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Abstract: Low-voltage distribution grids face new challenges through the expansion of decentralized,
renewable energy generation and the electrification of the heat and mobility sectors. We present a
multi-agent system consisting of the energy management systems of smart buildings, a central grid
controller, and the local controller of a transformer. It can coordinate the provision of ancillary services
for the local grid in a centralized way, coordinated by the central controller, and in a decentralized
way, where each building makes independent control decisions based on locally measurable data.
The presented system and the different control strategies provide the foundation for a fully adaptive
grid control system we plan to implement in the future, which does not only provide resilience
against electricity outages but also against communication failures by appropriate switching of
strategies. The decentralized strategy, meant to be used during communication failures, could also
be used exclusively if communication infrastructure is generally unavailable. The strategies are
evaluated in a simulated scenario designed to represent the most extreme load conditions that might
occur in low-voltage grids in the future. In the tested scenario, they can substantially reduce voltage
range deviations, transformer temperatures, and line congestions.

Keywords: smart grid; resilient infrastructure; energy management systems; building energy man-
agement; ancillary services; organic computing; decentralized energy resources; multi-agent systems

1. Introduction

The ongoing shift from centralized power generation by large conventional power
plants to a variety of small-scale renewable distributed energy resources (DERs) is seriously
changing the electric power system. Power grids are designed for a unidirectional, top-
down power flow from power plants to consumers. However, in the future, more and more
prosumers do not only consume electricity but also generate electricity with their own DERs,
which is going to result in a more bidirectional power flow. Additionally, the coupling of
the sectors electricity, heating, cooling, and mobility leads to new challenges in low-voltage
distribution grids. As a result, bottlenecks, overloads, and voltage range deviations can
occur more and more often [1].

Without digitization, such a complex and highly volatile system would not be con-
trollable anymore [1]. In Germany, in 2016, the German Act on the Digitization of the Energy
Transition (“Gesetz zur Digitalisierung der Energiewende”) was passed. Based on the
technical infrastructure of intelligent metering systems, it introduced regulations for a
digital communication system in order to enable a highly secure communication between
the participants of the energy sector, such as intelligent buildings or distribution system
operators (DSOs) [2].

One option to meet the aforementioned challenges is to utilize the energy flexibility
of DERs. Modern buildings are more and more often equipped with energy generation
and storage capacities, electric vehicles (EVs), and intelligent appliances. Building energy
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management systems (BEMSs), usually employed to optimize local energy flows for in-
creasing the self-consumption of locally generated energy or for decreasing energy costs,
can be utilized to exploit the internal energy flexibility of buildings in order to provide grid
stabilization measures, i.e., ancillary services (ASs) [3].

The term microgrids is often used in the literature to describe low-voltage grids that can
use load management to ensure grid stability and to increase power quality [4]. Katiraei
et al. describe several control strategies for microgrids with a focus on energy management
and market participation and detail the differences between microgrids and large energy
systems [5]. Basu et al. provide a literature survey on regulation, technical, economic,
and ecological benefits, technical and tariff designs as well as energy market participation
possibilities specific to microgrids [6]. Another review compiled by Meng et al. explores
the functionalities, benefits, and drawbacks of microgrid management strategies that differ
with respect to their degree of decentralization [7]. Mahmoud et al. survey microgrid
control strategies that can adapt control parameters at runtime using methods such as
fuzzy logic, particle swarm optimization, or reinforcement learning [8]. A special emphasis
on managing volatile generation and uncertainty, cost-effectiveness, and communication
in microgrids is given in a literature review by Zia et al. [9].

Different approaches to supporting local distribution grids, i.e., the provision of ASs by
DERs, have been proposed. Most approaches employ centralized or hierarchical strategies
with central coordination units that monitor the grid and either directly control DERs or
communicate commands and target values to local controllers. Shi et al. developed an
online energy management system (EMS) that utilizes Lyapunov optimization to regularly
solve a stochastic optimal power flow problem for a microgrid comprised of diverse
DERs [10]. A hierarchical regional EMS that uses variable energy tariffs to coordinate
ASs for distribution grids provided by independently managed smart buildings was
implemented and evaluated by Kochanneck [11].

Some decentralized approaches, such as the one utilized by Feng et al., who evaluated
an EMS for a microgrid employing the alternating direction method of multipliers as a
distributed optimization algorithm [12], handle critical grid situations in a direct manner.
Silani et al. [13] presented a distributed EMS that solves an optimal power flow problem
for a microgrid by determining cost-optimized schedules using the local controllers of
DERs and optimizing the total cost function with a central controller based on the com-
municated schedules. To cope with the difficulty of obtaining data from all locations in
large microgrids, Hosseinzadeh et al. [14] presented a distributed power flow management
system that works with only one or two sensors per subgrid that serve as indicators for the
local controllers of DERs to adjust their operation. Other approaches operate in a decen-
tralized way as well but employ more indirect, market-based mechanisms. An example is
the peer-to-peer market design developed by Zhang et al., which facilitates direct energy
trade between DER operators and energy consumers while observing grid restrictions by
including variable grid usage costs into the transaction costs of every trade [15].

Another approach to coordinate multiple DERs with energy cost-optimizing EMSs
using variable electricity tariffs with group pricing was presented by Gottwalt [16]. In his
conclusions, he highlighted the importance of observing possible grid restrictions in future
work. A review of coordination techniques for multiple smart homes in the context of
demand side management [17] and a day-ahead EMS for energy cost minimization and
renewable energy sharing among neighboring smart homes [18] was provided by Celik et al.

Peng et al. implemented and evaluated [19] and Saldana et al. reviewed [20] systems
for the provision of ASs by electric vehicles (EVs) while also considering the necessary
communication effort.

Regardless of whether centralized or decentralized coordination of DERs for AS
provision is proposed, the mentioned approaches almost always assume that the involved
systems can communicate whenever control decisions have to be made. The resilience of a
system used for the provision of ASs against communication failures, or the possibility of
supporting distribution grids in a completely decentralized way, without communication,
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is almost never considered. If communication infrastructure is considered, the literature
mostly either focuses on specific types of DER or does not take grid restrictions into account
when trying to achieve a balance between energy supply and demand among multiple
DERs. Another aspect that is rarely implemented is a comparison between the performance
of centralized and decentralized approaches.

In this article, we present a multi-agent system (MAS) consisting of the BEMSs of smart
buildings comprising multiple DERs, such as photovoltaics (PV)-systems, EVs, battery
energy storage systems (BESSs), heat pumps (HPs), combined heat and power plants
(CHPP), and intelligent appliances, a central grid controller, operated by the DSO, and
the local controller of a distribution transformer. The utilized transformer can either be
non-controllable or a voltage regulation distribution transformer (VRDT). The presented
MAS is able to coordinate the provision of ASs for the local distribution grid in a centralized
way, coordinated by the DSO, as well as in a completely decentralized way, where each
building makes independent control decisions based solely on locally measurable grid
status data. The MAS, as well as the different control strategies, provide the foundation
for a fully adaptive grid control system, which we plan to implement and evaluate in
the future, that is not only able to provide resilience against electricity outages but also
against communication failures, by appropriate switching of strategies. The decentralized
strategy, developed to be employed during communication failures, could also be used
exclusively, for example, in regions where suitable communication infrastructure is not
available in the first place. Additionally, the evaluation of the MAS can provide valuable
insights into the needed communication effort to achieve the maximum possible increase
in resilience against critical grid situations that smart buildings with DERs can provide.
With the presented MAS, we aim to answer the following research questions, which are
based on the ones we posed in [21]:

• How far can the resilience of distribution grids be increased by utilizing the energy
flexibility of buildings?

• To what extent is communication needed for the exploitation of this flexibility? What
are the advantages and disadvantages of the centralized and decentralized approaches
for increasing the distribution grid’s resilience? How does the centralized approach
perform compared to the decentralized approach?

An overview of the contributions we provide in this article is given in Table 1.

Table 1. List of the contributions of this article.

Contributions

The development of a centralized (Sections 2.4.2 and 2.4.3) as well as a decentralized (Section 2.4.4) grid
control strategy to coordinate the provision of ancillary services by smart buildings, each employing cascades
of measures aimed at restricting the buildings’ normal operation as little as possible.

The provision of criteria (Section 2.4.1) and development of algorithms that enable the grid-supportive
adjustment of reactive (Section 2.4.5) and active (Section 2.4.6) power by buildings for both developed grid
control strategies.

The development of an MAS that supports the developed grid control strategies (Sections 2.1–2.3) and can be
extended in the future to achieve a comprehensive grid control system that adapts to communication failures
by appropriately switching control strategies.

