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Abstract

Point forecasts can be interpreted as functionals (i.e., point summaries) of
predictive distributions. We extend methodology for the identification of the
functional based on time series of point forecasts and associated realizations.
Focusing on state-dependent quantiles and expectiles, we provide a generalized
method of moments estimator for the functional, along with tests of optimal-
ity under general joint hypotheses of functional relationships and information
bases. Our tests are more flexible, and in simulations better calibrated and
more powerful than existing solutions. In empirical examples, economic growth
forecasts and model output for precipitation are indicative of overstatement in
anticipation of extreme events.
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1 INTRODUCTION

Forecasts are frequently the basis of crucial decisions. Yet they are fraught with uncertainty due to imperfections in the
observation, understanding, and modeling of the underlying mechanisms. To account for this uncertainty, it is increas-
ingly being recognized that forecasts ought to be probabilistic in nature (Gneiting & Katzfuss, 2014). If forecasts are issued
in the form of full predictive distributions, there are well-established methods for computing the Bayes act in any given
decision problem, for testing optimality, and for comparing and ranking competing forecasting methods.

However, single-valued point forecasts remain ubiquitous. Their interpretation requires assumptions on the decision
process or directive that the forecasters used in order to generate the point predictions (Elliott et al., 2005; Elliott &
Timmermann, 2008; Engelberg et al., 2009; Manski, 2016). A directive can be expressed through a functional (i.e., a
real-valued summary) of the predictive distribution, and it is a widely used assumption that the reported functional is the
mean value or expectation. However, there is often little justification for this supposition. Knowledge of the functional
used to generate the forecast is important, as it allows for proper interpretation, evaluation, testing, and comparison of
point predictions (Gneiting, 2011).

Here, we address the setting of point forecasts with unknown directive, for which the forecaster implicitly (only) reports
a certain functional of the predictive distribution. This scenario can arise with expert forecasts or response items in
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FIGURE 1 Time series of one-quarter-ahead
Greenbook forecasts (crosses) and respective
observations (solid line) of real gross domestic
product (GDP) growth in the United States (in
percent) [Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 2 Time series of 24-h-ahead
European Centre for Medium-Range Weather
Forecasts (ECMWF) forecasts (crosses) and
respective observations (solid line) of daily
accumulated precipitation (in millimeter) at
London, UK, in 2013 [Colour figure can be
viewed at wileyonlinelibrary.com]

surveys. Another important example is output from complex computer models, such as in weather and climate prediction,
which are often tuned by multiple individuals to achieve forecasts that model developers or decision makers perceive as
optimal, in ways that might neither be transparent nor explicitly defined. Such forecasts would be most informative if the
user knew the directive under which the forecast was issued. Our goal here is to estimate the functional from time series
data of point forecasts and associated realizations and to construct tests regarding the properties of the functional. The type
of data encountered in this setting is illustrated in Figure 1, which displays one-quarter-ahead Greenbook gross domestic
product (GDP) forecasts of the US Federal Reserve, and in Figure 2, which shows 24-h-ahead forecasts of daily accumu-
lated precipitation at London, UK, from the high-resolution run operated by the European Centre for Medium-Range
Weather Forecasts (ECMWF). While we focus on time series data, adaptations to cross-sectional data are straightforward.
Once the functional has been estimated, the point forecasts can be coherently interpreted and be compared with other
point or probability forecasts, and constructive feedback can be given to model developers.

We build on extant work that focuses on estimation of the loss function underlying a forecast. The pioneering work
of Elliott et al. (2005) provides a generalized method of moments (GMM) estimator for piecewise linear and quadratic
loss functions. Patton and Timmermann (2007) apply methods of this type to the US Federal Reserve's Greenbook GDP
forecasts with a new class of loss functions, which consists of quadratic splines that depend on a state variable in flexible
ways. Recently, asymmetric piecewise linear and piecewise quadratic loss functions have been estimated in various
economic applications (Christodoulakis & Mamatzakis, 2008; Capistrán, 2008; Elliott et al., 2008; Fritsche et al., 2015;
Guler et al., 2017; Krol, 2013; Lieli et al., 2019; Pierdzioch et al., 2013; Wang & Lee, 2014).

Here, we argue that the loss function is not identifiable from point forecasts and realizations only. Specifically, if a
functional is defined via a loss function, then there exists a whole class of nontrivially distinct loss functions that define
the very same functional (Ehm et al., 2016; Steinwart et al., 2014). It is therefore futile to identify the shape of the loss,
given that all these functions lead to the same functional-forecast and moment conditions. Hence, we formalize notions of
optimality for point forecasts in terms of functionals rather than loss functions. We consider single-valued scalar
functionals throughout, although the results extend to set-valued and multivariate cases under additional technical
considerations. For estimation, we focus on parametric models for quantiles and expectiles, where the level of asymme-
try depends on state variables. We propose a GMM estimator and apply standard GMM theory to show consistency and
asymptotic normality under mild assumptions. We also discuss testing of forecast optimality and other forecast proper-
ties. The approach of Elliott et al. (2005) can be viewed as a special case of our method that assumes quantile or expectile
forecasts at a constant level. Our state-dependent functionals allow the consistent interpretation of a much wider range
of point forecasts. In comparison to Patton and Timmermann (2007), our methods yield improved interpretability and
nominally sized tests.

Our approach is based on the insight that one can only hope to identify the functional relationship between a forecast
and the data-generating distribution. Such a reduced-form approach avoids a priori hypotheses about the underlying
reasons, which can then be investigated subsequently, once a quantitative relationship has been established. Forecast
optimality needs to be defined and studied relative to information sets (Holzmann & Eulert, 2014). In our approach,
tests operate under general hypotheses of forecast optimality relative to information sets, and the choice of instrumental
variables for the GMM estimator affects and determines the joint conditions tested for. The addition of information into
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the instrument vector yields stronger hypotheses of forecast optimality and increases power against suboptimal forecasts.
In real data and simulation examples, we elucidate the role of the information set, and we illustrate that the proposed
optimality test can be used to distinguish information bases. Importantly, while our functional-based approach provides a
complementary perspective that is both convenient and flexible, it does not invalidate approaches based on loss functions.

