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Abstract
Time-domain full waveform inversion (FWI) in the acoustic regime comprises
a parameter identification problem for the acoustic wave equation: pressure
waves are initiated by sources, get scattered by the earth’s inner structure, and
their reflected parts are picked up by receivers located on the surface. From
these reflected wave fields the two parameters, density and sound speed, have
to be reconstructed. Mathematically, FWI reduces to the solution of a nonlinear
and ill-posed operator equation involving the parameter-to-solution map of the
wave equation. Newton-like iterative regularization schemes are well suited and
well analyzed to tackle this inverse problem. Their convergence results are often
based on an assumption about the nonlinear map known as tangential cone con-
dition. In this paper we verify this assumption for a semi-discrete version of FWI
where the searched-for parameters are restricted to a finite dimensional space.
As a byproduct we establish that the semi-discrete seismic inverse problem is
locally Lipschitz stable, in particular, it is conditionally well-posed.
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1. Introduction

Time-domain full waveform inversion (FWI) is the up-to-date geophysical imaging technique
being capable to exploit the full information content of recorded seismic waves which have
been excited locally by controlled sources or globally by earthquakes, see, e.g. [9, 28] for a pre-
sentation from a geophysical point of view. Mathematically, FWI entails a parameter identifica-
tion task for the underlying wave propagation model. In the acoustic regime, where the medium
does not support shear stress, wave propagation is modeled by the acoustic/compressional wave
equation and the searched-for parameters are pressure wave speed vp and bulk density �. In
this paper we rigorously explore a mathematical aspect of FWI in the acoustic setting.

Let S be the corresponding parameter-to-solution (parameter-to-state) map that maps (vp, �)
to (p, v), the pressure and velocity fields (solution of the acoustic wave equation with respect
to vp and �). Then, FWI in the acoustic regime means the solution of the (nonlinear) equation

ΨS(vp, �) = Ψ(p, v), (1.1)

where the observation operator Ψ models the measurement process (in the geophysical lan-
guage, Ψ(p, v) collects the seismograms). Since the inverse problem (1.1) is locally ill-posed
(in the infinite-dimensional setting, see [15, 16]), it requires to be regularized.

Newton-like iterative regularization schemes are well-established workhorses for stably
solving nonlinear ill-posed problems like (1.1), see, e.g. [10, 12, 19, 21, 24]. To simplify the
notation let us consider a generic setting where F : D(F) ⊂ V → W denotes the underlying non-
linear operator between Banach spaces. Assume we want to solve F(x) = y for a given y ∈ W
by a Newton-like scheme. The generic iteration rule reads: choose a starting guess x0 ∈ D(F)
and iterate according to

xk+1 = xk + sk where sk is such that F′(xk)sk ≈ y − F(xk).

Here, F′ is the Fréchet-derivative (F-derivative) of F. The various methods differ in how they
determine the Newton step sk from the locally linearized equation. Their convergence analy-
sis, however, often relies on the same structural assumption which is known under the name
tangential cone condition (TCC). It can be traced back to [22] and reads: F satisfies the TCC
at x+ ∈ int(D(F)) if

‖F(v) − F(w) − F′(w)(v − w)‖W � η‖F(v) − F(w)‖W for all v,w ∈ Br(x
+)

(1.2)

for an η < 1 (sufficiently small) where Br(x+) is the open ball in V of radius r > 0 about x+

(sometimes the TCC is formulated in a ball with respect to a Bregman distance).
In the fully continuous (infinite dimensional) setting only a few academic examples of

nonlinear ill-posed problems are known for which TCC holds, see, e.g. [10, section 4] and
[12, section 2.4], but consult [13] for recent developments. However, in a semi-discrete set-
ting the situation is more relaxed. For instance, a semi-discrete TCC has been derived for the
inverse problem of the complete electrode model in 2D-electrical impedance tomography [18].
It turns out that injectivity of F′(x+) is essentially sufficient not only to yield a semi-discrete
TCC but also a Lipschitz stability like

‖v − w‖V � c‖F(v) − F(w)‖W for all v,w ∈ Br(x
+), (1.3)

2



Inverse Problems 37 (2021) 085011 M Eller and A Rieder

where c > 0 is a constant. We will demonstrate this implication under rather general assump-
tions. Semi-discrete Lipschitz estimates and conditional well-posedness for various inverse
problems have already been derived, e.g. in [1–5] and we add time-domain FWI in the acous-
tic regime to this list. In fact, if we confine vp and � to suitable finite dimensional spaces, the
F-derivative of ΨS is one-to-one.

We need to emphasize that, in general, neither (1.3) nor (1.2) carry over to the continuous
setting when the finite dimension of the semi-discrete setting is increased. Typically, the con-
stant in (1.3) blows up while the radius r decreases. This will occur for our FWI application,
since otherwise (1.1) would be locally well-posed in the infinite-dimensional formulation.

