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Abstract—Ferroelectric FET (FeFET) is a highly promising emerging non-volatile memory (NVM) technology, especially for binarized
neural network (BNN) inference on the low-power edge. The reliability of such devices, however, inherently depends on temperature.
Hence, changes in temperature during run time manifest themselves as changes in bit error rates. In this work, we reveal the
temperature-dependent bit error model of FeFET memories, evaluate its effect on BNN accuracy, and propose countermeasures. We
begin on the transistor level and accurately model the impact of temperature on bit error rates of FeFET. This analysis reveals
temperature-dependent asymmetric bit error rates. Afterwards, on the application level, we evaluate the impact of the
temperature-dependent bit errors on the accuracy of BNNs. Under such bit errors, the BNN accuracy drops to unacceptable levels
when no countermeasures are employed. We propose two countermeasures: (1) Training BNNs for bit error tolerance by injecting bit
flips into the BNN data, and (2) applying a bit error rate assignment algorithm (BERA) which operates in a layer-wise manner and does
not inject bit flips during training. In experiments, the BNNs, to which the countermeasures are applied to, effectively tolerate
temperature-dependent bit errors for the entire range of operating temperature.

Index Terms—Non-volatile memory, FeFET, temperature, neural networks, bit error tolerance

1 INTRODUCTION

Neural Networks (NNs) are broadly applied in numerous
fields. Managing the resource demand of NNs, however, is
a challenge. To achieve high accuracy, NNs rely on deep
architectures with millions of parameters requiring a large
amount of memory. For NN accelerators with on-chip Static
random-access memory (SRAM), it has been reported that
over 50% of the system power is used by the memory, e.g.,
(11, [2].

Non-volatile memories (NVMs) for machine learning
algorithms may achieve energy-efficient and sustainable
inference. In particular, neural networks on different types
of NVMs have been developed recently, e.g. resistive RAM
(RRAM) [3], [4], spin-transfer torque RAM (STT-RAM) or
magnetoresistive RAM (MRAM) [5]-[9], multi-level charge-
trap transistors (CTT) memory [10], and ferroelectric-based
memories (FeERAM or FeFET) [11]-[14]. Using RRAM (in [3])
and CTT (in [10]) for NN inference systems leads to large
factors in energy saving compared to using SRAM.

A common technique to reduce the energy consumption
of memories, including NVMs, is voltage scaling. When this
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Fig. 1: The overview of this work.

is pushed to the extreme, high bit error rates can occur, even
up to 5-10%. For some memory technologies, such as STT-
RAM or RRAM, the bit error rate increases exponentially
with respect to the reduction of the supply voltage. Such
bit errors can degrade the accuracy of NNs to unacceptable
levels if no countermeasures are employed. In the literature,
the energy-reliability trade-off has been explored by training
NNs to be bit error tolerant when applying voltage scaling,
e.g. for RRAM [4] and MRAM or STT-RAM [8], [9]. Another
factor that has an impact on the bit error rates is process
variation, which has been reported with non-negligible ef-
fects on NNs executed on RRAM [7], [15].

Among all existing memory technologies, ferroelectric
FET (FeFET) is one of the most promising fully CMOS-
compatible NVM technology [16]. Furthermore, FeFET-
based memories achieve read and write latencies within 1
ns, which is comparable to SRAM, while using low energy
[16]. Another benefit of FeFET is the high density, since
FeFET memory cells consist of only one transistor.

In order to use FeFET for NN, it is necessary to analyze
its error model. To the best of our knowledge, the sources of
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bit errors on FeFET were not explored yet, and hence, there
is no FeFET bit error model in the literature. The underlying
mechanism in FeFET where information is stored, is the
available dipoles within the ferroelectric layer added to the
transistor. However, the directions of those dipoles (which
determines the stored state, i.e. either logic 0 or logic 1)
are sensitive to temperature in which fluctuations in tem-
perature can lead to flipping the direction of dipoles. This
manifests itself as changes in the induced ferroelectricity
and, hence, sensing circuits will later erroneously read the
stored value, i.e. a bit flip will occur during reading. Process
variation (either within the domains of the ferroelectric ma-
terial or within the underlying transistor itself), on the other
hand, manifests itself as changes in electrical characteristics
of the FeFET device such as the threshold voltage, ON
current, OFF current, etc. This leads, similar to temperature
effects, to fluctuation in the sensing current during read
operations and hence bit flips can occur. This raises the
following key question: (Q1) What is the bit error model of
FeFET?

In this work, we cover both types of bit flip sources, i.e.
run-time errors induced by temperature effects and design-
time induced by process variation. In addition to the above
observation of bit errors on FeFET due to temperature and
process variations, our model in Section 2 also shows that
the effect of temperature manifests itself as highly asymmet-
ric bit error rates. This means that the probability of a bit flip
from logical ‘1’ to ‘0’ is different from logical ‘0" to “1".

In the literature, the effects of asymmetric bit error rates

on NNs have not been assessed and no countermeasures
against them have been investigated yet. For these reasons
we explore the following questions: (Q2) Do the FeFET
asymmetric bit errors cause significant accuracy drop in NNs?
(Q3) How can we exploit the asymmetry of the FeFET bit error
model to achieve tolerance against FeFET bit errors?
Our contributions: Answering these questions, we focus
on binarized neural networks (BNNs), which are highly re-
silient to bit errors [17]. Specifically, we make the following
contributions:

e We answer Q1 in Section 2 revealing the critical
impact of temperature on the reliability of FeFET-
based memories by a temperature-dependent asym-
metric bit error model that we acquired from pre-
cise simulations. Our physics-based model extracts
the error rate based on realistic FeFET devices in
which the underlying FET transistor is calibrated
with Intel 14nm FinFET measurement data and the
added ferroelectric layer is also calibrated with mea-
surements from fabricated ferroelectric capacitor. The
effects of process variation as well as temperature are
accurately modeled using commercial Technology-
CAD (TCAD) tool flows from Synopsys. For accu-
rate modeling, all required physics models including
quantum physics are included.

o We answer Q2 by a series of evaluations on different
BNNs. Our experimental results show that the accu-
racy degradation of BNNs can amount to 35% when
no bit error tolerance treatment or countermeasures
are employed. When the existing bit flip training
method is applied without taking the asymmetry
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into account, the accuracy degradation can be up to
10%, even when the probability of a bit flip from
logical ‘0" to ‘1" is 1.090% and that of logical ‘1" to
‘0" is 2.198%.

o We exploit the asymmetry of the FeFET bit error rates
(Q3) by a bit error rate assignment algorithm (BERA)
which operates in a layer-wise manner. BERA takes
an accuracy drop, which is estimated per layer, as an
input and assigns the bit error rates in a layer-wise
manner such that the accuracy drop is minimized.
In contrast to the existing methods for bit flip train-
ing, which employ bit flip injection, BERA does not
require any bit flip injection during training.

Figure 1 illustrates the overview of this work. In Section
2, we present our FeFET model and the experiments with
which we extract the temperature-dependent bit error rates.
In Section 3, we introduce the system model, i.e. the BNNs
and the data stored in NVM. In Section 4, we present the
BNN execution in which less layers are susceptible to bit
errors. In Section 5 we present the methods we use to protect
the BNNs from FeFET bit errors.