A comparative evaluation of the developed centralized and decentralized grid control strategies and
corresponding control algorithms using the developed MAS (Section 3).

The interpretation of the evaluation results (Section 3) to answer the posed research questions (Section 1)
concerning the potential of exploiting energy flexibility to increase grid resilience and the needed
communication effort for this exploitation.

This paper is structured as follows. Section 1 introduces the topic and states related
work on the field with a focus on microgrid management as well as AS provision by and
coordination of DERs. Section 2 presents the concepts and system architecture for the
centralized and decentralized control of the DERs of smart buildings aimed at increasing
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the resilience of low-voltage grids. The proposed concepts are evaluated and discussed in
Section 3. Finally, a conclusion is given in Section 4.

2. Materials and Methods

This section introduces the BEMS used to exploit the internal energy flexibility of
buildings as well as an anticipated adaptive grid control system, for which the control
strategies presented and evaluated in this article form the basis. Furthermore, it provides
criteria to determine the criticality of a particular grid status and details the developed
centralized and decentralized grid control strategies. Additionally, it describes the use
cases for as well as the implementations of reactive power control and active power targets
for both of these strategies.

2.1. The Building Energy Management System Organic Smart Home

The BEMS and building simulation software framework Organic Smart Home (OSH) [22]
is used as a basis for the simulation of the smart buildings considered in this research.
It uses the Observer/Controller paradigm developed in the context of the research area of
Organic Computing [23], which enables self-organization and reduces the complexity of the
interaction between software-controlled subsystems. The building energy management
provided by the OSH enables comprehensive control of the DERs in real and simulated
buildings. It uses an adaptive evolutionary algorithm to schedule intelligent appliances,
BESSs, EV-charging stations, HPs, and CHPPs in an optimization encompassing multiple
energy carriers [24]. The latest internal version of the OSH also enables multi-building
simulations combined with power-flow studies to determine the impacts of different control
strategies on the local low-voltage grid [11]. An overview of the OSH’s BEMS architecture
is given in Figure 1.

5.2 Novel Concepts, Functionality, and Implementations

External and 
Superior Entities

CAL: 
External Communication

2nd O/C-layer:
Integrated Optimization

EAL:
Optimization Abstraction

CAL: 
Device Abstraction

1st O/C-layer:
Device Management

EAL:
Hardware 
Abstraction

SuOC:
Subordinate Entities

UserExternal  Entities

Signals

Observer (O) (C) Controller
Integrated Multi-commodity Optimization

O C
Management

Device Driver

Energy 
Data

Gateway

Bus 
Driver

CXOX

Com Driver

Interdependent
Problem Part
Entity Model

Control Model

Com Driver Com Driver

O C
Management

Device Driver

CXOX

Interdependent
Problem Part
Entity Model

Control Model

O C
Management

Device Driver

CXOX

Interdependent
Problem Part
Entity Model

Control Model

Goals

Global
O/C-layer

Local
O/C-layer

En
er

gy
 S

im
ul

at
io

n 
C

or
e

Figure 5.5: Architecture of the Organic Smart Home, partially based on [409]

Grid Operation Equipment and Infrastructure In addition to the information that is
provided by smart buildings, producers, and storage systems, an O/C-unit managing a grid
may need additional information about its state and equipment to control it. This includes
additional grid infrastructure, such as phasor measurement units, remotely controllable
disconnecting switches, smart transformers, and flexible AC transmission systems, that is
included in the SuOC by means of corresponding O/C-units.

5.2 Novel Concepts, Functionality, and Implementations
This section provides an overview of the implemented concepts and extensions in the
BEMS (see Figures 5.5 and 5.6). Firstly, there are bus drivers, which allow for the
integration of gateways that provide connections to multiple devices, and the separation
of the internal communication into multiple so-called Registries. Secondly, there is the
introduction of multiple energy carriers and multi-modal energy management by means
of the so-called Energy Simulation Core, which distinguishes commodities and ancillary
commodities, and the so-called Interdependent Problem Parts.

5.2.1 Bus Drivers
Many devices and systems in buildings are not directly connected to BEMSs but have some
kind of intermediary gateway that provides an abstraction of protocols and communication
media, i. e., hardware interfaces, and extends the spatial coverage of a BEMS. Typically,

201

Figure 1. Layered Observer/Controller-based architecture of the Organic Smart Home. Reproduced from
ref. [24]. OX and CX are abbreviations for observer and controller exchange communication objects.

In this article, the OSH is extended to allow the BEMS to receive and implement com-
mands from the DSO meant to avoid or reduce critical grid situations when undisturbed
communication between a building and the DSO is possible. With regard to situations
where there is no reliable communication either because such communication is not im-
plemented at all or because it is disturbed, the BEMS should furthermore be enabled to
determine appropriate grid supporting measures independently.
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2.2. Adaptive Grid Control

The multi-agent-based grid control strategies presented and evaluated in this article
form the basis for an adaptive grid control system for low-voltage distribution grids, which
we introduced in [21] and aim to fully implement in the future. This system is designed
to provide resilience with respect to electricity outages as well as communication failures.
Resilience against electricity outages is achieved by utilizing the internal energy flexibility
of buildings that is made exploitable by the OSH. Resilience against communication failures
is accomplished by appropriately and automatically switching grid control strategies based
on the current availability of communication infrastructure. For this purpose, in [21], three
grid control strategies are proposed, each utilizing different communication schemes. The
centralized control strategy is active as long as all communication links function reliably.
Here, the DSO observes the current grid status by performing power-flow studies based
on data communicated by the buildings connected to the grid. If a critical grid situation is
detected, the DSO sends commands to the buildings and, if available, a VRDT aimed at
reducing or resolving the criticality.

To achieve adaptivity in response to communication failures, the buildings continu-
ously monitor locally measurable grid status data like the voltage at their grid connection
and their own power consumption or feed-in. These status data are not only communi-
cated to the DSO but also to other buildings and the transformer. This allows a building
to perform regular power-flow studies (see also Section 2.3) similar to the one performed
by the DSO. If the buildings detect a critical grid situation but do not receive appropriate
commands from the DSO after a certain waiting period, they can assume that the com-
munication to the DSO is currently disturbed. If a communication failure to the DSO is
detected, but the VRDT and the buildings can still communicate among themselves, these
agents switch to using a consensus-based control strategy. In this strategy, the buildings and
the VRDT communicate relevant locally measured data among each other and collectively
decide on counter measures if they detect a critical grid situation. If all communication
links fail, the buildings do not receive data from other buildings or the transformer any-
more. If a building does not receive any data for a certain time period, it starts to use a fully
decentralized control strategy that only uses locally measurable data to detect or infer critical
situations and determine appropriate counter measures. In this case, an available VRDT
ceases to react to critical voltages since it has no information on the current grid status.

While the centralized and the decentralized grid control strategies are already imple-
mented and presented as well as evaluated in the following sections, the consensus-based
strategy, as well as the automated adaption of control strategies, will be implemented and
evaluated in future work. A schematic of the proposed adaptive grid control system is
shown in Figure 2.

2.3. Power-Flow Simulation

For this work, the power-flow study capabilities of the OSH are used in two different
contexts. On the one hand, they are used to simulate the actual low-voltage grid in the
considered evaluation scenario. On the other hand, they are used for the centralized grid
control strategy by the (simulated) DSO. The DSO regularly performs power-flow studies
based on the power data communicated by the simulated buildings and measured at the
simulated transformer to gather information about the grid status, which would otherwise
have to be measured by a large amount of dedicated sensors [25]. Furthermore, the DSO
can use additional power-flow studies to determine which buildings are most likely to be
able to prevent or improve a certain critical grid situation in grids with ring topologies.
However, for the simulated grid in this article, which is shown in Figure 3, this is not
relevant because its topology is exclusively radial.
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Figure 2. Adaptation of grid control strategies to provide resilience against communication failures.
The thick lines indicate electrical connections. The thin arrows indicate communication. O stands for
observer and C for controller. Adapted from ref. [21].

Kapitel 6 Evaluationsumgebung

(a) Ländliches Referenznetz (b) Dörfliches Referenznetz

(c) Vorstädtisches Referenznetz

Abbildung 6.1 – Topologien der Niederspannungsreferenznetze aus [157]

136

Figure 3. A schematic of the low-voltage grid used for the evaluation, first developed in [26].
Reproduced from ref. [11].

All performed studies are single-phase as an even load distribution over all three
phases is assumed. A detailed description of the implementation of the power-flow study
capabilities of the OSH can be found in [11].