The presentation of our findings is organized as follows. In the next section we set the stage
by introducing the acoustic wave equation as a first order system and by recalling existence
and uniqueness results. Then, in section 3 we define our semi-discrete model where sources are
fired in one part Σ of the propagation medium D and the resulting wave fields are recorded at a
different part Ω of D. Here, sound speed and bulk density are expressed as linear combinations
of smooth basis functions which are locally independent in D: if a linear combination vanishes
on an open subset of D it vanishes globally in D. For this model we formulate the seismic
inverse problem and characterize the F-derivative of the forward map by a different but akin
acoustic wave equation. For this wave equation we show a fundamental property in proposition
3.1: there is a source supported in Σ such that the wave field of the F-derivative does not vanish
identically on Ω. The proof is based on Holmgren’s uniqueness theorem and the propagation of
singularities along bicharacteristics of the wave operator. Finally, section 4 presents the main
result (theorem 4.1) which originates from a local uniqueness statement that even holds when
only one single source is fired (remark 4.4).

So as not to distract the reader from the overall picture we kept the main part of the
paper rather short by moving technical and auxiliary material to three appendices: appendix
A contains the proof of proposition 3.1. In appendix B we prove Lipschitz continuity of the
F-derivative of the forward map within an abstract setting. Therefore, theorem B.2 covers
other first order systems as well. The final appendix C includes likewise an auxiliary statement
which is nevertheless interesting in its own right: a semi-discrete mapping whose F-derivative
is injective and continuous, satisfies the TCC and is locally Lipschitz stable (lemma C.1).

2. The setting

We consider the acoustic wave equation as a first order system. Let p : [0,∞) × D → R and
v : [0,∞) × D → R

d, d ∈ {2, 3}, be the pressure and the velocity field, respectively, where
D ⊂ R

d is a bounded, connected domain with a piecewise C1-boundary. Then,

c(x)∂t p(t, x) = div v(t, x) + f (t, x) in [0,∞) × D, (2.1)

�(x)∂tv(t, x) = ∇p(t, x) in [0,∞) × D, (2.2)

with initial values p(0, ·) = p0 and v(0, ·) = v0. Here, f : [0,∞) × D → R denotes the source
wavelet which initiates wave propagation in case the initial values are zero which holds for
geophysical exploration. Further, c, � : D → (0,∞) where � is the bulk density and 1/c = � v2

p
is the P-wave or bulk modulus. We work with c rather than with vp, only to simplify the
presentation.

The wave equations (2.1) and (2.2) can be written as initial value problem

B∂tu = −Au + f̃ (t), u(0) =

(
p0

v0

)
=: u0, (2.3)
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where u(t) = (p(t, ·), v(t, ·)), f̃ (t) = ( f (t, ·), 0),

B =

(
c 0
0 � Id

)
, and A = −

(
0 div
∇ 0

)
. (2.4)

Let us define the space X = L2(D) × L2(D,Rd) and its subset

D(A) :=
{

(p, v) ∈ H1(D) × H1(div, D) : n · v|∂DN = 0, p|∂DD = 0
}

(2.5)

with ∂D = ∂DD ∪̇ ∂DN . The operator A : D(A) ⊂ X → X is maximal monotone, see the begin-
ning of appendix B for a definition.

If (p0, v0) ∈ D(A), f ∈ W1,1
(
[0,∞), L2(D)

)
,3 and

c, � ∈ P := {λ ∈ L∞(D) : 0 < λ− < λ(·) < λ+ < ∞ a.e.} (2.6)

then (2.1) and (2.2) admit a unique classical solution (p, v) ∈ C ([0,∞), D(A)) ∩ C1 ([0,∞), X),
see, e.g. [16].

If (p0, v0) ∈ X, f ∈ L1
loc

(
[0,∞), L2(D)

)
then (2.1) and (2.2) admit a unique mild/weak

solution u ∈ C ([0,∞), X) which—in the notation of (2.3)—satisfies

Bu(t) = Bu0 + A
∫ t

0
u(s)ds +

∫ t

0
f̃ (s)ds, (2.7)

see, e.g. [23, proposition 2.15].
In the remainder of this work we assume the environment to be at rest before we fire the

source:

p0 = 0 and v0 = 0. (2.8)

3. The semi-discrete full waveform forward map

Let (p0, v0) ∈ D(A) and f ∈ W1,1
(
[0, T], L2(Σ)

)
whereΣ ⊂ D is an open set where the sources

can be initiated. As we can recover only finitely many degrees of freedom we restrict the
parameters of (2.1) and (2.2) to a finite dimensional space. To this end we set

V := span{ϕ j : j = 1, . . . , M} ⊂ C1(D),

where the functions {ϕ j : j = 1, . . . , M} are locally independent over D, that is, if a linear
combination vanishes on a nonempty open subset Ω of D then the linear combination must be
trivial:

M∑
j=1

a jϕ j|Ω = 0 =⇒ a j = 0, j = 1, . . . , M. (3.1)

Concrete examples for V include:

(a) Polynomials: V = ΠN(Rd), the space of d-variate polynomials of total degree N. Here, the
dimension of V is M =

(N+d
d

)
.

