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Abstract: In this paper we provide a numerical approximation of bifurcation branches from nodal radial so-

lutions of the Lane Emden Dirichlet problem in the unit ball inR
2, as the exponent of the nonlinearity varies.

We consider solutions with two or three nodal regions. In the first case our numerical results complement the

analytical ones recently obtained in [11]. In the case of solutions with three nodal regions, for which no ana-

lytical results are available, our analysis gives numerical evidence of the existence of bifurcation branches.

We also compute additional approximations indicating presence of an unexpected branch of solutions with

six nodal regions. In all cases the numerical results allow to formulate interesting conjectures.
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1 Introduction
Consider the classical Lane-Emden problem{

−Δu = |u|p−1u in B

u = 0 on ∂B,
(1.1)

when B ⊂ R
2 is the open unit ball centered at the origin and p > 1.

It is well known that (1.1) admits only one positive solution and infinitely many sign changing solutions

as it can be easily shown by exploiting the oddness of the nonlinearity and standard variational methods.

Among the sign changing solutions (also called nodal solutions) there are infinitely many radially sym-

metric ones which are obtained by applying variational methods in the space H1
0,rad(B) which is the subspace

ofH1
0(B) given by radial functions. Actually it could be proved that, for anym ∈ N,m > 1 there exists a unique

radial solution to (1.1) withm nodal regions andwhich is positive at the origin ([13], [14], [15]). By nodal region

of a function u we mean a connected component of the set {x ∈ B : u(x) ≠ 0}. In particular there exists only
one radial solution with two nodal regions and positive at the origin. We will recall later other properties of

this solution which, from now on, will be denoted by u2,p for every p > 1. Among nonradial solutions there

are infinitely many “obvious solutions” which are invariant by the action of the discrete group of symmetries

given by the rotations of angle 2π
k
, k ≥ 2 and which are obtained by the odd reflections of the unique positive

solution in the spherical sector of angle 2π
2k

= π
k
.
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Note that the radial symmetry and the discrete 2π
k
-symmetry correspond to all the possible symmetries

of the eigenfunctions of the Laplace operator −Δ in the space H1
0(B).

Until recently there was no evidence that other kind of nonradial solutions of (1.1) could exist. Then,

in the paper [8], studying the Morse index m(u2,p) of the radial solution u2,p with two nodal regions it was

proved thatm(u2,p) = 12, for p sufficiently large. Thiswasderived, amongother things, by aprevious accurate

analysis of the asymptotic behavior of u2,p as p → +∞, done in [12]. The definition ofMorse index of a solution

will be recalled in Section 2.

On the other side, as p → 1, the solution u2,p, suitably normalized, converges (as one would expect)

to a radial eigenfunction of −Δ in H1
0(B) with two nodal regions, whose Morse index is 6 (see [11] for the

details). Then the change of Morse index m(u2,p), as p varies from 1 to ∞, allows to claim that the solutions

u2,p become degenerate (i.e., the linearized operator at u2,p admits zero as an eigenvalue) and this, in turn,

allows to prove that some branches of nonradial solutions bifurcate from the solutions u2,p, for some values

of the exponent p. All this is proved in the paper [11] andwill be summarized in Section 2. Since the nonradial

bifurcating solutions are close to the radial ones at the starting of the branches, it can be shown that they have

twonodal regions, thenodal linedoesnot touch ∂B but they arenot radial.Moreover it canbeproved that they

have some discrete symmetry ([11]). These solutions are called quasiradial in [11] and they are different from

the symmetric solutions vk obtained by the odd reflections of the unique positive solutions in the spherical

sector of angle π
k
, k ≥ 2, since the nodal line of vk, obviously, intersects the boundary of B.

Thus they are “new” sign changing solutions characterised by the fact of having an interior nodal line.

Let usmention that nodal solutions of this typewere found inmore general symmetric domains in [7] by some

energy comparison, but not proving the existence of bifurcation branches.

The bifurcation result is obtained in [11] by analytical methods relying on degree arguments and on a

result of [6]. This approach gives a rigorous proof of the existence of three bifurcation branches and also of

the discrete symmetry of the nodal solutions along the branches.