2.4. Grid Control Logic

In the following, the control strategies used by the DSO and the buildings to prevent
or improve critical grid situations are introduced. There are several ways to influence the
stability of the grid using different forms of energy flexibility that residential buildings can
offer. Reactive power consumption or feed-in may be modified by modern PV and BESS
inverters. Reactive power can be freely adjusted within the range of the currently usable
fraction of an inverter’s nominal apparent power [27], which does not impact the comfort
of the inhabitants of a building. Active power consumption or feed-in can be influenced by



Energies 2021, 14, 4472 7 of 29

adjusting BESS and EV charging and scheduling the operation of intelligent appliances as
well as HPs and CHPPs. However, the adjustment of active power is not only constrained
by device characteristics, such as BESS capacity, but also by the inhabitants’ behavior and
preferences, such as target temperatures [24].

2.4.1. Critical Grid Situations and Criticality Boundaries

This paper considers three types of critical situations that are relevant in low-voltage
grids. Preventing or alleviating these critical situations can consequently substantially
increase the resilience of a given grid [1].

The first type of critical situation considers deviations from the permitted voltage
range. According to the International Electrotechnical Commission [28], voltages in low-
voltage grids have to stay within a range of ±10% around the nominal voltage. To prevent
voltage range deviations due to sudden spikes in power consumption or feed-in, we
propose a more narrow range of −8% to +7% for the node voltages unode to trigger the
activation of grid control measures, which corresponds to the range that triggers voltage
based red grid traffic light signals in [11]. This enables timely responses to voltages running
up to critical values, even if counter measures entailing significant time delays, such as
optimization, are utilized. The two boundaries differ due to the different characteristics
of the loads leading to increased or decreased voltages. Increased voltages are a result
of power generation exceeding consumption. Power generation in German low-voltage
grids mostly stems from PV systems. The generation by PV systems frequently fluctuates
due to weather changes and is highly synchronous for spatially close systems often found
in low-voltage grids [29]. In contrast, decreased voltages are caused by elevated power
consumption, which is generally far less synchronized than elevated generation from
spatially close PV systems [30]. Consequently, since larger voltage fluctuations are to be
expected if voltages are above the nominal voltage, the upper criticality boundary includes
a larger security margin. While the general boundaries for voltage criticality are the same
for all utilized control strategies, modified voltage levels at which certain counter measures
are triggered are used for different control strategies and situations. The modifications are
described in detail in Sections 2.4.2–2.4.5.

The second type of critical situation considered is the congestion of grid lines due to
excessive power transmission entailing currents that exceed the respective rated current
for prolonged time periods. Here, as in [11], a boundary of 90% of the rated current Irated

line
of a particular line is proposed to trigger the implementation of counter measures, which
gives the grid control a security margin to react before a line becomes congested.

The third type of critical situation is the overheating of the transformer that supplies
a particular grid. Overheating due to prolonged exceedence of a transformer’s nominal
power decreases the working life of the transformer. This can entail financial losses and
even power outages caused by premature equipment failure [31]. As in [11], to comply
with the temperature and overloading limits given in [31] and taking into account the
thermal inertia introduced by the transformer oil, a winding hot-spot temperature T of

70 ◦C and an overloading factor LF =
Itra f o

Irated
tra f o

of 1.3 are used as boundaries for the activation

of counter measures.
All defined criticality boundaries are given in Table 2. For readability and general-

izability, in this article, voltages are always given as pu, which stands for per unit and
constitutes a normalization of the voltage to the nominal voltage of a given grid.

Table 2. Criticality boundaries that trigger counter measures. Adapted from ref. [11].

Critical Situation Type Relevant Quantities Criticality Boundaries

Voltage range deviations Node voltage unode unode < 0.92 pu∨ unode > 1.07 pu
Grid line congestion Line current Iline Iline > 0.9 · Irated

line

Transformer overheating Winding hot-spot temperature T
and load factor LF T > 70 ◦C∨ LF > 1.3
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2.4.2. Centralized Control Strategy

In the centralized grid control strategy, the central controller of the DSO does not solve
an optimal power flow problem for the entire grid. All optimization needed to achieve grid
supportive behavior is conducted individually by the local BEMS of each building. The
central controller is only responsible for observing the grid status based on data communi-
cated by the buildings, determining which buildings should provide ancillary services in a
critical situation, and the calculation of reactive power targets for each building according
to the algorithm shown in Section 2.4.5. We assume that all buildings in the grid possess
smart meters and smart meter gateways or similar systems, which enable them to measure
and communicate the power at their own grid connection to the DSO as well as receive
commands from the DSO. This assumption is supported by the Technical Guideline for the
Communication Unit of Intelligent Metering Systems issued by the German Federal Office for
Information Security (BSI) [32] and the German Metering Point Operation Law [33]. According
to [33], in Germany, smart meters have to be deployed for all new installations and smart
meter gateways for all consumers with a power consumption of more than 6000 kWh/a or
with more than 7 kWp of renewable energy feed-in. This is true for all buildings considered
in this article since the combined peak feed-in from the PV system and the BESS is always
higher than 7 kWp. Several options to integrate EMSs, such as the OSH, into the German
smart meter gateway infrastructure, and thereby enable secure communication between
these EMSs and external entities, have been detailed by Förderer et al. [34]. Kroener et al.
presented a prototype that enables the communication of demand side management mea-
sures by an external entity and their implementation by a local EMS for an EV-charging
station using the German smart meter gateway infrastructure [35]. Compared to other
countries, the smart meter roll out in Germany started relatively late [36] due to the high
standards with respect to privacy, security, and functionality stipulated by the BSI [37].
Therefore, we assume similar infrastructure to be present in other regions as well. We
furthermore assume that the metering and the communication systems can provide mea-
surements with a one-minute resolution so that the DSO can perform power-flow studies
with a one-minute resolution as well. This eliminates the need for dedicated sensors to
obtain comprehensive grid status data and makes the approach scalable.

The aim of the centralized strategy is to use the full potential of the energy flexibility
buildings can provide to prevent critical situations while keeping restrictions of their
normal behavior, such as market interaction or energy cost minimization, to a minimum.
This requires a defined cascade of measures to be taken for each type of critical grid situation.
The cascades of measures for voltage as well as congestion management, which are partially
adapted from [11], are detailed in Figure 4. The main differences to the proposals in [11]
are in the specific execution. While [11] uses variable electricity prices for both reactive and
active power to incentivize buildings to act in a grid supporting way, we propose a direct
implementation of specific reactive and active power targets and differentiate between
reactive power for voltage regulation and reactive power compensation to maximize the
exploitation of the available flexibility, if necessary. Our description of the active power
flexibility a building can provide and the mechanism of ranking the flexibilities of multiple
households are inspired by the definitions and mechanisms utilized in [11] as well, but
they are fundamentally adjusted to account for the target-based flexibility calls.

In the case of critical voltages, a VRDT can be used if one is available. By changing
the transmission ratio of the VRDT, the voltages in the supplied grid can be adjusted in a
certain range as long as all voltages in the grid stay within accepted margins [38]. If only
voltages are critical and the grid is supplied by a VRDT, the latter should be used before
the buildings start to intervene, as this does not affect their free market interaction.
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Figure 4. Cascades of measures against critical grid situations employed by the DSO for the controlled
low-voltage grid in the centralized grid control strategy. While the general cascades of measures are
partially adapted from ref. [11], this schematic is new and reflects our specific implementation.
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If the provision of ASs by buildings is necessary, it should be ensured that they
improve the current grid status rather than not being effective or even impairing it further.
For this reason, the DSO first determines which buildings can potentially influence the
critical situation in a similar way as in [11]. If a building is located within a certain
distance from a node with a critical voltage, it is assumed to be able to influence the
critical voltage. This distance may be varied depending on the size of the grid and the
magnitude of a particular critical situation in future iterations of the centralized strategy.
In [11], it was estimated that buildings within a distance from a critical node of 5% of the
total number of nodes in a given grid would be able to appreciably influence this critical
node’s voltage. For voltages above 1.07 pu, which we use as a criticality boundary in this
article (see also Section 2.4.1), they doubled this distance. For the 62-node grid used in the
evaluation, this would correspond to a distance of six nodes. For the evaluation in this
article, we instead use a distance of eight nodes, since, during development, this resulted
in a better ability of the centralized strategy to keep node voltages below 1.07 pu without
leading to significant overreactions to critical voltages. We aim to conduct a more detailed
analysis of the influence of the distance setting in future research after implementing
further improvements to the centralized strategy based on the findings of this article. We
assume that, at the current stage of development, a detailed parameter study would not
contribute significantly to the performance of the presented strategy and that it would
have to be performed again after further development. Concretely, for the grid shown
in Figure 3, a distance of eight nodes means that the building connected to node three
is still considered to be able to potentially influence the voltage at node eleven. For line
congestions, as in [11], any building separated from the transformer by the congested line
segment is expected to potentially be able to improve the situation. When it comes to
critical transformer temperatures, all buildings in the grid supplied by the transformer can
be able to decrease its utilization. After potential candidates are determined, depending on
the type and location of the critical situation, the DSO sends them commands related to the
adjustment of reactive or active power.