3 For a Banach space Y , let W1,1 ([0, T], Y) =
{
v ∈ C ([0, T], Y) : v′ ∈ L1 ([0, T], Y)

}
. Recursively, one defines

Wk,1 ([0, T], Y) for k ∈ N, k � 2.
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(b) Real-analytic radial basis functions: let ϕ : Rd → R be a positive definite and radi-
ally symmetric function, see, e.g. [29, chapter 6]. For pairwise different knots ξ j ∈ D,
j = 1, . . . , M, the translates {ϕ(· − ξ j) : j = 1, . . . , M} are linear independent over D. If
ϕ is additionally real-analytic then these translates are also locally independent. In fact,
any linear combination of these translates is itself an analytic function and as such zero
everywhere in D if it vanishes on a nonempty open subset.

For instance, the Gaussian ϕ(x) = exp(−γ|x|2), γ > 0, and the multiquadrics ϕ(x) =
1/(1 + |x|2)β , β > 0, have the required properties and are, moreover, positive.

With V+ :=V ∩ P we define the parameter-to-solution (parameter-to-state) map by

F : V2
+ ⊂ V2 →C ([0, T], X) , (c, �) �→ (p, v),

where (p, v) solves (2.1) and (2.2). Note that F is well defined and F-differentiable. Its F-
derivative F′ : V2

+ ⊂ V2 →L
(
V2, C ([0, T], X)

)
is given by

F′(c, �)[h1, h2] = ( p̄, v̄),

where (p, v) ∈ C ([0, T], X) is the mild solution of

c(x)∂t p(t, x) = div v(t, x) − h1(x) ∂t p(t, x) in [0, T] × D, (3.2)

�(x)∂tv(t, x) = ∇p(t, x) − h2(x)∂tv(t, x) in [0, T] × D, (3.3)

with p(0, ·) = 0, v(0, ·) = 0 and (p, v) = F(c, �), see, e.g. [16].
In seismic exploration only part of the wave field can be measured. To model this

fact, we introduce the observation (restriction) operator Ψ : C ([0, T], X) →C ([0, T], XΩ),
XΩ := L2(Ω) × L2(Ω,Rd), Ψ(p, v) = (p|Ω, v|Ω), where Ω ⊂ D is open, nonempty, connected,
and disjoint from Σ.

The following property of the wave system (3.2) and (3.3) is fundamental for our main result
in theorem 4.1 below. Its technical and somewhat lengthy proof is content of appendix A. For
its formulation we introduce the space

W2,1
0 :=

{
f ∈ W2,1

(
[0, T], L2(Σ)

)
: f (0) = f ′(0) = 0

}
and the Riemannian distance function

dist(x, y) = inf
γ

∫ β

α

|γ ′(t)|
vp(γ(t))

dt (3.4)

in D, where the infimum is taken over all smooth curves γ in D satisfying γ(α) = x and
γ(β) = y. For E ⊂ D open and nonempty, let

dist(x, E) = inf
y∈E

dist(x, y) and dist(D, E) = sup
x∈D

dist(x, E).

Proposition 3.1. Suppose that h ∈ V2\{0}. If

T > dist(D,Σ), (3.5)

then there exists an f ∈ W2,1
0 with supp f ⊂ (0, T) × Σ such that the mild solution (p|Ω, v|Ω) of

(3.2) and (3.3) is not identically zero in (0, T). This f depends on ‖vp‖C1(D) but not on h.

5
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Remark 3.2. If D is convex, then we have the estimate

dist(x, y) � |x − y|
infz∈D vp(z)

for all x, y ∈ D.

Hence, in this case, we can replace the condition on T in the proposition above by the stronger
condition

T > sup
x∈D

inf
y∈Σ

|x − y|
infz∈D vp(z)

,

which is easier to check than (3.5) when there is a lower bound for vp. Basically, T must be
large enough so that the wave triggered in Σ reaches the whole of D in the observation period.

We set Φ = Ψ ◦ F. Then, FWI in a semi-discrete acoustic regime consists in finding (c, �) ∈
V2
+ such that

Φ(c, �) ≈ ( p̃, ṽ)

for the measured wave field ( p̃, ṽ) ∈ XΩ. Actually, above inverse problem coincides with (1.1)
via the relation vp = 1/

√
c�.

Note that

Φ′(c, �)[h1, h2] = ΨF′(c, �)[h1, h2] = (p|Ω, v|Ω).

Remark 3.3. From a numerical point of view, our choice of global basis functions for dis-
cretizing c and � seems a bit far-fetched. The straightforward approach would be, for instance,
to take indicator functions subordinate to the mesh of the used finite element discretiza-
tion of (2.1) and (2.2). In remark A.3 of appendix A we will address this issue in greater
detail.

4. Injectivity, Lipschitz stability, and tangential cone condition

In a first step towards the TCC we verify injectivity of Φ′(c, �). We cast the injectivity problem
into an operator framework: in view of (2.8), the map f �→ (p, v) is linear and we redefine Φ
by

Φ̃ : V2
+ ⊂ V2 →L

(
W2,1

0 , C ([0, T], XΩ)
)

︸ ︷︷ ︸
=: W

, (c, �) �→ ( f �→ Ψ(p, v)) , (4.1)

that is, Φ̃(c, �) f = (p|Ω, v|Ω) where (p, v) solves (2.1) and (2.2), i.e. Φ̃(c, �) is the source-to-
state map. The F-derivative Φ̃′(c, �) ∈ L(V2,W) is still given via (3.2) and (3.3). Indeed,

Φ̃′(c, �)[h] f = ( p̄|Ω, v̄|Ω), (4.2)

where h = (h1, h2) ∈ V2.
We right away state our main result of this work, namely that a Lipschitz estimate like (1.3)

and a TCC like (1.2) hold for Φ̃.

