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Abstract
In this work, we advocate using Bayesian techniques for inversely identifying mate-
rial parameters for multiscale crystal plasticity models. Multiscale approaches for 
modeling polycrystalline materials may significantly reduce the effort necessary for 
characterizing such material models experimentally, in particular when a large num-
ber of cycles is considered, as typical for fatigue applications. Even when appro-
priate microstructures and microscopic material models are identified, calibrating 
the individual parameters of the model to some experimental data is necessary for 
industrial use, and the task is formidable as even a single simulation run is time 
consuming (although less expensive than a corresponding experiment). For solving 
this problem, we investigate Gaussian process based Bayesian optimization, which 
iteratively builds up and improves a surrogate model of the objective function, at the 
same time accounting for uncertainties encountered during the optimization process. 
We describe the approach in detail, calibrating the material parameters of a high-
strength steel as an application. We demonstrate that the proposed method improves 
upon comparable approaches based on an evolutionary algorithm and performing 
derivative-free methods.
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1  Introduction

To reduce the tremendous effort involved in experimentally characterizing the 
(high-cycle) fatigue properties of components made from polycrystalline materials 
(Mughrabi et  al. 1981), complementary analytical (Stephens et  al. 2000) and com-
putational strategies (McDowell 1996; Sangid 2013) are sought. To produce predic-
tions with high quality, the heterogeneity of polycrystalline materials on a lower length 
scale needs to be accounted for Kasemer et al. (2020). Multiscale models based on 
crystal plasticity (CP) (Roters et al. 2010; Hochhalter et al. 2020) provide the missing 
link between polycrystalline microstructures, e.g., based on real 3D image data (Diehl 
et al. 2017), furnished with comparatively simple single-crystal material models (Lian 
et al. 2019; Wulfinghoff et al. 2013) and the ensuing macroscopic material properties.

For modeling the response to cyclic loading accurately, the Bauschinger effect, 
which concerns a decrease of the resistance to plastic deformation also when a change 
in loading directions, for instance from tension to compression, takes place, needs to 
be accounted for Cruzado et al. (2020). Also, the ratcheting behavior, i.e., the consist-
ent accumulation of plastic slip under stress-driven cyclic loading conditions, is neces-
sary to consider (Farooq et al. 2020). Then, simulations for lifetime predictions may 
be set up (McDowell and Dunne 2010; Schäfer et al. 2019), often based on kinematic 
hardening models (Gillner and Münstermann 2017), also considering thermal activa-
tion (Xie et al. 2004), atmospheric conditions (Arnaudov et al. 2020) or crack initia-
tion (Anahid et al. 2011) and crack growth (Dunne et al. 2007).

To be of practical use, the involved material parameters on the microscopic scale 
need to be identified, based on experiments which require less effort than compo-
nent-scale testing. Dedicated approaches include micro-tensile experiments (Gia-
nola and Eberl 2009), ultrasonic testing (Huntington 1947) or high-energy x-ray dif-
fraction (Dawson et al. 2018). Also, nano-indentation (Liu et al. 2020; Chakraborty 
and Eisenlohr 2017; Engels et al. 2019) or milled micropillars (Cruzado et al. 2015) 
may be used for calibrating the material parameters for the single crystal model, also 
taking into account the strain pole-figures (Wielewski et al. (2017).

Alternatively, the material parameters of the single crystal may be identified 
by comparing polycrystalline (macroscopic) experiments to simulations on repre-
sentative volume elements (RVEs) (Shenoy et al. 2008), for instance based on static 
experiments (Herrera-Solaz et al. 2014; Kim et al. 2017) or in relation to hysteresis 
data (Cruzado et al. 2017). Such inverse approaches were also put forward for open-
cell metal foams (Bleistein et al. 2020) and in the context of noisy thermal measure-
ments (Sawaf et al. 1995).

For identifying the CP parameters from single-crystal measurements, a number of 
rather classical strategies, like the simplex method (Chakraborty and Eisenlohr 2017) or 
the Nelder-Mead algorithm (Engels et al. 2019), were reported to be effective. Another 
prevalent method to calibrate crystal plasticity parameters is the use of genetic algo-
rithms (Prithivirajan and Sangid 2018; Kapoor et al. 2021; Bandyopadhyay et al. 2020; 
Guery et al. 2016; Pagan et al. 2017). Although these methods are quite powerful, they 
can be limited when only polycrystalline experiments are at hand and evaluating the 
quality of a single parameter set involves significant computational cost. Indeed, in gen-
eral, a full-field simulation needs to be conducted for the latter scenario.
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To overcome this intrinsic difficulty, inverse optimization techniques which build 
up a surrogate model   (Zhou et  al. 2006; Sedighiani et  al. 2020) of the objective 
function turn out to be useful. Such a surrogate model serves as an approximation of 
the true objective function, but is designed in such a way that classical optimization 
techniques (Nocedal and Wright 1999) apply.

Surrogate modeling coupled to an evolutionary algorithm was shown to be effec-
tive in shape optimization (Zhou et al. 2006) and for the optimum design of compo-
nents (Hsiao et al., (2020), see Forrester and Keane (2009) for an overview in the 
context of aerospace design.

The Bayesian approach to optimization (Mockus 1989) augments surrogate mod-
els by accounting for uncertainty during the optimization process. Indeed, suppose 
that the objective function has already been evaluated at a finite number of points. 
Then, values of the objective function are known exactly at these points. Apart from 
these points, the function is unknown, and it is necessary to balance exploration, 
i.e., inspecting yet undiscovered areas, and exploitation, i.e., seeking to improve the 
objective function in the vicinity of the currently best spot. In the Gaussian process 
approach, Bayesian optimization builds up a surrogate model by furnishing each point 
in the feasible set by a mean value and a standard deviation. The mean value may be 
thought of as an estimate of the objective function, and the standard deviation quanti-
fies the uncertainty of this objective value at this specific location. From the knowl-
edge of these parameters, Bayesian optimization builds up an objective function which 
automatically adjusts a trade-off between exploration and exploitation. The Bayesian 
approach to optimization was reported to be very successful in material design (Snoek 
et al. 2012; Klein et al. 2017), see (Frazier and Wang 2016) for a recent overview.

In this work, we propose using Bayesian optimization with Gaussian processes for 
calibrating single crystal parameters inversely based on polycrystalline experiments. 
We improve upon related research (Schäfer et al. 2019) by assessing the capabilities of 
our proposed framework by comparing it to a number of extremely powerful methods, 
including a genetic algorithm and modern derivative-free optimization schemes. This 
work is structured as follows. We recall the used small-strain crystal plasticity models 
in Sect.  2.1 and expose Gaussian-process based Bayesian optimization in Sect.  2.2. 
We investigate the performance of the proposed approach in Sect. 3, carefully studying 
the optimal algorithmic parameters, comparing to state-of-the-art genetic algorithms 
(Schäfer et al. 2019) as well as powerful derivative-free optimization methods (Rios 
and Sahinidis 2013; Huyer and Neumaier 1999; 2008) and demonstrating the applica-
bility of the method to large-scale polycrystalline microstructures.

2 � Background on modeling and optimization

2.1 � Considered crystal plasticity models

With the fatigue behavior of polycrystalline materials in mind, we will use a mate-
rial model at small-strains, closely following Schäfer et al. (2019). We assume the 
total strain tensor � to be decomposed additively
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into an elastic and a plastic contribution, denoted by �e and �p , respectively. We refer 
to Simo-Hughes (Simo and Hughes 2006, Chap.1) for details. The Cauchy stress 
tensor � , which is symmetric by conservation of angular momentum (Haupt 2013), 
is assumed to be linear in the elastic strain, i.e., Hooke’s law

involving the fourth-order stiffness tensor ℂ , is assumed to hold. For elasto-visco-
plasticity, the evolution of the plastic strain �p is typically governed by a flow rule of 
the form

where z denotes a vector of additional internal variables, see Simo-Hughes (2006, 
Chap. 2).