The remainder of the paper is organized as follows. In Section 2, we review notions of optimality for general types of
point forecasts and discuss the identifying moment conditions upon which our approach is based. For the remainder of
the paper, we focus on the particular case of possibly state-dependent quantiles and expectiles. In Section 3, we introduce
a parametric GMM estimator in the time series setting, study its large sample behavior, and discuss the aforementioned
tests of forecast optimality. The Monte Carlo studies in Section 4 serve to compare our approach to existing solutions.
Section 5 is dedicated to empirical studies, where our approach yields accessible and scientifically relevant insights. In
particular, we posit that Greenbook GDP forecasts of the US Federal Reserve and ECMWF forecasts of daily accumulated
precipitation can be interpreted as state-dependent quantiles or expectiles, and we observe a pronounced tendency to
exaggerate in anticipation of tail events. The paper closes with a discussion in Section 6. The Supporting Information
contains technical results and additional detail in Sections S1 through S9.

2 OPTIMALITY OF POINT FORECASTS AND IDENTIFYING MOMENT
CONDITIONS

Consider a real-valued random variable Y and a corresponding point forecast X, which is based on the information avail-
able to the forecaster, as encoded by some 𝜎-algebra  . Commonly, a point forecast is interpreted as the mean of the
conditional distribution (Y | ), that is,

X = E[Y | ].

Here and throughout the paper, equality of random variables is understood to hold almost surely. Proceeding to a more
general framework, let 𝛼 ∶  → R be a functional, that is, a single-valued mapping from some class  of probability
distributions to the real line (Horowitz & Manski, 2006; Huber & Ronchetti, 2009, p. 9). A functional 𝛼 is symmetric if,
for every symmetric distribution P ∈  with symmetry point c, it holds that c = 𝛼(P). Prominent alternatives to the mean
functional are symmetric functionals, like the median, or asymmetric generalizations, such as quantiles, expectiles, and
generalized quantiles (Bellini et al., 2014). Throughout, we use the short notation 𝛼(Y |  ) for 𝛼((Y |  )).

Definition 1 (optimal 𝛼-forecast). A random variable X is an optimal 𝛼-forecast of Y relative to the information
set  if

X = 𝛼(Y |  ).

Importantly, an optimal point forecast satisfies a condition in terms of both the functional 𝛼 and the information set  ,
in that the functional is applied to the conditional distribution (Y |  ). Hence, optimal 𝛼-forecasts may differ from each
other if they are optimal with respect to distinct information sets.

Crucially, we consider the situation in which the functional used by the forecaster and the conditional distribution
(Y | ) is unknown. In line with seminal work on professional economic forecasters (Elliott et al., 2005; Patton &
Timmermann, 2007), we merely assume that the unknown conditional distribution constitutes a predictive distribution
consistent with some information set  .

Next, we introduce notation. If R is a random variable or random vector and Q is an integrable random variable, the
relation R ∈ Q indicates that R is  -measurable and both R and QR are (componentwise) integrable. The relation R ∈ 
means that R is  -measurable and integrable. As usual, we write 𝜎(W) for the information set generated by the random
vector W. Uppercase letters represent random variables and corresponding lowercase letters their realizations. Finally,
the partial derivative of a function g(x, y) with respect to x is denoted g(x)(x, y).

Standard properties of conditional expectations (e.g., Billingsley, 1995, section 34) yield identifying moment conditions
for an optimal mean forecast relative to the information set  , namely,

X = E[Y | ] ⇐⇒ E[(X − Y )W] = 0 for all W ∈ X−Y ,

where the components of the random vector W (henceforth called instruments) represent information  available to
the forecaster when the prediction is issued. This property of optimal mean forecasts generalizes to optimal 𝛼-forecasts.
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Specifically, for every sufficiently regular functional 𝛼 ∶  → R, there exists a function V𝛼 identifying the optimal
𝛼-forecast, that is,

X = 𝛼(Y | ) ⇐⇒ E[V𝛼(X ,Y )W] = 0 for all W ∈ V𝛼(X ,Y ). (1)

We refer to (1) as the identifying moment conditions for an optimal 𝛼-forecast and give rigorous versions thereof in
Section S1. The identification function V𝛼 is unique up to an  -measurable multiplicative factor (Steinwart et al., 2014,
theorem 8), so the set of the arising moment conditions does not depend on its choice. The moment conditions are the
foundation of the methodology developed hereinafter. In particular, they allow for tests of whether a point forecast is
an optimal 𝛼-forecast relative to a specific information set. In the hypothetical limit of an infinite supply of data and
instruments, a nonrejection of the test is a sufficient condition for optimality.

In contrast to our approach, extant work (e.g., Elliott et al., 2005) has typically defined optimal point forecasts via a loss
function L, namely, as

X = argmin
x∈R

E[L(x,Y ) |  ].

Under regularity conditions, this specifies a well-defined optimal 𝛼L-forecast, where the functional 𝛼L is defined as

𝛼L ∶  → R, P → argmin
x∈R

EY∼P[L(x,Y )],

for a suitable class  of probability distributions. For example, the mean functional can be defined as the minimizer of
expected quadratic loss, L(x, 𝑦) = (x − 𝑦)2, for probability distributions with finite second moments. While some func-
tionals, such as the expected shortfall and the mode, do not admit definitions via loss functions relative to broad classes
of probability distributions (Gneiting, 2011; Heinrich, 2014), every functional 𝛼 with identifying moment conditions (1)
can be defined via a loss function L under weak conditions, and the identification function V𝛼 derives from the partial
derivative L(x)(x, y) (Fissler & Ziegel, 2016, theorem 3.2; Steinwart et al., 2014, theorem 8). In this setting, the literature
commonly states necessary (but not sufficient) conditions for optimality (e.g., Diebold & Lopez, 1996; Patton & Timmer-
mann, 2007, 2010). As a notable exception, proposition 1 of Elliott et al. (2005) supplies identifying moment conditions
of the general form (1) that apply to linear predictors under piecewise linear and piecewise quadratic loss.

