], where it is used for curvature
smoothing. Considering the transformations (41) and (42),
the partial derivatives transform as follows:

∂zNN
j

∂xi
=: zNN

j,i =
(
sz j
sxi

)
∂ ẑ j
∂ x̂i

. (92)

In the following, the partial derivative of this transformed
input output derivative ∂ ẑ j/∂ x̂i with respect to an arbitrary

weight w
[L]
ml is derived. It is part of the whole gradient

∇(∂zNN
j / ∂xi ), which may be needed in constraint NN train-

ing. Its neuronal neighborhood is depicted in Fig. 20. Using
the independence ofw and x to change order of derivative and
the chain rule combined with the definition of the weighted

sum (88), the partial derivative can be transformed:

∂

∂w
[L]
ml

(
∂ ẑ j
∂ x̂i

)
= ∂

∂ x̂i

(
∂ ẑ j

∂w
[L]
ml

)
= ∂

∂ x̂i

(
∂ ẑ j

∂s[L]
m

· y[L−1]
l

)

(93)

By defining the variables

δ
[L]
jm := ∂ ẑ j

∂s[L]
m

and (94)

γ
[L]
j im := ∂

∂ x̂i

(
∂ ẑ j

∂s[L]
m

)
(95)

and making use of the product rule, the partial derivatives
can be calculated with the following formula:

∂

∂w
[L]
ml

(
∂ ẑ j
∂ x̂i

)
= δ

[L]
jm ·

(
∂ y[L−1]

l

∂ x̂i

)
+ γ

[L]
j im · y[L−1]

l . (96)

The neuron outputs y[L−1]
l depend on the current input vector

x and are calculated with the forward propagation (89)–
(91) written in Appendix A. Simultaneously, the variables
∂ y[L−1]

l /∂ x̂i can be determined in the same forward pass by
adding the following steps respectively.

2. First hidden layer L = 1:

∂ y[1]
m

∂ x̂i
= g′(s[1]

m )

(
∂s[1]

m

∂ x̂i

)
, m = 1, ..., n1 , (97)

with
∂s[1]

m

∂ x̂i
= w

[1]
mi . (98)

3. Remaining sequential hidden layers L = 2, ..., nh :

∂ y[L]
m

∂ x̂i
= g′(s[L]

m )

(
∂s[L]

m

∂ x̂i

)
m = 1, ..., nL , (99)

with
∂s[L]

m

∂ x̂i
=

nL−1∑

l=1

w
[L]
ml

(
∂ y[L−1]

l

∂ x̂i

)
. (100)

4. Output layer L = nh + 1:

∂ y[nh+1]
j

∂ x̂i
= g′

out(s
[nh+1]
j )

(
∂s[nh+1]

j

∂ x̂i

)
= ∂ ẑ j

∂ x̂i
,

j = 1, ..., no , (101)

with
∂s[nh+1]

j

∂ x̂i
=

nnh∑

l=1

w
[nh+1]
jl

(
∂ y[nh ]

l

∂ x̂i

)
. (102)

In contrast, the variables δ
[L]
jm and γ

[L]
j im must be determined

with a backpropagation algorithm beginning at the output
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neurons. Starting with the δ-values: the partial derivatives of
the transformed network output with respect to the weighted
sums will be rewritten with aid of the chain rule, considering
the sum s[L]

m influencing all weighted sums in the following
Layer L + 1.

∂ ẑ j

∂s[L]
m

=
nL+1∑

r=1

∂ ẑ j

∂s[L+1]
r

· ∂s[L+1]
r

∂s[L]
m

= g′(s[L]
m )

nL+1∑

r=1

w[L+1]
rm

∂ ẑ j

∂s[L+1]
r

(103)

The involved neurons and weights are shown in Fig. 20. This
transformation is the same as in the classical backpropagation
of error algorithm. Finally, the recursive formula for the δ-
values is

δ
[L]
jm = g′(s[L]

m )

nL+1∑

r=1

w[L+1]
rm δ

[L+1]
jr , (104)

with the initial values at the output neurons easily derivable
from its definition (94):

δ
[nh+1]
jm = ∂ ẑ j

∂snh+1
m

=
{
g′
out(s

[nh+1]
m ) m = j

0 m �= j
. (105)

The recursive formula for the γ -values can be derived in the
same way, eventually leading to

γ
[L]
j im = g′′(s[L]

m )