However, as typical of analytical methods, it fails to give other quantitative and qualitative information

such as the one about the values of the exponent p at which bifurcation occurs or about the comparison

between the energy levels of the radial solutions and those of the nonradial solutions along the bifurcating

branches. Other questions like the shape of the nodal lines, the possible existence of secondary bifurcation

branches or the study of bifurcation from other nodal radial solutions have not yet been treated by analytical

methods.

In this paper we use numerical evidence to give a description of the bifurcation from nodal radial solu-

tions with 2 or 3 nodal regions.

The numerical procedure is the following. The first step is to establish numerical approximations to the

radially symmetric solutions with two and three nodal regions. Then we look for the values p0 where the lin-

earized operator at the corresponding radial solution has an eigenvalue zero. Once these values are detected

we find numerically approximations of the nonradial solutions along the bifurcating branches by using the

eigenfunctions of the linearization corresponding to the zero eigenvalues. This allows to start the nonradial

branches and then we use a branch following technique to continue the branch for larger values of p. The

Newton iteration behind these computations also provided, by “accidental” convergence, an additional un-

expected branch which apparently has no path connection with the other branches found.

Once the approximate solution branches have been obtainedwe investigate some analytical and geomet-

rical properties of the numerical solutions, in particular their energy. In this waywe obtain several numerical

results which, on one side complement the analytical results of [11] and on the other side help to formulate

conjectures about the exact solutions.

In particular we obtain:

1) some values of p at which bifurcation from the approximate radial solution u2,p with two nodal regions

occurs,

2) the energy levels of the approximate radial and nonradial solutions so to compare them,

3) the pictures of the approximate nonradial solutions, their level sets, their nodal lines,

4) some values of p at which bifurcation from the approximate radial solutions with three nodal regions

occurs,



270 | B. Fazekas et al., Approximate nonradial solutions for the Lane-Emden problem in the ball

5) the nonexistence of secondary bifurcations, at least up to certain values of p,

6) the bifurcation diagram in the cases 1) and 4),

7) an independent new branch of approximations with 6 nodal regions, which near p = 1 have a similar

shape as the “obvious solutions” obtained by odd reflection of the unique positive solution on the spheri-

cal sector with opening angle π
5 , but for larger p substantially differ from these, preserving however their

discrete rotational symmetry.

The numerical results 1), 2), 3), and 6) complement and give a nice description of the analytical results ob-

tained in [11], while 4) and 6) allow to conjecture that bifurcation arises also fromother nodal radial solutions,

in particular from the ones with three nodal regions. Finally 5) indicates that secondary bifurcation should

not occur, while 7) leads to the conjecture that some bifurcation from the “obvious solutions” should occur.

Our results will be stated in Section 2 together with a short survey of some previous analytical results

which motivated our numerical investigation. In Section 3 we describe the numerical results.

2 Preliminaries and Statement of the Numerical Results
Let us consider the energy functional:

Ep(u) =
1

2

∫
B

|∇u|2dx − 1

p + 1

∫
B

|u|p+1dx, u ∈ H1
0(B) (2.1)

which is related to the variational formulation of (1.1), and the so called Nehari manifold defined by:

N = {v ∈ H1
0(B) \ {0} :

∫
B

|∇v|2dx =
∫
B

|v|p+1dx}.

It is well known that there exists only one positive solution of (1.1) which is obtained by minimizing Ep(u) on

N and which has Morse index one.

We recall the definition of Morse index for a solution to (1.1).

Definition 1. Let u be a weak solution of (1.1). TheMorse index m(u) is the number of the negative eigenvalues,

counted by multiplicity, of the linearized operator Lu at u:

Luv = −Δv − p|u|p−1v, v ∈ H1
0(B). (2.2)

Concerning sign changing solutions it is proved in [3] that the minimum of the functional Ep on the so called

nodal Nehari set:

N± = {v ∈ H1
0(B) : v

+ ≠ 0, v− ≠ 0,

∫
B

|∇v+|2dx =
∫
B

|v+|p+1dx,

∫
B

|∇v−|2dx =
∫
B

|v−|p+1dx} (2.3)

is attained (v+ and v− are the positive and negative part of v).

A function ũp which attains the minimum of Ep onN± is therefore called a least-energy nodal solution of

(1.1) and it has only two nodal regions and Morse index m(ũp) = 2, ∀p > 1 (see [3] and also [5]).