As noted, our rationale for the shift of emphasis from loss functions to functionals is an identifiability problem. For
example, while the mean functional minimizes expected quadratic loss, given any convex and differentiable function 𝜑

the loss function L(x, 𝑦) = 𝜑(𝑦) − 𝜑(x) − 𝜑′(x)(𝑦 − x) also induces an optimal mean forecast (Savage, 1971). In this light,
a more compelling approach is to estimate functionals, as they are identified to the extent that they differ on the class
of the arising conditional distributions (Lieli & Stinchcombe, 2013). For instance, the mean and the median are distinct
functionals in general, but if all considered distributions are symmetric, the two functionals are identical and cannot be
identified. In what follows, we focus on optimal forecasts in the form of either quantiles or expectiles, to allow for unique
identification without imposing unduly strong assumptions on the data-generating process.

3 PARAMETRIC ESTIMATION AND TESTING OF STATE-DEPENDENT
QUANTILES AND EXPECTILES

We turn to parametric estimation of possibly time-varying functionals. Consider a stochastic process (Xt,Yt,Zt)t∈Z of fore-
casts, observations, and covariates, for which we have a sample path (xt, 𝑦t, zt)t=1,… ,T . Our goal is to infer the functional
represented by the point forecasts.

We assume that at each point in time an optimal forecast is issued, that is, Xt = 𝛼t(Yt | t) for t ∈ Z. In the situation
of an h-step-ahead forecast, the available information is typically generated by lagged variables of the outcome and the
vector-valued covariate, so that t = 𝜎({Yu,Zu ∶ u ≤ t − h}). For ease of notation, statements about all time points are
often denoted without subscripts. For example, we write X = 𝛼(Y |  ) instead of Xt = 𝛼t(Yt | t) for t ∈ Z.

Extending Definition 1, we allow the functional 𝛼 to depend on the current situation, as represented by some
t-measurable state variable St, for a state-dependent functional. For example, in the aforementioned situation of an
h-step-ahead forecast, St might include the most recent observation, Yt− h, components of the covariate vector, Zt− h, or
the current forecast, Xt. Asymmetric and state-dependent point forecasts can arise for a variety of reasons, including vary-
ing preferences of the forecaster, asymmetric information, and nonlinear transformations of the data, and we refer to
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Section S2 for details. In the following, we assume that the true functional is a state-dependent quantile or state-dependent
expectile of the conditional distribution (Y |  ). As elaborated in Section S3, this assumption is of surprising flexibility
and generality.

3.1 State-dependent quantiles and expectiles
We first discuss identifying moment conditions for constant quantile and expectile forecasts, which correspond to first
order conditions derived in Elliott et al. (2005, pp. 1100–1111) under the loss function approach. The 𝜏-quantile functional
q𝜏(P) of a distribution P with continuous and strictly increasing cumulative distribution function is the unique solution x
to the equation P((−∞, x]) = 𝜏 ∈ (0, 1). In our setting, we can express this directly in terms of the identification function
of the 𝜏-quantile, namely, V𝜏(x, 𝑦) = 𝟙(𝑦 ≤ x) − 𝜏:

X = q𝜏(Y | ) ⇐⇒ E[(𝟙(Y ≤ X) − 𝜏)W] = 0 for all W ∈  .

When 𝜏 = 1∕2, we recover the classical result that a median forecast is optimal if, and only if, the sign of the forecast error
is uncorrelated with any random variable in the forecaster's information set. For technical details, see Section S1.

While quantiles are asymmetric generalizations of the median, expectiles are asymmetric generalizations of the mean.
Specifically, Newey and Powell (1987) introduced the 𝜏-expectile e𝜏(P) of a nondegenerate distribution P with finite mean
as the unique solution x to the equation

𝜏

1 − 𝜏
=

∫ x
−∞(x − 𝑦)dP(𝑦)

∫ ∞
x (𝑦 − x)dP(𝑦)

,

where 𝜏 ∈ (0, 1). In our setting, this is equivalent to

X = e𝜏(Y | ) ⇐⇒ E[|𝟙(Y ≤ X) − 𝜏|(Y − X)W] = 0 for all W ∈ X−Y ,

which reveals the corresponding identification function V𝜏(x, 𝑦) = |𝟙(𝑦 ≤ x) − 𝜏|(𝑦 − x). When 𝜏 = 1∕2, we see that a
mean forecast is optimal if, and only if, the forecast error is uncorrelated with any random variable in the forecaster's
information set.

We allow for additional flexibility and let the level 𝜏 of the quantile or expectile functional depend on the state s via a
parametric function m(s, 𝜃).

Definition 2 (specification model). Let Θ be a subset of Rp and suppose that the state variable s takes values in Rk.
A specification model is a measurable function m(s, 𝜃) that maps Rk × Θ into the unit interval (0, 1).

Our key assumption then is that Xt is an optimal quantile or expectile forecast with state-dependent level m(St, 𝜃∗) for
some 𝜃∗ ∈Θ, that is, in the case of quantiles

Xt = qm(St ,𝜃∗)(Yt | t), (2)

for t ∈ Z, and analogously for expectiles. Crucially, we assume that the state variable St is known to the forecaster at the
time when the forecast is issued.

We say that a specification model m(s, 𝜃) is continuous (continuously differentiable) if it is continuous (continuously
differentiable) in 𝜃 ∈Θ for every s ∈ Rk. Examples are given in Table 1, where the state s is assumed to be real valued.
The constant model assumes that the forecaster always states the 𝜃-quantile or 𝜃-expectile, where 𝜃 ∈ (0, 1) is unknown
and needs to be estimated. This model has been implemented under the loss function paradigm in much previous work
(Christodoulakis & Mamatzakis, 2008; Elliott et al., 2005; Fritsche et al., 2015; Krol, 2013; Pierdzioch et al., 2013). The
related fixed model assumes that the forecaster's directive is known to be the quantile or expectile at the true level 𝜃∗. If
𝜃∗ = 1∕2, this is equivalent to assuming a median or mean forecast.

