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Abstract

Computer simulations are an invaluable tool elucidate processes occurring on the atomistic

scale. The more precise the description of a system, however, the more computationally

demanding the calculation becomes. This is especially valid for calculations where quantum

mechanics (QM) methods must be used to calculate the electronic structure of large systems

and extensive sampling along molecular dynamics (MD) trajectories is needed to obtain

the quantities under investigation. Propagation processes where charges or molecular

excitations travel through a system require especially costly methods due to the need to

solve the time-dependent Schrödinger equation. The description of these processes is

essential for the design and development of novel organic semiconductors, as well as for

the understanding of biochemical processes involved in photosynthesis or vision. To make

such simulations feasible, a menagerie of approximate methods such as semi-empirical

density-functional tight binding (DFTB) have been developed, which reduce computational

costs by replacing parts of the calculation with parametrized functions. Using DFTB and a

scheme to reduce the complexity of the system to essential electronic parameters, direct

simulations of charge transfer can be performed, but signi�cant limitations to the treatable

system size remain. In the last decade, data-driven machine learning (ML) methods have

become widely used in computational chemistry and promise to upset the long-established

compromise between speed and accuracy.

In this work, I present several ML methods for use in simulations of charge and exciton

transfer, trained and evaluated on organic semiconductors, which are also applicable

in other contexts such as biological light-harvesting systems. When trained to several

thousand reference values from DFTB for structures sampled from MD simulations, these

models can replace DFTB during propagation simulations and reduce the computational

costs of the simulation. A �rst method using kernel ridge regression (KRR) was trained on

charge and exciton transfer couplings and reproduced hole transfer mobilities in anthracene

to within 8 % of the DFTB reference and 30 % of experimental values. As this method could

not provide the forces necessary for the description of relaxation processes and calculation

of non-adiabatic coupling vectors (NACVs), I developed a second method on the basis

of neural networks (NN) which was able to provide these quantities. First tests of these

models in computer simulations showed that the quality of the forces is crucial for the

stability of the simulations, as even infrequent occurrences of outlier predictions can cause

simulations to crash. With careful management of the training data set, this challenge

could be overcome, resulting in models ready to be applied in charge transfer propagation.

A third type of models I developed is able to simultaneously predict di�erent types of

excitonic couplings at a small fraction of the computational costs of the LC-TD-DFTB

reference methods. The models presented here can be easily applied for further systems

as they can be automatically trained and included in multi-scale work�ows.

i





Zusammenfassung

Computersimulationen sind ein wertvolles Hilfsmittel um Prozesse auf atomaren Skalen

zu beleuchten. Je genauer die Beschreibung des Systems, desto aufwändiger die Rechnung,

was in besonderem Maße für Rechnungen gilt, in denen quantenmechanische (QM) Metho-

den notwendig sind, um die Elektronenstruktur großer Systeme zu beschreiben und die zu

untersuchenden Systemeigenschaften aus langen Molekulardynamik (MD)-Simulationen

berechnet werden. Propagationsprozesse, in denen sich Ladungen oder molekulare An-

regungen durch ein System fortbewegen benötigen besonders aufwändige Methoden,

da dafür die zeitabhängige Schrödingergleichung gelöst werden muss. Allerdings sind

ebendiese Prozese essenziell für die Entwicklung organischer Halbleiter und das Verständ-

nis lichtaktivierter biochemischer Prozesse. Um derartige Simulationen zu ermöglichen,

wurden approximative Methoden wie die semiempirische Dichtefunktionalbasierte tight
binding (DFTB) entwickelt, die den Rechenaufwand verringern indem Teile der Rechnung

durch empirisch parametrisierte Funktionen ersetzt werden. Wird DFTB zusammen mit

einem Schema zur Reduktion der Komplexität des Systems auf wesentliche elektronische

Parameter verwendet, können direkte Simulationen von Ladungstransfer durchgeführt

werden, wenn auch mit eingeschränkter Systemgröße. In den letzten zehn Jahren haben

die datengetriebenen Methoden des machinellen Lernens (ML) ihre Anwendungen in der

Quantenchemie gefunden und versprechen, den Kompromiss zwischen Geschwindigkeit

und Genauigkeit aufzubrechen.

In dieser Arbeit stelle ich mehrere ML Methoden vor, die für Ladungs- und Excito-

nentransfersimulationen anstelle von DFTB verwendet werden können, die ich auf or-

ganischen Halbleitern trainiert und evaluiert habe, die aber auch in anderen Systemen

(z.B. aus der Biochemie) anwendbar sind. Diese Methoden werden auf mehreren tausend

DFTB-Referenzpunkten trainiert die für MD generierte Strukturen berechnet werden.

Eine erste Methode basiert auf dem Formalismus der Kernelregression und war in der

Lage die für Ladungs- und Excitonentransfersimulationen notwendigen Parameter zu

lernen und die Lochtransfermobilitäten in Anthracen bis auf 8 % der Referenz und 30 %

des experimentellen Werts zu reproduzieren. Da diese Methode nicht in der Lage war, die

für molekulare Relaxationsprozesse und die Berechnung von nichtadiabatischen Kopp-

lungen notwendigen Gradienten zur Verfügung zu stellen, entwickelte ich zu diesem

Zweck eine zweite Methode auf Basis Neuronaler Netze. Erste Tests dieser Netze in Simu-

lationen zeigten dass selbst vereinzelt vorkommende falsche Vorhersagen katastophale

Folgen für die Simulationen haben können. Durch Gestaltung des Trainingssatzes gelang

es mir, Modelle zu erzeugen, die für die Anwendung in Simulationen bereit sind. Eine

dritte Art von Modell kann mehrere Arten von Excitontransferkopplungen mit nur einem

Bruchteil der Kosten der Referenzmethode berechnen. Die hier vorgestellten Methoden

können einfach für neue Systeme angewandt werden, da sie automatisiert trainiert und in

multiskalen-Simulationsprozesse eingebaut werden können.
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1. Introduction

Throughout most of humanity’s history, processes such as the burning of wood to coal

or the fermentation of sugar to alcohol have been useful and fascinating, but opaque. At-

tempts to explain these macroscopically observable transformations of matter began with

the development of the various elemental theories used in the ancient world, which transi-

tioned into the alchemical experiments of the medieval period. After the formalization of

scienti�c methods, chemistry emerged as its own �eld, but was highly interconnected to

physics, geology, biology, medicine and engineering.

For a long time, progress in chemistry was limited by scientists’ inability to look into

matter, determine what it was made of and watch it interact. The discovery of electrons

and nuclei, the exploration of the periodic table and the quantum-mechanical description

of the states and interactions of atoms provided valuable tools for understanding the mi-

croscopic behavior during chemical reactions. The development of experimental methods

for measuring or visualizing molecular structures such as molecular spectroscopy or X-ray

di�raction enabled new insights into the processes occurring on an atomic scale. Today,

methods are available for obtaining images with atomic resolution, or measuring spectra

of reaction mixtures in femtosecond intervals.

