KIT | KIT-Bibliothek | Impressum | Datenschutz

Threshold Phenomena for Random Cones

Hug, Daniel ORCID iD icon 1; Schneider, Rolf
1 Karlsruher Institut für Technologie (KIT)

Abstract:

We consider an even probability distribution on the d-dimensional Euclidean space with the property that it assigns measure zero to any hyperplane through the origin. Given N independent random vectors with this distribution, under the condition that they do not positively span the whole space, the positive hull of these vectors is a random polyhedral cone (and its intersection with the unit sphere is a random spherical polytope). It was first studied by Cover and Efron. We consider the expected face numbers of these random cones and describe a threshold phenomenon when the dimension d and the number N of random vectors tend to infinity. In a similar way we treat the solid angle, and more generally the Grassmann angles. We further consider the expected numbers of k-faces and of Grassmann angles of index d−k when also k tends to infinity.


Verlagsausgabe §
DOI: 10.5445/IR/1000137095
Veröffentlicht am 29.11.2021
Originalveröffentlichung
DOI: 10.1007/s00454-021-00323-2
Scopus
Zitationen: 8
Web of Science
Zitationen: 7
Dimensions
Zitationen: 11
Cover der Publikation
Zugehörige Institution(en) am KIT Fakultät für Mathematik (MATH)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 0179-5376
KITopen-ID: 1000137095
Erschienen in Discrete and Computational Geometry
Verlag Springer
Band 67
Seiten 564–594
Vorab online veröffentlicht am 20.08.2021
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page