While the least-energy positive solution is always radially symmetric by the famous result of Gidas, Ni,

and Nirenberg ([10]), the same does not hold for the least-energy nodal solution. Indeed it was proved in [1]

and then extended in [9] that the Morse index of the radial solution u2,p with two nodal regions satisfies:

m(u2,p) ≥ 4 (2.4)

and hence cannot be a least-energy nodal solution. Moreover it is proved in [4] and [16] that a least-energy

nodal solution ũp is even in one Cartesian variable and its nodal line touches ∂B (which gives another reason
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for ũp not being radial). These properties suggest that ũp should be oddwith respect to the other variable and

hence coincides with the odd reflection of the unique positive solution on the half-disk {(x, y) ∈ B : x > 0}.
This is an interesting question which is still open so far.

As recalled in Section 1, problem (1.1) admits a unique nodal radial solution, positive at the origin, having

exactly m nodal regions, for every m ∈ N,m ≥ 2. Moreover it has infinitely many sign changing solutions

which are invariant under rotations of angle 2π
k
, k ≥ 2, obtained by the odd reflections of the unique positive

solution in the spherical sector of amplitude π
k
. These solutions are “obvious” nodal solutions to (1.1).

Recently in [11], exploiting some results of [8], new types of nodal solutions have been found, by studying

the bifurcation from the nodal radial solution u2,p (having 2 nodal regions) as the exponent p varies.

More precisely the authors introduce the space Xk = H1
0,k(B) ∩ C1,α(B̄), where H1

0,k(B) is the subspace of

H1
0(B) givenby the functionswhich are even in oneCartesian variable and

2π
k
-periodic in the angular variable,

∀k ∈ N, k ≥ 2.

Their result is the following.

Theorem 1. For any k = 3, 4, 5 there exists at least one exponent pk > 1 such that (pk , u2,pk ) is a nonradial

bifurcation point for problem (1.1). The bifurcating solutions are sign changing, nonradial, belong to Xk and,

close to the bifurcation point, have two nodal domains and the nodal line does not intersect the boundary.

Moreover the bifurcation is global and at any point along each branch, either the solution belongs toXk \Xj , ∀j >
k or it is radial.

So the solutions bifurcating from the radial solutions u2,p cannot be one of the “obvious solutions” described

before, at least for p close to the bifurcation values pk.

Several questions arise from this interesting result. We list some of them.

Q1) Is it possible to estimate the values of p at which bifurcation occurs?

Obviously this is very difficult by analytical methods because usually bifurcation theory only allows to

prove the existence of the bifurcating branches. This question was one of our first motivations for the

numerical investigation.

Next, one could consider the least-energy nodal solution in the space H1
0,k(B) and wonder whether this is

radial or not.

Q2) Do the solutions in H1
0,k(B) on the bifurcating branches have lower energy than the radial ones, for the

same values of the exponent p?

As mentioned before, the radial solutions u2,p are not least-energy in the whole space H
1
0(B), but could min-

imize the energy among the solutions in H1
0,k(B). In [11] it has been shown that this does not happen for p

large.

The bifurcation shown in Theorem 1 is global, but analytically is not proved what shape the solutions

have along the branches. Also the behavior of the bifurcation branches as p grows is not clear.

Q3) What is the shape of the solutions along the bifurcation branches? Is the nodal line always in the interior

of B? Do the solutions exhibit peaks, as p increases?

Q4) How does the bifurcation diagram look? Are there secondary bifurcation branches?

Finally, one would like to know whether nonradial bifurcation occurs also from other radial solutions with

more than two nodal regions. Recently in [2] theMorse index of all radial solutions of (1.1) has been computed

for p large, showing that, as in the case of two nodal regions, the Morse index should change as p increases

from 1 to ∞. This seems to indicate that some bifurcation could occur in the spaces H1
0,k(B), for some k.

The rigorous analytical proof of such bifurcations presents some difficulty and, as far as we know, has

not been carried out.

Q5) Is there bifurcation from the radial solution with three nodal regions? What symmetry do the solution

have along the branches?

In this paper we use numerical evidence to indicate answers to the above questions.

Our results must of course be understood in the sense that the numerical solutions we find are only ap-

proximations of possible “true” solutions.