However, these elaborate experimental setups put severe constraints on the reaction

conditions, making the investigation of e.g. biochemical reactions quite di�cult. To

‘look into the beaker‘ via computer simulations can avoid these constraints and has other

advantages compared to experimental studies. For drug and materials discovery, for

example, computer simulations can �lter out large amounts of candidates with unfavorable

properties without the need to invest in synthesis, and thereby make the process cheaper

and faster. Using one of many available mathematical formalisms for describing the

behavior of atoms and molecules and given a starting condition, a chemical reaction can

be simulated and visualized without the need for an experiment. While these simulations

can be exceedingly precise, they are also quite computationally demanding. Three main

factors determine computational costs of simulations:

First is the level of detail in which atoms or molecules are treated. Molecular mechanics

(MM) methods treat atoms as hard spheres, the bonding interactions between them are

modeled as harmonic springs, and dynamics are calculated using Newton’s equations of

motion. These interactions are inexpensive to calculate and conceptually simple, but rely

on empirically determined parameters, which must be adjusted for a given system to give

good results. MM methods can describe molecular motions quite well, especially in rigid or

macromolecular structures, but struggle at capturing the complexities of bonds breaking

and forming and are thus of very limited use for simulations of reactivity. On the other

hand, quantum-mechanical (QM) methods precisely describe the interactions between

nuclei and electrons, with very few approximations and assumptions. Chemical reactivity

naturally emerges from QM simulations, and a QM description is essential for describing
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1. Introduction

the interaction of molecules with light. All QM methods rely on solving some form of

the Schrödinger equation to obtain results for the states of the system. The resulting

calculations are highly complex, and although some approximations can be made, the

computational cost is orders of magnitude higher than for an MM description of the system.

However, there is a plethora of methods which build on the QM formalism but introduce

approximations which avoid computationally costly steps in the calculation by replacing

them with simple, parametrized functions. The parameters for these semiempirical methods

are chosen such as to reproduce the results obtained with a higher-level method as closely

as possible. Semiempirical methods have proven to be a useful tool for simulations of

chemical reactivity, as they provide a quantum-mechanical foundation describing the

making and breaking of bonds. They are orders of magnitude faster than true ab initio
methods, but also far slower than MM models. Density-functional tight binding (DFTB)[1,

2, 3, 4, 5] is a semiempirical method based on density functional theory (DFT) which

is very fast due to extensive parametrization of all integrals which would otherwise be

calculated during the calculation. It is well-suited for calculations involving organic and

biological molecules and molecular dynamics simulations.

The second main factor for the computational cost of an atomistic simulation is the size

of the systems to be simulated. All simulation methods become more costly, the more

particles (e.g. atoms, electrons) are to be calculated. However, the increase in computational

cost scales di�erently for di�erent methods: While the costs of MM methods usually scale

almost linearly with the number of particles, QM methods usually scale cubically or

worse, limiting the applicability of QM methods to large systems. This especially concerns

biological systems with hundreds of thousands of atoms, but is also an issue in materials

science, where the properties to be calculated for a given material only emerge in the bulk

phase.

The third main factor is the length of time to be simulated. While photochemical

processes can be completed within picoseconds or less, molecular motions can be quite

slow, especially in large or sti� molecules. Chemical or enzymatic reactions frequently

occur on the timescales of seconds. In molecular dynamics simulations, the development of

the system over time is calculated one step at a time, by starting from an initial structure and

using energies and forces calculated with the method of choice to calculate the positions

of the atoms at the next point in time. The length of these time steps cannot be arbitrarily

large, as large atomic displacements can result in physically unreasonable collisions. For

QM methods, maximal reasonable step sizes are fractions of a femtosecond. While for

MM methods the step size can be a bit larger, even a nanosecond of simulation time can

require hundreds of thousands or even millions of calculations of energies and forces. In

this context, even a small change in the computational cost for an individual step can

greatly a�ect the cost for the entire simulation.

The drastic increase in the available computational power in the last few decades has

meant that ever longer, more precise simulations of ever larger systems have become

possible. With a gargantuan investment of supercomputing resources, even an all-atom

MM simulation of an entire bacterial cytoplasm [6, 7] was made possible. However,

even in less extreme cases, atomic-resolution simulations still need countless hours of

supercomputer time, inspiring development of further fast yet precise methods.

4



One valuable technique is the combination of QM and MM methods within a single

simulation, where the MM method is used to simulate the large, non-reactive environment

(e.g. a membrane, a protein backbone, water), while the QM method only describes the

behavior of the small, reactive part of the system (e.g. the catalytic center of an enzyme).

These hybrid QM/MM methods have been successfully used in both biochemistry and

materials science applications. However, even if a fast semiempirical method is used as

the QM part of such an approach, the size of the subsystem relevant for the reactivity can

be large enough that this approach is not feasible.

Improvements in reactive force �elds, more clever approximations for the physics of

bond formation, better implementations of MD algorithms or the continuing miniaturiza-

tion and falling costs of computational processing power have slowly and steadily been

expanding the horizon of systems treatable by simulation. However, in the last decade,

one technology has upset the �eld and promises to accelerate this progress by leaps and

bounds. The data-driven, statistically-motivated methods which form the �eld of machine

learning (ML) began gaining traction in both applied and natural sciences after a few

breakthrough developments in the mid to late 2000s.

The core idea behind ML methods is to extract patterns from a large set of example data

points using statistical methods. An ML model then uses these patterns to predict proper-

ties for data points which were not part of the reference data set. Examples for widespread

use of ML models outside research contexts are techniques for image recognition, fraud

detection or risk assessment, as well as suggestion algorithms in social media and ad-

vertising or self-driving cars. Mathematically, an ML model is nothing more than a very

�exible function heavily relying on parameters which are adjusted during model training
so that the resulting model best reproduces the input–target relationships learned from

the training set. Compared to the ‘old-school’ empirical models which have always been

used in the sciences for modeling functional relationships, ML models are distinguished

by the fundamental approach to model design:

Non-ML mathematical models in e.g. physics are constructed with a lot of domain

knowledge motivating the design decisions such as the functional form of the model.

Parameters are universal or system-speci�c constants and are usually assigned some

physical meaning. This also holds for parameters of empirical and semiempirical quantum

chemistry methods such as the speci�c amount of exchange contribution included in

a hybrid DFT functional. In contrast, the functional forms underlying ML models are

deliberately chosen to be as universally applicable and non-speci�c as possible. The

trainable parameters of ML methods are not a priori connected to any factor a non-

ML model would include in its description of the problem, hindering interpretation of

ML models and explanation of the reasoning behind a given prediction in many cases.

Techniques exist for analyzing ML models to explain a given prediction or constructing

models which are interpretable to begin with, but such analysis or design is not always

possible.

The �exibility of ML models allows them to be applied to problems, in which we do

not understand the dependencies and functional relationships between the variables well

enough to construct a speci�c model. The use of ML models is not limited to such problems,

however. While they have large numbers of parameters, the functional form of the models

5



1. Introduction

is usually quite simple. Therefore, ML can also be used in cases where domain-speci�c

models exist, but are too computationally costly to evaluate.

In recent years, it is this latter application which has led to the widespread adoption of ML

methods by theoretical chemists and physicists[8]. They can complement the menagerie

of classical and quantum mechanical methods available for atomistic calculations or

simulations with the low computational costs they incur on prediction and the potential

for high accuracy if trained on the right data set. I want to highlight three distinct areas in

which ML methods can be applied in computational chemistry contexts. This list is far

from exhaustive, and new approaches and applications continue to be published every

day.