Theorem 4.1. For (c+, �+) ∈ V2
+ there exist an open ball Br(c+, �+) ⊂ V2

+ such that

‖(c1, �1) − (c2, �2)‖2
V2 �

∥∥∥Φ̃(c1, �1) − Φ̃(c2, �2)
∥∥∥
W

(4.3)

6
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and ∥∥∥Φ̃(c1, �1) − Φ̃(c2, �2) − Φ̃′(c2, �2) [(c1, �1) − (c2, �2)]
∥∥∥
W

� ‖(c1, �1) − (c2, �2)‖V2

∥∥∥Φ̃(c1, �1) − Φ̃(c2, �2)
∥∥∥
W

(4.4)

for all (ci, �i) ∈ Br(c+, �+), i = 1, 2.

Please observe that the TCC (4.4) is slightly stronger than the generic formulation (1.2)
insofar as the involved constant decreases with the distance of the arguments (c1, �1) and
(c2, �2).

The proof of theorem 4.1 is based upon two preparatory results which allow us to apply
lemma C.1 of appendix C to Φ̃. First, we show a local uniqueness result as an immediate
consequence of proposition 3.1.

Corollary 4.2. The F-derivative Φ̃′(c, �) ∈ L(V2,W) is an injective mapping and we have
that

min
{
‖Φ̃′(c, �)[h]‖W : h ∈ V2, ‖h‖V2 = 1

}
> 0. (4.5)

Proof. Assume the minimum to be zero. As V2 is finite dimensional and Φ̃′(c, �) is continu-
ous, there is a normalized h ∈ V2 such that Φ̃′(c, �)[h] f = 0 for all f ∈ W2,1

0 . But then h = 0
by proposition 3.1 contradicting ‖h‖V2 = 1. �

Second, we present a continuity result for Φ̃′ whose proof is given in appendix B.

Theorem 4.3. We have Lipschitz continuity of the F-derivative V2
+ � (c, �) �→ Φ̃′(c, �) ∈

L(V2,W), that is,

‖Φ̃′(c1, �1) − Φ̃′(c2, �2)‖L(V2,W) � ‖(c1, �1) − (c2, �2)‖V2 .4 (4.6)

The involved constant only depends on T, λ−, and λ+.

Finally, we are able to verify theorem 4.1: apply lemma C.1(b) with Θ = Φ̃, D(Θ) = V2
+,

X = V2, and Y = W . The necessary assumptions are satisfied according to corollary 4.2 and
theorem 4.3 with α = 1 due to (4.6).

Remark 4.4. At the end of section 3 we have introduced the parameter-to-solution map

Φ : V2
+ ⊂ V2 →C ([0, T], X) , (c, �) �→ (p|Ω, v|Ω),

for one fixed source f in (2.1) and (2.2). In the language of the geophysical community, Φ
models a one-shot experiment whereas Φ̃ describes a multi-shot experiment.

The local uniqueness result of corollary 4.2 holds accordingly forΦ provided the fired single
source f coincides with one of those whose existence for (c, �) is guaranteed by proposition
3.1. Further, theorem 4.1 carries over to the single-source experiment as well (provided the
‘right’ source is fired).

4 The notation A � B indicates the existence of a generic constant c > 0 such that A � cB.
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5. Conclusion

In this paper we have verified that the full waveform forward operator Φ̃, see (4.1), satisfies the
TCC. Thus, the local convergence of many Newton-like iteration schemes is guaranteed for
recovering discrete approximations to the wave speed and density from seismic recordings.

Our achievement should be improved by future research in several ways:

(a) As already indicated by remark 3.3, local basis functions have some advantages over
global functions for representing wave speed and density. Therefore, it would be desir-
able to extend the TCC to this setting. In remark A.3 we discuss the resulting challenge
in more detail.

(b) A further goal is to incorporate more realistic wave propagation models like the elastic or
viscoelastic wave equations where the latter equation is the most accurate model right now
accounting for attenuation and dispersion. Both models fit in the abstract framework of
appendix B, see [17]. Hence, a version of theorem 4.3 holds for them as well. It remains to
verify local injectivity via an adapted version of proposition 3.1, which we are confident is
valid for the linear elastic model. Moreover, a local Holmgren theorem for viscoelasticity
was recently reported in [6].

(c) The Lipschitz estimate (4.3) is local, that is, it holds in a neighborhoodof (c+, �+) only. We
would like to extend it to an estimate which holds globally in V2

+ since then we would have
a global uniqueness result for the semi-discrete seismic inverse problem in the acoustic
regime.
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Appendix A. Proof of proposition 3.1

The proof of proposition 3.1 is based on the unique continuation and on the propagation of
singularities for our system. It will be advantageous to reduce the system (2.1) and (2.2) to two
second-order systems with scalar principal part:

c∂2
t p = div

(
1
�
∇p

)
+ ∂t f , �∂2

t v = ∇
(

1
c

div v
)
+∇ f

c
. (A.1)

The principal part of the equation of p is the second-order hyperbolic operator ∂2
t − v2

p(x)Δ.
Recall that v2

p = 1/(c�). By (2.2) with zero initial data (2.8) we have that∇× (�v) = 0. Hence,

∇
(

1
c

div v
)

= ∇
(

1
c

div v
)
− 1

c�
∇× (∇× (�v))

=
1
c
Δv +

(
∇1

c

)
div v − 1

c�
[∇�× (∇× v) +∇× (∇�× v)] ,

8
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which shows that the second-order system for v has also the second-order hyperbolic operator
∂2

t − v2
p(x)Δ as its principal part.