The numerical results can be summarized as follows.
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Proposition 1. Let v2,p (respectively v3,p) be an approximation to a nodal radial solutionwith two (respectively

three) nodal regions. Then

i) approximately at the values p1 = 1.7, p2 = 3.4, p3 = 10.2 there are bifurcation branches emanating

from v2,pi , i = 1, . . . , 3. The solutions on the branches have symmetry with respect to rotations of angles
2π
i+2 , i = 1, . . . , 3, respectively, (see Figure 7) (Question Q1),

ii) the approximate nonradial solutions on the branches have energy less than the radial solutions v2,p (for the

same values of p) at least for p in an interval (pi , p̄), (see Table 2) (Question Q2),

iii) the nodal line of the approximated nonradial solutions on the bifurcation branches is in the interior of B

and their negative part exhibits some peaks, (see Figures 4, 5, 6) (Question Q3),

iv) the bifurcation diagram in Figure 7 shows that the bifurcating branches do not intersect and there are no

secondary bifurcation branches (Question Q4),

v) also from v3,p there are bifurcating branches approximatively at the values of the exponent q1 = 1.1, q2 =

2.0, q3 = 3.1. The solutions on the branches have symmetry of type 2π
j+4 , j = 1, . . . , 3, (see Figure 12)

(Question Q5),

vi) an additional independent solution branch appears to exist, the solutions on it have symmetry of type 2π
5 ,

(see Figure 13).

Similar results as ii) - iv) hold for the approximate nonradial solutions bifurcating from v3,p (see Section 3).

3 Numerical Results

3.1 Basis functions

For approximately solving equation (1.1) we use aNewton iteration. In the single Newton steps a Ritz-Galerkin

procedure with the basis functions defined below is applied. An appropriate start of the Newton iteration is

obtained via path-following techniques explained in the next subsection.

By elliptic regularity every solution of the problem is in C2(B). In view of this fact, we choose basis func-

tions which also have this property. As a first step we transform equation (1.1) into polar coordinates, i.e.,

∂2u

∂r2
+
1

r

∂u

∂r
+
1

r2
∂2u

∂φ2
= −|u|p−1u.

We look for appropriate basis functions of the form

Fji(r, φ) = fji(r) cos(jφ), j = 0, 1, . . . ,m, i = 1, . . . , nj ,

Gji(r, φ) = fji(r) sin(jφ), j = 1, 2, . . . ,m, i = 1, . . . , nj ,

respectively, where fji ∈ C2[0, 1] for j = 0, 1, . . . ,m, i = 1, . . . , nj.

We are finally interested only in approximations to solutions of (1.1) which are symmetric with respect

to reflection at some line through the origin. In order to avoid redundant rotational copies, we therefore use

only the basis functions Fji (and not the Gji).

The continuity of the basis functions on B requires that fji(0) = 0 for j = 1, . . . ,m, i = 1, . . . , nj. Let

us formulate a sufficient condition for the continuity of the first derivatives of the basis functions. For this

purpose we compute∇Fji (in polar coordinates), which gives

∇Fji =

(
∂Fji
∂r

cosφ −
∂Fji
∂φ

sinφ

r
,
∂Fji
∂r

sinφ +
∂Fji
∂φ

cosφ

r

)

=

(
f ′ji(r) cosφ cos(jφ) +

j

r
fji(r) sinφ sin(jφ) ,

f ′ji(r) sinφ cos(jφ) −
j

r
fji(r) cosφ sin(jφ)

)
.
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Since fji ∈ C2[0, 1], this expression is continuous (without any further assumptions) in all points of B except

for r = 0. To achieve continuity also at r = 0, using the continuous differentiability of the functions fji and

l’Hospital’s rule we get

lim
r→0+

∇Fji(r, φ) =
1

2
f ′ji(0) ·

(
(j + 1) cos((j − 1)φ) − (j − 1) cos((j + 1)φ),

−(j + 1) sin((j − 1)φ) − (j − 1) sin((j + 1)φ)
)
, (3.1)

if j = 0, . . . ,m, i = 1, . . . , nj. For continuity of ∇Fji at r = 0, the right-hand-sides of (3.1) need to be φ-

independent. For j = 1 this requirement is fulfilled, for j ≠ 1 we have to assume that f ′ji(0) = 0.

By similar calculations the continuity of the second derivatives of Fji at r = 0 gives the additional con-

straints f ′′ji(0) = 0 for j = 1 and for j ≥ 3.