In the framework of crystal plasticity it is assumed that plastic deformation, i.e., 
𝜀̇p ≠ 0 , is caused by the movement of dislocations on the corresponding crystal-
lographic slip systems. More precisely, a slip system � , characterized by the two 
orthogonal vectors m� and n� encoding the slip direction and slip plane normal, 
respectively, is activated when the resolved shear stress

reaches a critical value �c . Here, M� denotes the symmetrized Schmid tensor of the 
slip system �

Following (Bishop 1953; Hutchinson 1976), the flow rule (2.3) is formulated as the 
superposition of crystallographic slips on all the considered slip systems NS

where 𝛾̇𝛼 denotes the plastic slip rate for the �-th system. To determine the amount 
of plastic slip on a slip system � , the theory of elasto-viscoplasticity assumes the 
plastic slip rate 𝛾̇𝛼 to be a function of the resolved shear stress. The flow rule is 
designed in such a way that it captures both the Bauschinger effect and ratcheting 
behavior, which are necessary for describing the cyclic behavior of metals accu-
rately. The Bauschinger effect concerns a decreased resistance to plastic deformation 
also when a change of loading directions (e.g., from tension to compression) occurs. 
Ratcheting refers to consistent accumulation of plastic slip under stress-driven cyclic 
loading conditions. Please note that the loading levels which lead to ratcheting under 
repeated loading will not induce a plastic flow of the material under static loading 
conditions, in general. For ratcheting and strain-driven loading, the mean stress will 

(2.1)� = �e + �p

(2.2)� = ℂ ∶ �e ≡ ℂ ∶ (� − �p),

(2.3)𝜀̇p = f (𝜎, z),

(2.4)�� = � ⋅M�

(2.5)M𝛼 =
1

2
(m𝛼 ⊗ n𝛼 + n𝛼 ⊗ m𝛼).

(2.6)𝜀̇p =

NS∑
𝛼=1

𝛾̇𝛼M𝛼 ,
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decrease for increasing number of cycles, see Farooq et al. (2020) and Cruzado et al. 
(2020) for recent discussions of ratcheting and the Bauschinger effect, respectively.

In this work, the flow rule proposed by Hutchingson (1976)

is used. The symbol ��
c
 denotes the critical resolved shear stress and c refers to the 

stress exponent. To capture both the Bauschinger effect and ratcheting behavior, 
the original flow rule is augmented by the backstress X�

b
 , as proposed by Cailletaud 

(1992). Alternative approaches for modeling these effects are discussed by Harder 
(2001) with special focus on the coupling of the backstress evolution on different 
slip systems and the existence of the backstress tensor. Please note that the vector z 
of internal variables in equation (2.3) collects the different backstresses X�

b
.

To close the model, the flow rule needs to be complemented by an evolution equa-
tion for the backstress X�

b
 . The Armstrong-Frederick (AF) model (Frederick and Arm-

strong 2007) is a nonlinear extension of the model by Prager (1949) and involves a 
recall term. The model describes the evolution of the backstress by the equation

where A and B are material parameters with dimensions MPa and 1, respectively. 
These parameters represent the direct hardening as formulated in the Prager model 
and the recovery modulus present in the extended model, respectively. Bari and Has-
san (2000) showed that the AF model may overestimate ratcheting encountered in 
experiments. Furthermore, they attribute this shortcoming to the constant ratcheting 
associated to the model.

Extending a formulation by Chaboche, which is based on a decomposition of 
the AF model,  Ohno and Wang (1993) proposed a kinematic hardening model 
that reads, in the context of crystal plasticity,

In the Ohno-Wang (OW) model, the dynamic recovery term is modified by a power 
law with exponent M, which controls the degree of non-linearity, to improve the pre-
diction of ratcheting and mean stress relaxation.

2.2 � Bayesian optimization

Bayesian optimization (BO) is an approach for solving optimization problems 
where the objective function is expensive to compute and the gradient of the objec-
tive function is not available. Such optimization problems occur, for instance, when 
evaluating the function corresponds to running a (possibly large-scale) simulation, 
as is common in virtual crash tests (Raponi et  al. 2019) or for complex chemical 
reactions (Häse et al. 2018). Such problems might also be approached by automatic 

(2.7)𝛾̇𝛼 = 𝛾̇0 sgn(𝜏
𝛼 − X

𝛼

b
)
|||||
𝜏𝛼 − X

𝛼

b

𝜏𝛼
c

|||||

c

(2.8)Ẋ
𝛼

b
= A 𝛾̇𝛼 − BX

𝛼

b
|𝛾̇𝛼|,

(2.9)Ẋ
𝛼

b
= A 𝛾̇𝛼 − B

(||X𝛼

b
||

A∕B

)M

X
𝛼

b
|𝛾̇𝛼|.
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differentiation (Griewank and Walther 2008), which might prove difficult to inte-
grate into an existing simulation code, or by evolutionary algorithms, like particle 
swarm algorithms (Blum and Merkle 2008). However, the latter are typically limited 
to small spatial dimensions and inexpensive function evaluations.

In contrast, Bayesian optimization constructs a surrogate model of the optimiza-
tion problem based on probabilistic ideas, accounting for uncertainty by Bayesian 
statistics. We restrict to Gaussian process regression as our uncertainty model. For 
other approaches we refer to Shah et al. (2014) and Kushner (1964).

Suppose that we are concerned with the optimization problem

where A ⊆ ℝ
d is a non-empty set in d spatial dimensions whose membership is eas-

ily tested (for instance, a box). For (Gaussian process based) Bayesian optimization, 
we need to specify: 

1.	 A mean function m ∶ A → ℝ.
2.	 A kernel (or covariance) function K ∶ A × A → ℝ.
3.	 An acquisition function uf ∗,�,� ∶ A → ℝ , depending on a value f ∗ ∈ ℝ and two 

functions 

 which we will refer to as (the local estimates of) the mean and standard devia-
tions of the function values at each x ∈ A.

There are specific prerequisites for sensible kernel functions. We refer to Sect. 4 in 
Williams and Rasmussen (2006) for details, and will discuss our choice below.

For given m, K and u, Bayesian optimization proceeds as follows. Suppose that 
the objective function f was evaluated at n points x1,… , xn in A already, i.e., the 
values f (x1),… , f (xn) are known. In the Bayesian approach, it is assumed that the 
vector

was drawn at random from a probability distribution. In Gaussian process regression 
(Mockus 1994), the latter vector is assumed to follow a multivariate normal distribu-
tion with mean �n ∈ ℝ

n and Σn ∈ ℝ
n×n given by

To infer the value f(x) at some new point we assume that the joint distribution of the 
values of f over (x1,… , xn, x) is also governed by a multivariate normal distribution 

(2.10)f (x) ⟶ min
x∈A

,

� ∶ A → ℝ and � ∶ A → ℝ≥0,

fn =
[
f (x1),… , f (xn)

]T
∈ ℝ

n

(2.11)

�n =
�
m(x1),… ,m(xn)

�T
and Σn =

⎡⎢⎢⎢⎣

K(x1, x1) K(x1, x2) … K(x1, xn)

K(x2, x1) K(x2, x2) … K(x2, xn)

⋮ ⋮ ⋱ ⋮

K(xn, x1) K(xn, x2) … K(xn, xn)

⎤⎥⎥⎥⎦
.
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with mean �n+1 and Σn+1 for xn+1 = x , as prescribed in equation (2.11). Using Bayes’ 
rule, the conditional distribution of f(x) is also Gaussian with mean

and variance

where

see Sect. 2 in Williams and Rasmussen (2006). Provided Σn is non-degenerate, and 
as Kn(xi) corresponds to the i-th row of Σn for i = 1,… , n , we immediately see that

hold, i.e., the function � interpolates the known values f (xi) , and the corresponding 
standard deviation �(xi) vanishes. Furthermore, �(x) serves as an estimate for the 
function value f(x) at any potentially newly sampled point x ∈ A.

In this work, we set the mean function identical to zero, m(x) ≡ 0 . As kernel 
function we consider the anisotropic ”Matern5/2” kernel (Matérn 2013)

in terms of a positive parameter �2
k
 and an anisotropic distance function �

involving dilation parameters �d for each of the dimensions d = 1…D of the vec-
tor x. Indeed, we cannot justify using the squared exponential kernel (Stein 2012) 
due to the lack of sufficient smoothness of our objective function f. For an over-
view of alternative kernel functions, we refer to chapter 4 in Williams and Rasmus-
sen (2006). The dilation parameters of the distance function � may be interpreted as 
prefactors used for a nondimensionalization of the variables. To determine the dila-
tion parameters and �2

k
 , a maximum likelihood estimation may be used, see chap-

ter 6 in Bishop (2006). For each new observation the Gaussian process regression 
is updated, i.e., the parameters of the kernel function (2.14) are determined with 
respect to all previously made observations, continuously improving the model of f.