Name Model Parameter space 𝚯
Constant m(s, 𝜃) = 𝜃 (0, 1)
Break m(s, 𝜃) = Φ(𝟙(s ≤ 𝜃2)𝜃0 + 𝟙(s > 𝜃2)𝜃1) R3

Linear m(s, 𝜃) = Φ(𝜃0 + 𝜃1s) R2

Periodic m(s, 𝜃) = Φ(𝜃0 + 𝜃1 sin(2𝜋s∕𝜃2)) R2 × (0,∞)

TABLE 1 Specification models for a real-valued state
variable s
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For the state-dependent models, we employ the probit link, where the CDF Φ of the standard normal distribution
ensures a quantile or expectile level in the unit interval. Alternatively, the logit link or a related formulation could be used.
Throughout, we consider specification models that nest the constant model and, therefore, include optimal quantile or
expectile forecasts as a special case. The choice of the specification model reflects investigators' thoughts on the kind of
deviation from this standard that seems plausible. The break model allows for structural change at a breakpoint 𝜃2 ∈ R,
and the linear model admits linear dependence within the argument of the link function. The periodic model specifies the
base level 𝜃0, the amplitude 𝜃1, and the period 𝜃2 of any cyclic component. These models are continuous, except for the
break model, which is discontinuous with respect to the breakpoint. However, in applications, there often exist natural
choices for a fixed breakpoint (e.g., corresponding to a policy change or phase transition) and similarly for the period in the
periodic model (e.g., implied by seasonal effects). Suitable adaptations apply when the state variable s = (s1, … , sk)′ takes
values in Rk. For example, the linear model generalizes to m(s, 𝜃) = Φ(𝜃0 +𝜃1s1 + … +𝜃ksk). In any practical problem, the
choice of the state variable and the parametric specification model will be guided and informed by substantive expertise,
as we exemplify in economic and meteorological case studies. A plausible default, which we have found to be the most
useful across a range of applications, uses the linear specification model with the probit link and the point forecast as the
state variable.

3.2 GMM estimator
In the following, we draw on standard GMM theory (Hansen, 1982; Newey & McFadden, 1986) to estimate specification
models and test general hypotheses of optimality. We assume that Xt is an optimal quantile forecast with t-measurable
state St as in Equation (2). It follows that

E[(𝟙(Yt ≤ Xt) − m(St, 𝜃∗))Wt] = 0 for all Wt ∈ t.

In practice, we choose a q-variate instrument vector wt = (wt,1, … ,wt,q)′ that comprises information available to the
forecast issuer at the time the forecast was made. We refer to

gt(𝜃) = (𝟙(𝑦t ≤ xt) − m(st, 𝜃))wt

as the moment function. Alternatively, the forecast might be an optimal state-dependent expectile forecast, Xt =
em(St ,𝜃∗)(Yt | t), with associated moment function gt(𝜃) = |1(𝑦t ≤ xt) − m(st, 𝜃)|(xt − 𝑦t)wt.

Given a sample path of instrument vectors w1, … , wT, the empirical mean of the moment function is given by
gT(𝜃) = 1

T

∑T
t=1 gt(𝜃), and the GMM estimator 𝜃̂T is obtained by minimizing the quadratic norm of gT(𝜃), in that

𝜃̂T = arg min𝜃∈Θ gT(𝜃)′ MT gT(𝜃), (3)

with a weighting matrix MT ∈ Rq×q. Subject to customary assumptions, which include continuity of the specification
model and sufficiently rich instruments to guarantee unique identifiability, the GMM estimator 𝜃̂T in (3) is consistent.
For formal statements, see Section S4.

Once consistency has been established, asymptotic laws in GMM theory can be applied. Throughout this study, we
employ the standard two-step GMM procedure, where the second step relies on the inverse of the heteroskedasticity and
autocorrelation consistent (HAC) noncentered covariance estimator ΣT. Specifically, we follow Newey and West (1987)
and use the linear Bartlett kernel and a sample-size-dependent bandwidth of ⌈T1/5⌉. Subject to regularity conditions
that include continuous differentiability of the specification model and mixing conditions on the moment function, the
two-step GMM estimator is asymptotically normal with

√
T(𝜃̂T − 𝜃∗) → p

(
0, (GΣ−1G′)−1) as T → ∞, (4)

where p is the dimension of the parameter vector,Σ ∈ Rq×q is the covariance matrix of the moment function, and G ∈ Rp×q

is the expectation of its partial derivative with respect to 𝜃, at the true parameter value 𝜃∗. In the case of quantiles, we
have G = E[m(𝜃)(S, 𝜃∗)W ′] and

Σ = E[(𝟙(Y ≤ X) − m(S, 𝜃∗))2 WW ′],
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and in the case of expectiles, it holds that G = E[m(𝜃)(S, 𝜃∗) |Y − X|W ′] and

Σ = E[(𝟙(Y ≤ X) − m(S, 𝜃∗))2 (Y − X)2 WW ′].

For a formal treatment based on classical GMM theory, see Section S5.
While the GMM estimator is consistent for any selection of the instruments that guarantees identification, the associated

tests of forecast optimality depend heavily on the instrument vector W. We tend to this issue now.

3.3 Testing optimality with unknown directive
The well-known test of overidentifying restrictions (Hansen, 1982) can be used to test forecast optimality. Specifically, for
state-dependent quantiles, our tests operate under the null hypothesis:

H0∶There exist 𝜃∗ ∈ Θ and a 𝜎 − algebra  with 𝜎(W) ⊆  such that X = qm(S,𝜃∗)(Y |  ), (5)

and analogously for expectiles. Notably, the null hypothesis stipulates that the instrument vector W is rationally included
in the forecast and the specification model m is correctly specified. As throughout we use specification models that nest
optimal constant quantile or expectile forecasts, the approach allows for flexible, general hypotheses.

If the dimension q of the instrument vector W is greater than the dimension p of the parameter vector 𝜃, and subject to
the same regularity conditions as for the asymptotic distribution (4), the null hypothesis implies that

JT(𝜃̂T) → 𝜒2
q−p as T → ∞,

where JT(𝜃) = T · gT(𝜃)′ Σ−1
T gT(𝜃) is called the J-statistic.

The choice of the instrument vector W determines the information set for which we test. If a forecast is optimal with
respect to  , it also satisfies the moment conditions with respect to any smaller information set  ⊆  . In particular, if a
test with instrument vector W rejects optimality, the point forecast is deemed suboptimal with respect to any information
set  that contains 𝜎(W).

Suppose now that X fails to be optimal under any parameter value 𝜃∗ and any 𝜎-algebra . For a given instrument vector
W, our optimality test has power against this global alternative, if the identification function remains correlated with the
instruments. Subject to customary regularity conditions, the optimality test with instrument vector W is consistent against

HA ∶ E[g(𝜃)] ≠ 0 for all 𝜃 ∈ Θ, (6)

where the expectation is taken with respect to the joint distribution of X, Y, S, and W. Importantly, due to the finite dimen-
sion of the instrument vector, we test necessary (only) conditions for optimality. The inclusion of additional instruments
increases asymptotic power but may degrade finite sample performance. The application of more flexible specification
models allows to analyze more general classes of forecast optimality but decreases asymptotic power.