After this preparation we can formulate a precise result on unique continuation for our
system, see [8, theorem 1.1]. For that we recall also the definition of the Riemannian metric
(3.4).

Lemma A.1. Suppose that (p, v) ∈ L2((0, T) × D) is a weak solution to the homogeneous
system

c(x)∂t p(t, x) = div v(t, x)

�(x)∂tv(t, x) = ∇p(t, x)
in [0, T] × D,

with coefficients c, � ∈ V2
+. Let E ⊂ D be open. If T > 2 dist(D, E) and

(p, v) ≡ 0 in (0, T) × E,

then the function (p, v) vanishes at ‘half time’, that is,

(p, v)(T/2, x) = 0 for all x ∈ D.

Moreover, for any T1 > 0 with T > T1 + 2 dist(D, E), we have that

(p, v)(t, x) = 0 for all (t, x) ∈
(

T − T1

2
,

T + T1

2

)
× D.

The proof of this result consist of two distinct parts. At first one proves a local uniqueness
theorem (Holmgren uniqueness theorem), i.e. the unique continuation across non-characteristic
surfaces. In the second step, one uses geometry to produce a global result, see [20].

Remark A.2. Our approach using the second-order system has the advantage that we could
invoke Tataru’s uniqueness theorem which proves local uniqueness even for coefficients which
are analytic in time and C1 in space or vice versa [25, 26]. However, Tataru’s result applies only
to scalar second-order operators.

Even though (A.1) is a second-order system, its principal part is a scalar second-order
hyperbolic operator. With a small adjustment, Tataru’s approach can be applied [7].

Now we turn to the actual proof of proposition 3.1 which is divided into two steps.
First, we will show that there exists a forcing term f such that for T > dist(D,Σ), the wave

field u = (p, v) does not vanish in (0, T) × Ω. We argue by contradiction. Suppose that u ≡ 0
in (0, T) × Ω. Then, by lemma A.1 there exists ε > 0 such that

u ≡ 0 in

(
T − ε

2
,

T + ε

2

)
× (D\Σ). (A.2)

Replacing the t variable by t − (T − ε)/2, we work in the space time cylinder (0, ε) × D instead
of

(
T−ε

2 , T+ε
2

)
× D.

Let f (t, x) = λ(t)g(x) where λ ∈ C∞
0 (0, ε) and g ∈ H1(D) with support in Σ, and consider

the initial-boundary value problem

c ∂2
t p̃ = div

(
1
�
∇p̃

)
in (0, ε) × D, (A.3)

with initial data p̃(0, x) = g(x)/c(x), ∂t p̃(0, x) = 0, and boundary data

p̃ = 0 on (0, ε) × ∂DD and ∂ν p̃ = 0 on (0, ε) × ∂DN.

9
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The boundary data are inferred from (2.1) and (2.2). This problem has a unique solution p̃ ∈
C([0, ε], H1(D)). Furthermore, we define

ṽ(t, x) :=
1
�

∫ t

0
∇p̃(s, x)ds. (A.4)

Then ũ = ( p̃, ṽ) satisfies system (2.1) and (2.2) with f = 0.
We will use propagation of singularities to establish that ũ is not zero in (0, ε) × (D\Σ).

Indeed, the singularities of the initial data g will travel along the null bicharacteristics of the
hyperbolic operator q(x, τ , ξ) = ∂2

t − v2
p(x)Δ which is the principal part of (A.3), see, e.g. [27]

or [11, chapter 23]. We point out that this result is true as long as vp ∈ C∞(D).
The null bicharacteristics γ : R→ ((0, ε) × D) × (R× R

d) are integral curves of the vector
field (∇τ ,ξq,−∇t,xq) satisfying q ◦ γ = 0. Setting γ(s) = (t(s), x(s); τ (s), ξ(s)), this gives

dt
ds

= 2τ ,
dx
ds

= −2v2
p(x)ξ,

dτ
ds

= 0,
dξ
ds

= ∇xv
2
p(x)|ξ|2,

so that q(x, τ , ξ) = τ 2 − v2
p(x)|ξ|2 = 0. Let

t(0) = 0, x(0) = x , τ (0) = τ , ξ(0) = ξ.