We restricted to discussing Gaussian processes for our noiseless application of 
Bayesian optimization and refer to (Williams and Rasmussen 2006; Bishop 2006) 
for a more general discussion.

As the next step, BO searches for an improved guess for the solution x of the 
optimization problem (2.10). A possible approach would be to ignore the estimated 
statistics and to minimize � , exploiting the currently estimated objective values. 

(2.12)�(x) = m(x) + Kn(x)
TΣ−1

n
(fn − �n)

(2.13)�(x)2 = K(x, x) + Kn(x)
TΣ−1

n
Kn(x),

Kn ∶ A → ℝ
d, x ↦

[
K(x, x1),K(x, x2),… ,K(x, xn)

]T
,

�(xi) = f (xi) and �(xi) = 0

(2.14)K(x, x) = �2
k

�
1 +

√
5 �(x, x) +

5

3
�(x, x)2

�
exp

�
−
√
5 �(x, x)

�

(2.15)�
(
xi, xj

)
=

√√√√ D∑
d=1

(xi,d − xj,d)
2

�2
d

with i, j = 1… n + 1
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However, this approach disregards the uncertainty. Indeed, it might happen that 
the optimum x∗ is located in regions of high uncertainty. Thus, it might be better to 
explore first.

Acquisition functions provide a suitable exploration-exploitation trade-off by 
combining the currently known means and variances into a single function to be 
optimized.

Denote by f ∗
n
 the lowest objective value observed so far

Plugging f ∗
n
 and the functions � and � above into the acquisition function gives rise 

to the surrogate optimization problem

In contrast to the original optimization problem (2.10), the acquisition function is 
cheap to evaluate and gradient information is available. Also, the acquisition func-
tion provides a trade-off between exploration, i.e., decreasing the uncertainty, and 
exploitation, i.e., searching in the vicinity of sites with small objective values. Thus, 
the next point to investigate is selected by maximizing the acquisition function

Recall that confidence intervals of a normally distributed random variable with 
mean � and standard deviation � have the form

where � is a parameter which determines the probability that a measurement lies 
in this confidence interval. For instance, a two-sided confidence interval with 95% 
probability is obtained for � ≈ 1.96.

For the lower confidence-bound acquisition-function ( uLCB ) (Cox and John 1992), 
the lower bound of the confidence interval is chosen as the proxy for the objective 
function f, i.e.,

is considered with �(x) and �(x) given by Equations (2.12) and (2.13), respectively. 
This acquisition function tries to improve the currently known least lower bound on 
f.

The quantity � may be chosen as a tuneable parameter. Indeed, for small � , the 
acquisition function tends to select points with low mean �(x) . In contrast, high 
values of � encourage the algorithm to choose points where the variance, i.e., the 
uncertainty, is high. We restrict to a fixed value for � and refer to Srinivas et al. 
(2010) for an adaptive choice of �.

An alternative strategy, proposed by Mockus et al. (1978) and made popular by 
Jones et al. (1998), considers the improvement

f ∗
n
=

n

min
i=1

f (xi).

uf ∗
n
,�,�(x) ⟶ max

x∈A
.

xn+1 = argmax
x∈A

uf ∗
n
,�,� .

[� − � �,� + � �],

(2.16)uLCB(x) = −�(x) + � �(x)
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where ⟨⋅⟩+ = max(0, ⋅) denotes the Macaulay bracket. If f ≥ f ∗

n
 , there will be no 

improvement. For lower values of f, the improvement I(f ) increases linearly. Tak-
ing the expectation of the improvement (2.17) w.r.t. the normal distribution deter-
mined from �(x) and �(x) gives rise to the expected improvement uEI(x) , which 
may be expressed analytically in the form

where Δn(x) = f ∗
n
− �(x) and � as well as Φ denote the standard normal density and 

distribution function with mean �(x) and standard deviation �(x) , see (Jones et al. 
1998; Lizotte 2008) proposed a shift of equation (2.18)

by a parameter � . This enables controlling the trade-off between exploitation and 
exploration and is similar to the parameter used in uLCB , see equation (2.16).

The discussed acquisition functions are inexpensive to evaluate, and gradi-
ent data is available. Thus, in addition to zeroth order optimization methods, for 
instance Monte Carlo methods (Wilson et  al. 2018) or DIRECT (Brochu et  al. 
2010), gradient-based solvers like BFGS (Frazier and Wang 2016; Wang et  al. 
(2018; Picheny et al. (2016) may be used.

Still, finding the global optimum of the acquisition function may be non-
trivial. Indeed, even if the original function f was convex, the surrogate problem 
need not be concave. For instance, the expected improvement acquisition function 
(2.18) has local maxima at all previously explored points x1,… , xn.

Our workflow for maximizing the acquisition function works as follows. First, 
we sample the acquisition function uf ∗

n
,�,� at 300 points. As our domain of interest 

is a box, we rely upon the first 300 points of the corresponding Sobol sequence 
(Sobol 1967). Then, we select those ten points with the highest acquisition func-
tion values, and run BFGS with the selected point as initial point. Finally, we 
select the maximum value obtained during those BFGS runs.

The employed Bayesian optimization workflow is summarized in Fig. 1. Please 
note that we rely upon a preliminary Latin-hypercube sampling (McKay et  al. 
2000) to sample the first ten points within the domain of interest A.

3 � Computational investigations

3.1 � Setup

We wish to identify material parameters for the quenched and tempered high-
strength steel 50CrMo4, as investigated by Schäfer et  al. (2019). The material 

(2.17)In ∶ ℝ → ℝ, f ↦
⟨
f ∗
n
− f

⟩
+
,

(2.18)uEI(x) = ⟨Δn(x)⟩+ + �(x)�

�
Δn(x)

�(x)

�
− ��Δn(x)

��Φ
�
Δn(x)

�(x)

�
,

(2.19)Δn(x) = f ∗
n
− �(x) − �
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features a martensitic microstructure and a hardness of 39 HRC. To determine the 
crystal plasticity parameters of this material, macroscopic strain-driven low-cycle 
fatigue (LCF) experiments at different strain amplitudes �a were performed, see 
Schäfer et al. (2019) for details on the experimental procedure.

The constitutive material model described in Sect. 2.1 was implemented into 
a user defined material subroutine (UMAT) within the commercial finite element 
solver ABAQUS (Dassault Systèmes 2018). To thoroughly test the optimization 
framework, we restrict to the simple microstructure shown in Fig. 2, consisting 
of 8 × 8 × 8 grains, each discretized by 23 elements. The different colors in Fig. 2 
represent distinct, randomly sampled, orientations. Periodic boundary conditions 
were used, following the procedure proposed by Smit et  al. (1998). The micro-
scopic material parameters we wish to identify are the following. 

1.	 The critical resolved shear stress �c (2.7), which we assume to be identical for all 
slip systems, i.e., ��

c
= �c holds for all �.

2.	 The parameters of the Armstrong-Frederick or the Ohno-Wang kinematic harden-
ing model A and B, see formulas (2.8) and (2.9).