Optimality with respect to a specific information set can only be rejected if appropriate instruments are available to the
evaluator. Furthermore, a misspecified or suboptimal forecast can still be optimal with respect to a smaller information
set or a more flexible class of functionals. For these reasons, the choice of the specification model and of a sufficiently
rich instrument vector is crucial. By its very nature, the current forecast value carries substantial information about the
underlying quantile or expectile level, and we recommend strongly that it be included as a component of the instrument
vector. The respective effects are illustrated in the simulation setting of Section 4.2 below.

The asymptotic results in Section 3.2 allow for the testing of general hypotheses about forecasting behavior in customary
ways. For example, any restriction R(𝜃) = 0 for the specification model m(s, 𝜃), where R ∶ Θ → Rl is differentiable, can
be tested for based on the Wald statistic (e.g., Greene, 2012).

4 MONTE CARLO EXPERIMENTS

In this section, we demonstrate that our GMM estimator is reliable in finite-sample settings and induces well-
calibrated and powerful tests, despite its flexibility. For ease of comparison to the related approach of Patton and
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Timmermann (2007), which operates under the loss function paradigm, we adopt their simulation setting. Specifically,
each sample path y1, … , yT is simulated from a stationary AR(1)–GARCH(1,1) model of the form

Yt =
1
2

Yt−1 + 𝜎t𝜖t where 𝜎2
t = 1

10
+ 4

5
𝜎2

t−1 +
1

10
𝜎2

t−1𝜖
2
t−1, (7)

with 𝜖t being standard Gaussian white noise. Let t be the filtration generated by the time series, t = 𝜎(Yt,Yt−1, …). We
consider optimal forecasts based on distinct information sets in Section 4.1 and based on different specification models
in Section 4.2. All results use a Monte Carlo sample of 2000 replicate time series, and all tests have nominal level 0.10.
Code for replication is available at https://github.com/Schmidtpk/pf.

4.1 State-independent forecasts under different information sets
We follow Patton and Timmermann (2007) and consider the point forecast

Xt =
1
2

Yt−1 −
1
4
𝜎t. (8)

Conditional on t = t−1, the point forecast Xt is an optimal quantile forecast at the constant level 𝜏 = Φ(− 1
4
) =

0.4012 … Alternatively, the forecast can be interpreted as an optimal expectile forecast at the constant level 𝜏 = 0.3508 …
The two interpretations are equally valid, as the respective conditional distributions are all Gaussian. The same comment
applies whenever the conditional distributions remain within a given location-scale family. See Yao and Tong (1996,
proposition 1) and the discussion in Section S3.

We perform the overidentifying restrictions test of forecast optimality from Section 3.3 and compare tests based on
state-dependent quantiles with distinct specification models in the state variable Xt, all of which nest the case of a fixed
quantile, to the flexible spline test with state variable Yt as specified in eq. (16) of Patton and Timmermann (2007). Specif-
ically, we consider the linear specification model and the constant specification model, which yields a test of the type
proposed by Elliott et al. (2005). The quantile models both use Wt = (1,Xt,Yt−1)′, and the spline approach uses the instru-
ment vector Wt = (1,Xt,Yt−1,X2

t ,Y 2
t−1,X3

t ,Y 3
t−1)

′, which generates the same 𝜎-algebra. Figure 3 demonstrates that the
quantile-based tests are much better calibrated than the flexible spline test, which is oversized throughout.

A possible reason is that, using a single node (at zero) only, the flexible spline test reduces to the expectile test
with a linear-logistic specification model and an inadmissible (i.e., not t−1-measurable) state variable Yt, which seems
problematic from both theoretical and substantive points of view.

It is interesting to observe that in the original loss function formulation the spline approach seems entirely innocuous,
with measurability issues not being apparent at all. Considering the spline with admissible state variables, such as Yt− 1
or Xt, this critique does not apply, but the general identifiability problem of the loss function approach as described in
Section 2 persists. Indeed, in a range of simulation settings both with and without state dependence (in experiments not
shown here), the spline-based estimator appears to be unidentified and inconsistent. In contrast, the approach based
on state-dependent quantiles and expectiles provides insightful point estimates, reliable confidence intervals, and nearly
nominally sized tests.

FIGURE 3 Size of optimality tests for the one-step-ahead quantile
forecast. The horizontal line is at the nominal level of 0.10 [Colour
figure can be viewed at wileyonlinelibrary.com]

https://github.com/Schmidtpk/pf
http://wileyonlinelibrary.com
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FIGURE 4 Size and size-adjusted power of expectile-based
optimality tests for the two-step-ahead mean forecast. The
horizontal line is at the nominal level of 0.10. The solid lines
represent size for tests with properly lagged instruments. The dashed
lines represent size-adjusted power for tests with nonlagged
instruments [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 Quantile level as a function of the state variable under
the specification models in Section 4.2. The density of the state
variable Y t − 1 is also shown [Colour figure can be viewed at
wileyonlinelibrary.com]

In the subsequent analysis, we study power against information rigidities (Coibion & Gorodnichenko, 2015) and
construct a two-step-ahead forecast with lagged information set t = t−2. The respective conditional predictive
distributions have mean and median E[Yt | t−2] = q1∕2(Yt | t−2) = 1

4
Yt−2, as we show in Section S6. However, 1

4
Yt−2 fails

to be the optimal mean or median forecast with respect to t−1. A well-performing test rejects optimality based on instru-
ments in t−1 and obtains the nominal value with information in t−2. We compare expectile-based optimality tests to
the flexible spline test, and in the former case, we use the same instrument vectors as before, whereas in the latter case,
we substitute Yt− 1 by the valid instrument Yt− 2. As shown in Figure 4, the expectile-based tests are better calibrated and
more powerful than the spline-based test, which is strongly oversized for small sample sizes and unable to consistently
detect the information rigidity. The loss of power for the state-dependent test relative to the less flexible constant test is
modest. Additional results and discussion on estimation and testing in Section S7 cover quantile-based tests and generally
support these findings.