The experiment setup for bit error tolerance training of
the BNNs is detailed in Section 6. In Section 7, we first assess
the impact of the FeFET bit errors on BNN accuracy when no
countermeasures are employed, and then we evaluate our
proposed countermeasures. We provide a literature review
in Section 8 and conclude the work in Section 9.

2 FeFET-BaASeD NVM: FRom DEVICE CALIBRA-
TION TO ERROR MODELING

This work is the first to study bit error rates in FeFET-based
NVM memory. Let us start with an overview of FeFET
technology in Section 2.1 and explain the FeFET devices
used in this paper in Section 2.2, before we provide a bit
error model for FeFET devices in Section 2.3.

2.1

The discovery of ferroelectricity in hafnium oxide-based
materials in 2012 has paved the way for Ferroelectric Field-
Effective Transistor (FeFET) to become compatible with the
existing CMOS fabrication process [18], [19]. Thereafter,
many prototypes from both academia and industry have
successfully demonstrated the ability of turning conven-
tional FET transistors into Non-Volatile Memory (NVM) de-
vices by integrating a ferroelectric layer inside the transistor
gate stack. This allowed to integrate, for the first time, NVM
devices along side logic transistors within the same silicon
die, unlike other existing NVM technologies that still face
challenges when it comes to CMOS compatibility.

Besides the compatibility of FeFET technology with the
current CMOS fabrication process, which is an indispens-
able condition for any emerging technology to become real-
ity, FeFET technology provides the highest density, which is
essential for on-chip memories, because every FeFET-based
memory cell consists of only a single transistor [16].

FeFET, in principle, is similar to conventional FET tran-
sistors used in all existing CMOS technologies nowadays
with only one exception regarding to the gate-stack. In Fe-
FET devices, a thick (10nm) layer of a ferroelectric material

Overview of FeFET Technology
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Fig. 2: Ferroelectric FET (FeFET)-based NVM device calibration [20].

is additionally deposited on top of the oxide layer. The
presence of ferroelectricity creates a hysteresis behavior in
which the electrical property of the underlying transistor
considerably shifts based on the previously-applied gate
voltage. When a positive write voltage (44V) is applied
to the transistor gate, the polarization direction within the
ferroelectric material is switched in a certain direction that
supports the transistor channel formulation. Hence, a rela-
tively high drain current (in the order of micro Ampere) will
be later provided by the transistor after the write voltage is
ceased. The drain current in this case is typically called low-
Vip, curve because it has a very low threshold voltage (V).
On the other hand, when a negative write voltage (—4V)
is applied, the polarization direction within the ferroelectric
material is oppositely switched, which strongly resists the
transistor channel formulation. Hence, a very low drain cur-
rent (in the order of nano Ampere) will be later provided by
the transistor after the voltage is ceased. The drain current
in this cases is typically called high-V;;, curve because it has
a very high threshold voltage (V;).

The very large difference in the current provided by
the transistor, depending on the dipoles direction within
the ferroelectric material, allows the differentiation between
stored logic ‘1" (when positive write voltage was previously
applied, i.e., low-V;, curve case) and stored logic ‘0" (when
negative write voltage was negative write voltage was previ-
ously applied, i.e. high-V;j, curve case).

2.2 Our Calibrated 14nm FeFinFET Device and Mea-
surements

We first implemented a 14nm n-type FinFET device, as
shown in Fig. 2(a), using Synopsys Technology CAD
(TCAD) tool flow [21], which is the standard commer-
cial tool to simulate device fabrication of semiconductor
technologies. Afterwards, we calibrated the built device to
reproduce data measurements for production-quality 14nm
FinFET device from Intel [22]. As demonstrated in Fig. 2(b),
the electrical characteristics of our built FinFET match very
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Fig. 3: Temperature impact on the memory window of
FeFET. A higher temperature impact more considerably the
high-V;;, curve that represents logic ‘0" than low-V%;, curve
that represents logic ‘1’ [20].

well the 14nm Intel measurement data. Afterwards, we
deposited a 10nm ferroelectric layer (Hfy 5Zrp.502) on top
of the oxide layer.

Fig. 2(b) demonstrates how the hysteresis-loop of polar-
ization vs. voltage (which captures the nonvolatile property
in FeFET devices) matches very well the measurement data
from a fabricated ferroelectric capacitor [23].

We adopt the calibrated FeFET device presented above
to build a bit error model. We investigate the impact that
temperature increase has on the behavior of FeFET-based
NVM. In practice, when the temperature rises, the key
characteristics of the ferroelectric layer (i.e. remanent po-
larization P, and coercive field E.) degrade which con-
siderably reduces the available noise margin as shown in
Fig. 3. At higher temperatures the distance between the
two current curves, i.e. low-Vy;, and high-V};, curves, (which
represents the two logic states) becomes narrower. Hence,
during reading operations, the sensing circuit might not
be able to correctly distinguish between logic ‘0" and ‘1’
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Fig. 4: Impact of intrinsic variations in the ferroelectric layer
on the induced hysteresis loop. Process variation together
with temperature effects cause errors due to read operations
of FeFET-based NVM.

because the current level associated with each logic state
becomes very close to each other or even overlapping -
especially when process variation effects come into play.
Note that temperature effects have been measured from
fabricated devices and then modeled inside our built TCAD-
based FeFET. Please refer to [24], [25] for further details on
the device calibration and measurements.

To calculate probability of error during read operations,
we perform accurate TCAD Monte-Carlo (MC) simulations.
As can be seen in Fig. 4, process variation effects degrade
the quality of ferroelectric layer. From the performed MC
simulations, the probability of error when a logic ‘1" is
erroneously read while logic ‘0" was previously stored pog;,
and when probability of error when a logic ‘0’ is erroneously
read while logic “1” was previously stored p1g are calculated
for different temperatures. Those calculated error-rates are
then employed at the system level to investigate the ultimate
impact on the inference accuracy.

Details on Our TCAD-based modeling of FeFET: As
earlier mentioned, in our work the entire Ferroelectric Fin-
FET (FeFET) device is fully implemented and modeled in
Technology CAD (TCAD) framework (Synopsys Sentau-
rus). Concisely, we model and calibrate a 14nm FinFET
device using TCAD, and then the high-~ layer (1.7nm) in
the gate stack is replaced with a 10nm ferroelectric layer
(Hfo.5Z10.502) located on top of the SiO, layer. It is note-
worthy that our device modeling is not just a combination
of a Ferroelectric capacitor model and a FinFET model
but, in fact, the complete ferroelectric FInFET device is
fully modeled in TCAD using a meta-ferroelectric-insulator-
semiconductor (MFIS) stacks. For accurate modeling, the
density gradient model is used to account for the quantum
confinement effects and, additionally, the thin-layer mobility
model is used to account for the scaled fin dimensions. The
crystal orientation effects on the channel mobility, channel
strain-related mobility improvement, and ballistic mobility
to account for the quasi-ballistic carrier transport in such
nano-scaled dimensions have also been considered. The
S/D doping, sub-fin doping, gate metal work function, S/D
series resistance, low-field mobility parameters and high-
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field saturation parameters were carefully calibrated to re-
produce the measurement data of 14nm FinFET. A Preisach
model is applied in TCAD to describe the ferroelectric
polarization. In this model, the FE film is considered to
be composed of multiple independent switching domains.
Each domain charge voltage relationship can be described
as a classical rectangular hysteresis loop. The coercive field
of each loop follows a certain distribution. As a result, the
total ferroelectric behavior is obtained by integrating all the
domain responses. This model has been widely applied to
describe large ferroelectric films characteristics.