First is the straightforward application of the models to solve a problem for which a

(costly) reference method exists. Here, the model is provided with inputs (usually structural

information about a system) and reference values, and can calculate the target value (e.g.

energy, macroscopic observables, . . . ). Models have been constructed to calculate energies

and forces for MD simulations[9], aid in catalyst design [10], drug discovery [11, 12],

or materials discovery [13, 14, 15] and have been trained to a wide variety of molecular

electronic properties [16].

A second application is to train an ML model to only handle part of the calculation

necessary to obtain the desired result. ML models can be used to provide intermediate

results, such as exchange-correlation functionals for DFT [17, 18] or solutions of the

Schrödinger equation [19]. They can also be used to bridge the gap between fast but

approximate methods and ab initio QM calculations by learning the di�erence between

the values for a given property provided by the two methods. This Δ-ML approach[20]

can drastically increase the accuracy of results obtained by semiempirical models at an

added cost that is negligible to that which would be incurred by use of a more accurate

method[21]. It also reduces the risk of catastrophic predictions, as in cases where the

ML model predicts badly, the approximate method forms a baseline for the quality of the

result.

Third, ML models can be used to predict the parameters used in semi-empirical methods

[22]. This can aid in parametrization [23] or make previously static parameters geometry-

dependent to mitigate some of the method’s inherent approximations[24]. This approach

has the advantage that the prediction is used for parameters which were empirically

�tted in the �rst place. The predicted parameters are then used in a robust theoretical

framework.

However, the statistical nature of the ML models also results in some caveats and

limitations in their applicability: While the �exibility of the functions constituting the

model is a boon for their ability to approximate arbitrarily complex functional dependencies,

the �ip side of that �exibility is that models can behave very erratically when they are

asked for predictions outside the scope of their training. Care must be taken to thoroughly

investigate trained models’ behavior, as well as assess to which extent the model is reliably

able to generalize. This is especially important when a model’s predictions are coupled to

its inputs, as is the case in ML-driven molecular dynamics simulations where the forces

predicted by a model for a given geometry are used to generate the geometry it faces in the

next step. Techniques for estimating the uncertainty of each prediction exist can be used

to recognize when a model is not predicting well and fall back on more accurate methods.
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Figure 1.1.: Three organic semiconductors used in this work.

Another limitation especially in the context of quantum chemistry is the computational

cost of obtaining high-quality training data in large enough amounts to be able to train

an ML model. If a model is trained for a very speci�c purpose, the cost of obtaining the

training data for the model may outweigh the bene�ts gained through its application.

In this work, I focus on the �rst of these approaches, experimenting with ML models

which are able to predict electronic properties of organic materials, more speci�cally molec-

ular organic semiconductors (OSCs). These molecules are usually large and fairly rigid

aromatic polycycles such as anthracene, pentacene or Dianthra[2,3-b:2
′
,3
′
-f]thieno[3,2-

b]thiophene (DATT)[25] (Figure 1.1).

In contrast to the inorganic semiconductors which have been at the base of the compu-

tational revolution for the last 60 years, organic semiconductors have only begun seeing

widespread use in the last decade. They are lightweight, easy to fabricate and process, their

properties can be tuned via their molecular structure, and they allow for new applications

such as �exible or transparent electronics. OSCs are now in use for photovoltaics [26, 27,

28], organic LEDs [29, 30], or organic �eld e�ect transistors [31, 32].

The potential number of candidate organic molecules for these applications is astronom-

ical, so e�cient techniques are needed to search chemical space, �nd promising molecules

and systematically improve upon known compounds. Experimental high-throughput

screening and automated synthesis protocols can be augmented through the use of com-

puter simulations. If the suitability of candidate materials for a given task as quanti�ed by

an observable property can be calculated in a simulation, the unsuitable candidates can be

quickly discarded and only the most promising candidates can be analyzed further.

However, for OSCs, the properties in question are a system’s ability to transport electrons

and, for LED or photovoltaics applications, its ability to form and transport excitons,
quasiparticles which represent molecular excitations. Calculating these properties to a

reasonable degree of accuracy requires electronic structure methods and thus the costly

solution of the Schrödinger equation, a cost that is compounded by the fact that these

are properties of the bulk material, requiring simulations with hundreds of thousands of

atoms. While there are model theories which circumvent these issues by describing the

propagation of charges in a more coarse-grained manner, these theories only apply in one

of two limiting cases:[33] If the charge is localized on individual molecules and moves by

hopping from molecule to molecule by overcoming an activation barrier, the transfer is said

to be hopping-like and can be modeled using kinetic theories using empirically determined
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1. Introduction

parameters. If instead the charge is fully delocalized, the transfer becomes band-like and

can be modeled using band theories developed for inorganic materials. OSCs, however,

frequently fall in the middle between these two regimes, where neither of the assumptions

holds and transfer must be simulated by solving the time-dependent Schrödinger equation

and performing non-adiabatic molecular dynamics. Various schemes have been developed

to obtain charge transfer properties from computer simulations[34], but they are all limited

by the computational costs resulting from the large system size, long simulation times,

and need for electronic structure calculations in each simulation step. For optoelectronic

properties, the situation is even more complex, as the nature of exciton dynamics requires

excited-state calculations and is even more computationally demanding.

There are methods which reduce the complexity of the direct simulations of charge

or exciton transfer, which decouple the relevant electronic degrees of freedom from the

system at large[35, 36, 37], decompose the system into individual molecular fragments

and reduce the number of parameters which describe the electronic structure in order

to make solving the time-dependent Schrödinger equation far easier. The parameters

necessary for the simulation are the energies of every site where the charge or exciton can

be located and the coupling matrix elements between these states. For every individual

molecule, these parameters can be calculated during a simulation using an ab initio or

semiempirical method, in the case of charge transfer even without the need for a time-

dependent theory. However, the extensive sampling along a molecular dynamics trajectory

requires the repetitive calculation of these properties, and the large costs incurred by the

size of the individual OSC molecules and the entire crystalline or amorphous system limits

the systems it is reasonably possible to simulate.

In this work, I demonstrate how machine learning models can be used to push the

limits of these simulations further. The computationally costly step in these simulation

schemes is the QM calculation of the electronic structure of every molecular fragment

in the system. This step is repeated over and over again, in every step, for overall very

similar structures. The entire electronic structure is then reduced to a set of site energies

of the relevant orbitals for every fragment and the pairwise couplings between these

states. These quantities, collected in the form of a Hamiltonian, then form the input for

the time-dependent Schrödinger equation, solving which is only a small computational

cost compared to the individual electronic structure calculations. Therefore, by training

ML models which can calculate good approximations for the site energies and couplings

(and any other quantities required for the speci�c simulation) without the need to obtain

the electronic structure for every fragment, the method can be sped up signi�cantly.

I have developed several techniques for training di�erent types of machine learning

models for the prediction of charge and exciton transfer properties of organic semiconduc-

tors. I train both kernel ridge regression and neural network models for this application,

and evaluate the ML models not only in terms of static metrics on a reference data set,

but also show that they can indeed be used to drive direct charge and exciton transfer

propagation simulations from which experimental observables can be calculated.