The adjustment of reactive power (see Section 2.4.5) should be preferred over the
adjustment of active power since the provision of reactive power usually does not restrict
the behavior of residential buildings with respect to active power and can be influenced
more immediately and unrestrictedly [11]. For congestions, this means that the reactive
power consumed or fed-in by a building is locally compensated by an inverter if available.
This reduces the load on the grid, as only active power has to be transmitted between
the particular building and the transformer. Reactive power compensation should not be
confused with reactive power control for voltage regulation. The latter is used to lower
critically high or increase critically low voltages via consumption or feed-in of inductive
reactive power, respectively [27]. Since deviations from the admissible voltage range can
lead to electricity outages and potential damage to devices of electricity customers [39],
while congestions can be temporarily compensated by the thermal inertia of grid compo-
nents [31,40], reactive power compensation has lower priority and is only used if voltages
are uncritical or a VRDT can be used for voltage regulation. The implementation of reactive
power control for both use cases and both presented grid control strategies are detailed in
Section 2.4.5.

If the adjustment of active power is necessary because the adjustment of reactive
power does not resolve a critical situation, the DSO commands all buildings b in {1;2;. . . ;B}
that can potentially influence the critical situation to determine and communicate their
current active power flexibility. To calculate its flexibility, each building first schedules
its device usage according to its current optimization objective, which, in this article, is
the minimization of energy costs for the following 24 h, and saves the values Pcost-opt

b,t
of the resulting cost-optimized load profile. The particular temporal resolution for the
optimized load profiles used for the evaluation in this article is five minutes. Higher
resolutions substantially increase the computational cost and do not significantly improve
the optimization [41]. After the cost-optimized load profile is determined, the building
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schedules its device usage again for the same schedule horizon, but this time using an
active power target Ptar for the duration of all time steps t in the active power target horizon
T. Note that T does not have to be equal to the scheduling horizon. We do not use an index
variable indicating different time steps for Ptar because, in the context of this article, the
target always has the same value. The reasons for this as well as the scheduling according
to an active power target are detailed in Section 2.4.6. When the resulting values Ptar-opt

b,t
of the target-optimized load profile are determined, they are compared to the ones in the
cost-optimized load profile, and the flexibility Fb is calculated using Equation (1):

Fb =
T

∑
t=1

((
Pcost-opt

b,t − Ptar
)2
−

(
Ptar-opt

b,t − Ptar
)2

)
. (1)

Both terms inside the sum are squared so that higher deviations from the active power
target are weighted higher than lower deviations. This is aimed at reducing load peaks
that lead to especially high equipment utilization and voltage fluctuations. An Fb of zero
or below means that the implementation of the target-optimized load profile would not
improve the grid status and the building should continue acting as if it was uncritical. An
Fb below zero can occur due to the functionality of the utilized evolutionary algorithm,
which is aimed at finding good solutions within a short time as opposed to finding optimal
solutions. This functionality is utilized because, in real applications, building optimization
algorithms often have to run on low-cost, low-energy computers and repeatedly throughout
the day. Furthermore, the uncertainty associated with the optimization of the energy flows
of a building diminishes the advantages of optimal over good solutions [42]. However, this
can lead to certain cost-optimized load profiles being nearer to an active power target on
average than certain target-optimized load profiles by accident, especially, if the current
flexibility of the building is low. If this happens, the current flexibility of a building is
assumed to be zero. A positive Fb indicates that the building can improve the grid status
and enables a comparison with the flexibility of other buildings.

When the buildings have calculated their respective flexibilities, they communicate
them to the DSO, which then calls the flexibility of a group of the most flexible buildings,
by commanding them to implement their respective target-optimized load profiles. For the
purpose of the evaluation in this article, the group size is set to five. We plan to analyze the
influence of the group size on the performance of the centralized strategy in the future. If
the grid status is still critical after the buildings start to implement the active power target,
the DSO calls the next group of buildings. This process repeats until the critical situation is
resolved or all relevant buildings are already implementing an active power target.

Control options that enable the DSO to demand and the buildings to implement
forcible load curtailment, for example, of the power generation by PV systems or the
charging of EVs, if the available flexibility is not sufficient to resolve a critical situation, are
planned for future research and not yet implemented.

2.4.3. Voltage Regulated Distribution Transformer

The control algorithm used for the VRDT is partially based on the control algorithm
developed and implemented in [43]. The original algorithm only considers voltage range
deviations above an upper criticality boundary. For this work, the algorithm is extended to
also cover voltages that fall below a lower criticality boundary. Changes in the VRDT’s
transmission ratio are triggered at different upper and lower voltage set points depending
on the spread between the maximum and minimum node voltage in the grid. In the utilized
algorithm, dead bands are used to prevent the transmission ratio from oscillating. When
one or more node voltages in the grid exceed the quick dead band on top of the higher
voltage set point, the transmission ratio is switched up immediately. When the voltage
only exceeds the slow dead band on top of the higher voltage set point, the transmission
ratio is switched up after a waiting period, during which the voltage has to continuously
stay above the slow dead band. For the evaluation in this article, the same waiting period
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of five minutes as in [43] is used. In future research, the influence of this parameter could
be analyzed in detail. If one or more node voltages in the grid reach the lower voltage set
point, the process of changing the transmission ratio works analogously to the one for high
voltages but in the other direction. All parameters used for the voltage regulation by the
VRDT utilized in this paper are given in Table 3:

Table 3. Control parameters for the VRDT. Partially adapted from ref. [43].

Condition Parameter Value

umax
node − umin

node > 0.1 pu Higher voltage set point 1.07 pu
Lower voltage set point 0.925 pu
Slow dead band 0.015 pu (300 s waiting time)
Quick dead band 0.02 pu (immediate)

umax
node − umin

node ≤ 0.1 pu Higher voltage set point 1.05 pu
Lower voltage set point 0.945 pu
Slow dead band 0.02 pu (300 s waiting time)
Quick dead band 0.04 pu (immediate)

2.4.4. Decentralized Control Strategy

For the decentralized grid control by the buildings based on locally measured data on
the low-voltage grid, the goals are the same as for the centralized control by the DSO. The
buildings should try to prevent critical situations to the fullest of their abilities while only
doing so when necessary to limit their own objectives as little as possible. This requires an
adjusted cascade of measures for each type of critical grid situation that can be detected
or at least inferred locally. The cascades of measures for voltage as well as congestion
management applied by each building are shown in Figure 5.

The decentralized control strategy assumes no communication among the buildings,
the transformer, and the DSO. As a consequence, an available VRDT has no info on the local
voltages at the buildings’ grid connections. An adjustment of the transmission ratio based
on the voltage at the busbar could lead to local deviations from the admissible voltage
range. This means that voltage regulation with a VRDT is not available in this scenario.

For the same reasons as in the central control strategy, the adjustment of reactive
power is preferred over the adjustment of active power.

Since a building only knows the local grid situation, namely the voltage at its grid
connection and its own power generation and consumption, it has to make control decisions
based on this data. Possible congestions in the grid have to be inferred from the local
voltage. Congestions arise from excessive power feed-in or draw into or from a particular
grid line or the entire grid [44], which generally entails at least moderately elevated [45]
or lowered voltages [46]. For this reason, the building starts to implement reactive power
compensation and active power targets if the local voltage is not yet critical but moderately
deviates from the nominal voltage. The upper and lower voltage levels that trigger anti-
congestion measures are set to 1.03 pu and 0.95 pu in the simulations performed for this
article, which correspond to the values that trigger voltage-based yellow grid traffic light
signals in [11]. The lower level deviates further from the nominal voltage than the upper
one because low voltages are generally more short lived than high voltages. As described
in Section 2.4.1, the consumption of electricity in low-voltage grids is less synchronized
than the generation. This means that congestions due to excessive consumption require
a high magnitude of unlikely synchronization and thus are generally less frequent, less
pronounced, and less persistent. Due to the thermal inertia provided by the transformer [31]
and the possibility of momentarily exceeding a grid line’s nominal currents [40], the security
margin for the lower voltage boundary can be smaller.

If the local voltage becomes critical according to Table 2, the building starts to adjust
its reactive power according to the control algorithm detailed in Section 2.4.5.