Thus together with the Dirichlet boundary conditions on ∂B required in (1.1) we have the restrictions

f ′ji(0) = 0, fji(1) = 0, for j = 0,

fji(0) = f ′′ji(0) = 0, fji(1) = 0, for j = 1,

fji(0) = f ′ji(0) = 0, fji(1) = 0, for j = 2,

fji(0) = f ′ji(0) = f ′′ji(0) = 0, fji(1) = 0, for j ≥ 3.

We choose the functions fji as follows. Letm ∈ N, n ∈ N and denote by b1(r), . . . , bn+3(r) the B-splines of

order 4 corresponding to the knots 0, 0, 0, 0, 1n ,
2
n , . . . ,

n−1
n , 1, 1, 1, 1. These are piecewise cubic polynomials

which are globally C2-functions. Taking the above requirements into account and using the properties of the

B-splines the appropriate choice for the basis functions is

f01(r) = b1(r) + b2(r), f0i(r) = bi+1(r), for 2 ≤ i ≤ n + 1,

f11(r) = b2(r) + 3b3(r), f1i(r) = bi+2(r), for 2 ≤ i ≤ n,

f2i(r) = bi+2(r), for 1 ≤ i ≤ n,

fji(r) = bi+3(r), for 1 ≤ i ≤ n − 1, 3 ≤ j ≤ m.

3.2 Approximate solutions

Weare looking for approximate solutions of equation (1.1) in thefinite dimensional subspace L spannedby the

functions Fji (j = 0, . . . ,m, i = 1, . . . , nj) using Newton’s method and transformation into polar coordinates,

which requires to solve∫
B

∇v ·∇ψ − p|ωk−1|p−1vψ dx = −

∫
B

∇ωk−1 ·∇ψ − |ωk−1|p−1ωk−1ψ dx, for all ψ ∈ L,

or in polar coordinates
1∫

0

2π∫
0

r∂rv∂rψ +
1

r
∂φv∂φψ − rp|ωk−1|p−1vψ dφ dr

= −

1∫
0

2π∫
0

r∂rωk−1∂rψ +
1

r
∂φωk−1∂φψ − r|ωk−1|p−1ωk−1ψ dφ dr, for all ψ ∈ L,

for v ∈ L, where ωk−1 denotes the previous Newton iterate in L. This amounts to a linear algebraic system.

The Newton step is then completed by the update ωk = ωk−1 + v.

The choice of the initial approximation ω0 for Newton’s method is crucial. We apply path-following tech-

niques to find such initial approximations first to the desired sign changing radially symmetric solutions and

then to the desired non-symmetric ones.
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1. Sign changing radially symmetric solutions: using the transformation v := λ
1

1−p u we get the equivalence

of (1.1) to

−Δv = λ|v|p−1v.
This means that for p = 1 each nontrivial solution v is an eigenfunction and λ is the corresponding eigen-

value of −Δ. This suggests to use appropriate scalar multiples of radially symmetric eigenfunctions of −Δ as

initial approximation for Newton’s iteration for p close to 1. More precisely, for finding the radially symmetric

branchwith k nodal regionswe can start with the kth radially symmetric eigenfunction of −Δ, simultaneously

choosing λ (close to) the associated eigenvalue.

Supposing that, by this technique, we found an approximation to a solution on one of the sign chang-

ing radially symmetric branches, we can use a path-following method to follow the branch in order to find

solutions for larger values of p.

With this method we established numerical approximations to the radially symmetric branches with two

and three nodal regions, respectively, see Figures 1 and 2.

Fig. 1: Radially symmetric numerical solutions with two nodal regions

Fig. 2: Radially symmetric numerical solutions with three nodal regions

2. Non-radial solutions: we look for non-symmetric solution branches bifurcating from a radially sym-

metric branch. Candidates for such bifurcation points arise at values p0 where the linearization of the given

problem at the corresponding radially symmetric solution has an eigenvalue zero. If we choose a parame-

ter value p1 close to p0, (trying both p1 < p0 and p1 > p0), we can apply Newton’s method with an initial
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approximation of the form ω0 = αu1 + βΦ, where u1 denotes an approximation to the radially symmetric

solution at p1, Φ denotes an approximation to the eigenfunction corresponding to the zero eigenvalue, and

α and β are real coefficients (to be determined appropriately). If our initial guess ω0 was successful, i.e., if it

is close enough to an exact non-symmetric solution, then Newton’s method converges to this solution on the

non-symmetric branch. Once we have found an approximation to one solution on this new branch, we can

find further approximations by the branch following technique.

