KIT | KIT-Bibliothek | Impressum | Datenschutz

Mechanistic illustration: How newly‐formed blood vessels stopped by the mineral blocks of bone substitutes can be avoided by using innovative combined therapeutics

Bornert, F.; Clauss, F.; Hua, G.; Idoux-gillet, Y.; Keller, L.; Fernandez De Grado, G.; Offner, D.; Smaida, R.; Wagner, Q.; Fioretti, F.; Kuchler-bopp, S.; Schulz, G.; Wenzel, W. 1; Gentile, L.; Risser, L.; Müller, B.; Huck, O.; Benkirane-jessel, N.
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract:

One major limitation for the vascularization of bone substitutes used for filling is the presence of mineral blocks. The newly-formed blood vessels are stopped or have to circumvent the mineral blocks, resulting in inefficient delivery of oxygen and nutrients to the implant. This leads to necrosis within the implant and to poor engraftment of the bone substitute. The aim of the present study is to provide a bone substitute currently used in the clinic with suitably guided vascularization properties. This therapeutic hybrid bone filling, containing a mineral and a polymeric component, is fortified with pro-angiogenic smart nano-therapeutics that allow the release of angiogenic molecules. Our data showed that the improved vasculature within the implant promoted new bone formation and that the newly-formed bone swapped the mineral blocks of the bone substitutes much more efficiently than in non-functionalized bone substitutes. Therefore, we demonstrated that our therapeutic bone substitute is an advanced therapeutical medicinal product, with great potential to recuperate and guide vascularization that is stopped by mineral blocks, and can improve the regeneration of critical-sized bone defects. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000137040
Veröffentlicht am 12.09.2021
Originalveröffentlichung
DOI: 10.3390/biomedicines9080952
Scopus
Zitationen: 5
Web of Science
Zitationen: 5
Dimensions
Zitationen: 6
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2021
Sprache Englisch
Identifikator ISSN: 2227-9059
KITopen-ID: 1000137040
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in Biomedicines
Verlag MDPI
Band 9
Heft 8
Seiten 952
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page