When a building determines that the adjustment of reactive power cannot resolve a
locally observed or inferred critical situation and active power flexibility should be used,
it first calculates its active power flexibility in the same way as in the centralized control
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strategy (Equation (1)). If the calculated flexibility F is positive, the building starts to
implement an active power target as described in Section 2.4.6.

As for the centralized control strategy, additional control options enabling the curtail-
ment of local loads for devices that allow this are planned for future research.

Inverter power  
range exploited?

Reactive power  
already adjusted?

Compensate reactive  
power

Adjust reactive power
No

Yes

No

Local grid status
(possibly) critical

Yes

Active power 
already adjusted?

Active  
power flexibility 

calculated?

No

No

Yes

Calculate active power
flexibility

Active  
power flexibility  

available?

Yes
Adjust active power

Yes

No

Local voltage  
critical?

Local voltage  
indicates possible

congestions?

No

Yes

Yes

No

Figure 5. Cascades of measures against critical grid situations employed by each building in the
decentralized grid control strategy. While the general cascades of measures are partially adapted
from ref. [11], this schematic is new and reflects our specific implementation.

2.4.5. Reactive Power Control

Reactive power can be used to influence different types of critical situations. In the
context of congestions, reactive power compensation can be useful. Here, an inverter’s
capability to generate or consume reactive power is used to compensate for the current reac-
tive power consumption or feed-in of a building. This decreases or eliminates the amount
of reactive power that has to be transferred by adjacent grid lines and the distribution
transformer. This can be especially useful in situations where the equipment utilization
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is already high due to high amounts of transferred active power [27]. Despite assuming
that the buildings’ inverters are able to adjust their reactive power draw or output without
fixed power factors, we call all reactive power settings detailed in this section targets. This
is due to the maximum apparent power a particular inverter can provide. If a reactive
power target is higher than the currently remaining inverter capacity, for example, because
the inverter already outputs a high magnitude of active power, the reactive power target
cannot be fully implemented. In this case, the maximum currently possible reactive power
output or draw is used. Each building that is commanded to compensate its reactive
power by the DSO in the centralized control strategy or that autonomously determines
the usefulness of reactive power compensation in the decentralized strategy calculates the
reactive power target Qtar

t for time step t according to Equation (2):

Qtar
t = Qtar

t−1 −Qt−1 . (2)

Here, Qtar
t denotes the new target to be implemented by the inverter, Qtar

t−1 the previous
target, and Qt−1 the previous inductive reactive power at the building’s grid connection.
Positive values for the inductive reactive power Q in this context denote consumption and
negative values generation or feed-in. Since the reactive power targets for the reactive
power compensation are always determined autonomously by the particular building and
never communicated to or by the DSO, regardless of the chosen control strategy, we do not
use a running index for different buildings in this case. For the evaluation, the duration
in which the reactive power compensation stays active is chosen as eight hours, which
corresponds to the duration used for the active power targets (see also Section 2.4.6). The
determination of an optimal value is planned for future research.

Inductive reactive power feed-in or consumption by inverters can also be leveraged
to, respectively, increase or decrease voltages in an electrical grid, which makes it an
effective tool for voltage maintenance [27]. If voltages are critical according to the bound-
aries established in Section 2.4.1, we always prefer the use of reactive power for voltage
regulation over reactive power compensation since voltage range deviations generally
result in damaged equipment faster [39] than congestions [31,40]. We utilize two very
similar reactive power control algorithms that are designed to limit the additional load
on the grid introduced by increased transmission of reactive power while maintaining a
security margin for large voltage fluctuations. One is utilized by the DSO (Algorithm 1)
for each building in the centralized and the other by each building in the decentralized
control strategy (Algorithm 2). In the algorithm for the decentralized control strategy, a
building considers only the voltage u at its own grid connection to determine if it should
use a reactive power target and its appropriate value. In contrast, the algorithm utilized
by the DSO in the centralized strategy not only determines reactive power targets for all
buildings with a critical voltage at their own grid connection ub but also for buildings
that are situated within a certain distance from a node that exhibits a critical voltage. The
maximum or minimum node voltage within this distance from a building is referred to as
umax/min-dis

b . As explained in Section 2.4.2, the distance is set to eight nodes for the evalua-
tion in this article. The DSO only communicates changed targets to the buildings. As long
as a building does not receive a new target in the centralized strategy, it uses the last target
previously received. Algorithm 2 does not use an index variable for different buildings
because, here, the targets are calculated autonomously by the particular building and never
communicated outside. In both algorithms, the reactive power is stepped up or down
with three different step sizes depending on the voltage level, the previous reactive power
target, and, in the case of centralized control, the location of the largest relevant voltage
deviation. Before decreasing the reactive power feed-in or consumption of the inverter
again, the voltage at a building’s grid connection has to be above or below certain levels,
respectively, for a certain duration or cross the nominal voltage in the opposite direction
of the previously critical voltage. This is conducted to prevent a premature reduction in
the reactive power adjustment in the context of highly fluctuating voltages, for example,
due to rapid passing by of clouds above a PV system. For the evaluation, we chose a
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duration of ten minutes. As the temporal resolution utilized for the power-flow studies is
one minute for the reasons stated in Section 3, ten minutes correspond to ten time steps
τ. The presented control algorithms have not yet been formally proven to lead to stable
system behavior but show stable behavior in all previously tested scenarios, including the
ones shown in Section 3. However, before deployment in a possible real-world application,
we highly urge the use of appropriate safety measures and extensive testing, especially in
scenarios where large voltage fluctuations can occur, which might be amplified if reactive
power feed-in is not adjusted fast enough.

Algorithm 1: The determination of reactive power targets by the DSO in the
centralized grid control strategy. The DSO performs this algorithm each time
updated grid status data are received and for all buildings determined to be
able to influence critical voltages in the grid or currently implementing a reac-
tive power target. Positive targets denote consumption and negative targets
generation of inductive reactive power.

Data:

umax/min-dis
b,t Max./min. node voltage within certain distance from building b

ub,t Voltage at the grid connection of building b

Smax
b Max. apparent power the PV inverter of building b

Qtar
b,t−1 Previous reactive power target for building b

Result: Qtar
b,t New reactive power target for building b

1 Qtar
b,t ← Qtar

b,t−1

2 if Qtar
b,t−1 ≥ 0.0 then

3 if ub,t > 1.09 then

4 Qtar
b,t ← Qtar

b,t−1 + 0.5 · Smax
b

5 else if ub,t > 1.07

6 ∧Qtar
b,t−1 = 0.0 then

7 Qtar
b,t ← Qtar

b,t−1 + 0.25 · Smax
b

8 else if umax-dis
b,t > 1.07 then

9 Qtar
b,t ← Qtar

b,t−1 + 0.05 · Smax
b

10 else if Qtar
b,t−1 > 0 then

11 Qtar
b,t ← Qtar

b,t−1 − 0.05 · Smax
b

12 if ub,t ≥ 1.0 then

13 for τ ∈ {t− 9, . . . , t} do

14 if umax-dis
b,τ ≥ 1.065 then

15 Qtar
b,t ← Qtar

b,t−1

16 if Qtar
b,t < 0 then

17 Qtar
b,t ← 0

18 if Qtar
b,t > Smax

b then

19 Qtar
b,t ← Smax

b

20 if Qtar
b,t−1 ≤ 0.0 then

21 if ub,t < 0.91 then

22 Qtar
b,t ← Qtar

b,t−1 − 0.5 · Smax
b

23 else if ub,t < 0.92

24 ∧Qtar
b,t−1 = 0.0 then

25 Qtar
b,t ← Qtar

b,t−1 − 0.25 · Smax
b

26 else if umin-dis
b,t < 0.92 then

27 Qtar
b,t ← Qtar

b,t−1 − 0.05 · Smax
b

28 else if Qtar
b,t−1 < 0 then

29 Qtar
b,t ← Qtar

b,t−1 + 0.05 · Smax
b

30 if ub,t ≤ 1.0 then

31 for τ ∈ {t− 9, . . . , t} do

32 if umin-dis
b,τ ≤ 0.925 then

33 Qtar
b,t ← Qtar

b,t−1

34 if Qtar
b,t > 0 then

35 Qtar
b,t ← 0

36 if Qtar
b,t < −Smax

b then

37 Qtar
b,t ← −Smax

b
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Algorithm 2: The determination of reactive power targets by a building. In the
decentralized grid control strategy, eachs building performs this algorithm as
soon as it obtains updated data on its local grid connection. Positive targets
denote consumption and negative targets generation of inductive reactive power.