This work is structured as follows: In chapter 2 I summarize the quantum chemistry

methods used in the context of this work, both the reference methods for data generation

and the fundamentals of molecular dynamics simulations. Subsequently, in chapter 3 I

provide an introduction to the terminology and toolbox of machine learning methods and
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explain how both kernel ridge regression and neural network models are designed, trained,

and evaluated.

In chapter 4 I present my work on training kernel ridge regression models for use

in charge and exciton transfer simulations on reference data for the anthracene crystal

obtained from the DFTB method. When provided with the geometry of a fragment or

fragment pair, these models are able to accurately predict the site energies and couplings.

Additionally, I describe the process of determining a suitable representation for the molec-

ular geometry for a given purpose, elaborate on the training and evaluation procedure for

the models and �nally show that they can indeed replace DFTB as drivers of propagation

simulations.

The discussion and analysis of the limitations encountered using the models during the

simulations motivate the work I present in chapter 5. There, I train neural network models

to predict not just the elements of the Hamiltonian for propagation, but their gradients

with respect to atomic coordinates as well. These gradients are necessary for the model to

be able to describe the relaxation of a molecule when its occupation changes, a process

whose accurate description is crucial for obtaining physically sensible values for materials

properties from simulations. I discuss the challenges I encountered in training the models

and �nding good hyperparameters for them, as well as discuss the process necessary to

ensure that the forces predicted from trained models are su�ciently accurate to produce

stable molecular dynamics simulations. Also, I discuss the implementation of the ML

prediction in the program used to drive the simulations and draw performance comparisons

between DFTB- and ML-driven simulations. I apply the training framework I developed for

anthracene in this chapter to DATT as well, and show how the hyperparameters obtained

for anthracene generalize for that system.

In chapter 6, I describe a �exible neural network architecture for learning various types

of excitonic couplings, which I train and evaluate on data for the pentacene molecule.

Finally, I use chapter 7 to summarize the results I have obtained and the challenges I

encountered, and present a brief overview of the natural next steps for the application and

further re�nement of the models and techniques presented in this work.
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2. Computational Chemistry Toolbox

The various mathematical descriptions of matter on the atomistic level that were developed

during the last century all serve di�erent purposes. One of two paradigms lies at the core

of every such method, determining the degree of precision to which the mathematical

model can reproduce experimentally observed behavior. The �rst is the assumption that

atoms and molecules behave according to the laws of classical Newtonian mechanics.

Modeling atoms as hard balls and the interactions between them as harmonic springs

connecting them is an approach called ‘molecular mechanics’ (MM). Within the MM

formalism, however, it is di�cult to describe the breaking and formation of bonds, e�ects

resulting from electronic delocalization, the molecular or atomic spectra obtained from

the interaction of matter with light, and all other e�ects which require the concept of

electronic states to be explained.

In contrast, quantum mechanics (QM) was speci�cally developed to properly describe the

interactions between nuclei, electrons, and other subatomic particles. The QM formalism

takes into account the wave-particle duality and the quantization of properties previously

assumed to be continuous which occurs at small scales. While a QM description has

the potential to fully describe the behavior of atoms and molecules, for any non-trivial

system the resulting equations do not have readily available (analytical) solutions or are not

solvable at all. Even when solutions can be derived, the computational costs associated with

calculating them can become astronomical even considering the immense computational

power available across supercomputing facilities today. This is additionally exacerbated by

the fact that for most applications, calculating a description for the system for a given static

geometry does not give much insight. Instead, the properties of interest (e.g. chemical

reactions, their rate constants, molecular excitations and relaxations) only emerge from the

dynamics of the system as it evolves over time. Calculating molecular dynamics requires

an individual calculation for every time step and precisely controlling relevant parameters

such as temperatures and pressures to obtain the proper thermodynamic conditions.

To alleviate the problem of exploding computational costs, numerous methods have

been developed by introducing successive approximations to the core QM formalism.

These methods each �nd their own compromise between speed and accuracy in order

to be suitable for a speci�c application. Especially popular is the class of semi-empirical
models, which reduce parts of the calculation to easy-to-evaluate parametrized functions,

whose parameters are �tted to reproduce reference values from more accurate methods

or experiments. The density-functional tight-binding (DFTB) method is a semi-empirical

method based on the formalism of density functional theory (DFT). DFTB is used for many

organo-chemical and biochemical applications and as a reference method for the machine

learning models presented in this work.

In the following sections, I �rst introduce the basic terminology needed for understand-

ing molecular dynamics simulations, independently of whether a QM or MM method is
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used to drive the simulation. Subsequently, I brie�y introduce the MM formalism and give

a longer introduction to quantum mechanics and the DFT and DFTB methods. Finally, I

discuss the scheme used for charge and exciton transfer simulations in chapter 4, chapter 5

and chapter 6.

Unless otherwise speci�ed, the information presented in this brief overview can be

found in more detail in standard computational chemistry textbooks such as [38, 39].

2.1. Molecular Dynamics (MD) Simulations

Molecular dynamics is the term for a variety of methods which are able to describe

the behavior of a system as its state changes over time. In this section, I give a brief

introduction to the core concepts these methods share regardless of whether they use

quantum or classical mechanics.

A full description of the state of a system at a given time can be determined from the

positions and momenta of all particles therein. The sequence of points in this state space

passed through during a simulation is called a trajectory. With a given starting point

for the trajectory, all subsequent points the system passes can be calculated. The total

energy of the system is the essential quantity that must be provided by the mathematical

model underlying the simulation, be that molecular mechanics, quantum mechanics or

even a data-driven ML model. Given an expression for the energy, the forces acting on the

particles in the system (usually the nuclei) can be calculated as the gradients of the energy

w.r.t. atomic coordinates. From the forces, the new positions and momenta of the particles

are then calculated by integrating the equations of motion.

If the dynamics is performed using an MM method, or a QM method within the Born-

Oppenheimer approximation (section 2.3), Newton’s equations of motion are used for

the nuclei. In this manner, the energy can then be written as a function of the nuclear

coordinates, and the system is said to be moving on a potential energy surface (PES)

corresponding to a given electronic state. In non-adiabatic molecular dynamics (NAMD)

methods, the Born-Oppenheimer approximation is not used, and the nuclear and electronic

wave functions are not separable.

For most systems, the integration cannot be done analytically and one of several approxi-

mations (e.g. the Euler, Runge-Kutta, or Velocity-Verlet methods) must be used to integrate

numerically. These methods all use a �nite time step ΔC at which forces are evaluated

and positions updated. The length of the time step is crucial for both the accuracy of the

simulation (the shorter the time step, the better the integration) and the computational cost,

as each time step requires an evaluation of the energy and its gradients. As a rule of thumb,

the time step should be at least one order of magnitude shorter than the fastest motion in

the system, which are usually bond vibrations (occurring close to the femtosecond scale).