Temperature Effects Modeling: We first extracted the
main characteristics of ferroelectric capacitor, i.e., remnant
polarization (F,), saturation polarisation (Fs), and coercive
field (E.), under different operating temperatures. Then, we
model the temperature dependency of P,, Ps, and E,. inside
our calibrated TCAD-based FeFET. Note that existing mod-
els in Synopsys TCAD only account for temperature effect
in the underlying transistor (FET) and do not account for
temperature degradation in ferroelectric layer. Therefore, we
had to build the model of temperature dependency based on
our measurement data inside the TCAD framework.

To model the effect of process variation: We consider
variation in both underlying transistor as well as the added
ferroelectric layer. In the underlying transistor, we have con-
sidered each of the work function variation, random dopant
fluctuation RDF, interface trap, variations in the thickness
of the ferroelectric layer and interfacial layer (SiO2). In
the ferroelectric layer, we have considered the variation
in all ferroelectric parameters (P, P., and E.). Note that,
similar to temperature, existing models in Synopsys TCAD
only account for variation effects in the underlying tran-
sistor (FInFET) and do not account for any variation in
the ferroelectric layer. Therefore, we have run Monte-Carlo
simulations for our ferroelectric capacitor, calibrated against
fabrication, in order to capture and extract how variation
in the ferroelectric parameters (P, P, and E;) impact the
ferroelectric capacitor.

Probability of Error Extraction: After integrating the
temperature and variation effects inside our calibrated
TCAD models, we perform Monte-Carlo simulations for the
entire FeFET device. This provides us with the complete /-
Vi hysteresis loops. Then, for a certain read voltage, we
extract the probability of error in which a high V;; curve
is wrongly classified as a low V};, curve and vice versa. In
other words, we calculate the probability that a stored logic
‘0" is read as logic ‘1" (i.e., Perror(0 — 1)) and a stored
logic 1’ is wrongly read as logic ‘0" (i.e., Perror(1 — 0)).
Note that for different read voltage values the noise margin,
i.e., the available separation between the two states, high V;,
and low V;j, curves, is different. Therefore, the probability
of errors (Peror(1 = 0) and Peypor-(0 — 1) varies with read
voltage as reported

Discussion on the Impact of Defects: The impact of
interface traps are not considered in this work. Such traps
and other types of generated defects are critical and can
degrade the memory window during the projected lifetime.
Recent studies such as [26], [27] aimed at investigating
and modeling the impact of interface and oxide traps on
the memory window at both device and system levels,
respectively. In addition, charge trapping and detrapping

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3104736, IEEE

Transactions on Computers

at Si-5iO, interface plays an important role in degrading
the memory window and it has shown that controlling the
charge trapping and the resulting imprinting is necessary in
order to ensure the reliability of the FeFET [28]. Recently,
it has been shown in [29] that the non-perfect screening of
the polarization charges may lead to a residual electric field.
This counteracts the ferroelectric polarization and results in
depolarization field that may degrade the memory window
of FeFET devices.

2.3 Our FeFET Bit Error Model

As shown in Fig. 3 temperature impacts on the memory
window of FeFET. The memory window is defined as the
distance between the low-V};, and curves high-V;;, curves
(i.e. Ip-Vg curves) which represents logic ‘1’ and logic
‘0", respectively. Importantly, temperature increase has a
more considerable impact on the high-V};, curve than the
low-V;;, curve. As can be noticed in Fig. 3, at a higher
temperature high-V;;, moves towards the left side, whereas,
low-V}j, curve remains almost unaffected. Hence, the mem-
ory window becomes smaller and the resiliency of FeFET-
based NVM becomes smaller. Hence, the likelihood of errors
during read operations becomes larger. However, because
temperature impacts asymmetrically the low-V;;, curve and
high-V};, curves, errors in logic “1” and ‘0" will occur asym-
metrically. In practice, the bit error rate of pig is smaller
than the bit error rate py; because temperature impacts logic
‘0" higher than logic “1’. As explained, the read operation
in FeFET is performed by applied a gate voltage to the
transistor and then sensing the provided drain current (Ip).
Based on the applied gate voltage (V), the probability of
error will be different. As can be noticed in Fig. 3, based on
the selected Vi, the temperature-induced shift in the high-
Vin curve is different and hence reading at different V5 can
result in different probability of errors.

As shown in Fig. 4, intrinsic variations within the ferro-
electric layer strongly impact the induced hysteresis loop.
This, in turn, seriously reduces the resiliency of FeFET-
based NVM devices to noise and increases the probability
of error, as well. Both temperature effects and process vari-
ation effects together degrade the reliability of FeFET-based
NVM devices during run-time and hence errors during read
operations occur. Those errors will asymmetrically impact the
FeFET-based NVM devices and the probability of flipping
logic ‘0" and logic ‘1" is different.

Since the probability of bit error depends on the ap-
plied read voltage (i.e. gate voltage V(). Therefore, we
estimate the flip probabilities (po1,p10) at different read
voltages 0.1V and 0.25V. The bit error rates of the FeFET
bit error model at 85°C are (po1,p10) = (2.198%,1.090%)
for the case of using read voltage 0.1V and (po1,p10) =
(2.098%,0.190%) for using read voltage 0.25V.

In Fig. 5, we summarize the relation between temper-
ature and P, (remnant polarization), P, (saturation polar-
isation), and E. (coercive field), which capture the key
properties of the ferroelectric material. The three parameters
degrade linearly with temperature increase. Therefore, we
use the value Ty, € {0,1,...,16} for describing the
magnitude of temperature.

Based on the above model, the bit error rate (BER) at
temperature T' for any 0°C < T < Tpeor = 85°C s
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Fig. 5: Relation between P, (remnant polarization), P, (sat-
uration polarisation), and E,. (coercive field) over tempera-
ture. These three parameters capture the key properties of
the ferroelectric material.

BER(T) = % - (po1,p10), where po1 and pyo are defined
at 85°C above.

It is noteworthy that Fig. 5 has two different Y axes (right
and left). The curve of coercive field (E¢) belongs to the
right Y-axis. Therefore, the coercive field degrades by tem-
perature by merely 0.08MV/cm (from around 1.14MV/cm
to 1.06MV/cm), which is not very significant. The range of
temperature-induced degradation is aligned with presented
measurement data in literature such as [30], [31]. In this
work, we have relied on our previous work where we
studied the impact of temperature on FeFET devices [20].
The impact of temperature increase on the P, (remnant
polarization), P, (saturation polarisation), and E. (coercive
field) have been extracted from measured Qrg-Vrg hys-
teresis loop at different temperatures [30].

3 SYSTEM MODEL AND PROBLEM DEFINITION

In this section, we provide the system model and the prob-
lem definition studied in this paper based on the bit error
model presented in Section 2.