We applied the above procedure to find first approximations on and then bifurcations from the radi-

ally symmetric branches with two and three nodal regions, respectively. In both cases we found three non-

symmetric branches bifurcating from the symmetric ones.

In case of the symmetric branchwith two nodal regions the approximate values for the bifurcation points

are p1 ≈ 1.7, p2 ≈ 3.4, p3 ≈ 10.2. At the first bifurcation point p1 the eigenfunction corresponding to the

zero eigenvalue has a discrete rotational symmetrywith angle 2π
3 (3-symmetry), see Figure 3. Correspondingly

the non-symmetric branch that bifurcates at this point also has 3-symmetry, see Figure 4. The situation is

analogous at the two remaining bifurcation points we found, i.e., at the points p2 and p3. At these points a

non-symmetric branch with 4- and 5-symmetry, respectively, bifurcates, see Figures 5 and 6.

Fig. 3: Eigenfunction of the linearization at the radially symmetric solution with two nodal regions for p=1.7, corresponding to
the zero-crossing eigenvalue

Fig. 4: Numerical solutions with two nodal regions and 3-symmetry

Analogously, in case of the symmetric branch with three nodal regions the approximate values for the

bifurcation points are q1 ≈ 1.1, q2 ≈ 2.0 and q3 ≈ 3.1. At q1 a non-symmetric branch with 5-symmetry bifur-
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Fig. 5: Numerical solutions with two nodal regions and 4-symmetry

Fig. 6: Numerical solutions with two nodal regions and 5-symmetry

Fig. 7: Bifurcation diagram of the numerical solutions with two nodal regions
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cates, at q2 a non-symmetric branch with 6-symmetry and at q3 a non-symmetric branch with 7-symmetry,

see Figures 8, 9 and 10.

Finally, the approximations on the aforementioned independent branch,whichwe foundby “accidental”

convergence of the Newton iteration, have 5-symmetry, see Figures 11 and 17.

Fig. 8: Numerical solutions with three nodal regions and 5-symmetry

Fig. 9: Numerical solutions with three nodal regions and 6-symmetry

By applying analogous techniques we could not find any secondary bifurcations on the new non-

symmetric branches.

3.3 Analysis of the approximate solution branches

We investigate some analytical properties of the numerical solutions, in particular the dependence of their

central peaks on p and their energy. The conclusions of these investigations help us to formulate correspond-

ing conjectures about the exact solutions.

When we plot the level sets of the numerical solutions of the branches with 2 nodal regions, we can

observe that the nodal lines around the origin form closed curves, see Figures 14, 15 and 16. Moreover the
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Table 1: Function values at the central peaks