Thus, for a 1 ms simulation of e.g. a protein folding, 10 × 10
12

to 10 × 10
13

simulation steps

are required, and at a rate of 1 µs computational time needed per step, such a simulation

would take over 16 weeks. This ballpark estimate again highlights the importance of

keeping the computational cost for the evaluation of energy and forces for an individual

structure as low as possible.
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2.2. Molecular Mechanics

In order to obtain observables from the MD simulations which bear some resemblance to

the processes occurring in reality, there are several thermodynamic parameters which must

be considered in the simulation. Thermostats emulate the e�ect of a �xed temperature,

while barostats allow the same for pressure. Both are essential to reproduce the ensembles

from statistical mechanics and allow access to thermodynamic variables of the system

such as free energies.

I will not discuss the intricacies of molecular dynamics schemes in detail here, as they

are not crucial for the rest of this work, but refer the interested reader to references [38,

39]. As a �nal note, however, I want to emphasize the importance of the forces for the

success of a simulation. In order to not break conservation of energy during the simulation,

the forces must be consistent with the energy. Having an analytical expression for the

gradients of the energy function is therefore preferable to a numerical approximation. If an

approximate method is used to calculate the energy, any regions where the approximation

is bad can lead to erroneous forces. An excessive overestimation of a force can lead to

the same issues that occur when the time step is too large – atoms being pushed into

each other or �ying apart at great velocities, compromising the integrity of the entire

simulation.

2.2. Molecular Mechanics

Molecular mechanics models chemical interactions using the laws of classical mechanics.

Nuclei move according to Newton’s equations of motion, and interactions between atoms

are approximated by simple potentials with empirical parameters. The total energy of the

system is written as a sum of various types of bonded and non-bonded interactions:

� (®A ) = �stretching + �bending + �dihedral + �LJ + �Coulomb (2.1)

The bonded interactions are usually approximated by harmonic or Morse potentials and

separated into terms for the stretching of individual bonds, as well as the bending of bond

and dihedral angles. For the non-bonding terms, a Lennard-Jones potential is used for the

exchange and dispersion interactions, and the Coulomb interaction between point charges

on atoms. The force constants and other parameters for each of these terms are �tted to

reproduce equilibrium distances, vibrational frequencies and other properties obtained

from experimental or QM methods. Di�erent bonding situations, e.g. carbon-carbon single,

double and triple bonds, are described by creating parametrizations for di�erent atom
types of the same element. The pairwise nature of the non-bonded interactions leads to

the overall quadratic scaling of the method’s computational cost in the number of atoms.

By introducing distance cuto�s beyond which these interactions are not evaluated, as well

as other optimizations, the scaling can be improved.

However, the harmonic approximation and �xed de�nition of atom types limit the

applicability of MM models to any systems where molecules are far from equilibrium and

bonding situations change noticeably. Additionally, systems with strong polarization or

electron delocalization e�ects are challenging for the method. While reactive and polariz-

able force �elds have been developed to alleviate these issues, this improved description

comes at an increased computational cost.
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Overall, MM force �elds are an invaluable tool for the simulations of large systems with

limited chemical reactivity. They have become especially crucial in simulations of proteins,

whose structure is determined by non-bonded interactions to a large extent.

MM force �elds can be combined with QM methods in hybrid QM/MM schemes. Here,

the bulk of a system (e.g. a large protein) is modeled using MM, while a small sub-region

where an MM description would be insu�cient (e.g. the substrate and reactive center of

an enzyme) is instead described using a quantum-chemical method. Most of the protein

serves the function of providing a speci�c steric and electrostatic environment, for which

a classical description is su�cient. The changes in bonding from a reaction, molecular

excitations from the interaction with light, or other e�ects where a QM description is

necessary are frequently limited to not much more than a hundred atoms within the protein

consisting of hundreds of thousands of atoms. The interaction between the QM and MM

regions can be modeled in several ways, but most frequently, electrostatic embedding

is used. Here, the MM region’s point charges provide an additional external potential

for the QM method, but the charges within the QM region do not a�ect the structure

of the MM part (to avoid having to iterate to self-consistency). These hybrid QM/MM

schemes have been used successfully for simulations of biological systems[40] and organic

semiconductors[41].

2.3. QuantumMechanical Methods

Several experimental results in the early 20
th

century (such as Planck’s law and the

photoelectric e�ect) could only be explained by the realization that Newtonian mechanics

is insu�cient to describe behavior at microscopic scales. The discrete quantization of

properties previously assumed continuous and the apparent wave-particle duality of matter

required a new formalism for mechanics. At the core of quantum mechanics lie a few

postulates: First, any quantum-mechanical system is described by a continuous wave

function Ψ. The absolute square of the wave function is a probability density and can be

used to obtain the probability of �nding the system in a given state. Observable properties

of the system can be calculated from the wave function using higher-order functions called

operators. The Schrödinger equation must be solved to obtain the energy of the system

using the Hamiltonian operator �̂ . For an isolated system, the Schrödinger equation is

time-independent, corresponding to a standing wave:

�̂Ψ = �Ψ (2.2)

In general, many wave functions Ψ8 with their respective energies �8 satisfy this equation.

The solution wave functions are eigenstates of the Hamiltonian, and can be stated in terms

of basis functions referred to as orbitals. The Hamiltonian � contains all contributions

to the total energy of the system. Usually, these are the kinetic energies ) of all particles

(electrons and nuclei) as well as potential energy terms + from the attraction of electrons

to nuclei and the repulsion of identically-charged particles. The correlated interactions

between particles greatly complicate solving the Schrödinger equation, and are usually

abstracted away as much as possible. Due to the large mass di�erence between electrons

and nuclei, the motions of the nuclei occur on a longer timescale than electronic motions.
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In the Born-Oppenheimer approximation, this di�erence is used to decouple electronic

and nuclear motions by formulating the Schrödinger equation for the electronic degrees

of freedom only and solving it for a �xed nuclear geometry. The resulting wave functions

are always eigenfunctions of the electronic Hamiltonian and called adiabatic states. The

Born-Oppenheimer approximation is very powerful as it allows us to obtain potential

energy surfaces from quantum mechanics, but is not compatible with spontaneous changes

in electronic states as they occur when occupations change. It also does not help with the

problem of electron-electron interactions, so the Schrödinger equation can only be solved

for one-electron systems.

Regardless of whether the Born-Oppenheimer approximation is used, an initial guess for

the shape of the wave function is necessary to solve the Schrödinger equation. Thanks to

the variational principle, the quality of a candidate wave function can easily be quanti�ed:

The lower the energy corresponding to a wave function for a given system, the closer

that wave function is to the true wave function of the system. In all but the smallest of

systems, the wave function is expressed as a linear combination of several simple wave

functions (e.g. plane waves or orbitals of the Hydrogen atom), and the weight coe�cients

are optimized to get the solution of minimal energy. The set of wave functions which

are thus combined is referred to as the basis set for the calculation. One frequently used

approach to construct molecular orbitals is to use orbitals centered on its constituent

atoms, commonly called the linear combination of atomic orbitals (LCAO) approach.

There are several pathways to obtain solutions for many-electron wave functions which

treat the electronic correlation terms di�erently, such as the Hartree-Fock Self-consistent

�eld method, Density Functional Theory, Coupled Cluster or Con�guration Interaction

methods. Among these, only DFT is relevant for the present work and is described in the

following section.