4.2 State-dependent forecasts under different specification models
Next, we investigate whether our optimality test can discriminate among the proposed specification models. To this end,
we generate optimal state-dependent forecasts for the data-generating process (7) with the most recent outcome of the
time series, Yt− 1, as state variable. Specifically, we let

Xt =
1
2

Yt−1 + qm(Yt−1)( (0, 1))𝜎t,

where m(s) = Φ( 1
10

+ s
4
) under the linear specification model, m(s) = Φ( 1

10
+ 1

2
· 𝟙(s ≥ 0)) under the break model, and

m(s) = Φ
(

1
10

+ 1
2

sin
(

𝜋

2
s
))

under the periodic model, as illustrated in Figure 5. We consider specification models with
two parameters only; to achieve this, we fix the breakpoint in the break model and the period in the periodic model at
their respective true values.

We then apply overidentifying restrictions tests of forecast optimality with instrument vector Wt = (1,Yt−1,Xt)′. Table 2
shows results for forecasts and tests based on quantiles. Even for small sample sizes, our tests are reasonably calibrated
and quite powerful with rejection rates up to 70% for more distinct specifications. For larger sample sizes, the optimality
tests are almost perfectly calibrated with high power.

As noted, the test depends crucially on the choice of the instrument vector. The final block of columns in Table 2
considers the same setting as before, except for the instruments used. Specifically, we drop the forecast value and now
use a constant and the first two lagged outcomes of the time series, so that Wt = (1,Yt−1,Yt−2)′. While the tests continue

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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TABLE 2 Rejection rates of optimality
tests based on quantile specification
models with state variable Y t − 1

Hypothesized model
Sample True Wt = (1,Yt−1,Xt)′ Wt = (1,Yt−1,Yt−2)′

size model Linear Break Periodic Linear Break Periodic
Linear 0.10 0.23 0.36 0.10 0.09 0.09

T = 100 Break 0.28 0.11 0.08 0.10 0.09 0.09
Probit 0.65 0.30 0.07 0.09 0.09 0.09
Linear 0.11 0.42 0.87 0.11 0.11 0.11

T = 250 Break 0.52 0.10 0.15 0.10 0.11 0.10
Probit 0.96 0.58 0.09 0.09 0.09 0.09
Linear 0.11 0.86 1.00 0.11 0.12 0.13

T = 1000 Break 0.96 0.10 0.44 0.10 0.10 0.10
Probit 1.00 0.99 0.10 0.10 0.10 0.10

Note: The nominal level is 0.10, and the test uses the instrument vector Wt = (1,Yt−1,Xt)′ or Wt =
(1,Yt−1,Yt−2)′, respectively.

to be well calibrated, power against the alternatives vanishes. In contrast to Yt− 2, the forecast Xt is a major contributor of
further information, and the test rejects optimality with respect to the larger information set. We generally recommend
that the forecast value, which by its very nature carries information about the underlying forecast directive, be included
in the instrument vector. Section S8 considers the case where the state variable in the linear quantile specification model
is the point forecast Xt, rather than the most recent outcome, and Section S9 provides further results in the case where
expectile specification models are hypothesized in lieu of quantile models, with similar findings.

5 EMPIRICAL EXAMPLES

In this section, we provide economic and meteorological case studies. In both cases, optimality of the point forecast with
respect to a constant quantile or expectile level is rejected, but optimality with respect to more flexible state-dependent
directives cannot be rejected. We illustrate that the estimated specification models yield accessible and relevant informa-
tion for forecasters and forecast users. Unless noted otherwise, we apply the linear specification model with the probit
link function and the current forecast value as state variable, and the instrument vector includes a constant, the forecast
value at hand, and the most recent outcome available when the forecast was issued.

5.1 GDP growth forecasts as state-dependent quantiles
We revisit the well-studied Greenbook forecasts of the US Federal Reserve for GDP growth. As multiple forecasts are
issued within a quarter for the GDP growth in the next quarter, we consider two different one-quarter-ahead forecasts.
Specifically, for each GDP observation, we consider the forecast issued closest to the midpoint (main forecast) and closest
to the end (late forecast) of the previous quarter. As realized values, we take the quarterly real GDP growth rate in the
United States over the period 1969 to 2012 for T = 176 observations, as reported in the initial data release and illustrated
in Figure 1.1 In a pioneering effort, Patton and Timmermann (2007) modeled the Federal Reserve's loss function as a
quadratic spline with three nodes whose shape is allowed to change with the realized growth rate.

Here, we interpret the forecasts as quantiles of the Federal Reserve's (implicit) predictive distributions. As instrumental
variables for the GMM estimator, we employ a constant, the most recent outcome available at the time of the forecast,
and the one-step-ahead forecast at hand, that is, wt = (1, 𝑦t−2, xt)′. For the late forecast issued at the end of the previous
quarter, there is no evidence against the hypothesis of an optimal quantile forecast at a constant level. The estimated
quantile level is 0.59 with standard error 0.04, and the p-value in the associated test of overidentifying restrictions is 0.30.
Next, we implement the Wald test introduced in Section 3.3. The hypothesis of an optimal median forecast (𝜃0 = 1

2
) is

rejected with a p-value of 0.02, so forecast users will keep in mind that an optimal median forecast would be consistently
smaller than the value issued.

For the main forecast, the hypothesis of an optimal quantile forecast at a constant level is untenable, as the p-value in
the test of overidentifying restrictions drops to 0.07. To investigate whether the main forecast is optimal if we allow the
reported quantiles to change with the predicted GDP growth rate, xt, we apply the linear specification model m(xt, 𝜃) =
Φ(𝜃0 + 𝜃1xt). Compared with the spline loss function of Patton and Timmermann (2007), we use two only instead of six

1The results in this section are robust to using the second revision or the most recent vintage.
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FIGURE 6 Estimated quantile specification model for the Federal
Reserve's forecasts of gross domestic product (GDP) growth plotted
against the predicted growth rate (in percent), with pointwise
confidence intervals at level 0.60 and 0.90. A density estimate of the
point forecast is also shown [Colour figure can be viewed at
wileyonlinelibrary.com]

parameters, and we apply state variables and instruments that are at least implicitly available at the time when the forecast
is issued. The test of overidentifying restrictions yields a p-value of 0.49.2