Fig. 1   Bayesian optimization flowchart
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The remaining model parameters are taken from the literature according to Schäfer 
et  al. (2019), see Table 1. Please note that we restrict to slip systems in the lath-
plane, as these are primarily activated according to Michiuchi et al. (2009). We col-
lect the three parameters we wish to determine into a single three-component vector

which we would like to identify.
Following Herrera-Solaz et al. (2014) and Schäfer et al. (2019), we consider the 

objective function

quantifying the difference between a stress-strain hysteresis of low-cycle fatigue 
(LCF) experiments and the corresponding macroscopic stress-strain hysteresis of a 
micromechanical simulation. Here, S denotes the number of time steps, �exp

y  refers 
to the experimentally measured stress in loading direction and �sim

y
 stands for the 

homogenized stress in loading direction.
Following the experiments, we prescribe the macroscopic loading for the simula-

tions to follow a triangular waveform in y-direction, see Fig. 2. In total, we simulate 
two cycles, where the each cycle lasts four seconds, and the second cycle serves 
as our simulation output. We use time increments of 0.01 seconds for computing 
the homogenized stress response, i.e., S = 400 is used in this work, and we will dis-
cuss the rationale behind this choice below. Please note that we disregard strain-rate 
dependency of the considered material due to the cyclic stable behavior, see Schäfer 
et al. (2019). In this work, we wish to minimize the mean of the error for H different 
hystereses, i.e., we consider

Here, the term f h(x) corresponds to equation (3.2) and a fixed strain amplitude. 
In this article, we use the experimental data for the strain amplitudes �a = 0.35% , 
�a = 0.60% and �a = 0.90% , i.e., H = 3 . The corresponding hystereses at half of the 
lifetime are shown in Fig. 3.

(3.1)x =
[
�c,A,B

]T
∈ ℝ

3,

(3.2)f h(x) =

√√√√1

S

S∑
s=1

(
�
exp
y,s − �sim

y,s

)2

,

(3.3)f (x) =
1

H

H∑
h=1

f h(x).

Table 1   Parameters used for the crystal plasticity model (Schäfer et al. 2019)

Cubic stiffness C
11

= 253.1 GPa C
12

= 132.4 GPa C
44

= 75.8 GPa
Flow rule 𝛾̇

0
= 0.001 s−1 c = 100

Ohno-Wang power law 
exponent

M = 8

Lattice type BCC
Slip systems {110}⟨111⟩
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For a start, we study the necessary time-step size △t . Indeed, exceedingly small 
time steps increase the computational cost, whereas too large time steps distort the 
computational results. We consider a very small time step of △t = 0.0001 s as our 
reference, and investigate the relative deviation of the error function (3.3) for time 
steps of increasing size, see Table 2. All simulations were carried out for the Arm-
strong-Frederick kinematic hardening model with the material parameters found by 
Schäfer et al. (2019). Based on these results, we select the time step △t = 0.01 s, as 
we consider the associated deviation of 1.26% in the error function negligible.

For the parameter identification in a Bayesian optimization framework, diagrammat-
ically represented in Fig. 1, we consider a two-stage process. First, we start with run-
ning BO on a large box in parameter space, to obtain a rough estimate for the param-
eters. Based on these results, a second optimization with tighter boundaries is carried 
out for fine-tuning the parameters. Both steps are described in further detail in the fol-
lowing subsections.

We use the GPy implementation (GPy 2012) as a Gaussian-process regressor for the 

method described in Sect. 2.2. For the acquisition functions and the associated opti-
mization we used an implementation by the Bosch Center for Artificial Intelligence 
(BCAI) based on Python 3.7, numpy (van der Walt et al. 2011) and scipy (Virtanen 
et al. 2020).

We use the maximum number of function evaluations as a stopping criterion within 
the BO framework. We set this value to 160, involving ten random initialization points 
and 150 BO steps, unless otherwise specified. For the evolutionary algorithms, included 

Fig. 2   Simplified volume ele-
ment used to compute the mac-
roscopic stress strain hysteresis

Table 2   Resulting error values f for different time steps △t

Time step △t in s 0.0001 0.0005 0.001 0.005 0.01 0.05

f in MPa (3.3) 52.97 52.93 52.88 52.57 52.30 51.53
Relative deviation in % − 0.08 0.17 0.76 1.26 2.70
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as a benchmark, we use the commercial software optiSLang (Dynardo, optiSLang, Ver-
sion: 3.3.5. [Online]. Available: https://​www.​dynar​do.​de/​softw​are/​optis​lang.​html.).

3.2 � Parameter identification with a reasonably large search space

For this setting, the search space is given by the parameter bounds listed in Table 3. We 
initialize Bayesian optimization with ten points from a Latin-Hypercube sampling. The 
”Matern5/2” kernel (2.14) is chosen as a kernel function. The lower confidence-bound 
acquisition-function uLCB (2.16) is employed with an exploration margin of � = 2.0 . 

(a) (b)

(c)

Fig. 3   Polycrystalline stress-strain hystereses of the martensitic 50CrMo4 steel at half of the lifetime 
used for the inverse optimization problem obtained by Schäfer et al. (2019)

Table 3   Permissible parameter 
space for the large search space 
problem

�c in MPa A in MPa B

Lower bound 120 1000 0
Upper bound 220 500000 5000

https://www.dynardo.de/software/optislang.html
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Thus, over-exploitation and getting stuck in a local maximum are avoided. The ration-
ale for choosing this specific acquisition function and exploration margin, is discussed 
in Sect. 3.3.

First, we investigate the parameter optimization for the AF model and investigate the 
smallest error, i.e., the smallest value of f,

versus function evaluations N. Fig. 4a shows this quantity for a single BO run using 
a maximum number of function evaluations set to 400. Objective values above 80.0 
MPa were cut off, as these are obtained during the first ten function evaluations in 
the Latin-Hypercube sampling.

Within this single run, BO reaches a minimum value of 48.80 MPa after 171 
function evaluations. However, a comparable error of 49.9 MPa is reached after 81 
evaluations.

BO reaches a strictly positive objective value. This indicates that the material model 
described in Sect.  2.1 may only approximate the experimentally determined stress-
strain hystereses with a non-vanishing error. This effect may be systematic or result 
from stochastic fluctuations certainly present for the different experimentally deter-
mined hystereses.

The Bayesian optimization framework relies upon randomness both for the ini-
tialization and the optimization of the acquisition function. To evaluate the influ-
ence of this randomness, we restarted Bayesian optimization ten times. Figure 4b 
shows the mean of ten BO runs in terms of the best error encountered versus 
number of function evaluations. Additionally, we computed the 95% confidence 
interval ( 95% CI) using an unbiased population formula for the standard deviation 
and Student’s t-distribution (Student 1908). The bounds of the confidence interval 
are indicated by shaded areas centered at the mean value.

Please note that the number of evaluations used by BO is limited to 160, 
including those used for the initialization. BO reaches a mean error of 47.83 
MPa after the allowed 160 function evaluations with a 95% confidence interval of 

(3.4)f ∗ ∶ N ↦

N

min
i=1

f (xi),
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(b) Mean and confidence intervals of ten runs

Fig. 4   Best error versus function evaluations for the AF model using BO
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[46.40 MPa, 48.74 MPa]. A comparable mean error of 48.78 MPa and a 95% con-
fidence interval [47.10, MPa, 48.76 MPa] is reached after 121 function evalua-
tions, corresponding to 111 BO steps excluding evaluations used for initialization.

Thus, we observe that repeating the BO process leads, after a sufficient number 
of iterations, to rather similar results as for a single run. In addition to the AF 
model, we investigate the Ohno-Wang model in this work to demonstrate the gen-
eral robustness and reliability of Bayesian optimization in this setting. The result 
for one BO run with a maximum number of 400 evaluations is shown in Fig. 5a.

Qualitatively, similar conclusions may be drawn as for the AF model. To address 
the issue of randomness we use ten BO runs with different initialization and evalu-
ate the results, see Fig. 5b. The observed behavior parallels the optimization for the 
AF model, where the mean error improves significantly within the first 100 function 
evaluations and stagnates afterwards. An important difference to the AF model are 
the final mean and the confidence bounds. For all considered optimization runs the 
mean best error is 43.94 MPa, which is lower than the mean reached using AF. The 
95% confidence interval is computed as [42.71 MPa, 45.17 MPa]. The broader 95% 
confidence interval for the OW model compared to the one obtained for the AF-
model optimization indicates a higher dispersion of BO for the OW model, i.e., a 
higher influence of the initial sampling.