3.1

Binarized Neural Networks (BNNs) are a relatively novel
type of BNNs that were first proposed in 2016 in [32]. Since
then, BNNs have gained large popularity in application
cases where memory and inference latency are key issues
and a small trade-off in accuracy is acceptable. In the fol-
lowing, we summarize the benefits of BNNs in four points.

(1) The key reason behind selecting BNN as a case study
in our work, is the ability to perform training with errors
and achieve error-tolerance neural network in BNN unlike
in traditional deep neural networks (DNNSs). Traditional
neural networks use floating-point (e.g., 32 bits) or inte-
ger values (e.g., 8 bits) to represent the NN parameters
(i.e., weights, activations, inputs, etc.). In such a case, the
position of the occurred error (i.e., the bit flip in the value)
does matter a lot. Specifically, in floating-point NNs, one
bit error in one weight can cause the prediction of the NN
to become useless (detailed in [33]). This typically occurs

Binarized Neural Networks
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when a bit flip in the exponent of the floating point repre-
sentation occurs leading to an error with an unacceptable
magnitude. On the other hand, in BNNs, a flip of one bit
in a binary weight or binary input causes a change of the
computation result by merely 1 (with binarization to {0, 1}).
Additionally, the output of every neuron in the hidden
layers is binarized, which has a saturating effect. (2) BNNs
are very resource-efficient and hardware friendly. In BNNs,
the memory needed to store the parameters and also the
communication overhead is significantly reduced, because
the floating-point or integer values are replaced with binary
values. (3) With binary weights, the costly MAC operations
are performed with simple XNOR and bitcount (often called
popcount) circuits. Due to the simpler hardware operations,
the inference latency is significantly reduced as a result.
(4) BNNs synergize outstandingly with NVM. Traditional
SRAM memory is typically used as on-chip memory, which
suffers from high leakage power and large area footprint
(6 transistors to store a single bit, comapred to merely 1
transistor in FeFET). Therefore, using a non-volatile memory
such as ones based on FeFET for BNNs will considerably
reduces the overall inference energy. Concisely, inefficient
SRAM memories are replaced with efficient non-volatile
FeFET memories.

Inference: To describe the inference of BNNs, we first start
with regular NNs, In the general case, each layer in a
convolutional neural network (NN) computes a convolution
between the weights (parameters) and the input. Subse-
gently, the result of the convolution is passed through an
activation function. The output of the activation function is
then passed as the new input to the next layer. All layers are
executed until the NN returns the final outputs. We refer
to the entire computation as forward pass. We denote the
convolution between weights and inputs, and the subse-
quent activation function on the result by o(}", W/ X!71),
where o is the activation function, Wf the weights of the
i-th filter in layer [, and X =1 the input. In regular NN, the
weights, and activations are floating point values. In bina-
rized neural networks (BNNs), the weights and activations
are in {—1,+1}, which reduces the resource demand in
memory [17]. Furthermore, the convolution and activation
can be computed by

2- POPCOUNT(XNOR(W}, X'=1)) — #bits > T

where POPCOUNT accumulates the number of bits set,
#bits is the number of bits in the XNOR operands, and T’
is a learnable threshold parameter, the comparison against
which produces an activation value in {—1,+1} [17], [34].
Bit error tolerance in BNNs can be achieved by injecting bit
flips during training [4]. Since BNNs can be trained for bit
error tolerance, it is possible to use memories with bit errors
like FeFET. Because of the resource efficiency and bit error
tolerance of BNNs, the combination with FeFET is a highly
promising design choice for low-power inference on future
edge devices.

Training: For regular floating point NNs, stochastic gradient
descent (SGD) is employed with mini-batches. The training
data is described with D = {(x1,41), ..., (z1,yr)} witha; €
X as the inputs, y; € Y as the labels, and ¢: Y x Y — R as
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Fig. 6: System model with unreliable on-chip FeFET memory
and reliable off-chip DRAM.

the loss function. We write the weight tensors of a layer as
W = (Wl ..., WE) and fi(z) as the output of the NN
with weights W. The objective is to find a solution for the
optimization problem

1
argmin = > ((fw(@),y)
(z,y)€D

using a mini-batch SGD, by computing the gradient V¢
using backpropagation. In the training process of BNNs,
the floating point weights are stored as well, so that the
gradient updates can be applied to the weights. Only in the
forward pass the weight and activations are binarized de-
terministically. This method of training BNNs was proposed
by Hubara et al. [17]. If achieving high bit error tolerance is
another objective besides accuracy, then bit flips need to be
injected in the BNN data during the forward pass [4].

BNN Building Blocks: We focus here on binarized con-
volutional NNs (CNNs) which perform object recognition
and use the following layers: convolutional, maxpool, batch
normalization, and fully connected. In the convolutional
(C) layer, a 2D convolution of the input and the filters is
computed, where the weights are binarized. We use a filter
size of 3 x 3 for every neuron in a C layer. If we use for
example 64 neurons in a layer, we write C64. In the maxpool
(MP) layer, in this study a window size 2 x 2 is used. The MP
layer always choses the largest value in this window, and
by this downsamples the input. The batch normalization
(BN) layer in BNNS is used to stabilize the training process
[34]. For forward propagation the BN layer in BNNs can be
calculated by thresholding the input. The thresholds of the
BN layer can be quantized to signed integers. In the fully
connected layer (FC) every neuron in layer [ is connected
with every neuron in layer [ 4 1. When for example 2048
neurons are used, we denote FC2048.

3.2 System Model

In this work, we focus on studying the impact of FeFET-
induced bit errors (due to reliability reductions caused by
temperature effects as described in 2.1) on the accuracy of
BNNs and then investigating the existing tradeoffs between
read energy and reliability of FeFET devices. Because read
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operations occur much more frequently than write opera-
tions in NNs, reducing the read voltage provides a consid-
erable energy saving. In practice, we assume that FeFET
memory devices are being reliably written (i.e., receiving
a sufficiently large voltage to flip all ferroelectric domains
during writing) and later during read operations the bit
errors due to temperature occur. The intensity of the bit
error depends on the applied read voltage. The lower the
read voltage, the larger the bit error.

For these reasons, we assume that bit errors only occur
during the read processes of the parameters and inputs
(i.e., input images and activations, which are the inputs to
the convolutional layers) in BNN inference. To clarify that,
we present the considered system model with in Figure 6.
The assumed system consists of reliable traditional off-
chip memory (e.g.,, DRAM) and unreliable emerging on-
chip FeFET memory. To perform computations of one layer,
the CPU initiates the retrieval of the weights from the off-
chip DRAM to the on-chip FeFET memory. Then, the values
are sent to the processing elements (PEs), for executing
the operations of BNNs in parallel (i.e., XNOR, popcount,
accumulation, and thresholding, etc.). The results of the
computations, which are the activations, are then written
back to the on-chip FeFET memory in order to be later used
in the computations for the subsequent layer.

Data and instructions for other operations, which are
related to the control of the inference (e.g., from the oper-
ating system to provide a run-time environment to initiate
the inference) are not stored in the FeFET memory, but are
stored in a reliable memory (e.g., off-chip DRAM).