The GMM estimate for 𝜃 = (𝜃0, 𝜃1)′ is 𝜃̂T = (−0.10, 0.11)′, and we interpret the forecasts as m(xt, 𝜃̂T)-quantiles that
depend on the predicted growth rate xt. The covariance estimate implied by (4) is given by

1
T
(

Ĝ′
T Σ̂

−1
T ĜT

)−1 =
(

0.028 −0.006
−0.006 0.002

)
,

where ĜT is a HAC estimator for G. As Φ is strictly monotone, we can compute pointwise confidence intervals for 𝜃̂0+ 𝜃̂1xt
and transform into confidence intervals for m(xt, 𝜃̂) = Φ(𝜃̂0 + 𝜃̂1xt), as illustrated in Figure 6. The Federal Reserve reports
higher quantile levels during times of strongly positive expected growth. The model also stipulates lower quantile levels in
times of negative expected growth, but the confidence bands do not exclude the median forecast except for extreme cases.
A Wald test of the hypothesis that the forecaster's behavior does not change with respect to the state variable (𝜃1 = 0)
is rejected with a p-value of 0.01. Thus, for the forecast to be rational, the issued quantile needs not only be asymmetric
but also be adaptive to the state variable. Similarly parsimonious and simultaneously informative summaries of inference
results would not be attainable with extant approaches.

The Greenbook projection is a judgmental forecast based on quantitative data, qualitative information, economic mod-
els, and a range of forecasting techniques (Edge et al., 2010), and the estimated specification model admits potential
explanations in various directions. As noted by Patton and Timmermann (2007), the Federal Reserve staff might exhibit
preferences that depend on the outlook itself. Alternatively, the estimated relationship is consistent with overreacting to
information (or overfitting). Finally, forecasters might underestimate the impact or severity of measures enacted by the
Federal Reserve or the government. If enacted policies push growth rates more heavily toward the long-time trend than
anticipated, the observed pattern emerges, where severe expected growth rates are not in line with equally severe realiz-
ing growth rates. While further studies are beyond the scope of our paper, we believe that our findings can help staff at
the Federal Reserve Board understand and improve their projections. Conversely, forecast users will appreciate that pro-
jected values in the tails should not be understood as central tendencies and may use the point estimates in Figure 6 for
a state-dependent interpretation of the main forecast.

We summarize that it is key to consider the available information in tests of forecast optimality. While the late Green-
book forecasts issued toward the end of the quarter are optimal in the classical sense, the driving factor of overly optimistic
forecasting in the main forecast earlier in the quarter is anticipated growth, whereas the behavior in anticipation of
recessions is inconclusive.

5.2 Precipitation forecasts as state-dependent expectiles
Numerical weather prediction has seen tremendous advances over the past decades (Bauer et al., 2015). Here, we consider
24-h-ahead forecasts of daily precipitation accumulation over London, UK, from the high-resolution run operated by
the ECMWF (www.ecmwf.int). While the forecasts are generated by numerical models that are run on supercomputers

2If we apply the same specification model, but use the lagged outcome yt− 2 instead of the forecast xt as the state variable, forecast optimality is rejected
with p-value 0.028. Similarly, if we use the lagged outcome yt− 1 as the state variable and change the instrument vector to (1, yt− 1, xt)′, forecast optimality
is rejected with p-value 0.046.

http://wileyonlinelibrary.com
www.ecmwf.int
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FIGURE 7 Estimated expectile specification model for European
Centre for Medium-Range Weather Forecasts (ECMWF) forecasts of
daily rainfall at London plotted against the predicted precipitation
(in mm), with pointwise confidence intervals at level 0.60 and 0.90.
The dots illustrate the discontinuity of the expectile level at a point
forecast of xt = 0, as specified in Equation (9). A density estimate of
the point forecast conditional on it being strictly positive is also
shown [Colour figure can be viewed at wileyonlinelibrary.com]

(ECMWF Directorate, 2012), many facets of the operational implementation are subject to tuning by human experts,
often based on decade-long experience. In our analysis, we use ECMWF forecasts and observations from the ERA-Interim
system (Dee et al., 2011) in the period July 1, 2011, to June 30, 2017, for T = 2192 observations, as partly illustrated in
Figure 2. Despite good agreement between forecasts and observations, the hypothesis of an optimal constant expectile
forecast is rejected with a p-value< 10−8. Instead, we interpret the forecasts as state-dependent expectiles of the underlying
predictive distribution. We employ expectiles rather than quantiles to avoid artifacts due to the mixed discrete-continuous
nature of precipitation accumulation, which is a nonnegative variable with a point mass at zero. Any point forecast xt = 0
can be interpreted as essential infimum or expectile at level 𝜏 = 0. To investigate whether the reported expectile varies
with predicted precipitation accumulations xt > 0, we apply a slightly modified linear specification model,

m(xt, 𝜃) = Φ(𝜃0 + 𝜃1xt)𝟙(xt > 0). (9)

The GMM estimate with instrument vector wt = (1, 𝑦t−2, xt)′ for 𝜃 = (𝜃0, 𝜃1)′ is 𝜃̂T = (−0.27, 0.08)′. These results are
robust to using the instrument vector wt = (1, 𝑦t−1, xt)′. However, as yt− 1 represents the daily precipitation accumulation,
it has not yet been observed when the numerical model that generates xt is initialized. The resulting specification model is
illustrated in Figure 7, and the test of overidentifying restrictions does not reject forecast optimality, with the p-value being
at 0.74.3 It is interesting to observe that the numerical model generates considerably higher expectile levels in anticipation
of severe, extreme rain.

These results invite speculation about underlying reasons, particularly in view of the inevitable tuning of the numerical
model by human experts. One possible explanation is via the forecasters's dilemma (Lerch et al., 2017), which refers to
the fact that the public is most concerned about forecast performance in cases of extreme events. Hence, human experts
may feel implicit incentives to overstate in anticipation of severe storms. Alternatively, geoscientists occasionally express a
belief that the model climate—that is, the marginal distribution of the forecast—ought to equal the observed climate—that
is, the marginal distribution of the outcomes. As is easily appreciated, point forecasts at a constant quantile or expectile
level are incompatible with the equality of actual and model climate. However, the desired approximate equality is attain-
able under relationships of the type seen in Figure 7, where forecasts are issued at increasingly higher, state-dependent
levels. Clearly, there is a need and scope for further investigation, including but not limited to analyses at locations world-
wide, and the reasons for observed behaviors will very likely be multifaceted. In particular, they are bound to include
location-dependent interactions between model settings—referred to as parameterizations by meteorologists—and local
and regional specifics in terrain and atmospheric conditions.