2.3.1. Density Functional Theory

When solving the Schrödinger equation as described above, the resulting wave function for

an # -electron system depends on the three spatial coordinates of each electron. This high

dimensionality leads to large computational costs in the evaluation of high-dimensional

integrals for electronic interactions. Additionally, the wave function is not a physical

observable itself, which is an obstacle to the overall interpretability of the results.

In 1964, Hohenberg and Kohn[42] showed that the Hamiltonian and the ground-state

wave function are both fully determined by the electron density d and established that

the variational principle holds when minimizing the ground-state density. The electron

density which corresponds to a given wave function q can be calculated as

d = ‖q ‖2 (2.3)

The energy of the system can then be stated as a functional of the electron density, resulting

in the name Density Functional Theory (DFT) for the method. Throughout the following

years, further development of the formalism cemented DFT as an essential tool in the

quantum chemistry toolbox. Kohn-Sham-DFT[43] greatly expanded the applicability of the

method by evaluating the energy for an auxiliary non-interacting system of # electrons
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and adding correction terms to describe the interactions. The DFT energy functional then

reads

� [d] = )=8 [d] ++=4 [d] ++44 [d] + Δ) [d] + Δ+ [d]︸               ︷︷               ︸
�G2 [d]

. (2.4)

)=8 is the kinetic energy of the non-interacting system,+=4 the electron-nuclear interaction

and +44 the classical electron-electron repulsion. Δ) and Δ+ are the corrections to the

kinetic and potential energy terms resulting from the (non-classical) electronic interactions,

and are usually combined in a single term called exchange-correlation energy �G2 . For all

terms except �G2 exact analytical solutions without need for further approximations are

known. The orbitals j8 corresponding to the non-interacting system then can be obtained

from the following set of eigenvalue equations:(
−1

2

∇2 ++e� (®A )
)
j8 (®A ) = n8 j8 (®A ) (2.5)

The e�ective external potential +e� is the sum of the potential created by the nuclei, the

classical Coulomb interaction between every electron and the electrostatic �eld of all other

electrons, and +G2 , the functional derivative of �G2 w.r.t. the density, for which no exact

functional form is known:

+e� (®A ) = −+nuc +
∫

d (®A )
‖ ®A8 − ®A ′‖

d®A ′ ++G2 (2.6)

The electron density d (®A ) can then be calculated from these orbitals as

d (®A ) =
#4∑
8

‖j8 (®A ) ‖2. (2.7)

As the density is also needed for the calculation of the e�ective potential, an initial guess

for the density must be made, from which the orbitals are initially calculated as a linear

combination of a given basis set. From the orbitals, a new value for the density can be

calculated, and this process is iteratively repeated to achieve self-consistency. The quality

of the initial guess for the density can impact the time needed until convergence. One

method to construct the initial density is the Harris-Functional approach[44, 45], wherein

the density is constructed from several fragment densities in a manner similar to the LCAO

ansatz.

All calculations in DFT are exact and analytically solvable, except for the exchange-

correlation functional for which the correct functional form is unknown. Therefore, the

main factor determining the quality and computational costs of any DFT calculations

is the approximation employed to calculate �G2 . All such approximations employ some

empirical reasoning to obtain the functional form and/or parameters, and as such, most

DFT variants in use today are semiempirical in nature.

The simplest approach to the exchange-correlation functional is the Local Density

Approximation (LDA). Here, it is assumed that the value for +G2 at a given point in space

depends only on the value of the density at that point. This approximation usually uses
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results from the uniform electron gas to derive terms for the exchange contribution and

approximate the correlation. Using the LDA functional, reasonable molecular geometries

can be obtained, but the method fails to predict bond energies and reaction barriers due to

a severe overestimation of bond strengths.

Changing the exchange-correlation functional to include the gradients of the density

results in the class of Generalized Gradient Approach (GGA) functionals, which perform

far better for molecular systems. However, GGA functionals are not able to fully describe

London dispersion interactions, hydrogen-bonded systems, or intermolecular complexes

held together by charge transfer interactions. Hybrid functionals such as the popular

B3LYP functional introduce the Hartree-Fock exchange terms as contributions to the total

exchange correlation functional in an attempt to improve this behavior. The relative

weights of the HF and LDA or GGA contributions are empirically adjusted, and due to

error cancellation e�ects, hybrid functionals can give very good results for many systems.

Most systems where GGA-based functionals fail include long-range e�ects, which are

insu�ciently described by the local properties of the density. One approach to mitigate this

is to separate the electron repulsion term in two parts depending on the distance between

the electrons. Then, the full HF exchange can be used only in the short range, and its

contribution smoothly decreases with the distance in favor of the DFT exchange functional.

These long-range corrected DFT functionals (LC-DFT, the term ‘range-separated’ has also

been used) give very good results for polarizabilities, van der Waals interactions and are

especially well suited for the description of molecular excitations.

Overall, DFT generally converges faster and scales better than wave-function based

methods[38], and is very �exible in terms of basis sets. The quality and computational

costs of DFT calculations greatly depend on the chosen exchange-correlation functionals.

2.3.2. Density Functional Tight Binding

Starting from the DFT formalism, it is possible to further reduce computational costs by

adding approximations until a truly semi-empirical theory is obtained
1
. Density Functional

Tight Binding (DFTB)[1, 46, 2, 3, 47, 48] was developed from that core idea, and has entered

widespread use especially for large (biochemical) systems. Since the original method

was published, several expansions and improvements to the formalism have been made,

resulting in several distinct versions of DFTB. The dftb+ program package[4, 5] has

become akin to a reference implementation of the method and is freely available and

actively developed.

DFTB Basics

Starting from Kohn-Sham DFT, several approximation steps are necessary to arrive at

DFTB. The initial guess for the density is constructed from the fragment densities on the

individual atoms as calculated from a minimal basis set of Slater-type orbitals. The orbitals

and densities are radially compressed using a harmonic potential and an empirically

determined compression radius, an approach similar to the tight-binding method used in

solid state physics.

1
Some DFT functionals have some semi-empirical properties due to empirically adjusted parameters.
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The locality introduced by the radial compression can then be used for two crucial

approximations: First, only the two-center terms of the Hamiltonian are evaluated. Second,

the matrix elements for the Hamilton and overlap matrices for the orbitals of a given

pair of atoms can be assumed to depend only on the atoms’ chemical elements and the

interatomic distance. Using a minimal basis of atomic orbitals to expand the Kohn-Sham

orbitals Ψ8 =
∑
` 2

8
`q` and a reference density d0, the DFTB matrix elements �̂ 0

`a can be

calculated as

�̂ 0

`a = 〈q` | �̂ (d0) |qa〉 (2.8)

These approximations allow to calculate all matrix elements for each pair of two elements

across a wide range of interatomic distances once using DFT and tabulate the results, using

them as parameters for later calculations, an approach introduced by Slater and Koster

[49].

With this constructed density in hand, the Kohn-Sham equations are solved using a

simple GGA functional. No iteration to self-consistency is performed, as the initial density

is assumed to be su�ciently accurate by construction from the precalculated DFT matrix

elements. This approximation, in addition to avoiding the computation of integrals during

run-time, results in an immense reduction of the computational cost of DFTB compared to

DFT.