(
∂s[L]

m

∂ x̂i

) nL+1∑

r=1

w[L+1]
rm δ

[L+1]
jr

+ g′(s[L]
m )

nL+1∑

r=1

w[L+1]
rm γ

[L+1]
j ir , (106)

where in addition to the γ - and δ-values from the following
layer L + 1 also the partial derivatives of the weighted sums
with respect to the transformed input is needed, which are
calculated in the forward pass, see Eqs. (98), (100) and (102).
The initial values for the recursive process can be derived
from the γ -value definition (95):

γ
[nh+1]
j im = ∂

∂ x̂i

(
∂ ẑ j

∂s[nh+1]
m

)
=

⎧
⎪⎨

⎪⎩
g′′
out(s

[nh+1]
m )

∂s[nh+1]
m

∂ x̂i
m = j

0 m �= j
.

(107)

In summary, the procedure to calculate the gradient with
respect to the weights of a partial derivative of a network
output to one of its inputs ∇∂z j/∂xi is as follows:

1. Transformation of the current (constraint) node: x �→ x̂.
2. Forward calculation for the neuron outputs y[L]

m and the
derivatives ∂ y[L]

m /∂ x̂i and ∂s[L]
m /∂ x̂i with Eqs. (89)–(91)

and (97)–(102).

3. Backward calculation for variables δ
[L]
jm and γ

[L]
j im . Start-

ing from (105) and (107), they can be calculated with
(104) and (106).

4. Every gradient component can be calculated with (96)
and (92).

C Data for rubber-like materials from [39]

The data for the incompressible rubber material used within
the numerical examples in Sect. 5 was first given by [39].
A documentation of this data in tabulated form for uniax-
ial and equibiaxial tension as well as pure shear in P and λ

can be found in [37], with P being the nominal stress and
λ the only independent stretch. All following transforma-
tions to the Second Piola-Kirchhoff stress tensor S and the
Green-Lagrangian strain tensorE are based on their data. The
incompressibility constraint det F = J = 1 leads to ambigu-
ous stress states for a given strain state, e.g. different stresses
for equivalent strains under uniaxial tension and biaxial com-
pression, because information about the hydrostatic pressure
is missing. Therefore, the authors assumed nearly incom-
pressible material behavior for the data transformation. This
is specified in the following sections regarding the different
deformation modes. It should be noted, that especially this
assumption leads to the NN material not representing the
given material, but a pseudo compressible material, based
on Treloar’s data. In our opinion, this is not an issue regard-
ing the paper’s actual goal.

Uniaxial tension/compression (UT/UC)

For uniaxial tension, let λUT1 = λUT be defined as the stretch
in the elongated direction, leaving one unknown stretch since
λUT2 = λUT3 . Following an approach proposed by [5] for
compressible rubber materials at finite strains, we assume
that the dilatation J of the specimen can be expressed in terms
of a constant parameter ν ≤ 0.5, which leads for ν = 0.5 to
incompressible material behavior. In case of linear elasticity,
this parameter would correspond to the Poisson’s ratio ν0.
As suggested in [5] for uniaxial deformation, the dilatation
is assumed to be

J = (λUT)1−2ν , (108)

which, considering J = λ1λ2λ3, results in λUT2 = λUT3 =
(λUT)−ν . Under this assumption the deformation gradient
for uniaxial tension FUT has the form

FUT =
⎡

⎣
λUT 0 0
0 (λUT)−ν 0
0 0 (λUT)−ν

⎤

⎦ . (109)
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Hence, given the definition of the Green-Lagrangian strain
tensor E = 0.5(FTF − 1), its non-zero diagonal elements
EUT
11 and EUT

22 = EUT
33 can readily be calculated. Further-

more, the relationship S = F−1P, with P beeing the First
Piola-Kirchhoff stress tensor, leads to the following transfor-
mation of the only non-zero nominal stress component PUT

11
to the Second Piola-Kirchhoff stress:

SUT11 = (1/λUT) PUT. (110)

The nonlinear stress response in the compression case can
not be approximated appropriately with only tension data
at hand. Therefore, the data from the equibiaxial tension
(ET) specimen of the next section will be transformed into
equivalent uniaxial compressive (UC) data, by firstly assum-
ing λUC2 = λUC3 = λET at the same state of inner work. It
should bementioned, that due to the nearly incompressibility
assumption, this transformation is only valid approximately.
This results with assumption (108) for λUC in

λUC = (λET)−1/ν . (111)

The strain components of EUC can be calculated afterwards.
For the corresponding stresses, we assume equal incremental
work in both cases for the non-zero stress components, see
also [40]:

PUCdλUC
!= 2 PETdλET. (112)

The equivalent nominal compressive stress can subsequently
be expressed as

PUC = −2νPET(λET)(1+ν)/ν . (113)

The transformed non-zero training data entries of E and S
for the uniaxial tension and compression case and a value
ν = 0.45 are given in Table 2. We have restricted the data
for UT/UC to λUC/UT ∈ [0.84, 3.01].