To gain insight into the shape of the energy landscape for the considered black-box 
function, we compute the difference between two consecutive minimum values of f ∗ at 
the j-th function evaluation
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Fig. 5   Best error versus function evaluations for the OW model using BO

Table 4   Parameters used for 
normalization within the large 
search space setting

Parameter �∗
c
 in MPa A∗ in MPa B∗

Armstrong-Frederick 207.54 41928.27 147.83
Ohno-Wang 173.53 77953.37 473.07
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as well as the Euclidean distance between a parameter set xi (see equation (3.1)) and 
the previous vector xi−1 . For proper dimensioning, we normalize each distance 
parameter-wise by the parameters x∗

j
 , for which a minimum objective value was 

found, see Table 4, via

Here, D denotes the number of dimensions of the input vector (3.1), i.e., D = 3 for 
this work. Let us denote by

the averaged objective values and mean distances over R total optimization runs at 
the j-th function evaluation. First, we consider the Armstrong-Frederick kinematic 
hardening model, see Fig. 6a. The first ten function evaluations, corresponding to 
sampling of the given parameter space, allow the algorithm to find a promising start-
ing point. Similar to Fig. 4b, for the first ten steps, the mean change in best error 
(encountered so far) is very high. After these initial steps, BO reduces the mean 
parameter distance while navigating towards a smaller error, i.e., the already gained 
knowledge about f in the vicinity of an encountered (local) minimum is exploited 
and the uncertainty associated to this region is reduced in the process. Thereafter, 

(3.5)Δf ∗
j
= f ∗

j
− f ∗

i
with i, j = 1…N,

(3.6)||||xi − xi−1
|||| =

√√√√ D∑
d=1

(
xi,d − xi−1,d

x∗
d

)2

.

(3.7)Δf ∗
j
=

1

R

R∑
r=1

Δf ∗
j,r

(3.8)dj =
1

R

R∑
r=1

|||
|||x

r
j
− xr

j−1

|||
|||
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Fig. 6   Comparison of the mean best error difference and parameter distance found by Bayesian optimiza-
tion for the different kinematic hardening models
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it becomes more attractive to sample points with a higher degree of uncertainty, 
encoded by a higher variance. This exploration phase is indicated by the mean 
parameter distance oscillating around a fixed value at about 50 -112 function evalu-
ations. The error is reduced frequently by small margins, up to about 112 function 
evaluations. After that, both the mean parameter distance and the mean difference 
in best error decrease further, as no further improvement of the objective value is 
made, see also Fig. 4b.

After about 120 function evaluations, corresponding to 110 BO steps, the 
exploitation tendency of the considered acquisition function is apparent. Despite 
decreasing the mean parameter distance,i.e., exploiting the already gained knowl-
edge about the function, the best error is not decreased significantly. Indeed, the 
used acquisition function uLCB comes with an intrinsic trade-off between explora-
tion and exploitation by sampling the point where the negative mean minus the 
variance (multiplied by � ) is largest.

For the Ohno-Wang kinematic hardening model, the considered metrics are 
shown in Fig.  6b. Sampling the parameter space reduces the encountered best 
error significantly, as we have seen for the Armstrong-Frederick model. Com-
pared to the AF model, shown in  6a, the mean relative parameter distance is 
smaller. This indicates a higher degree of smoothness in the objective function.

After the initialization phase, the error is reduced, exploiting the already gained 
knowledge of the objective function f. The mean parameter distance decreases, i.e., 
neighboring points are being evaluated. After 50 function evaluations, the improve-
ment of the best error gets less pronounced, resulting in the plateau apparent in 
Fig.  5b. After about 80 evaluations, a step with large mean parameter distance 
occurs, resulting in a subsequent decrease of the best error.

Interpreted in terms of the energy landscape of the objective f, BO investigates 
a neighborhood with promising points first. After exploiting this area (up to about 
64 iterations), the exploitation-exploration trade-off favors reducing the uncertainty. 
This results in a large mean parameter distance at about 80 function evaluations, 
allowing the algorithm to find a new area where the objective f may be decreased 
further.

Experiment AF OW
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Fig. 7   A comparison of stress-strain hystereses at different loading amplitudes with parameters identified 
by BO to experimental results
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For both single optimization runs shown in Fig.  4a and Fig.  5a, the resulting 
stress-strain hystereses are shown in Fig.  7 besides their experimental counter-
parts. The results for, both, the Armstrong-Frederick and Ohno-Wang model, show 
good agreement with the experiments at medium and high strain amplitudes, i.e., 
� = 0.6% and � = 0.9% . These observations may be quantified when normalizing the 
root of the mean squared distance between experiment and simulation, i.e., equa-
tion (3.2), by the root of the mean squared experimental values

For the Armstrong-Frederick model, the relative difference is 4.29% and 6.81% for 
� = 0.6% and � = 0.9% , respectively. We obtain similar values for the Ohno-Wang 
model, namely 3.56% and 6.48% . For the smallest strain amplitude considered, i.e., 
� = 0.35% , the relative error is larger, with 22.60% and 20.41% for the Armstrong-
Frederick and Ohno-Wang model, respectively. These errors may be reduced either 
by considering a more complex microstructure or by working with more advanced 
models. For the work at hand, we focus on the optimization method used for the 
parameter identification.

3.3 � On the choice of acquisition function

In this section, we elaborate on our choice of acquisition function and exploration 
margin. For the large search-space problem, we compare two different exploration 
margins for each of the considered acquisition functions uEI and uLCB . For these four 
combinations, the mean best error of ten BO runs is shown in Fig. 8a. Except for 
uLCB with � = 1.0 , all combinations lead to a comparable minimum value.

(3.9)
f h�

1

N

∑N

i=1

�
�
exp

y,i

�2

.
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Fig. 8   Comparison of the mean best error using BO with different acquisition functions and exploration 
margins
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For BO with uLCB and � = 1.0 , after reaching an error of 53.53 MPa at 53 func-
tion evaluations, the mean gradually reduces to its final value of 52.27 MPa. This 
behavior indicates that the algorithm gets stuck in a local minimum and is not able 
to leave it. Indeed, a two-sided confidence interval of width 2� contains only 68.27% 
of all realizations, on average. In particular, more than 30% of potentially relevant 
improvements are inaccessible. Thus, the driving force for exploration, encoded by 
� , is too small for this setup.

To study the remaining combinations of acquisition functions and exploration 
margins in more detail, the results are restricted to the interval from 60 to 160 func-
tion evaluations in Fig. 8b.

uEI with exploration margin � = 0.1 reaches a mean stationary value of 
f (x) = 48.66 MPa after 106 function evaluations, and does not lead to a subsequent 
reduction afterwards.

After reaching a similar mean error compared to uLCB with � = 1.0 , namely 53.50 
MPa using 54 function evaluations, uEI with an exploration margin of � = 0.05 
reduces the error further. This is achieved between 70 and 90 as well as between 
118 and 125 function evaluations, where the mean error reduces from 53.50 MPa to 
48.80 MPa. The final mean error is reached at 48.29 MPa after 145 function evalu-
ations. Additionally, we look at the maximum best error (i.e., the worst case) for all 
ten optimization runs versus the number of function evaluations, shown in Fig. 9a. 
As for the behavior of the mean best error, shown in Fig. 8, for uLCB with � = 1.0 , 
the maximum best error does not decrease to a comparable level. The other three 
considered cases behave similarly. To examine these cases in more detail, we inves-
tigate at the last 100 evaluations in Fig. 9b. BO using uLCB with an exploration mar-
gin of two reaches its minimum objective value of 49.45 MPa after 119 function 
evaluations for the considered case. The worst case for expected improvement uEI 
and � = 0.1 , a stationary value of 51.36 MPa, is reached after 106 function eval-
uations. The reached value is not improved using more function evaluations. For 
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Fig. 9   Comparison of the worst case obtained using BO with different acquisition functions and explora-
tion margins
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an exploration margin of 0.05, a stationary value of 49.31 MPa is reached for the 
worst case considered. This is slightly smaller than the error obtained using uLCB and 
� = 2.0 , but requires 26 additional evaluations, which is why we chose uLCB with 
� = 2.0 as our acquisition function and exploration margin. 

3.4 � Fine‑tuning material parameters with small parameter space

In Sect. 3.2, we were concerned with optimizing parameters when little is known 
about the optimum. We may work on a smaller parameter space if additional infor-
mation is known, for instance based on expert knowledge or a previous optimization 
run for a similar problem. For determining the crystal plasticity parameters of the 
single crystal, we will use the bounds of Table 5, which we chose to be tighter than 
the previously considered bounds. Again, we choose our acquisition function to be 
uLCB with an exploration margin of � = 2.0 , as conclusions very similar to those in 
Sect. 3.3 may be drawn in the fine-tuning case, as well. The BO workflow is initial-
ized by ten points obtained from a Latin-Hypercube sampling. Then, BO is run for 
a fixed set of 150 function evaluations, summing up to a total of 160. The results of 
ten optimization runs are shown in Fig. 10a and b for the Armstrong-Frederick and 
Ohno-Wang model, respectively.