Please note that our methods of training the BNN in the
presence of bit-errors to obtain a more resilient BNN that
exhibit less accuracy loss during inference are not limited to
only having unreliable on-chip memory. Our methods are
general and can be analogously applied despite the actual
origin of the underlying bit error (e.g., having unreliable off-
chip memory for storing BNN parameters of weights and
inputs instead of the unreliable on-chip memory).

Please also note that NVM using ferroelectric transistors
is an emerging memory, and commercial processors that
employ such technology are not yet publicly available.
Hence, we do not use real FeFET memory for running the
experiments. The way we model the usage of FeFET is by
applying the corresponding bit error model during training
and inference on conventional servers with GPUs. In this
work, our focus is on the effect of FeFET bit errors on BNN
accuracy, when on-chip FeFET memory would be used for
storing the weights, inputs, and activations. For evaluating
the bit error tolerance of our built BNNs with respect to the
FeFET-induced errors, the application of the bit error model
is sufficient and the real FeFET memory does not need to be
used.

3.3 Problem Definition

In this work we use FeFET memory as the NVM for ex-
ecuting BNNs. Specifically two bit error tolerance (BET)
problems are studied in this paper:

e BET Training Problem: Given the FeFET tempera-
ture bit error model described in Section 2 and a set
of labelled input data, the objective is to train a BNN
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In — C — buffer writes

— buffer reads — MP — buffer writes
— buffer reads — BN — buffer writes
In — 4C — MP — BN — buffer writes

Regular execution

LBW execution

TABLE 1: The regular BNN execution with many buffer
writes to memory and the less-buffer-writes (LBW) execu-
tion. Another layer configuration that we use is C — BN, in
which case the thresholding of the BN is applied directly to
the C result.

for high accuracy. The inference of the derived BNN does
not have to be executed with any bit error countermeasures
at run time.

e BET during Inference Problem: Given the FeFET
temperature bit error model described in Section 2
and a BNN, the objective is to execute the given
BNN with bit error countermeasures to reduce the
accuracy degradation of the BNN during runtime.
The given BNN does not have to be trained with bit flip
injection.

We note that solutions to the above two problems can be
combined to yield better bit error tolerance.

4 BNN EXEcUTION WITH LESS BUFFER WRITES

Before we address the two problems in Section 3.3, we
first present the less-buffer-writes (LBW) BNN execution, in
which the BNNSs are executed in a way such that less layers
are prone to bit errors compared to regular BNNSs.

The FeFET bit errors can only have an effect on BNN
accuracy when values are read from FeFET memory. For this
reason, the buffering of data (which implies writes followed
by reads) in FeFET memory should be avoided whenever
possible. In the regular BNN execution, however, values
are buffered multiple times, as shown in Table 1, which
leads to many (avoidable) reads from FeFET memory. The
values that are buffered to memory during execution are the
intermediate results, i.e. the outputs of the convolution (C),
maxpool (MP), and batch norm (BN) layer.

In order to minimize the buffering to FeFET memory, we
use a less-buffer-writes (LBW) BNN execution. The LBW
execution aims to reduce the reads from FeFET memory
so that less values are affected by bit errors. When using
the LBW execution, only the BNN parameters, inputs, and
outputs of the BN layer (activations) suffer from bit errors.

In the LBW execution, we compute the C and MP in
such a way that they are applied without buffer writes to
memory. The LBW execution begins with the C layer. In
the first iteration of the the LBW execution, the C layer
computes the convolution results of the first four values
(0,0),(0,1),(1,0),(1,1) in the input. By MP, the maximum
of the four values is then computed and thresholded with
the BN layer to produce a binary output. After the threshold
has been applied, the result has to be buffered in memory, so
that the next C layer of the BNN can compute with it. In the
next iteration of the LBW execution, the next four values in
line ((0,2), (0,3), (1,2), (1, 3)) are processed the same way
as in the first iteration. These iterations are repeated until the
input to the C layer is fully processed. Due to the processing
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sequence of the LBW execution, only a buffer of two values
is needed between the C — MP — BN computation. One
value is needed for holding the current maximum and the
second for the current MP result. For the case of C — BN
layer compositions, the output of the convolutions do not
need to be buffered because the thresholding can directly be
applied to the output of the convolution.

If the regular execution is used instead of LBW, one
would have to consider bit flips in the results of the C
and MP as well, which also are signed integer values. For
example, bit errors with any of the FeFET bit error rates
in the outputs of the C layers (16 bit unsigned integers)
before a MP layer cannot be tolerated. The predictions of
the BNNs become useless in this case. Bit flips in signed
integers can naturally change the value in a much larger
extent compared to binary values.

The number of executed operations in the LBW execu-
tion is equal to the number of executed operations in the
regular way of execution. The operations of the LBW are
simply executed in a different sequence and thus data from
the memory is retrieved in a different sequence as well. The
implications of the LBW execution on inference efficiency
have to be investigated case-by-case for different inference
systems during system design.

In this work, we do not assume any specific inference
system. FeFET could e.g. be used as on-chip memory for
BNN data while processing elements in an acceleratorr
execute the BNN operations. In these cases, the operations
of LBW BNNs are executed in ALUs and the values for ac-
cumulation and maxpool operations are stored in registers.
We assume that once the values are in these components,
they are not affected by bit errors anymore.

Since the correctness of the BNN outputs and the batch
normalization thresholds (see [34]) are indispensable for
BNN accuracy, we assume that this small fraction of val-
ues is protected by software or hardware measures such
as Error-correcting code (ECC) or correcting implausible
values with memory controller support (see [33]).

5 METHODS FOR ACHIEVING BIT ERROR TOLER-
ANCE AGAINST FEFET BIT ERRORS

In this section we present two different methods against
the FeFET bit errors. We first describe how we take the
asymmetry into account in bit flip training in Section 5.1,
targeting the BET training problem posed in Section 3.3.
Then, in Section 5.2, we present the novel bit error rate as-
signment algorithm (BERA) which exploits the asymmetry
of the FeFET bit error model in a layer-wise manner with
the goal of minimizing accuracy drop. This targets the BET
during inference problem.

5.1

In order to achieve high accuracy, we train the BNNs by
minimizing the cross entropy loss, as described in Section
3. To also train BNNs for bit error tolerance against the
FeFET bit errors, we use bit flip injection during training,
as proposed in [4].

However, simply training for bit error tolerance
without taking the asymmetry into account can lead

Bit Flip Injection During Training
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to unacceptable accuracy drop of up to 10%, even
when the well-known bit flip training method is used.
Additional steps to the existing methods need to be
taken. Specifically, the asymmetry needs to be taken into
account evaluating all bit error rate settings (po1,p10) €
{(2.198,1.090), (1.090, 2.198), (2.098, 0.190), (0.190, 2.098) }
by injecting bit flips with (po1,p10) into all the BNN data
that is prone to bit errors. By doing this we can find
out which setting leads to the least accuracy drop under
temperature dependent bit errors.

5.2 Bit Error Rate Assignment Algorithm (BERA)

Instead of only evaluating the configurations in which all
layers of the BNN are configured with the same bit error
rates, we also aim for a more fine-grained method. In this
work, we present the novel bit error rate assignment algo-
rithm (BERA), which exploits the asymmetry of the FeFET
temperature bit error model in a layer-wise manner. The goal
of BERA is to reduce the effect of the bit errors by finding
the layer-wise bit error rate configurations which maximize
accuracy, without bit flip training.