From q(x; τ , ξ) = 0 we infer that τ = ±|ξ |vp(x). Hence, over each point (x , ξ) at t = 0 there
are two bicharacteristics. Furthermore, from the ODE we infer that τ (s) = τ for all s and thus,
t = 2τs = ±2|ξ|vp(x)s. So, in both bicharacteristics one can introduce t as a parameter, that
is, γ±(t) = (t, x±(t),±vp(x)|ξ|, ξ±(t)). By the chain rule

dx±
dt

= ∓vp(x)
ξ

|ξ| and
dξ±
dt

= ±∇xvp(x)|ξ|. (A.5)

If (x, ξ) is in the wave front set of g, then the segments of the two null bicharacteristics γ± in
((0, ε) × D) × (R× R

d), with initial (x , ξ) at t = 0, will be in the wave front set of ũ. The x
component of the bicharacteristic is a geodesic of the metric (3.4).

There exist points (x , ξ) ∈ Σ× R
d such that at least one of the two bicharacteristics with

the initial data (x , ξ) will satisfy x+(t) ∈ D\Σ or x−(t) ∈ D\Σ for some 0 < t < ε. This can
be seen as follows. Let δ > 0 and let F ⊂ Σ with a smooth boundary such that there exists
x ∈ ∂F such that infz∈D\Σ |x − z| < δ. Choose ξ = νx . Then the bicharacteristic starting at
(x , ξ) satisfies x−(t) ∈ D\Σ for some t ∈ (0, ε). Note that δ > 0 depends on ‖vp‖C1(D) in view
of (A.5) and also on ε > 0.

Suppose now that g is supported in Σ and that its wave front set contains such the point
(x , ξ). Then the projection of the wave front set of the solution ũ = ( p̃, ṽ) into (0, ε) × D ) must
contain the points (t, x−(t)) and thus, the solution cannot vanish in (0, ε) × (D\Σ).

The solution of (2.1) and (2.2) can now be expressed by Duhamel’s principle via

u(t, x) = (p, v)(t, x) =
∫ t

0
λ(t − s)ũ(s, x)ds.

Indeed, one computes

∂tu(t, x) = λ(0)ũ(t, x) +
∫ t

0
λ′(t − s)ũ(s, x)ds

=

∫ t

0
λ(t − s)∂sũ(s, x)ds + λ(t)ũ(0, x),

10
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where we used that λ(0) = 0. Moreover, in view of (A.3) and (A.4) we have that

c∂t p̃ =

∫ t

0
div

(
1
�
∇p̃(s, ·)

)
ds =

∫ t

0
div ∂sṽ(s, ·)ds = div ṽ and �∂tṽ = ∇p̃,

which yield

∂t p =
1
c

div v +
1
c

f and ∂tv =
1
�
∇p.

Since ũ(t, x) is not identically zero for all x ∈ D\Σ and t ∈ (0, ε), there exists a function λ ∈
C∞

0 (0, ε) such that u will not vanish in (0, ε) × (D\Σ). After reversing the shift in time, this
contradicts (A.2) and we have proved that u cannot vanish in (0, ε) × Ω.

In the final step of the proof we validate that the solution (p, v) of (3.2) and (3.3) does not
vanish identically on (0, T) × Ω. Assume the contrary. Then, it follows from (3.2) and (3.3)
(or, more precisely, from its integrated version (2.7)) that

0 = h1(x)∂t p(t, x) and 0 = h2(x)∂tv(t, x) in [0, T] × Ω.

Thus, we must have that

∂t p(t, x) = 0 or ∂tv(t, x) = 0 in [0, T] × Ω

since h1 and h2 cannot be identically zero restricted to Ω (otherwise they would vanish on D as
well by our assumption (3.1) on the ansatz functions). Recalling (2.1) and (2.2) with zero initial
conditions (2.8) we must have (p, v) = 0 in [0, T] × Ω which contradicts our first finding.

Remark A.3. We come back to the issue raised in remark 3.3 of local vs global basis
functions for discretizing c and �.

Suppose we split D into open, connected subsets {D j} j with piecewise C1-boundaries:

D =

M⋃
j=1

D j, D j ∩ Dk = ∅, j �= k.

Let Vloc := span{pjχD j : j = 1, . . .M} where χD j denotes the indicator function of D j and pj

is a polynomial.
If we now represent c and � in V loc, we can prove, by a slight modification of our arguments

from above, that for any h ∈ V2
loc there is a forcing term f and a time T > 0 such that the

solution (p, v) of (2.1) and (2.2) does not vanish in (0, T) × (supp h1 ∪ supp h2). Thus, for
each h we can guarantee that at least one of the forcing terms in (3.2) and (3.3) is active. This
result is, however, not sufficient to carry over proposition 3.1 (and hence theorem 4.1) to V loc.
It remains to show that for each h there is one forcing term f for (2.1) and (2.2) such that
the induced forcing terms in (3.2) and (3.3) guarantee (p, v) not to vanish in (0, T) × Ω. We
strongly conjecture this to be a fact, unfortunately, we are unable to give rigorous arguments
at present.