BO reaches a mean minimum error-value of 46.72 MPa for the AF model. The 
95% confidence interval at end of optimization is given by [45.66 MPa, 47.78 

Table 5   Permissible parameter 
space for the fine-tuning 
problem

Parameter �c in MPa A in MPa B

Lower bound 120 1000 0
Upper bound 220 200000 1200
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Fig. 10   Mean best error and corresponding 95% confidence interval versus function evaluations of the 
Bayesian optimization in the fine-tuning setting
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MPa], which is tighter than for the results of the large search-space problem. 
After 80 evaluations, BO reaches a comparable mean error of 46.92 MPa with a 
95% confidence interval of [45.76 MPa, 48.08 MPa].

For the optimization of the OW kinematic hardening model, Fig.  10b shows 
the mean and the 95% confidence interval of the smallest error versus function 
evaluations. The mean minimum-value of 41.69 MPa is reached after 136 evalua-
tions and a comparable mean error of 41.695 MPa is reached after 73 evaluations. 
Furthermore, each of the optimization runs arrives at almost the same error, 
emphasized by the narrow 95% confidence intervals, [41.6851 MPa, 41.6854 
MPa] and [41.52 MPa, 42.17 MPa] for 136 and 73 function evaluations, respec-
tively. As we did for the large search-space problem, we look at, both, the mean 
difference between two consecutive best encountered values of f, and, the mean 
normed parameter distance (see equations (3.7) and (3.8)). As normalization, 
we use those parameters for which the minimum function value was found, see 
Table 6. These metrics are shown for the AF model in Fig. 11a. BO systemati-
cally reduces the step size, with the main change made between 0 and 60 func-
tion evaluations. This corresponds to the observations made in Fig.  10a, where 
after about 60 function evaluations there is no substantial change in the mean best 
error encountered as well as for the 95% confidence interval . 

Fig.  11a also shows the trade-off between exploration and exploitation. This 
is indicated by peaks in parameter distance after about 80 function evaluations 
without decreasing f.

Table 6   Parameters used for 
normalization for the fine-tuning 
setting

Parameter �∗
c
 in MPa A∗ in MPa B∗

Armstron-Frederick 203.0 44484.21 176.0
Ohno-Wang 186.52 63853.35 403.67
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Fig. 11   Comparison of mean error and parameter distance obtained with BO for the Armstrong-Freder-
ick and Ohnoe-Wang kinematic hardening models within the fine-tuning setting
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The mean distance between parameters is smaller within the more restrained 
boundaries of Table 5. This explains why a comparable or even better solution is 
achieved in shorter time than when optimizing with the (larger) bounds given in 
Table 3. For the fine-tuning of the OW model, see Fig.  11b, similar observations 
can be made. In contrast to optimizing the AF model, the mean change in best error, 
shown in Fig.  10b, is almost zero after 80 function evaluations. As for the large-
space problem, the mean parameter distance is smaller than for the case of optimiz-
ing the Armstrong-Frederick model. However, for the case at hand, this difference is 
less pronounced.

3.5 � Comparison to the state‑of‑the‑art

In this section, we compare the proposed Bayesian approach to alternative opti-
mization algorithms which demonstrated their power for similar tasks, in par-
ticular inversely identifying material parameters. In addition to the evolutionary 
approach used by Schäfer et  al. (2019), we investigate the Multilevel Coordinate 
Search (MCS, Huyer and Neumaier 1999) and Stable Noisy Optimization by Branch 
and FIT (SNOBFIT, Huyer and Neumaier 2008). The latter two derivative-free opti-
mization methods turned out to be particularly powerful for low-dimensional prob-
lems in the expressive review article of Rios and Sahinidis (2013).

The workflow used by Schäfer et al. (2019) proceeds as follows. First, a Latin-
Hypercube-Sampling, consisting of 200 points in the proposed parameter space, 
is performed. Subsequently, an evolutionary algorithm is run on the parame-
ter space, initialized using the most promising results from the sampling step. 
MCS and SNOBFIT do not require an additional initialization, and we use the 

(a) (b)

Fig. 12   Comparison of the evolutionary approach, Bayesian optimization, SNOBFIT and MCS for the 
Armstrong-Frederick kinematic hardening model in the large search space setting
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recommended default parameters (Huyer and Neumaier 2008; Huyer and Neu-
maier 1999) for both algorithms.

We compare the smallest error encountered versus function evaluations for a 
single optimization run of the AF model  in the large search-space setting, see 
Fig. 12, where we constrain the maximum number of function evaluations to 400. 
For a start, we observe that all algorithms reach a non-zero function value, in 
agreement to previous observations. The minimum error obtained by the evolu-
tionary approach of 48.20 MPa is reached after 332 function evaluations. A com-
parable value of 49.15 MPa is encountered after 270 evaluations. Please note 
that the sampling provides a suitable initialization, and, for the first 100 function 
evaluations, there is a steady decrease in the objective value f. MCS reaches a 
similar error of 48.69 MPa after 400 evaluations, with an error of 49.16 MPa 
reached after evaluating the cost function 237 times. Among all considered opti-
mization algorithms, SNOBFIT reaches the lowest error value of 43.72 MPa after 
201 function evaluations.

All considered algorithms, except for MCS, rely to some degree on a ran-
dom initialization (Huyer and Neumaier 2008; Brochu et  al. 2010). Therefore, 
we wish to asses the influence of randomness on the overall optimization results. 
In Fig. 12b, the mean value of ten optimization runs is shown. Additionally, we 
visualize the computed 95% confidence interval via shaded areas, centered at the 
mean. For the SNOBFIT algorithm and these multiple runs, we set the maximum 
number of function evaluations to 160, as for the proposed Bayesian strategy. As 
MCS is a deterministic algorithm, in all of the following we will only show the 
results of a single optimization run.

After 100 evaluations, the evolutionary approach reaches a mean minimum func-
tion value of 56.31 MPa with a 95% confidence interval of [52.73 MPa, 59.90 MPa], 
and, after 160 evaluations arrives at a mean and 95% confidence interval of 53.42 

(a) (b)

Fig. 13   Comparison of the evolutionary approach, Bayesian optimization, SNOBFIT and MCS for the 
Ohno-Wang kinematic hardening model in the large search space setting
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MPa and [50.61 MPa, 56.23 MPa], respectively. The smallest mean value of 48.71 
MPa is reached after evaluating the cost function 394 times, with a comparable value 
of 49.97 MPa reached after 376 evaluations. Using the SNOBFIT algorithm results 
in a smaller mean error of 52.66 MPa at 100 function evaluations, but a larger 95% 
confidence interval of [47.14 MPa, 58.19 MPa]. The mean best error after 160 func-
tion evaluations is lower for SNOBFIT than for BO and the evolutionary algorithm, 
namely 47.47 MPa while the 95% confidence interval of [44.15 MPa, 50.78 MPa], 
obtained by using SNOBFIT, is larger than for the other two methods.

As our next step, we compare BO to the evolutionary approach, MCS and SNOB-
FIT for optimizing the unknown parameters of the OW kinematic hardening model 
in the large-space setting. In Fig. 13a, we plot the best error vs. iterations for each 
algorithm and a single optimization run. Bayesian optimization, the evolutionary 
approach and SNOBFIT reach similar error values of 44.21 MPa, 45.74 MPa and 
43.72 MPa, respectively. Comparable error values are obtained by BO, SNOBFIT 
and the evolutionary framework after evaluating the cost function about 120, 290 
and 340 times, respectively. Using Multilevel Coordinate Search leads to a mini-
mum best error of 48.69 MPa, which is reached after 392 function evaluations.

To investigate the influence of the random initialization on optimizing the OW 
model, we use the mean of ten optimization runs and visualize the results, with the 
corresponding 95% confidence interval as shaded areas, in Fig. 13b for BO, SNOB-
FIT and the evolutionary approach.