BERA operates in two steps. In the first step (Alg. 1), the
accuracy drop of the entire NN is estimated by measuring
the accuracy after injecting bit errors into one layer of the
network (with the training set). Because this operation is
non-deterministic we repeat it a couple of times and take
the average in the end. In the second step, the setting with
the lowest accuracy drop is chosen and assigned to the layer.

In Alg. 1, we first set bers, the bit error rates, in Line 1.
We then initialize an array for all layers that suffer from
bit errors in Line 2, with a subarray for every bit error
rate configuration, since we estimate the accuracy drop
of every configuration. The value reps is the number of
repetitions through the entire training data set for each bit
error rate setting. With this parameter, the precision of the
accuracy drop estimation can be tuned. We measure the
accuracy without errors on the training set in Line 4. The
accuracy drop is estimated for every bit error rate setting
in every layer individually in the loop. Finally, the results
of the estimation are stored in an array called adpl which
is normalized with the number of repetitions after Line
12. Then, from the adpl array, the setting with the lowest
accuracy drop per layer is chosen and assigned to the layer
at hand. We call this assignment the Greedy-A assignment.

6 BNN EVALUATION SETUP

In this section, we first present the framework, the BNN
architectures, and the datasets for evaluating the BNNs’
tolerance against FeFET bit errors. Then, we discuss the
methods used for bit flip injection. Afterwards, we present
the datasets and the models in the evaluations of this work.
At the end of this section, we discuss the bit error tolerant
BNN execution used in the evaluations.

6.1 Bit Error Tolerance Evaluation Setup

In order to train the BNNS to tolerate the FeFET temperature
errors, we use a BNN training environment that is set up
with PyTorch , which provides efficient tensor operations for
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Algorithm 1: Accuracy Drop Per Layer Estimation

Input: model, (Xtrain, Ytrain)
Output: adpl
// Initialize bit error rates
1 bers ={c1,...,cs}
// Accuracy drop per layer (adpl)

2 adpl = {{ady 1,...,ad1 s},...,{adp,...,adr s}}
// Number of repetitions for a bit
error rate setting and layer

3 reps =R

// Measure accuracy of model

accy, = accuracy(model(Xirain), Ytrain)

for each layer 1 € {0,..., L} do

for each c; in bers do

set bit error rate tuple ¢; only for layer {

foreachrinr € {0,...,reps} do
acCyc;,r

accuracy(mOdel(Xtrain)a ytrain)

adpl[l][c;] = adpl[l][c;] + accy e, r

© W NN S G e

10

reset bit error rates in [

for each layer 1 € {0,...,L} do
for each c¢; in bers do

t adpl[l][¢;] = ace, — %

11

12
13

14

NN model optimization on GPUs. PyTorch also allows Cpp-
access to the tensors with custom CUDA kernels, which we
developed and use for bit flip injection into the various data
types that BNNs use.

For the evaluation of accuracy over bit error rate,
we inject bit flips with the bit error rates presented
in Section 2, with the combinations (po1,p10) €

{(2.198,1.090), (1.090, 2.198), (2.098, 0.190), (0.190, 2.098)}.

With the temperature steps Ty, € {0,1,...,16}, we
evaluate the full bit error range. This corresponds to
the entire range of operating temperature considered in
our FeFET analysis. We incorporate these temperature
steps in the evaluation by defining T3, %Tstep in
BER(T}y.,) = Tiep - (Po1,p10)- In the accuracy over bit
error rates plots of following sections, we annotate the

L X
x-axis with T,

6.2 Bit Flip Injection

For bit flip injection into the BNN data, we call CUDA
kernels to operate efficiently on the tensors of BNN weights,
intermediate results, and inputs during each forward pass.
To inject bit flips into the binarized values and intermediate
results (in {—1,+1}), the CUDA thread changes the sign of
a single entry if a randomly sampled floating point value
v between 0 and 1 (using the NVIDIA cuRAND library)
is below the bit error rate p in decimal. We inject bit flips
anew in every forward pass for the BNN parameters and
intermediate results. To inject bit flips into the 8 bit input
values, we use the BFITT tool [35]. The functions in BFITT
access the bit level representation and inject bit flips with
CUDA kernels that execute the same comparison as above
but iterate through the entire length of the bit representa-
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Name # Train  # Test #Dim  # classes
FashionMNIST 60000 10000  (1,28,28) 10
CIFAR10 50000 10000  (3,32,32) 10
SVHN 73257 26032  (3,32,32) 10

TABLE 2: Datasets used for experiments.

Parameter Range
Fashion CNN In — C64 — MP2 — BN — C64 — MP2 — BN
— FC2048 — BN — FC10
CIFARI0CNN  In — C128 — BN — C128 — MP2 — BN
— C256 — BN — C256 — MP2 — BN
— C512 — BN — C512 —+ MP2 — BN
— FC1024 — BN — FC10
SVHN CNN In — C128 — BN — C128 —+ MP2 — BN

— C256 —+ BN — C256 — MP2 — BN
— C512 —+ MP2 — BN — C512 — MP2 — BN
— FC1024 — BN — FC10

TABLE 3: BNN architectures and bit error rates and used in
this work.

tion. We inject bit flips into the entire input data batch every
time a new batch is sampled.

6.3 Datasets, BNN Models, and LBW Execution

Datasets: In the evaluations, we use three standard object
recognition, which are detailed in Table 2. FashionMNIST
contains grayscale images of clothes in 10 classes sold on
Zalando. CIFAR10 includes coloured images of 10 common
objects and animals. SVHN contains images of house num-
bers in 10 classes from Google Street View.

BNN Architectures: For every dataset, we use a different
BNN architecture. The description of the BNN architectures
used in this work are collected in Table 3. To achieve
reasonable accuracy, we use larger models for CIFAR10 and
SVHN. For Fashion, a smaller BNN architecture is sufficient.
The BNN architectures have similar basic building blocks
(described in Section 3.1)) as commonly used NN models,
such as VGG-16 and MobileNet, but without special layers
such as foe example 1 x 1 convolutions.

LBW Execution of BNNs: In the experiments we use LBW
BNNs, which we proposed in Section 4. Here, we conduct
evaluations for the sake of demonstrating that our assump-
tion of using the LBW (Less Buffer Writes) execution of
BNNs is reasonable and, additionally, to quantify the impact
of such an assumption on system performance. The LBW
execution of BNNs buffers less intermediate results to the
memory during execution than the usual way of execution.
Our goal is to demonstrate that the LBW execution of
BNNs does not lead to significantly higher execution times
compared to the regular way of execution. We use this
assumption (LBW execution of BNNs) in the error tolerance
evaluations, to justify bit flip injection in the weights, input
images, and activations (instead of injecting bit flips in all
intermediate results, which are the outputs of every layer).
Here, we evaluate the execution time of LBW BNNs and
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Platform BNN-type FASHION (ms/el.) CIFAR10 (ms/el.)