Equibiaxial tension/compression (ET/EC)

In this test, the specimen is stretched in two orthogonal direc-
tions with corresponding stretches λET1 = λET2 = λET. As
suggested in [5] for equibiaxial tension, the dilatation is
assumed to be

J = (λET)(2−4ν)/(1−ν). (114)

The remaining stretch is therefore λET3 = (λET)−2ν/(1−ν).
With the resulting deformation gradient for biaxial tension
FET, the non-zero diagonal elements EET

11 = EET
22 and EET

33
of the Green Lagrangian Strain tensor can be obtained. The

Table 2 Non-zeroGreen-Lagrangian strains EUC/UT
ij and Second Piola-

Kirchhoff stresses SUC/UTij for ν = 0.45

E11 [ − ] E22 [− ] E33 [− ] S11 [MPa ]
−0.145 0.083 0.083 −0.219

−0.080 0.041 0.041 −0.100

0.000 0.000 0.000 0.000

0.010 −0.004 −0.004 0.030

0.127 −0.048 −0.048 0.125

0.269 −0.088 −0.088 0.185

0.466 −0.128 −0.128 0.230

0.796 −0.174 −0.174 0.255

1.286 −0.218 −0.218 0.265

1.854 −0.251 −0.251 0.267

2.428 −0.274 −0.274 0.277

4.030 −0.315 −0.315 0.282

two non-zero stresses are given by

SET11 = 1

λET
PET
11 = SET22 . (115)

Once again, the data can be further enhanced by transforming
the UT data to equivalent equibiaxial compression (EC) data.
Using a similar approach as in Eq. (112). Equation (114) for
λEC leads with the assumption λEC3 = λUT to

λEC = (λUT)−(1−ν)/(2ν). (116)

Assuming incremental work equivalence leads to

PEC =
(

− ν

1 − ν
(λUT )(−2ν)/(1+ν)

)
PUT. (117)

All transformed non-zero entries of E and S for the equib-
iaxial tension and compression case and ν = 0.45 are
given in Table 3, with the stretches beeing restricted to
λEC/ET ∈ [0.95, 2.49].

Pure and simple shear (PS/SS)

At this point, we consciously accept an inconsistency: for the
pure shear data, we must assume perfect incompressibility
with J = 1. This contradicts our assumptions from the nearly
incompressible uni- and equibiaxial samples, but allows the
transformation to simple shear in the first place. In our eyes,
this is not a serious issue for the sake of NN training, but
should be noted at this point. Continuing, for the pure shear
test, a thin sheet of rubber with its height being much larger
than its width, is clamped along the edges normal to the
direction of the applied tensile force. The associated stretch
in the elongated direction is defined as λ1 = λPS. For the

123



Computational Mechanics

Table 3 Non-zero Green-Lagrangian strains EEC/ET
i j and Second Piola-

Kirchhoff stresses SEC/ETi j for ν = 0.45

E11 [ − ] E22 [ − ] E33 [ − ] S11 [MPa ] S22[MPa ]
−0.116 −0.116 0.269 −0.087 −0.087

−0.065 −0.065 0.127 −0.037 −0.037

−0.006 −0.006 0.010 −0.003 −0.003

0.000 0.000 0.000 0.000 0.000

0.041 0.041 −0.060 0.087 0.087

0.083 0.083 −0.111 0.148 0.148

0.127 0.127 −0.155 0.214 0.214

0.150 0.150 −0.174 0.228 0.228

0.220 0.220 −0.225 0.275 0.275

0.358 0.358 −0.293 0.336 0.336

0.508 0.508 −0.341 0.359 0.359

0.928 0.928 −0.410 0.385 0.385

1.382 1.382 −0.443 0.397 0.397

2.600 2.600 −0.475 0.386 0.386

incompressible case J = 1, the stretch in thickness direction
is given byλPS3 = 1/λPS andgiven the definition of pure shear
λPS2 = 1. This kind of experimental setup does not contain
any information about the shear stress strain relationship,
e.g. S12 and E12. This makes a transformation from pure to
simple shear necessary. We follow the assumption made by
Jones and Treloar [18] that ”simple shear differs from pure
shear only by a rotation”. The deformation of simple shear is
discussed for a specimen subjected to shear in the 1-2-Plane.
The deformation gradient is given by