Combining Latin-Hypercube sampling and the evolutionary algorithm produces, 
after 400 function evaluations, a mean error of 51.10 MPa, and a 95% confidence 
interval of [47.76 MPa, 54.40 MPa]. After evaluating the function 160 times, the 
mean best error using the evolutionary approach is 55.30 MPa with 95% confidence 
interval [53.19 MPa, 57.40 MPa]. For SNOBFIT, the mean best error of 49.77 MPa 
after 160 function evaluations lies between the results of BO and the evolutionary 

(b)(a)

Fig. 14   Comparison of the evolutionary approach, Bayesian optimization, SNOBFIT and MCS for both 
kinematic hardening model in the fine-tuning setting
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approach, whereas the 95% confidence interval of [44.73 MPa, 54.81 MPa] is larger 
than for the two other methods.

In Fig. 14, we compare the considered algorithms for the refined bounds given 
in Table 5, for both kinematic hardening models. For optimizing the parameters of 
the AF model, SNOBFIT provides the lowest mean error of 44.16 MPa with [42.99 
MPa, 45.34 MPa] as a 95% confidence interval after 160 function evaluations. We 
observe comparable values after letting SNOBFIT evaluate the function 98 times, 
e.g., 44.53 MPa for the mean error with a 95% confidence interval of [43.32 MPa, 
45.74 MPa]. Using an evolutionary algorithm to optimize the AF parameters leads 
to a mean minimum error of 47.29 MPa, which is close to the mean value reached 
by BO. The 95% confidence interval at 160 function calls of the evolutionary algo-
rithm computes to [45.47 MPa and 49.10 MPa], which is larger than for BO or 
SNOBFIT. To reach similar mean error values of 47.50 MPa and 46.85 MPa, the 
evolutionary algorithm and BO need 153 and 87 function evaluations, respectively. 
Among the considered algorithms, MCS reaches the lowest best error already in the 
first 13 iterations with 50.807 MPa. This error level is reached within the first func-
tion evaluations. Yet, MCS falls short of reducing the error significantly for subse-
quent function evaluations. Indeed, after evaluating the function 160 times, the error 
is 48.70 MPa.

Next, we compare the mean best error encountered when optimizing the parame-
ters for the Ohno-Wang kinematic hardening model using the evolutionary approach, 
BO or SNOBFIT, see Fig. 14b, together with best error over iterations for the MCS 
method. Similar conclusions for the behavior of SNOBFIT may be drawn as for 
the BO approach, see Sec.  3.4. The mean best error and 95% confidence interval 
after 160 function evaluations are 43.10 MPa and [42.60 MPa, 43.60 MPa], respec-
tively. Using the evolutionary algorithm produces a mean minimum error of 49.31 
MPa after 133 function evaluations with a 95% confidence interval of [48.78 MPa, 
49.84 MPa]. Almost the same mean best error of 50.71 MPa with a 95% confidence 
interval of [48.79 MPa, 52.64 MPa] is reached after 13 function evaluations and not 
improving up to 109 evaluations. For MCS, the error is, similar to optimizing the 
AF model, the lowest in the first 10 optimization steps. After evaluating the cost 
function 160 times, the error reaches a similar value as reached by BO with 42.29 
MPa.

Let us summarize the findings of this section for each algorithm individually. The 
evolutionary algorithm consistently required the highest number of function evalu-
ations among the considered algorithms to reach a specific error level. For the OW 
model and both the large and the small search space, the evolutionary algorithm 
lacked significantly behind the other algorithms. With the exception of the large 
search space and the AF model, MCS provided a similar error value as BO and the 
evolutionary algorithm. MCS showed inferior performance for the OW model and 
the large search space. In the case of fine tuning, MCS turned out to be worst for the 
Armstrong-Frederick model, but second best for Ohno-Wang. Still, there are practi-
cal benefits of the MCS method. First and foremost, it is a deterministic algorithm, 
dispensing with the influence of randomness. Secondly, in the fine-tuning setting 
MCS provided very good results already for the first few iterations. Thus, when the 
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number of evaluations is small and prescribed beforehand, MCS is the method of 
choice.

SNOBFIT is good for the fine-tuning case, in particular for the AF model. In this 
case, SNOBFIT produces a similar dispersion as BO. However, for the large search 
space, the values produced by SNOBFIT are characterized by a rather large disper-
sion. Directly comparing SNOBFIT and BO, the former consistently requires more 
function evaluations to reach the same error level.

The proposed Bayesian optimization framework produces a mean which is com-
parable to SNOBFIT in the setting of the large search space. However, BO is both 
consistently faster and characterized by a smaller dispersion. Only for fine-tuning 
AF, BO is a little worse than SNOBFIT in terms of the reached best error. For fine-
tuning the more complex Ohno-Wang model, BO is fastest and leads to the best 
error.

To conclude, the presented BO framework provides a strongly competitive solu-
tion, independent of the problem. Thus, it turns out to be the algorithm of choice 
for industrial applications, in particular parameter identification for an unknown 
material.

3.6 � Industrial‑scale polycrystalline microstructure

Previously, we determined the optimum parameters for a simplified volume element, 
see Fig. 3, which was selected with extensive studies of the proposed Bayesian opti-
mization approach in mind. In this section, we investigate a more complex micro-
structure to demonstrate the capabilities of the approach. For this we use a synthetic 
microstructure, generated by the method discussed in Kuhn et al. (2020), consisting 
of 100 grains (with equal volume). Furthermore, each grain is randomly assigned a 
crystalline orientation, s.t. the overall orientation is isotropic, see Fig. 16a, where the 
coloring indicates the corresponding orientation. We furnish this volume element 
with periodic boundary conditions, discretize it by 643 voxels and use the FFT-based 
solver FeelMath (Fraunhofer ITWM 2020; Wicht et al. 2020a; Wicht et al. 2020b) 
to speed up computations (Rovinelli et al. 2020). Both, the Armstrong-Frederick and 
the Ohno-Wang kinematic hardening model will be considered.

Table 7   Parameter space for the 
AF model

Parameter �c in MPa A in MPa B

Lower bound 103 20964 74
Upper bound 310 62892 222

Table 8   Parameter space for the 
OW model

Parameter �c in MPa A in MPa B

Lower bound 93 31927 202
Upper bound 280 95780 806
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Following (Sedighiani et al. 2020), we define the bounds of the feasible param-
eter space in terms of the previously found optima, with a range of 1.5 × x∗ and 
0.5 × x∗ , see Tables 7 and 8. We retain our choice of acquisition function and explo-
ration margin. To keep the computational cost reasonable, we restrict the maximum 
number of iterations to 50. The best error versus number of evaluations is shown 
in Fig. 15a for the Armstrong-Fredrick model. Guided by a Latin-Hypercube-Sam-
pling, the first ten function evaluations result in an error of 44.10 MPa. This error is 
further reduced to 43.68 MPa after 20 additional function evaluations. The minimum 
error of 41.20 MPa is reached after evaluating the function 33 times. The obtained 
error is smaller than in Sect. 3.4. This may be a result of the increased complexity of 
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(b) Ohno-Wang model.

Fig. 15   Smallest error versus iterations for the optimization of kinematic hardening parameters and criti-
cal resolved shear stress using the microstructure with increased complexity

Fig. 16   Resulting distribution of the accumulated plastic 𝛾̇ slip for �a = 0.9% at the end of simulation

Table 9   Resulting parameter 
sets for the optimization with a 
more complex microstructure 
model

Parameter �c in MPa A in MPa B

Armstrong-Frederick 226.55 42758.98 116.34
Ohno-Wang 239.50 37166.05 219.87
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the microstructure, which is closer to the experimental setup encompassing a large 
number of grains. Furthermore, the obtained parameter values, shown in Table 9 lie 
outside of the bounds considered in the previous sections, see Tables 3 and 5.

Similar conclusions may be drawn for the Ohno-Wang kinematic hardening 
model, where the smallest error versus number of function evaluations is shown in 
Fig 15b. After ten function evaluations following a Latin-Hypercube-Sampling, the 
smallest error is 62.05 MPa. After taking one BO step, this error is reduced to 41.35 
MPa. The final minimum error of 38.21 MPa is reached after 27 function evalua-
tions, i.e., after 17 steps proposed by Bayesian optimization.