Both forecast developers and forecast users can benefit from these findings. For forecast developers and their organi-
zations, they provide feedback that can be used to inform model updates. Likewise, local forecast users will appreciate
that point forecasts above 5 mm dominate median forecasts, and broadcast meteorologists in London will be wise to avoid
further exaggeration when communicating extreme forecasts to their audiences.

3The use of the state variable yt− 2 yields a p-value< 10−8.

http://wileyonlinelibrary.com
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6 DISCUSSION

For point forecasts with unknown directive, we posit that it is preferable to estimate and test the functional quoted by the
forecaster, rather than the loss function, for reasons of identifiability, interpretability, and ease and efficiency of inference.
While our approach deviates from recent literature, the classical Mincer and Zarnowitz (1969) test of forecast optimality
can be interpreted in our setting. Specifically, under the regression model 𝑦t = 𝛽0 +𝛽1xt +ut, tests of the coefficients being
equal to zero and one, respectively, can be interpreted as assuming an optimal forecast of the functional form 𝛽0+𝛽1E[Y |X]
with identification function V(x, 𝑦) = 𝛽0 + 𝛽1x − 𝑦, and applying the GMM estimator with instruments w = (1, x)′, with
ensuing tests.

Lieli and Stinchcombe (2013) show that some classes of loss functions are theoretically identifiable if the eligible set of
forecasts is restricted. Under sufficient variation in the arising conditional distributions, loss functions that are consistent
for an optimal mean forecast are identifiable. However, the class of loss functions consistent for a specific optimal quantile
forecast cannot be identified (Lieli et al., 2019). State-dependent quantiles and expectiles are identifiable irrespectively of
these types of assumptions.

Under misspecification or nonnested information sets, forecast comparison is not robust to the choice of loss function
even within the class of loss functions defining the same optimal forecast (Patton, 2020). It is particularly noteworthy that
state-dependent functionals allow for the treatment of supposedly misspecified forecasts in a principled manner. While
dominance across all loss functions can be assessed, this feature may be uncommon in practice (Ehm et al., 2016). If fore-
cast comparison is inconsistent across loss functions, the methods provided here might be useful to assess miscalibration
and the validity of specific information sets. In particular, identifying moment conditions can be used to test if a forecast
is optimal with respect to an information set that encompasses a second forecast.

We have introduced quantile and expectile specification models for the description of forecasting behavior in terms of a
state variable, thereby relating to extant work on time-varying quantiles and expectiles (De Rossi & Harvey, 2009). Under
the assumption of optimal forecasts, the model parameters can be consistently estimated, and the asymptotic distributions
of the GMM estimator and the respective test statistics can be used to construct flexible tests of forecast optimality and
specific model properties. Furthermore, support conditions and mixed discrete-continuous distributions can be handled
efficiently and with rigor, as illustrated in the precipitation example. An accompanying software package PointFore in
R (R Core Team, 2018) is available on CRAN.

For valid estimation and testing, the state variables need to be in the information set of the forecaster. A valid and
universally available state variable is the forecast value at hand. The GMM estimator depends on an appropriate choice of
a sufficiently rich instrument vector, and we recommend that the forecast value at hand be included as an instrumental
variable. Importantly, the null hypothesis in the overidentifying restrictions test of forecast optimality reflects the selection
of the instrument vector, and any specific choice yields necessary (but not sufficient) conditions for forecast optimality.
Judicious choices are critical, as we have demonstrated in real data and simulation examples.

We define optimality as a property of the observable forecast or more specifically as a parametric relation between
the forecast and the ideal predictive distribution. Similar settings can be found in Giacomini and White (2006) for fore-
cast comparison via loss differences and in Giacomini and Komunjer (2005) for quantile encompassing tests. This strong
hypothesis of optimality enables the use of standard tests and yields context independent asymptotic distributions. In
a more elaborate approach, this assumption is substituted for by specific assumptions on the forecast generation, for
example, via a correctly specified time series model and efficient estimation in an increasing training window, thereby
accounting for estimation uncertainty (Elliott et al., 2005; Guler et al., 2017). Reassuringly, in the case of a constant
specification model, our asymptotic results are identical to extant results that account for estimation uncertainty assum-
ing a super-consistent estimator (Elliott et al., 2005, proposition 4). However, in unstable environments, our optimality
assumption may be too strong and a more elaborate description that accounts for estimation uncertainty may be warranted
(West, 1996).

In empirical examples from economics and meteorology, we have applied the linear specification model with the fore-
cast at hand as state variable, and we have found common ground, in that the forecasts are indicative of overstating in
anticipation of extreme events. While application-specific reasons for this remain to be explored in further detail, a poten-
tial interpretation is via the forecasters's dilemma (Lerch et al., 2017), which refers to the fact that the public's attention
focuses on the forecast performance in cases of extreme events. As a result of this ubiquitous practice, individual and insti-
tutional forecasters may have implicit incentives to exaggerate in anticipation of tail events. A related phenomenon is the
hard–easy effect described in the psychological literature, in that human subjects tend to be overconfident in answering
hard questions, while being underconfident in responses to easy questions (Kynn, 2008; Lichtenstein et al., 1982).
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Further investigation is called for in order to assess whether overstatement in anticipation of extreme events is charac-
teristic when predictions are generated by individual or institutional forecasters, or when numerical models are designed,
tuned, and informed by human expertise. The commonalities between our two unlike examples from economics and
meteorology suggest that the linear specification model with the forecast value as state variable might be a useful default
choice in studying this type of question.

Generally, forecasters and their institutions may use our methods to evaluate past projections and check whether the
findings are consistent with internal objectives and react by adapting forecasting procedures, if necessary. For example,
rejections of forecast optimality based on information generated by an instrument indicate that said information has
not been consistently incorporated. A state-dependent model with said instrument as state variable can then be used to
understand the nature of the deviation. Likewise, forecast users might be interested in using our approach, for guidance
in the use and communication of the forecasts.
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