Data:

ut Voltage at the building’s grid connection

Smax Maximum apparent power of the PV inverter

Qtar
t−1 Previous reactive power target

Result: Qtar
t New reactive power target

1 Qtar
t ← Qtar

t−1

2 if Qtar
t−1 ≥ 0.0 then

3 if ut > 1.09 then

4 Qtar
t ← Qtar

t−1 + 0.5 · Smax

5 else if ut > 1.07

6 ∧Qtar
t−1 = 0.0 then

7 Qtar
t ← Qtar

t−1 + 0.25 · Smax

8 else if ut > 1.07 then

9 Qtar
t ← Qtar

t−1 + 0.05 · Smax

10 else if Qtar
t−1 > 0 then

11 Qtar
t ← Qtar

t−1 − 0.05 · Smax

12 if ut ≥ 1.0 then

13 for τ ∈ {t− 9, . . . , t} do

14 if uτ ≥ 1.065 then

15 Qtar
t ← Qtar

t−1

16 if Qtar
t < 0 then

17 Qtar
t ← 0

18 if Qtar
t > Smax then

19 Qtar
t ← Smax

20 if Qtar
t−1 ≤ 0.0 then

21 if ut < 0.91 then

22 Qtar
t ← Qtar

t−1 − 0.5 · Smax

23 else if ut < 0.92

24 ∧Qtar
t−1 = 0.0 then

25 Qtar
t ← Qtar

t−1 − 0.25 · Smax

26 else if ut < 0.92 then

27 Qtar
t ← Qtar

t−1 − 0.05 · Smax

28 else if Qtar
t−1 < 0 then

29 Qtar
t ← Qtar

t−1 + 0.05 · Smax

30 if ut ≤ 1.0 then

31 for τ ∈ {t− 9, . . . , t} do

32 if uτ ≤ 0.925 then

33 Qtar
t ← Qtar

t−1

34 if Qtar
t > 0 then

35 Qtar
t ← 0

36 if Qtar
t < −Smax then

37 Qtar
t ← −Smax

2.4.6. Active Power Target Implementation
The exploitation of a building’s energy flexibility to adjust its active power consump-

tion or feed-in can be used for voltage regulation as well as reducing the utilization of
grid lines and transformers [11]. This can be especially useful in situations with a high
simultaneity of load, for example, arising from PV generation around noon or EV charging
in the evening.

To make the flexibility of a building usable for grid stabilization purposes, its BEMS
should allow for scheduling based on an active power target. In the case of the OSH, the
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already implemented evolutionary algorithm and device models are used in conjunction
with a new objective function that was implemented in [47] and is shown in Equation (3):

min
Pt∈R

1
T

T

∑
t=1

(
Pt − Ptar)2 . (3)

Here, Ptar denotes the active power target and Pt the expected active power at the building’s
grid connection for time step t ≤ T, where T is the active power target horizon. A
duration of eight hours is chosen for the active power target horizon, which corresponds
to 96 time steps for the five-minute temporal resolution of the optimization, motivated
in Section 2.4.2. This is aimed at preventing the premature exploitation of all available
active power flexibility. Preliminary testing showed that a short time period could provide
better results in the short term but often leads to significant rebound effects once the period
is passed. A more detailed analysis of different target values and horizons is planned
for future research. The summands in Equation (3) are squared to favor more even load
profiles over ones with more load spikes. This is advantageous since new load spikes
introduced by rescheduling can make a critical situation even worse, despite the new load
profile being very close to a set target on average. Since an active power target may be
communicated by the DSO but is always implemented autonomously by the particular
building and the resulting optimized load profile is never explicitly communicated to the
DSO, regardless of the currently utilized control strategy, we do not use a running index
for different buildings in this case.

Preliminary testing showed that varying the magnitude of the chosen active power
targets has no significant influence on the performance of the presented grid stabilization
algorithms, as long as the target is sufficiently lower than the current active power con-
sumption or feed-in of a building in a given critical situation. This is due to the limited
active power flexibility [24] of a building as opposed to the high reactive power flexibility
offered by inverters [27]. In a situation where grid equipment is already close to being
overloaded, it is thus important to use as much active power flexibility as possible to avoid
having to take more drastic measures, such as curtailing PV generation and EV charging or
load shedding. Consequently, for this research, Ptar is always set to 0 W. For this reason,
we do not use index variables indicating different time steps or buildings in the symbol for
the active power target.

3. Results and Discussion
To evaluate and compare the methods proposed in the previous section, simulation

studies are performed using the OSH’s multi-building simulation and load-flow study
capabilities. To adequately measure the performance of the different grid control strategies,
a scenario is needed where critical situations inevitably occur. To ensure this, a scenario
with a conventionally designed grid but highly modern and generously equipped buildings
in the summer, when PV generation is the highest, is chosen for the evaluation. We assume
that if the proposed control strategies show a good performance in an extreme scenario
such as the one chosen, they most likely perform well in less extreme scenarios as well.
All simulated buildings possess intelligent appliances, a PV system, a BESS, an EV, and
either an HP or a CHPP. While the building simulation runs with a temporal resolution
of one second, the resolution of the power-flow studies is chosen as one minute since
the most highly fluctuating simulation component is the utilized PV profile, which was
measured with a one-minute resolution. As a result, the grid control algorithms work
with a one-minute resolution as well. The configurations of the grid, the buildings, the
evolutionary algorithm, and the temporal resolutions for the different components of the
simulation are given in Table 4.
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Table 4. The configuration of the simulated grid and buildings, the evolutionary algorithm, and the
temporal resolutions of the simulation components. The grid configuration as well as the distributions
of inhabitants, PV, heating systems, and BESSs are adopted from the village grid and the the day after
tomorrow scenario utilized in [11]. The average grid connection point distance is increased from 34 m
to 84 m, which is a top end value for villages according to the distribution given in [48].

Parameter Value (s)

Transformer nominal power 400 kVA
Voltage on primary side of transformer Contains a random component as in [11]
Grid topology Radial
Feeders 5
Distributing cabinets 5
Grid line type NAYY 4x150 SE, buried cable
Average grid connection point distance 84 m
Grid nodes 62
Grid connection points (buildings) 55

Inhabitants per building 1–5, average: 2.927

Base load profile H0, adjusted for weekday, Saturday, Sunday, day of the
year, and number of inhabitants

Simulated appliances (additional to base load)
Dishwasher, washing machine, tumble dryer, induction
hob, electric oven (probability based starting times,
according to [24])

Flexible appliances Dishwasher, washing machine, tumble dryer
PV system peak power 6–30 kWp (Inverter: 6.316 kVA–33.333 kVA)

PV system power profile Measured at the FZI House of Living Labs in 2013, scaled
to respective peak powers

BESS capacity 6–10 kWh

BESS max. active charge/discharge power 4.2–7 kW (cos(φ) = 1), power exchange with grid
permitted

CHPP (if no HP is used) 1 kWel (cos(φ) = 0.9), 4 kWth, 5.682 kWgas

Air source HP (if no CHPP is used)
6.7 kWel (cos(φ) = 0.95), coefficient of performance
(COP) between 1.2 and 5.1 depending on air and hot
water tank temperature

Hot water storage tank 750 L, θmin/max = 60/80 ◦C (CHPP), 40/60 ◦C (HP), used
for both domestic and heating hot water

EV battery capacity 85 kWh

EV max. active charge power 22 kW (cos(φ) = 0.99), variable charging, no discharging,
usage model developed in [49]

Evolutionary algorithm population size 100 solution candidates

Evolutionary algorithm stopping criteria 100,000 generations reached or fitness delta ≤5× 10−5

for 20 generations

Random seeds (appliance and domestic hot
water usage, EV driving distances, evolutionary
algorithm initialization)

5 per building, different for each building

Building simulation temporal resolution 1 s
PV profile temporal resolution 1 min
Power-flow studies temporal resolution 1 min
Grid control algorithms temporal resolution 1 min
Optimization algorithm temporal resolution 5 min

A schematic of the simulated low-voltage grid used for the power-flow studies is
given in Figure 3. The topology of this particular grid was first developed in [26] and
revised in [11]. For the evaluation in this article, to ensure the occurrence of voltage
range deviations, we increased the average distance between the grid connection points
of the considered grid from the original value of 34 m in [11] to 84 m. While 34 m is
an average value for the average distance between grid connection points in villages,
84 m represents a top end value for this average distance according to the distribution
given in [48]. Additionally, we applied an MVA base value of 0.4 to the transformer
impedance instead of the value 0.63, which was given in the grid specification in [11]. We
assume this to be more realistic for a 400 kVA transformer since, according to [50], the
permissible efficiency of a transformer, which is determined by its impedance, decreases
with decreasing nominal power.