Even if we succeed, theorem 4.1 might hold only for the multi-shot operator Φ̃ since the
applied source f depends on h and one source might not serve all h ∈ V2

loc. This is then in
contrast to the global ansatz functions where we could verify the TCC also for the one-shot
operator Φ, see remark 4.4.
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Appendix B. A continuity result

In this appendix we verify that Φ̃′ : V2
+ ⊂ V2 →L(V2,W) defined in (4.2) is a Lipschitz

continuous mapping. We first provide a result for the abstract evolution equation

Bu′(t) + Au(t) = f (t), t ∈ [0, T], u(0) = u0, (B.1)

in the spirit of [16]. The assumptions are T > 0, X Hilbert space,
B ∈ L∗(X) = {J ∈ L(X) : J∗ = J} satisfying

〈Bx, x〉X = 〈x, Bx〉X � β‖x‖2
X

for some β > 0 and for all x ∈ X, A : D(A) ⊂ X → X is maximal monotone: 〈Ax, x〉X � 0 for
all x ∈ D(A) and I + A : D(A) → X is onto (I is the identity), f ∈ L1 ([0, T], X), u0 ∈ X.

Using standard techniques one sees that (B.1) admits a unique mild solution u ∈ C([0, T], X)
satisfying

‖u‖C([0,T],X) � ‖u0‖X + ‖ f ‖L1([0,T],X), (B.2)

where the constant depends on T, ‖B‖ and ‖B−1‖.
The following regularity result has been obtained in [16, theorem 2.6] under more general

assumptions on f and u0.

Theorem B.1. For some k ∈ N, let f ∈ Wk,1([0, T], X) with f (�)(0) = 0, � = 0, . . . , k − 1
(note that f (�) is continuous). Let u be the unique mild solution of (B.1) with u0 = 0. Then
u ∈ Ck([0, T], X) ∩ Ck−1([0, T], D(A)) and

‖u‖Ck([0,T],X) � ‖ f ‖Wk,1([0,T],X), (B.3)

where the constant depends on T, ‖B‖, and ‖B−1‖.

From now on let u0 = 0. We define the following parameter-to-source-to-solution map
related to (B.1):

F̃ : D(F̃) ⊂ L∗(X) →S, B �→ ( f �→ u), (B.4)

where

S :=L
(
W2,1

0 ([0, T], X), C([0, T], X)
)

,

W2,1
0 ([0, T], X) := { f ∈ W2,1([0, T], X) : f (0) = f ′(0) = 0},

and

D(F̃) := {B ∈ L∗(X) : β−‖x‖2
X � 〈Bx, x〉X � β+‖x‖2

X}

for given 0 < β− < β+ < ∞.

Theorem B.2. The map F̃ is F-differentiable at B ∈ int(D(F̃)) where

F̃′(B)[H] f = u for H ∈ L∗(X)

with u ∈ C ([0, T], X) being the mild (in fact the classical) solution of

Bu′(t) + Au(t) = −Hu′(t), t ∈ [0, T], u(0) = 0, (B.5)

12
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where u is the classical solution of (B.1) with respect to f.
Moreover, F̃′ is Lipschitz continuous, that is,

‖F̃′(B1) − F̃′(B2)‖L(L∗(X),S) � ‖B1 − B2‖L(X).

The involved constant only depends on T, β−, and β+.

Proof. We can be brief in proving F-differentiability as we will rely on results from [16]. A
close inspection of the proofs of lemma 3.3 and theorem 3.6 of [16] yields, for H sufficiently
small, that

1
‖H‖L(X)

‖F̃(B + H) f − F̃(B) f − F̃′(B)[H] f ‖C([0,T],X)

� ‖H‖L(X) ‖ f ‖W2,1([0,T],X)

which is the claimed differentiability.
Now we check the Lipschitz continuity of F̃′. To this end let u = F̃′(B)[H] f and v = F̃′(B +

δB)[H] f . By the regularity assumptions on f , v and u are the classical solutions of

2(B + δB)v′(t) + Av(t) = −Hv′(t), t ∈ (0, T), v(0) = 0,

Bu′(t) + Au(t) = −Hu′(t), t ∈ (0, T), u(0) = 0,

where u solves (B.1) and v solves (B.1) with B replaced by B + δB. Hence, d = v − u mildly
solves

Bd′(t) + Ad(t) = −H(v′(t) − u′(t)) − δBv′(t), t ∈ (0, T), d(0) = 0.

By the continuous dependency of d on the right-hand side, see (B.2), we get

‖d‖C([0,T],X) � ‖H‖L(X)‖v − u‖C1([0,T],X) + ‖δB‖L(X)‖v‖C1([0,T],X). (B.6)

Next we apply the regularity estimate (B.3) to v − u which solves

B(v′(t) − u′(t)) + A(v(t) − u(t)) = −δBv′(t) t ∈ (0, T), v(0) − u(0) = 0.

Thus,

‖v − u‖C1([0,T],X) � ‖δB‖L(X)‖v‖C2([0,T],X) � ‖δB‖L(X)‖ f ‖W2,1([0,T],X),

where the right bound comes from the regularity of v. In a similar way we get

‖v‖C1([0,T],X) � ‖H‖L(X)‖v‖C2([0,T],X) � ‖H‖L(X)‖ f ‖W2,1([0,T],X).

Plugging these bounds into (B.6) we end up with

sup
H∈L∗(X)

sup
f∈W2,1

0 ([0,T],X)

‖v − u‖C([0,T],X)

‖H‖L(X)‖ f ‖W2,1([0,T],X)
� ‖δB‖L(X)

which is the claimed Lipschitz continuity. �
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To establish the connection of Φ̃ to F̃ we return to the concrete settings of the previous
sections for (2.3) where X = L2(D) × L2(D,Rd) and B and A are given by (2.4) and (2.5). Now
Φ̃ = Ψ ◦ F̃ ◦ P with the mapping

P : V2
+ ⊂ V2 →L∗(X), (c, �) �→

(
c 0
0 �Id

)
.