p 2NR RS 2NR

3-sym

2NR

4-sym

2NR

5-sym

3NR RS 3NR

5-sym

3NR

6-sym

3NR

7-sym

6NR

5-sym

1.5 2044 - - - 15403 13258 - - 6667

2 67.34 62.16 - - 206.48 175.8 206.48 - 92.74

2.5 21.63 18.89 - - 49.15 42.01 46.64 - 22.07

3 12.27 10.44 - - 24.02 20.63 22.31 - 10.69

3.5 8.74 7.34 8.71 - 15.64 13.49 14.36 15.28 6.88

4 6.97 5.82 6.75 - 11.76 10.17 10.7 11.29 5.07

4.5 5.93 4.95 5.64 - 9.6 8.3 8.67 9.09 4.03

5 5.25 4.38 4.94 - 8.25 7.12 7.4 7.71 3.38

5.5 4.78 4 4.46 - 7.33 6.3 6.52 6.76 2.98

6 4.42 3.72 4.11 - 6.68 5.69 5.86 6.05 2.71

6.5 4.14 3.51 3.85 - 6.19 5.2 5.35 5.5 2.53

7 3.91 3.34 3.64 - 5.77 4.8 4.92 5.03 2.40

7.5 3.72 3.21 3.47 - 5.35 4.46 4.55 4.64 2.30

8 3.55 3.1 3.32 - 4.95 4.15 4.23 4.3 2.22

8.5 3.39 3.01 3.19 - 4.58 3.88 3.95 4.01 2.15

9 3.25 2.93 3.07 - 4.27 3.64 3.71 3.76 2.10

9.5 3.11 2.86 2.95 - 3.99 3.42 3.5 3.54 2.06

10 2.99 2.79 2.85 - 3.75 3.24 3.32 3.36 2.02

10.5 2.87 2.73 2.75 2.86 3.55 3.08 3.17 3.2 1.99

11 2.77 2.67 2.66 2.75 3.37 2.95 3.03 3.06 1.95

11.5 2.67 2.62 2.57 2.64 3.21 2.83 2.91 2.93 1.93

Table 2: Approximate energy values

p 2NR RS 2NR

3-sym

2NR

4-sym

2NR

5-sym

3NR RS 3NR 5-sym 3NR

6-sym

3NR

7-sym

6NR 5-sym

1.5 4169825 - - - 369638642 349740000 - - 394780000

2 6863 6713 - - 100631 92243 100631 - 101390

2.5 836.32 783.96 - - 6727 6071 6700 - 6680

3 290.75 265.11 - - 1731 1549 1704 - 1717

3.5 152.67 136.85 152.71 - 759.15 676.24 743.15 758.38 756.54

4 98.32 87.22 98.06 - 433.41 385.3 424.98 431.57 435.9

4.5 71.11 62.71 70.63 - 287.61 255.6 284.98 285.51 292.83

5 55.31 48.62 54.73 - 209.68 186.51 211.42 207.66 216.61

5.5 45.16 39.65 44.54 - 162.79 145.07 166.84 160.98 170.9

6 38.15 33.51 37.54 - 132.1 118.03 136.58 130.56 141.08

6.5 33.06 29.06 32.47 - 110.74 99.27 114.71 109.5 120.37

7 29.19 25.71 28.64 - 95.14 85.65 98.44 94.24 105.28

7.5 26.18 23.1 25.66 - 83.36 75.39 86.12 82.79 93.87

8 23.76 21.01 23.27 - 74.23 72.09 76.6 73.95 84.98

8.5 21.78 19.3 21.32 - 67.03 65.02 69.09 66.96 77.87

9 20.14 17.88 19.69 - 61.23 59.27 63.07 61.32 72.08

9.5 18.77 16.67 18.33 - 56.5 54.54 58.14 56.69 67.27

10 17.61 15.64 17.17 - 52.56 50.62 54.05 52.82 63.22

10.5 16.62 14.75 16.17 16.72 49.26 47.35 50.62 49.56 59.76

11 15.77 13.98 15.31 15.86 46.44 44.56 47.7 46.77 56.40

11.5 15.03 13.3 14.56 15.11 44.01 42.07 45.19 44.36 54.19
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Fig. 10: Numerical solutions with three nodal regions and 7-symmetry

Fig. 11: Numerical solutions with six nodal regions and 5-symmetry

Fig. 12: Bifurcation diagram of the numerical solutions with three nodal regions
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Fig. 13: Bifurcation diagram of the “obvious” numerical solutions with 5-symmetry and the 5-symmetric solutions with 6 nodal

regions

functionvalues at these central peaks appear to remainboundedandeven to convergedecreasingly as p → ∞,

see the above figures, Figure 18 and Table 1 with central peak values of the solutions with two nodal regions.

Analogous results can be achieved for the case of the branches with 3 nodal regions.

We computed approximately the energy∫
B

1

2
|∇ω|2 − 1

p + 1
|ω|p+1 dx

for some of the numerical solutions ω on each of the branches, with the results contained in Table 2. We

can observe that for each fixed p the least energy solutions are not the radially symmetric ones, but instead

the 3-symmetric solutions with two nodal regions. The energy of the other branches mostly increases as the

symmetry increases. The solutions on the radially symmetric branch with three nodal regions and the corre-

sponding non-symmetric branches, as well as the solutions on the additional independent branch, have all

higher energy values than the solutions with two nodal regions.
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Fig. 14: Level sets of the numerical solutions with two nodal regions and 3-symmetry

Fig. 15: Level sets of the numerical solutions with two nodal regions and 4-symmetry
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Fig. 16: Level sets of the numerical solutions with two nodal regions and 5-symmetry

Fig. 17: Level sets of the numerical solutions with six nodal regions and 5-symmetry
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Fig. 18: Function values at the central peaks of the numerical solutions with two nodal regions and 3-symmetry

Fig. 19: Distance of the nodal line from the origin in case of the numerical solutions with two nodal regions and 3-symmetry
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