To gain a meaningful assessment of the abilities of the different grid control strategies
utilized depending on the availability of communication infrastructure, we simulate the
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entire first week of July five times for each control strategy using five different random
seeds per building and differing random seeds among the buildings. The random seeds
are used for the appliance, domestic hot water, and EV usage, as well as the initialization
of the evolutionary algorithm. 30 June and 8 July are simulated as well, but the results
for these days are discarded. This extension of the simulated time span ensures realistic
initial states of charge (SoCs) for the BESSs and EVs as well as initial temperatures for the
hot water storage tanks at the beginning of the week and prevents unrealistic building
behavior caused by the rolling horizon optimizations the buildings utilize at the end of
the week.

The simulation studies are performed on a compute cluster. Each simulation run
is performed on six Intel Xeon Gold 6230 cores with activated hyperthreading, clocked
at 2.1 GHz and 12 GB of Memory. Using this hardware configuration, one simulation
run takes between 6.1 and 12.5 h, depending on the considered control strategy and the
randomized building behavior. The data generated by the simulations is publicly available
at KITopen [51].

To visualize the effects of and the significant differences between the control strategies,
the progressions of the maximum local voltage in the grid, the transformer winding hot-
spot temperature, and the maximum local line current in the grid are plotted for 1 July. To
make the progressions for the different control strategies comparable, the results shown in
the following figures are based on the same random seed configuration for every strategy.
To simplify the presentation, voltages and line currents are normalized to their respective
nominal values. The respective maximum sustainable values are indicated by red dotted
lines. The maximum sustained value of 120 °C for the winding hot-spot temperature of the
transformer is taken from [31] and the admissible voltage range of ±10% from [28]. As a
point of reference, the progressions that result from using no flexibility-based grid control
strategy are plotted as well.

The progressions for the different control strategies, if only reactive power control and
no active power targets are used to influence critical situations, are shown in Figure 6.

The reactive power control is able to prevent all voltage range deviations in the
considered time period, regardless of whether centralized or decentralized control is
utilized. Since the centralized approach also includes nodes with critical voltages within
a certain distance from a building in the control algorithm, it is able to more reliably stay
below the upper criticality boundary of 1.07 pu than the decentralized approach. However,
at least in this case, this does not inhibit the decentralized strategy from preventing all
voltage deviations from the admissible range that would otherwise occur. If a VRDT is
used, all voltages stay within the admissible range as well. Here, it does not matter if
the VRDT is used with or without centralized reactive power control since the cascade of
measures defined in Section 2.4.2 favors VRDT usage over reactive power control. As a
consequence, the corresponding voltage progressions, as well as the other progressions,
are almost identical.

The transformer temperature and maximum line current progressions show that
the prevention of voltage range deviations comes at a price. Both the centralized and
decentralized control strategies produce significantly more frequent and pronounced
congestions due to the additional transmitted reactive power. Here, the decentralized
strategy is at an advantage as the buildings do not consider critical voltages in their
neighborhood and thus feed-in or draw less reactive power as they would in the centralized
strategy.

Changing the VRDT’s transmission ratio to enable lower voltages entails higher
currents and consequent losses on its windings and all grid lines, as the same power has to
be transmitted. Hence, the transformer temperature and the line current are elevated when
using a VRDT as well. While the increase in line current is more moderate, the increase
in transformer temperature ranges between the centralized and decentralized strategies.
For the lifetime of the transformer, the decentralized reactive power control strategy might
consequently be slightly advantageous compared to using a VRDT.
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Figure 6. Performance comparison of the centralized and decentralized grid control strategies. Here,
only reactive power control is used. Grid status progressions without flexibility-based grid control
are given as a reference. The simulated day is 1 July. For comparability, all displayed progressions
are based on the same random seeds. Maximum admissible values are indicated by red, dotted lines.
(a) shows the progressions of the maximum node voltage in the grid. (b) shows the progressions of
the transformer temperature. (c) shows the progressions of the maximum line current in the grid.
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Figure 7 shows the progressions that result from using only active power targets and
no reactive power control.

In this configuration, the centralized and the decentralized control strategies perform
very similarly on this particular simulated day. However, as the aggregated results, shown
later in this section, indicate, this is an exception rather than the rule. This becomes appar-
ent when taking the average SoCs of the buildings’ BESSs into consideration. Different
initial BESS SoCs at the beginning of a particular day can arise from different random seeds
and utilized control strategies that influence the charging behavior in the prior days. For
the progressions shown in Figure 7, the average initial SoC of the buildings’ BESSs for the
decentralized strategy is 37%, while it is 29% for the centralized strategy without a VRDT
and 16% if a VRDT is used. As a consequence, in this particular case, the centralized strat-
egy has more available active power flexibility it can utilize to improve critical situations,
which coincidentally approximately compensates for a different effect that, by contrast,
benefits the decentralized strategy. This effect stems from the different indicators used to
trigger counter measures against congestions (see Sections 2.4.2 and 2.4.4). Since, in the
decentralized strategy, a building starts to implement an active power target already at rel-
atively low deviations from the nominal voltage, power targets are generally implemented
earlier. This gives the buildings time to fully discharge already partially charged BESSs and
prevents fully discharged BESSs from charging too early before the grid status becomes
critical. The lower SoC can then be used to decrease the highest PV feed-in powers later in
the day more substantially and for longer time periods, as the BESSs can charge with higher
power and for longer durations. This indicates potential for improving the centralized
strategy but also shows the viability of the decentralized strategy as well as the usefulness
of the local voltage as an indicator for all considered types of critical situations. For other
days and random seeds, preconditions, such as the initial SoCs, could be significantly
different, which potentially enables the decentralized strategy to perform better than the
centralized one. This underlines the importance of using multiple random seeds and days
to comprehensively evaluate the performance of the proposed strategies.

Voltage range deviations can not be fully prevented by using only active power targets.
However, they can be reduced in their average magnitude for the progressions shown and
could potentially also reduce their frequency for lower overall loads. Here, the additional
usage of reactive power would be helpful to prevent the remaining deviations. If the
centralized strategy also includes a VRDT, all deviations are prevented.

In this configuration, the control strategies that use the buildings’ flexibility show
very strong performance in reducing the transformer temperature and the maximum line
current, especially compared to the scenarios where a VRDT is used for voltage regulation.
The reductions are so substantial that almost all congestions are prevented. This shows
the potential of exploiting the flexibility modern buildings can provide when it comes to
increasing the resilience of low-voltage grids without resorting to grid expansion or forcible
load curtailment.

Finally, the progressions resulting from a combination of reactive and active power
adjustment are shown in Figure 8.

Here, the centralized strategy performs better when it comes to reducing voltages but
not in a meaningful way since the decentralized strategy still manages to keep even the
highest voltages inside the admissible range for the considered time period.

Both strategies are able to substantially reduce the transformer temperature compared
to the scenarios without a control strategy that uses building flexibility, especially for
the one where a VRDT is used for voltage regulation. The substantial improvement also
compared to the temperature progressions for the purely reactive power-based voltage
control in Figure 6 stems not only from the lower load generated by active power. It
also emerges from the reduced need for utilizing reactive power resulting from the lower
voltages that this smaller active load induces.
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Figure 7. Performance comparison of the centralized and decentralized grid control strategies. Here,
only active power targets are used. Grid status progressions without flexibility-based grid control
are given as a reference. The simulated day is 1 July. For comparability, all displayed progressions
are based on the same random seeds. Maximum admissible values are indicated by red, dotted lines.
(a) shows the progressions of the maximum node voltage in the grid. (b) shows the progressions of
the transformer temperature. (c) shows the progressions of the maximum line current in the grid.
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As a result of the lower amount of reactive power transmitted when using the de-
centralized control strategy, the decentralized strategy should technically outperform the
centralized strategy when it comes to reducing the transformer temperature. This is the
case in Figure 6, where only reactive power control is used. However, when both control
options are used, the decentralized strategy performs worse on this particular day. The
reason for this behavior is the same as for the behavior previously observed in Figure 7. In
this case, the described effect is even stronger, as the average initial SoC of the buildings’
BESSs for the decentralized strategy is 36%, while it is 18% for the centralized strategy
without a VRDT and 21% if a VRDT is used.

Despite the aforementioned obstacles, the decentralized approach still outperforms
the centralized strategy in reducing line currents as long as no VRDT is used. However,
the use of a VRDT almost eliminates the additional transmission of reactive power via grid
lines and thus keeps line currents substantially lower than the decentralized strategy and
the centralized strategy without a VRDT.