Note that the image of P is in D(F̃) by an appropriate choice of β− and β+ in terms of λ− and
λ+ from (2.6).

Now, the Lipschitz continuity (4.6) follows immediately from theorem B.2 by the chain rule
using P′(c, �)[h] = P(h1, h2).

Appendix C. Lipschitz stability and tangential cone condition in a
semi-discrete setting

The following lemma is of interest independent of its use in this paper, since it provides
elementary criteria that imply TCC and Lipschitz stability for semi-discrete mappings.

Lemma C.1. Let Θ : D(Θ) ⊂ X →Y be an F-differentiable mapping between Banach
spaces where X is finite dimensional. Denote by x+ an interior point of D(Θ) and assume
that Θ′(x+) has a trivial null space.

(a) If Θ′ is continuous in Br(x+) up to the boundary then there is a ρ > 0 such that Lipschitz
stability holds, that is,

‖v − w‖X � ‖Θ(v) −Θ(w)‖Y for all v,w ∈ Bρ(x+). (C.1)

Moreover, the TCC holds as well

‖Θ(v) −Θ(w) −Θ′(w)(v − w)‖Y � η(v,w)

‖Θ(v) −Θ(w)‖Y for all v,w ∈ Bρ(x+), (C.2)

where η : Br(x+) × Br(x+) → [0,∞) is a continuous function which vanishes on the
diagonal: η(w,w) = 0.

(b) If Θ′ is even Hölder continuous of order α ∈ (0, 1], i.e.

‖Θ′(x) −Θ′(y)‖L(X ,Y) � L‖x − y‖αX for all x, y ∈ Br(x+), (C.3)

for one L > 0, then a stronger TCC holds

‖Θ(v) −Θ(w) −Θ′(w)(v − w)‖Y � ‖v − w‖αX
‖Θ(v) −Θ(w)‖Y for all v,w ∈ Bρ(x+). (C.4)

(c) Conversely, if both, (C.1) and continuity of Θ′, or (C.2) hold and Θ(x+) is isolated, that
is, Θ(x+) /∈ Θ

(
Bρ(x+)\{x+}

)
, then Θ′(x+) has to have a trivial null space.

Part (c) is essentially known in the literature [12, proposition 2.1].
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Proof.

(a) By injectivity of Θ′(x+), continuity of Θ′, and finite-dimensionality of X there is an r1 ∈
(0, r] and an m > 0 such that

‖Θ′(x)v‖Y � m‖v‖X for all x ∈ Br1 (x+) and all v ∈ X .

For E(v,w) :=Θ(v) −Θ(w) −Θ′(w)(v − w) we have that, for all v,w ∈ Br(x+),

‖E(v,w)‖Y =

∥∥∥∥
∫ 1

0

(
Θ′(w + t(v − w)) −Θ′(w)

)
(v − w)dt

∥∥∥∥
Y

� σ(v,w)‖v − w‖X

with

σ(v,w) = sup{‖Θ′(w + t(v − w)) −Θ′(w)‖ : t ∈ [0, 1]}.

Choose ρ ∈ (0, r1] such that σ(v,w) � m/2 for all v,w ∈ Bρ(x+). We proceed—using
the reverse triangle inequality—with

‖Θ(v) −Θ(w)‖Y = ‖E(v,w) −Θ′(w)(w − v)‖Y
� |‖E(v,w)‖Y − ‖Θ′(w)(w − v)‖Y|

� m ‖v − w‖X − σ(v,w) ‖v − w‖X .

Hence,

‖Θ(v) −Θ(w)‖Y � m
2
‖v − w‖X for all v,w ∈ Bρ(x+) (C.5)

which is (C.1). Finally,

‖E(v,w)‖Y � σ(v,w)‖v − w‖X
(C.5)
� η(v,w)‖Θ(v) −Θ(w)‖Y

and (C.2) is verified with η = 2σ/m.
(b) Under (C.3) we estimate

η(v,w) � 2L
m

‖v − w‖αX

so that (C.2) yields (C.4).
(c) As continuity and (C.1) together imply (C.2), it suffices to assume the latter condition. Sup-

pose there is a z ∈ N(Θ′(x+))\{0}. Then, vλ := x+ + λz ∈ Bρ(x+) for 0 < λ < �/‖z‖X
and

‖Θ(vλ) −Θ(x+)‖Y = ‖Θ(vλ) −Θ(x+) − λΘ′(x+)z‖Y
� η(x+ + λz, x+) ‖Θ(vλ) −Θ(x+)‖Y .

Thus, Θ(vλ) = Θ(x+) for λ > 0 small enough which contradicts the isolation of
Θ(x+). �

Finally, we want to emphasize that we can replace the injectivity assumption in the above
lemma by Lipschitz stability. Indeed, continuity and (C.1) imply (C.2). Note that Lipschitz
stability is known for a variety of semi-discrete inverse problems. We refer, e.g. to [1–5].
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