Intel Regular 1.09 26.47
LBW 1.05 32.15

ARM Regular 12.28 305.09
LBW 11.03 312.79

PPC Regular 4.55 210.03
LBW 12.45 306.30

TABLE 4: Average execution times evaluation for the regular
and LBW BNNs on different platforms and datasets. The
values are in ms per one BNN evaluation. Each BNN was
evaluated 10* times as compiled C++ code.

compare it to regular ones using commonly available CPUs
for the BNN operations. As experiment platforms for the
execution time measurements of machine learning models
we use the same setup as the work in [36]. Furthermore,
we generate C++ code from PyTorch models with the same
framework as the study in [37]. For Intel we used a Intel
i7-8550U CPU with 1.80GHz and 16 GB RAM. For ARM
we used an ARM Cortex-A53 with 1.4 GHz and 1GB RAM
(RaspberryPi 3B+). For PPC we used a QorlQ T4240 Pow-
erPC CPU with 1.67 GHz and 6 GB RAM. To summarize
the results in Table 4, the execution times for FASHION and
CIFAR only differ by a large factor for PPC, and for the other
settings the execution times do not differ by a large margin.

7 EXPERIMENTS FOR FEFET TEMPERATURE BIT
ERROR TOLERANCE

In Section 7.1 we first assess the impact of FeFET bit errors
on BNN accuracy without any countermeasures. In the next
step, to protect the BNNs, we apply the well-known bit flip
training while taking the asymmetry of the FeFET bit error
model into account (addressing the BET Training Problem).
In Section 5.2 we evaluate the novel bit error rate assignment
algorithm that exploits the asymmetry by operating in a
layer-wise manner to minimize the impact of the FeFET bit
errors (addressing the BET during inference problem).

7.1

We use the configurations shown in Table 3 for the three
datasets FASHION, CIFAR, and SVHN. We run the Adam
optimizer for 50 epochs for FASHION and SVHN and for
200 epochs for CIFAR. We use a batch size of 256 and
an initial learning rate of 1073 for all cases. To stabilize
training we decrease the learning rate every epoch for
FASHION, after every 50 epoch for CIFAR, and after every
25th epoch for SVHN, by 50 percent in all cases. All training
and testing experiments are repeated 10 times. We inject
bit flips with the bit error rates configuration (po1,p10) €
{(2.198,1.090), (1.090, 2.198), (2.098, 0.190), (0.190, 2.098) }
in the forward pass. We plot the accuracy over bit error rate
for all BNNs we tested in Figure 7.

The Impact of FeFET Bit Errors on BNN Accuracy

Impact on BNNs with no countermeasures: For BNNs
trained without errors (left column) the impact of the tem-
perature bit errors can be substantial if no bit error training
is used and when no attention is paid to the asymmetry of
the bit error rates. We find accuracy degradation of over 25%
for FASHION, over 30% for CIFAR, and over 7% for SVHN

at the highest operating temperature 77, = 1.

10

Bit flip injection during training: When training with bit
flip injection (right column of Figure 7), we achieve bit
error tolerance for the entire range of operating temperature.
The asymmetry of the bit error model, however, plays a
key role in these experiments. The differences among the
highest and the lowest FASHION curves is below 0.2% for
Ts*tep = 1. For Ts*tep = 1 this difference is 0.85%. For CIFAR,
these gap are larger. First, for T3, = 0, the difference
between the plot with the highest and the lowest accuracy
is 1.75%. For T}, = 1, this difference is 9.6%. Furthermore,
when comparing the CIFAR plots without bit flip training
(left column) with the bit flip trained plots at Ty;., = 0,
the highest plots differ by 1.1%. In this case, the bit flip
training drops the accuracy by more than one percent. For
the other datasets, this accuracy trade-off amounts to merely
around 0.2%. For SVHN, the difference among the plots at
Tgiep = 0is below 0.2% and for T, = 1 it is 1.4% when
comparing the highest accuracy plot with the lowest. In all
three datasets, the setting (2.098,0.190) dominates among
the four bit error rate settings.

In summary, our experiments show that bit flip training
is necessary for avoiding accuracy drop to unacceptable
levels. The asymmetry of the bit error model also cannot
be ignored. The accuracy drop at the highest operating
temperature can still amount to around 10% in some cases.

7.2 Bit Error Rate Assignment Algorithm (BERA)

We present the output of Alg. 1 with reps = 10 in Figure
8 and plot the accuracy drop for the layers affected by bit
errors. In general, we observe that bit errors in the first few
layers have the largest impact on BNN accuracy. In the input
image and the parameters of the first layer, the bit errors
have the most significant accuracy drop. To give an intuition
for the impact of the bit errors, consider that the probability
for no errors in one value is (1 — 155)%, where p is the bit
error rate in percentage points and the exponent is 8 because
the input values have 8 bits. In the symmetric case p =
2%, for one or more bit flips in one value the probability is
approximately 15%. One bit flip in an unsigned 8 bit value
can have a large impact (depending on the position of the
flip) and the flip can have a large impact on the accuracy.
On the other hand, the weights of the first layer also have
a large accuracy drop since the number of weights in this
layer is the smallest. In the first convolutional layer, our
NNs that use coloured images have 3 x 3 x 3 parameters. In
the second convolutional layer, the number of parameters is
3 X 3 x 128, which may be more robust.

We present the result for BERA in the accuracy over bit
error rate plots in Figure 7 as Greedy-A (orange plots). In
the left column, we show the plots for only using BERA
to protect the BNNs and without bit flips during training.
The Greedy-A plot is able to protect the BNN from bit
errors to a similar extent as using bit flip training. The
difference at T7;., = 1 is 0.66% when compared to BNNs
retrained with Greedy-A. For the other two datasets, the
Greedy-A assignment can only reach the same accuracy as
(2.098,0.190), since that setting dominates for every layer.

We also evaluate the combination of BERA and bit flip
training. In the right column we show the plots (in or-
ange) for retraining with the Greedy-A setting after training
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without bit flips. We retrained FASHION BNNs for 10
epochs, CIFAR for 200, and SVHN for 50. For FASHION,
the Greedy-A assignment improves accuracy by 0.3% com-
pared to the other settings. This eliminates the trade-off in
accuracy when injecting bit flips during training.

In conclusion, for asymmetric bit error rate models, in
some cases BERA can be used without bit flip training for
protecting BNNs from accuracy drop. It however can only
exploit the asymmetry if one bit error rate configuration
does not dominate in all layers.

7.3 Discussion of Experiment Results

Our methods in general are fully applicable to other datasets
like CIFAR 100 and ImageNet. However, examining such
more complex datasets inevitably necessitates employing
extremely powerful servers during training and long exper-
iment runtimes. In the following, we discuss the operations
that lead to a high resource demand: (1) Training BNNs
needs more memory than training traditional floating-point
NNs. This is because during BNN training, we need, on the
one hand, to store the floating point weights (because they
are used for gradient updates in the backward pass) and, on
the other hand, to store the binarized weights in inference
for the forward pass. Hence, training BNNs comes with
a larger memory requirement than training floating-point
NNs. (2) For training BNNs, we need to execute a larger
number of operations. Before a convolution is executed,
the weights needs to be binarized, which adds additional
overhead every time the weights are accessed in the for-
ward pass. (3) For achieving bit-error tolerance, we apply
the bit error model during training. This causes additional
overheads, because every time we access the weights, we
need to inject the bit flips, which is performed by random
number samplings, comparisons, and flipping bits.