To give a performance overview of all tested control strategies, Table 5 summarizes
the deviations from all admissible grid status ranges considered in this article for the entire
simulated week. The displayed values are the averages of the five different random seed
configurations. The outage times, which are given in percentages, are calculated by dividing
the number of all simulation time steps where a particular admissible range is violated
at one or more locations in the grid by the total number of simulated time steps. The
name “outage time” is chosen because all of these violations can entail electricity outages.
The relative increases or reductions in outage time compared to the scenario where no
grid control strategy is used are given in the relative change columns. Table 5 shows that
compromises have to be made when deciding on control options. The only option that
reliably reduces all types of outage is the exclusive usage of active power targets. The
(additional) usage of a VRDT or reactive power control can substantially decrease and
almost eliminate voltage-based outages but also increases congestions. Hence, these voltage
regulation measures should only be used in combination with active power targets, as long
as transformers and grid lines are not dimensioned for significantly higher maximum load
than the grid equipment in the considered simulated low-voltage grid.

A remarkable observation, already indicated in the interpretation of the previous
figures, can be made when comparing the performances of the centralized and the de-
centralized strategy. As long as no VRDT is used, the decentralized strategy performs
better or at least comparably to the centralized one, regardless of whether reactive power
control, active power targets, or both are used, despite the lacking availability of com-
prehensive grid status data. As in Figure 6, this can partially be explained by the lower
magnitudes of reactive power transferred when using the decentralized strategy due to the
non-involvement of critical voltages in a building’s vicinity in its decision-making process.
However, this does not explain the outperformance even when only active power targets
are used. As mentioned earlier, this is an effect of the different congestion management
used in the decentralized strategy, which enables preventive charging or discharging of
BESSs to increase the flexibility for possible critical situations later on. This means that
the performance of the centralized strategy could be improved by making it work more
similarly to the decentralized one, for example, by decreasing the distance in which the
voltages of neighboring nodes are included in the determination of reactive power targets.
Another way could be to decrease the transformer temperature and line utilization at which
counter measures are triggered even further.

In the tested scenario, the major advantage of being able to use the centralized grid
control strategy is the possibility of using a VRDT, which reduces voltage range deviations
almost as effectively on average as reactive power-based voltage regulation but entails
substantially fewer additional grid line congestions.
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Figure 8. Performance comparison of the centralized and decentralized grid control strategies. Here,
both reactive and active power flexibility are used. Grid status progressions without flexibility-based
grid control are given as a reference. The simulated day is 1 July. For comparability, all progressions
are based on the same random seeds. Maximum admissible values are indicated by red, dotted lines.
(a) shows the progressions of the maximum node voltage in the grid. (b) shows the progressions of
the transformer temperature. (c) shows the progressions of the maximum line current in the grid.
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Table 5. An overview of the simulation results for all grid control strategies and options. The outage
time corresponds to the percentage of time when one or more grid status variables are outside of the
admissible range at one or more locations in the grid.

Control Strategy Control Options

Reactive Power Control Active Power Targets Both

Outage Time Relative
Change Outage Time Relative

Change Outage Time Relative
Change

One or more node voltages outside of admissible range (+/−10%)
None 3.3093% - 3.3093% - 3.3093% -
None + VRDT 0.0212% −99.36% 0.0212% −99.36% 0.0212% −99.36%
Centralized 0.0032% −99.90% 2.9302% −11.45% 0.0034% −99.90%
Centralized + VRDT 0.0216% −99.35% 0.0121% −99.63% 0.0139% −99.58%
Decentralized 0.0049% −99.85% 2.8370% −14.27% 0.0029% −99.91%

Admissible sustained transformer temperature (120 °C) exceeded
None 7.3313% - 7.3313% - 7.3313% -
None + VRDT 10.7500% 46.63% 10.7500% 46.63% 10.7500% 46.63%
Centralized 11.3512% 54.83% 3.8472% −47.52% 8.7401% 19.22%
Centralized + VRDT 10.7321% 46.39% 8.1726% 11.47% 8.0694% 10.07%
Decentralized 10.0694% 37.35% 3.0913% −57.83% 6.1468% −16.16%

Rated current of one or more lines exceeded
None 0.0366% - 0.0366% - 0.0366% -
None + VRDT 0.1481% 304.33% 0.1481% 304.33% 0.1481% 304.33%
Centralized 0.7541% 1958.03% 0.0050% −86.46% 0.7060% 1826.71%
Centralized + VRDT 0.1457% 297.56% 0.0649% 77.26% 0.0662% 80.69%
Decentralized 0.6816% 1760.20% 0.0031% −91.52% 0.5224% 1325.81%

4. Conclusions
In this article, we developed methods to improve the resilience of low-voltage grids by

exploiting the internal energy flexibility of modern buildings with BEMSs. We presented
strategies that utilize centralized as well as completely decentralized grid control in an
MAS comprising the BEMSs of modern buildings, a central grid controller utilized by
the DSO and the local controller of a distribution transformer, which can also be a VRDT.
These strategies and the MAS form the basis for an anticipated adaptive grid control
system that we plan to implement in the future. This system uses different grid control
strategies depending on the availability of suitable communication infrastructure, thus
providing resilience not only against electricity outages but also against communication
failures. It will be able to use the centralized strategy for comprehensive observation
and control by considering all relevant grid status data, as long as functioning commu-
nication infrastructure is available, as well as provide resilience against communication
failures by appropriately switching to the decentralized strategy. The decentralized grid
control strategy could also be used exclusively in scenarios where reliable communication
infrastructure is generally unavailable.

To answer the research questions posed in Section 1, the developed strategies were
evaluated in a simulated scenario designed to represent the most extreme load conditions
that might occur in low-voltage grids in the future. The strategies can substantially reduce
voltage range deviations, transformer temperatures, and line congestions, even during
communication failures, i.e., if the decentralized strategy is used, and thereby comprehen-
sively increase the resilience of the grid in the evaluation scenario. However, there is a
trade off between the reduction of congestions and the strict adherence to the admissible
voltage range. The use of reactive power or a VRDT to regulate voltages more effectively
compared to utilizing only active power flexibility entails higher currents on grid lines and
transformers. As a consequence, we propose using these measures only in conjunction
with active power flexibility or in grids that exclusively exhibit problematic voltages.

Remarkably, the decentralized control strategy, utilized if reliable communication is
unavailable, shows very competitive performance to the centralized one, even surpass-
ing it substantially in reducing outage times triggered by congestions as long as a VRDT
is not available. This can be explained by its reliance on more preemptive grid control
measures. Consequently, the lower performance of the centralized strategy can potentially
be improved by adjusting it to work more similarly to the decentralized one. Another
advantage of the decentralized strategy is the mentioned possibility of using it exclusively
to increase grid resilience even in the general absence of dedicated communication infras-
tructure. If used exclusively, it also provides higher degrees of privacy and autonomy
for electricity customers. However, a major advantage of the centralized strategy is the
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possibility of using a VRDT since comprehensive grid status data is available to decide
on control commands for the VRDT, which is not the case for the decentralized strategy.
The usage of a VRDT can improve voltages substantially while causing fewer and less
pronounced congestions than reactive power control. Consequently, the answer to the
question of how much communication is needed to exploit the available flexibility depends
on whether a VRDT is available or not and by how much the centralized control strategy
can be improved in the future.

The observations made while evaluating the developed control strategies imply var-
ious starting points for future research. A further adjustment of the various parameters
used in the strategies, especially for the centralized one, would most likely improve the
performance further. In this context, it would be useful to perform parameter studies
to find optimal settings. Furthermore, a consensus-based control strategy for situations
where the central controller fails, but communication among buildings and the transformer
is still possible, could be implemented. Here, the buildings could incorporate the data
measured by other buildings and the transformer into their decision making and the local
controller of a VRDT could decide on control actions based on the data communicated
by the buildings. Methods that allow the buildings and the transformer to automatically
detect communication failures and autonomously switch between centralized, consensus-
based, and decentralized strategies have to be implemented to obtain the anticipated fully
adaptive grid control system. We also plan to implement methods that allow forcible
load curtailment that could be used when the exploitation of flexibility is not sufficient to
resolve a critical situation. The control strategies could also be evaluated for different load
scenarios, such as the winter and intermediate months or highly synchronized EV charging.
In addition, it would be advantageous to quantify the amount of additional energy that can
be transmitted with low-voltage grids, at least for specific scenarios, by using the flexibility
of smart buildings. Such results could be useful when deciding on grid dimensioning or
implementing grid extensions.
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Abbreviations
The following abbreviations are used in this manuscript:

AS Ancillary service
BEMS Building energy management system
BESS Battery energy storage system
BSI German Federal Office for Information Security
CHPP Combined heat and power plant
COP Coefficient of performance
DER Distributed energy resource
DSO Distribution system operator
EMS Energy management system
EV Electric vehicle
HP Heat pump
MAS Multi-agent system
PV Photovoltaic
SoC State of charge
VRDT Voltage regulated distribution transformer
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