Unfortunately, these approximations result in energy eigenvalues n8 very far o� from

the reference or experimental values. One large factor contributing to the error is the

compression of the densities and orbitals, which greatly reduces the electronic repulsion.

This is alleviated by adding a repulsive energy �rep to the electronic energy obtained from

the KS equations. The repulsive energy is constructed from atom-pair repulsive potentials

+rep by shifting bond energies to match atomization energies obtained from experiment or

higher-level reference methods. +rep is a parametrized function of the interatomic distance

of two atoms with given elements, whose parameters are optimized so that the DFTB total

energy matches the reference as closely as possible. Due to this �t procedure, the repulsive

potential must correct not just for the compression, but also for all other errors such as

double-counting terms. This complicates the �t for the repulsive potentials, making it

the most involved step of the DFTB parametrization. Original publications constructed

+rep as a sum of exponentials decaying with distance, but splines of polynomials have

since become standard. The di�culty in �tting the repulsive potentials has resulted in

several DFTB parameter sets being developed for di�erent applications, of which the MIO

parameter set is especially suitable for organic molecules and geometries.

These approximations give the non-self-consistent DFTB method (further referred to as

DFTB1). DFTB1 is faster than DFT by two to three orders of magnitude, as the only costly

step of the calculation is the matrix diagonalization necessary to calculate the Kohn-Sham

orbitals. However, the harsh approximations taken in its construction result in issues

for charged systems and systems with charge-transfer e�ects, as well as a systematic

overestimation of bond strengths compared to steric e�ects due to the limitations placed

on the repulsive potential.
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Self-Consistent Charge (SCC) DFTB

For any atom pair with signi�cant di�erences in the electronegativities of the involved

atoms, charge is transferred from one atom to the other, and DFTB1 does not give good

results due to the harshness of the underlying approximations. The DFTB formalism can

be extended so that these e�ects are described more accurately. To this end, the energy

functional is expanded into a Taylor series around a reference density d0 and cut o� after

the second order.

� [d] = �0 [d0] + �1 [d0, Xd] + �2
[
d0, (Xd)2

]
(2.9)

The �rst two terms of the expansion are the terms included in the original non-self-

consistent DFTB formalism, and the density �uctuations Xd are only used in the second-

order term. The density �uctuations are usually constructed as a linear combination of

spherically symmetric atomic contributions Δd , although DFTB variants using di- and

multipolar contributions have also been developed. A functional form for the second-order

energy can be derived by analyzing its behavior for very large and very short interatomic

distances '01 and interpolating between the two cases using a suitable function abbreviated

here as W01 . For very short distances, W01 describes the electron-electron interaction at one

atom, which is related to the atom’s chemical hardness and parametrized in the Hubbard-

parameter *0 obtained from DFT calculations. For '01 → ∞, W01 should approach
1

'01
.

Therefore, the full second-order energy is calculated as:

�2 =
1

2

∑
0,1

Δ@0Δ@1W01 . (2.10)

The atomic charge �uctuations Δ@ determine the density �uctuations, but themselves

depend on the molecular orbital coe�cients, so the second-order equations must be solved

by iteration to self-consistency.

The expansion to the second order improves the accuracy of geometries, reaction

energies and vibrational frequencies. However, in cases where the charge �uctuations are

large (e.g. in strongly polarized bonds and especially hydrogen bonds), this expansion is

insu�cient. To further improve the description of these systems, the method was extended

by also including the third order of the energy expansion. The resulting method, known

as DFTB3, gives very good results for a wide variety of systems, but is not used in this

work and therefore not explained in detail.

Long-Range Corrected Time-Dependent DFTB

It is possible to formulate DFTB as a time-dependent theory[50, 3]. This allows using DFTB

to calculate the non-adiabatic dynamics of molecular excitations at far lower computational

costs than time-dependent variants of DFT would incur. In large systems and excited

states, the local XC functionals (GGA) used to derive the DFTB formalism do not give

very good results. Therefore, a long-range corrected version of the DFTB formalism was

developed by Niehaus and Della Sala[47], and combined with the TD-DFTB formalism by

Kranz et al.[51]. This LC-TD-DFTB method has since been shown to perform well for the

description of photochemical properties in organochemical [51, 52] and biochemical [53]

systems.
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2.4. Simulating Charge and Exciton Transfer

Formulating a model for the description of moving charges or excitations is challenging.

Quantum-mechanically, a charge transfer event changes the electronic state of a molecule.

The PES corresponding to the di�erent adiabatic states of the molecule are close in en-

ergy and approach a crossing. Here, the electronic wave function must be written as a

linear combination of the adiabatic states as the states mix, and the Born-Oppenheimer

approximation is no longer applicable. Solving this problem fully quantum-mechanically is

complex and computationally costly as it would also require solution of the time-dependent

Schrödinger equation. This is �ne for examining small systems of only a few atoms, but

for most applications this limited scale is insu�cient.

Charge carrier mobilities in materials are an interesting property for semiconductor

design and the design process can be greatly accelerated if the mobilities could be obtained

from computer simulations. The formalism can be derived for both a hole and an electron

as charge carrier. As I only use hole transfer in this work, all examples will be formulated

from that perspective. The mobility ` is de�ned as the speed at which the charge carrier

moves through the material, calculated from the Einstein-Smoluchowski [54] equation as

` =
4�

:B)
(2.11)

where 4 is the elementary charge and � the di�usion coe�cient of the charge carrier in

the material calculated as

� =
1

2=
lim

C→∞
dMSD(t)

t

. (2.12)

= here denotes the number of dimensions available for the movement – e.g. 1 for a chain

of molecules, 3 for a crystal where the charge can propagate in any direction. The mean

square displacement (MSD) of the charge carrier is the distance the charge carrier travels

in a given time on average across #traj independent simulations:

MSD(C) = 1

#traj

#traj∑
;

∑
�

(G� (C); − G;0)2% ;� (C) . (2.13)

Here, G� (C); is the center of mass of a molecule �, %� (C); is the diabatic population of

molecule �, and G;
0

is the center of charge at C = 0 along the trajectory ; . In order to

obtain a good estimate of the mobility, the charge carriers must be able to move through a

large system for a very long time, and a single simulation is insu�cient. Therefore, a very

e�cient method for determining the location of the charge carrier is desirable.

Instead of solving the complex non-adiabatic problem, the movement of the charge

can be estimated using other models. In these semi-classical approaches, the nuclei are

propagated classically, and only the adiabatic states of the electrons are considered. Using

a given starting occupation and properties calculated for the adiabatic states, so-called

propagator algorithms can output a new occupation. For most such algorithms, two

quantities are crucial: the energies n8 and n 9 of the individual states 8, 9 and the couplings

)8 9 between them:

)8 9 = 〈q8 | �̂ |q 9 〉 (2.14)
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Figure 2.1.: Evolution of a system with two adiabatic states (black) along a simulation.

The actual state of the system is shown as a green dashed line. a) Using the

mean-�eld Ehrenfest method for propagation, the system begins in a well-

de�ned state and after the avoided crossing is in an averaged state. b) With

surface hopping, the system changes between the two adiabatic states and is

in a well-de�ned state after the avoided crossing.