In summary, we have demonstrated our methods for
relatively small datasets (e.g., CIFAR 10 and FASHION). The
analysis of such relatively-small datasets is, for instance,
around 3 weeks (500 hours on a machine with Intel Core
i7-8700 K 3.70 Ghz, 32 GB RAM, 2x GeForce GTX 1080 8
GB). This demonstrates the indispensable need to have more
powerful server machines when larger datesets (e.g., Ima-
geNet and CIFAR 100) are targeted.

For evaluating the overhead of binarization, bit flip in-
jection, and the bit error rate assignment algorithm (BERA),
we measured our experiment run times on the machine we
used for this work (see above). The results are presented
in Table 5. We observe that the binarization-aware training
takes significantly more time than training floating point
NNs. Injecting bit flips into the BNNs also increases the run
times, but not as much as binarization. Bit error tolerance
evaluation takes only a few minutes. The run time of BERA
can take a few hours, depending on the size of the BNNS.

8 RELATED WORK

In this section we review studies that mainly exploit the
reduced requirements of NNs on (A) non-volatile memory
technologies, i.e. RRAM, STT-RAM or MRAM, FeFET and
CCT, and (B) the volatile memory technologies SRAM and
DRAM.
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Measure | FASHION CIFAR10 SVHN
Train one epoch (floating-point NN, without BFI) 3.20s 47.09 s 65.34 s
Train one epoch without BFI (BNN) 3.84s 51.26 s 70.63 s
Train one epoch with BFI (BNN) 4.28 s 53.15s 72.95s
Bit error tolerance evaluation (16 error rates, BNN) \ 6.31s 92.06 s 186.52 s
BERA (Bit error rate assignment algorithm, BNN) ‘ 9.59 min  269.18 min  306.92 min

TABLE 5: Experiment run times in our framework. BFI: Bit
flip injection. In all entries are for BNNs except the ones
specified with “floating point NN”. Epochs were runs 50
times then averaged, bit error tolerance evaluations were
run ten times and BERA once. Experiments were run on a
machine with Intel Core i7-8700K 3.70 Ghz, 32 GB RAM, 2x
GeForce GTX 1080 8 GB.

In our work, we focus on the modeling of temperature
effects in FeFET memory and evaluating the impact of the
errors on BNN accuracy. We are the first to evaluate impact
of temperature in FeFET memory. The related studies do not
deal with temperature issues, but with errors (in general)
stemming from other effects, such as voltage scaling or tun-
ing of timing parameters. We present these related studies
in the following.

8.1 NN inference systems with NVM technologies

RRAM: The closest works are about error tolerant BNNs
that operate with reduced requirements on the memory
in order to benefit in terms of power, performance, area,
lifetime, etc. Hirtzlin et al. [4] propose to compute BNN
operations with RRAM that features in-memory processing
capabilities. They set the write energy of RRAM low and
show that BNNs can tolerate the resulting errors by error
tolerance training. This low energy setting also increases the
RRAM cell lifetime since the low energy writes stress the
cells less. The work by Yu et al. [15] also uses RRAM to
implement on-chip BNNs. They show that under limited bit
yield, BNNs can still operate with satisfying accuracy.

MRAM or STT-RAM: Another branch in the literature
is about NNs on STT-RAM or MRAM. Hirtzlin et al. [8]
propose deploying BNNs on MRAM with a low energy
programming setting that causes relatively low error rates,
no significant accuracy drop, but decreases write energy by
a factor of two. Tzoufras et al. [9] also propose operating
BNNs on MRAM with reduced voltage with similar results.
They test a wide range of error rates and discuss the impli-
cations of BNN bit error tolerance on lifetime, performance,
and density of MRAM.

FeFET: Work on FeFET by Chen et al. [11], Long et al. [12]
and Zhang et al. [13] explore the in-memory processing
capabilities of FeFET and compare it to other CMOS-based
circuits. Yoon et al. [14] investigate the effect of FeFET device
limitations on NN accuracy. However, these works do not
investigate the temperature effects of the designs and do not
exploit the error tolerance of NNs.

8.2 NN inference systems with volatile memories

SRAM: For NN inference systems using on-chip SRAM, the
works in the literature mainly employ scaling of various de-
vice parameters. To reduce energy consumption, the SRAM
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(Greedy-A) the result for applying BERA after training. Right column: Bit flip training with all bit error rate configurations

*

and in orange (Greedy-A) the retraining with BERA.

step =

%Tstep and Tyep € {0,1, ..

.,16}. BER = T}, - (po1,p10)

yields the temperature dependent bit error rate setting. Greedy-A is the accuracy optimal assignment acquired after
executing BERA. In the other four settings, every layer of the BNN is configured with the same bit error rate. E.g., when
we write (2.198,1.090), then every layer of the BNN is configured with these bit error rates.

voltage is scaled in [38], [39]. Yang et al. [40] seperately
tune weight and activation values of BNNs to achieve fine-
grained control over energy comsumption.

DRAM: For DRAM,, the study by Koppula et al. [33] provide
an overview over studies related to NNs that use different
DRAM technologies and proposes a framework to evaluate
NN accuracy for using approximate DRAM in various dif-
ferent settings and inference systems. Specifically, they show
that DRAM parameters can be tuned such that energy and
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performance are optimized to achieve significant improve-
ments, whereas the NN accuracy drop stays negligible due
to the NNs” adaptations in retraining.

9 CONCLUSION

In this work, we first analyzed the effects of variable tem-
perature on FeFET memory and proposed an asymmetric bit
error model that exhibits the relation between temperature
and bit error rates - high temperature leads to high bit error
rates. We then evaluated the impact of FeFET asymmetric
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then the accuracy is evaluated. The bar plots show the impact of bit flips on the layers individually.

temperature bit errors on BNN accuracy if no countermea-
sures are applied and showed that the accuracy can drop
to unacceptable levels. To deploy BNNs with high accuracy
using FeFET memory despite the temperature effects, we
proposed two countermeasures to the bit errors: (1) Bit flip
training while the asymmetry into account and (2) a bit
error rate assignment algorithm (BERA) which estimates
accuracy drops per layer and assigns layer-wise the bit error
rate configuration with the lowest accuracy drop. With these
methods, the BNNSs achieve bit error tolerance for the entire
range of operating temperature. These results indicate that
FeFET memory can be used on the low-power edge for
BNNs despite the temperature-dependent bit errors.

The bit error tolerance methods proposed in our study
can also be applied to other types of DNNs, such as
quantized or floating point DNNs. However, we did not
run bit error tolerance analyses on these DNNs yet. These
extensions are not trivial, since dedicated tools need to be
developed, while parameter tuning and model training is
necessary, which takes considerable amounts of additional
time. We leave these extensions as future work.

Another interesting subject is the study of the effects
that error tolerance training has in the BNNs. For example,
in [41], the effects of bit error tolerance training on the BNNs
on the neuron and inter-neuron level is explored. In that
study, the goal is to explain the achieved bit error tolerance
with metrics, to gain understanding of the changes that bit
error tolerance training causes in NNs. Advancements in
this area, incorporating the findings of this work, are left as
future work as well.
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