KIT | KIT-Bibliothek | Impressum | Datenschutz

All-Dielectric Crescent Metasurface Sensor Driven by Bound States in the Continuum

Wang, Juan; Kühne, Julius; Karamanos, Theodosios 1; Rockstuhl, Carsten 1,2; Maier, Stefan A.; Tittl, Andreas
1 Institut für Theoretische Festkörperphysik (TFP), Karlsruher Institut für Technologie (KIT)
2 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)


Metasurfaces based on quasi-bound states in the continuum (quasi-BICs) constitute an emerging toolkit in nanophotonic sensing as they sustain high quality factor resonances and substantial near-field enhancements. It is demonstrated that silicon metasurfaces composed of crescent shaped meta-atoms provide tailored light-matter interaction controlled by the crescent geometry. Significantly, this metasurface not only exhibits a fundamental quasi-BIC resonance, but also supports a higher-order resonance with tunable electromagnetic field enhancement and advantageous properties for sensing. The higher-order resonance shows twice the sensitivity of the fundamental one for bulk refractive index sensing. It is further demonstrated that both the fundamental and higher-order resonances can be exploited for sensing ultrathin layers of biomolecules in air and buffer solutions. Specifically, when measuring in buffer solution, the figure of merit of the sensor, defined as the change in the spectral position of the resonance normalized to its full width at half maximum, is a factor of 2.5 larger for the higher-order resonance when compared to the fundamental one. ... mehr

Verlagsausgabe §
DOI: 10.5445/IR/1000137057
Veröffentlicht am 12.09.2021
DOI: 10.1002/adfm.202104652
Zitationen: 136
Web of Science
Zitationen: 126
Zitationen: 142
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Institut für Theoretische Festkörperphysik (TFP)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 10.11.2021
Sprache Englisch
Identifikator ISSN: 1616-301X, 1057-9257, 1099-0712, 1616-3028
KITopen-ID: 1000137057
HGF-Programm 43.32.02 (POF IV, LK 01) Designed Optical Materials
Erschienen in Advanced Functional Materials
Verlag Wiley-VCH Verlag
Band 31
Heft 46
Seiten Art. Nr.: 2104652
Vorab online veröffentlicht am 15.08.2021
Nachgewiesen in Dimensions
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page