FSS =
⎡

⎣
1 γ 0
0 1 0
0 0 1

⎤

⎦ , (118)

with γ being the amount of shear. The relationship between
γ and the principal stretches λ can be obtained by solving
the eigenvalue problem of the simple shear case

(FSST FSS − λ2I)N = 0 (119)

for the corresponding first principal stretch λSS. By follow-
ing the assumption quoted above, which is λSS = λPS, we
eventually get

γ = λPS − 1/λPS (120)

as a relation between the kinematic quantities of the desired
simple shear and the given pure shear. For more information,
see [31]. Hence, the deformation gradient for simple shear
can be obtained by inserting Eq. (120) into Eq. (118). The
non-zero elements ESS

12 and ESS
22 of the Green Lagrangian

Strain tensor follow straightforwardly. For the transformation
of the nominal pure stress PPS

11 of the experimental setup into
equivalent simple shear components, Treloar [40] assumed
that the only work done in simple shear is due to the Cauchy
stress σ SS

21 = σ SS
12 on the amount of shear γ , which leads to

the equivalence of incremental work for both deformation
cases:

PPS
11 dλPS

!= σ SS
12 dγ. (121)

With Eq. (120) follows eventually

σ SS
12 = PPS

11

(
(λPS)2

1 + (λPS)2

)
. (122)

To obtain the remaining non-zero entries of the Cauchy stress
tensor σ , a zero normal traction formulation is used, which
assumes that the normal component of the traction on the
inclined faces on a cube subjected to simple shear deforma-
tion as defined by Eq. (118) is zero [15,33]. For simplicity,
we assume that the pseudo data’s strain energy density func-
tion does not depend on the second Cauchy-Green strain
invariant, leaving only one independent stress σ SS

12 which is
obtained by Eq. (122). The remaining Cauchy stresses are
then given by:

σ SS
11 = γ (2 + γ 2)

1 + γ 2 σ SS
12 , (123)

σ SS
22 = σ SS

33 = γ

1 + γ 2 σ SS
12 . (124)

For more information, see e.g. [15]. Respectively, the
Second-Piola Kirchhoff stress tensor for simple shear can be
calculated by the relation S = JF−1σF−T with J = 1 since
simple shear is characterized by an isochoric deformation.

It is known, that the assumptions made by Treloar and
Jones concerning the equivalence of incremental work for
pure and simple shear do not hold for large deformations,
which is why the transformation of the data is only done for
principal shear stretches up to λPS ≈ 1.3 in accordance with
the observations made by [27]. This leaves only four remain-
ing sample points which can be enhanced by adding negative
shear deformations which are given in Table 4, neglecting
S11 ≈ 0. It should be noted, that the calculation of σ SS

i i is
based on the zero traction assumption, which is highly con-
troversial. Therefore, the corresponding SSSi i values do not
follow directly from Treloars experiments and thus are based
on further assumptions.

Additional enhancements and editing related to the
data

The data for uni- and equibiaxial tension and compression are
tripled by exchanging the direction of the principal stretches.
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Table 4 Non-zero Green-Lagrangian strains ESS
ij and Second Piola-

Kirchhoff stresses SSSij for simple shear. ∗Note: the data for S22 and S33
are based on a zero traction assumption and do not follow directly from
the experimental setup

E22[ − ] 2E12[ − ] S∗
22[MPa ] S∗

33[MPa ] S12[MPa ]
0.158 −0.562 0.090 0.090 −0.159

0.074 −0.384 0.048 0.048 −0.124

0.035 −0.263 0.022 0.022 −0.085

0.007 −0.117 0.004 0.004 −0.037

0.000 0.000 0.000 0.000 0.000

0.007 0.117 0.004 0.004 0.037

0.035 0.263 0.022 0.022 0.085

0.074 0.384 0.048 0.048 0.124

0.158 0.562 0.090 0.090 0.159

The data for simple shear can be rearranged six times, first by
exchanging the plain of shear and second by exchanging the
shear direction, e.g. 1-3 and 3-1 shear in the 1-3 plane. This
leads eventually to P = 121 sample points, with one stress
free sample, 33 for uniaxial tension and compression, 39 for
equibiaxial tension and compression and 48 for simple shear.
All samples lie approximately in the following boundaries
regarding the volume ratio: J ∈ [0.95, 1.45].
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