To ensure that the smaller error for the complex microstructure is not a conse-
quence of the different parameter bounds, we return to the simplified microstructure, 
see Fig. 3, and run Bayesian optimization on the constrained parameter spaces, see 
Tables 7 and 8. For the Armstrong-Frederick model, BO reaches a mean error of 
44.69 MPa an a [44.69 MPa, 44.70 MPa] 95% confidence interval after 50 func-
tion evaluations. After the same number of evaluations, the resulting mean error and 
95% confidence interval are 41.78 MPa and [41.59 MPa, 41.97 MPa], respectively. 
Thus, even for the constrained bounds, the error corresponding to the more complex 
microstructure shown in Fig. 16a improves upon the error obtained for the simpli-
fied structure. Concerning the computational cost, the simulation with a time step of 
△t = 0.01 s and 16 CPUs takes roughly 40 minutes for the largest strain amplitude 
of �a = 0.9% . Thus, for the chosen maximum number of 50 function evaluations, the 
total Bayesian parameter identification takes 33 hours. The minimum error of 38.21 
MPa is found after a computation time of 18 hours in total for the Ohno-Wang kin-
ematic hardening model. As for the Armstrong-Frederick model a total computation 
time of 22 hours is needed to find a solution with error 41.20 MPa.

Using a more complex synthetic microstructure, the error is further reduced, at 
the expense of an increased computational effort. Still, the Bayesian-optimization 
approach limits the required total time to less than a day. Using a more complex 
representation of the microstructure also permits us to gain deeper insights into the 
deformation behavior of the microstructure, for instance in terms of the accumulated 
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Fig. 17   Comparison of stress-strain hystereses determined by BO to experimental results at different 
loading amplitudes
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plastic slip, a mesoscopic indicator for the plastic deformation. Furthermore, the 
obtained optimum parameter set may enter further microstructure simulations.

For �a = 0.9% and t = 8.0 s, the distribution of accumulated plastic slip, see 
Wulfinghoff et al. (2013),

is shown in Fig. 16b and c for the Armstrong-Frederick and Ohno-Wang kinematic 
hardening model, respectively. In both cases, the accumulated plastic slip is concen-
trated in specific grains.

As we used the same geometric microstructure for each of the hardening models, 
we observe that, independent of the employed kinematic hardening model, the ori-
entation of each grain plays a crucial role in determining the deformation behavior. 
Apparently, grains with higher accumulated plastic slip 𝛾̇ are oriented in such a way 
that the applied macroscopic load has maximum effect, thus resulting in a higher 
amount of plastic deformation. Moreover, the distribution of accumulated plastic slip 
provides some insight into the advantages of the OW model over the AF model in 
producing smaller errors which is not apparent from the resulting hystereses shown 
in Fig. 17. For the Ohno-Wang kinematic hardening model, there are more regions 
with high accumulated plastic slip 𝛾̇ in Fig. 16c than for the Armstrong-Frederick 
model in Fig. 16b. This more pronounced plasticity seems to match the experimen-
tal behavior better than the results computed using the Armstrong-Frederick kin-
ematic hardening model. The relative error defined in equation (3.9) is considerably 
lower for the small strain amplitude � = 0.35% for both kinematic hardening models 
with 11.65% and 8.65% for the Armstrong-Frederick and Ohno-Wang model, respec-
tively. The relative errors for the medium strain amplitude are increased to 11.20% 
for the Armstrong-Frederick and 11.08% for the Ohno-Wang model, whereas the 
error for � = 0.9% is also reduced to 4.59% and 5.16% for the respective models. As 
the small strain amplitude � = 0.35% is most interesting for fatigue applications, the 
benefits of using the more complex structure, see Fig. 16a,instead of the simplified 
microstructure, see Fig 3, become apparent.

4 � Conclusion

This work was dedicated to identifying constitutive parameters for a small strain 
crystal plasticity constitutive law incorporating a kinematic hardening model to 
capture the behavior under cyclic loading conditions, a topic which received atten-
tion recently from, both, a scientific and applied perspective (Sedighiani et al. 2020; 
Shahmardani et al. 2020; Shenoy et al. 2008; Prithivirajan and Sangid 2018; Guery 
et al. 2016; Hochhalter et al. 2020; Kapoor et al. 2021; Pagan et al. 2017; Bandyo-
padhyay et al. 2020; Rovinelli et al. 2018; Bandyopadhyay et al. 2019).

We investigated a Bayesian optimization approach for the rapid and flexible cali-
bration of the single-crystal constitutive parameters entering micromechanical sim-
ulations. The methodology is data-driven and compares the predicted stress-strain 

(3.10)𝛾̇ =

NS∑
𝛼=1

||𝛾̇𝛼||,
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hystereses to given polycrystalline experimental data. More precisely, we proposed 
using Bayesian optimization with Gaussian processes to build up a surrogate model 
of the optimization problem at hand and employed the upper confidence bound using 
an exploration margin of two for selecting the next iterate. Our numerical investiga-
tions demonstrated that the proposed optimization framework reliably and efficiently 
determines suitable material parameters for our purposes. For instance, these moduli 
may enter a simulation predicting the initiation of fatigue cracks, see Schäfer et al. 
(2019). We investigated both a large and a comparatively small space of admissible 
parameters, simulating whether prior knowledge on the optimum is available or not. 
The proposed framework is able to handle the challenges of the large search space, 
and is sped up for the smaller admissible set.

By investigating both the changes in parameter vector and in the objective value, 
we could gain an intuitive understanding for the selection strategy of Bayesian opti-
mization, providing a suitable trade-off between exploitation and exploration. Fur-
thermore, we could get an insight into the general energy landscape and the effects 
of using different acquisition functions.

We compared the proposed Bayesian optimization framework to a representative 
(Schäfer et al. 2019) of the powerful class of genetic algorithms (Kapoor et al. 2021; 
Bandyopadhyay et al. 2020; Rovinelli et al. 2018) as well as two derivative-free opti-
mization schemes recommended in the review article (Rios and Sahinidis 2013) for 
low-dimensional problems. The computational findings of Sect.  3.5 demonstrated 
the capabilities of the Bayesian optimization framework. Compared to the investi-
gated evolutionary algorithm, BO turned out to be consistently faster, and featured 
a smaller dispersion. BO outperforms MCS mainly in the case of the large search 
space, whereas, for fine tuning, BO produces a smaller minimum achieved error for 
all cases, but requires more function evaluations to reach a comparable error level. 
Compared to SNOBFIT, BO produces a considerably smaller dispersion when con-
sidering a large search-space. BO requires fewer function evaluations, and provides 
similar or better results in case of fine-tuning.

We observed that, for fitting computed stress-strain hystereses to their experi-
mental counterparts accurately, using more complex microstructures is necessary. In 
particular, the hysteresis at a low strain amplitude, the one most relevant to fatigue 
applications, using a volume element with 100 complex grains led to more accurate 
results than the simplified volume element with 64 cubic grains.

To further improve the fitting quality, it appears wise to investigate whether 
increasing the complexity of the underlying material model or tweaking the parame-
ters used for microstructure generation has a higher effects. Especially in the context 
of industrial applications and the digital twin paradigm (Tuegel et al. 2011), accurate 
computational representations of components and their microstructure are needed. 
Further research might be invested into optimizing the microstructure descriptors, 
which are used as input for synthetic microstructure generation (Quey and Renver-
sade 2018; Bourne et al. 2020; Kuhn et al. 2020). In particular, it may be possible to 
determine a set of minimal, thus most efficient, characteristics a microstructure has 
to possess in order to produce the desired macroscopic material behavior.

Complementing research dedicated to microstructure representations, the pro-
posed optimization scheme could be improved. Despite the power and flexibility 
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we experienced in the applied context, decreasing the number of necessary simula-
tion runs (via fewer function calls) would be very much appreciated, in particular 
combined with a clever stopping criterion. Furthermore, research could be devoted 
to dedicated transfer strategies, i.e., building upon previous experience with similar 
microstructures, material models or experimental data (Golovin et al. 2017).

Last but not least, it appears worthwhile to extend the Bayesian optimization 
framework to uncertainty quantification (Bandyopadhyay et al. 2019).
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