One frequently used propagator is the mean-�eld Ehrenfest (MFE) method[55, 56, 57],

where the system evolves in an e�ective potential calculated as the average of the adiabatic

states weighted by their respective populations. Figure 2.1a shows a brief sketch of a

two-state system which starts in one of the adiabatic states. After the avoided crossing, the

energy is a mix of the energies of the two adiabatic states. This approach can give good

results for electron mobilities, but has several important disadvantages: First, once the

system has entered the region of strong non-adiabatic couplings, the system will remain in

a mixed state, leading to overdelocalization. Second, the MFE method violates microscopic

reversibility, i.e. the equations of motion are not symmetric with respect to the inversion

of the time axis.

Another approach is the class of surface-hopping methods, e.g. the Landau-Zener [58,

59] or Fewest-Switches Surface Hopping (FSSH) [60] models. Here, the adiabatic states are

not mixed, and the system instead ‘hops’ between the available states as the simulation

progresses as can be seen in Figure 2.1b. The probability of the system to hop from one

state to another scales with the non-adiabatic coupling between the states, but the details

depend on the speci�c scheme. In all surface-hopping methods, conservation of energy

must be explicitly ensured by adjusting the nuclear velocities to compensate for the change

in potential energy whenever a hop takes place. This can be achieved by rescaling the

velocities of the nuclei in the system to change the overall kinetic energy. If the kinetic

energy of the system is insu�cient to compensate for the change in potential energy, the

hop cannot occur (it is ‘frustrated’). The simplest method to achieve this is to distribute

the change in kinetic energy isotropically across all velocities of all atoms[61]. However,
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better results can be obtained[62] by rescaling velocities along the non-adiabatic coupling

vectors (NACVs) d� ,8 9 for each atom � and every pair of states 8, 9 :

d� ,8 9 = 〈q8 | ∇� |q 9 〉 . (2.15)

The NACVs can also be used in the case of frustrated hops, where it has been shown that

the velocities along the NACVs should be reversed whenever a hop is rejected. If the

NACVs are not available, the velocities can also be rescaled according to the Boltzmann

distribution, resulting in the BC-FSSH method. A detailed description and evaluation of

the di�erent propagation algorithms is outside the scope of this work, but the interested

reader is referred to [63, 64, 65].

2.4.1. Hybrid QM/MM Simulations for Charge Transfer

Considering the fact that we need long simulations, large systems and an entire swarm of

trajectories, how can we obtain the energies of the states, the couplings and NACVs as

e�ciently as possible? Using a fast semi-empirical method for obtaining the electronic

structure of the system is certainly a good idea, but not quite su�cient by itself, as the # 3

scaling with system size is problematic.

Two approximations make these calculations feasible: First, assume that in the case

of loose coupling (e.g. in molecular organic semiconductors held together by van der

Waals interactions), the relevant states are each localized on a single molecular fragment,

and the orbital structure of each molecule is not in�uenced by its neighbors. This allows

us to calculate the orbital structure of each fragment in an independent QM calculation

and work with the diabatic states, which reduces the impact of the bad QM scaling to

a manageable level and is trivially parallelizable. Second, assume that only the frontier

orbitals are relevant for the charge transfer events, and that the orbital structures of the

charged and uncharged fragments is essential except for that frontier orbital[36]. Thus, for

the transfer of a single electron, the energy of the charged diabatic state (called site energy)

is simply the energy of the neutral molecule �0 plus the LUMO energy, while for the hole

transfer, it is �0 − �HOMO. The couplings are then calculated from the frontier orbitals of

the di�erent fragments as shown above in Equation 2.14. Using DFTB, the overlaps of

the frontier MOs are quite cheap to calculate without the need to evaluate any integrals,

and the resulting couplings excellently match those obtained from high-level reference

calculations[66, 67] when corrected by a consistent, empirically determined scaling factor.

Computational cost can be further reduced by restricting the movement of the charge

to a region of the bulk system in question, e.g. a one-dimensional chain of molecules

within a larger crystal, and calculating all dynamics outside this region using an MM

force-�eld. This reduces the number of fragments for which the expensive QM calculation

must be performed. The e�ect of the ‘environment’ (in this case the bulk of the material)

on the charge-carrier fragments and of the moving charge on the environment can be

simulated by electrostatically embedding the QM region in the MM system. However, the

former only has a notable e�ect in biological systems, so it can be omitted e.g. in organic

semiconductors. This technique was originally developed for hybrid QM/MM simulations

of large biochemical systems and later applied to charge transfer simulations in DNA[68,

35, 69] and later organic materials [70].
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Figure 2.2.: Electron transfer simulation schematic. The system consists of the MM part

(gray ellipses) and the individual sites treated quantum mechanically (cyan

and red circles). In MD step =, the charge is located on the leftmost site (red

circle). Using DFTB, the charge is propagated to the middle site, and �nally

the geometry is relaxed classically in response to the new charge distribution.

The hole wave function is then calculated as a linear combination of molecular orbitals

(|q<〉) of fragment molecules �,

Ψ =
∑
�

∑
8∈�

08 |q8〉 , (2.16)

The elements of the Hamiltonian for propagation are then the orbital (site) energies

(diagonal elements �88 ) and electronic couplings (o�-diagonal elements �8 9 )[71, 68].

� 0

8 9 = 〈q8 |� [d0] |q 9 〉 (2.17)

From these calculations, the site energies and couplings are obtained and collated in the

coarse-grained Hamiltonian required by the propagation methods to calculate changes in

population along the trajectory.

A rough schematic of the steps necessary for a charge transfer simulation is shown in

Figure 2.2: First, the geometry of the sites in the QM zone is passed to DFTB to calculate

fragment orbitals on each site, as well as their pairwise couplings. This Hamiltonian is

then passed to a propagator algorithm (e.g. the MFE method), which calculates transition

probabilities based on the Hamiltonian and propagates the charge accordingly. The updated

charge distribution is then passed back to the core MD code, where the system responds

classically to the new charge distribution. If the forces in the occupied state are available,

they are added to the MM forces acting on occupied fragments. This process is repeated

for every step of the molecular dynamics simulation.

2.4.2. Implicit Relaxation in Charge Transfer Simulations

A crucial aspect of the simulation is how the change in occupation of a fragment a�ects

the positions of its constituent atoms. Usually, the minimum of the PES in the charged

state is not at the same atomic coordinates as that of the uncharged state. Thus, when

the occupation changes, forces resulting from its electronic state should be applied to the

fragment in addition to forces resulting from the MM description of the fragment and any

electrostatic interaction with the environment. The fragment then relaxes, resulting in a
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geometry distinct from that of the uncharged state and a lowered site energy. Within the

approximations described above, these forces can be obtained from the gradients of the

relevant frontier orbital only, as the electronic structure of the charged and uncharged

species is assumed to be otherwise identical.

However, this gradient evaluation is costly, motivating another approximation: Instead

of explicitly relaxing the fragment geometry using QM forces, the fragment can be implicitly
relaxed. The occupation-dependent forces are omitted, and the site energy is adjusted

by an empirically determined value _ called ‘relaxation energy’, weighted by the wave

function coe�cient 28 :

�
′
88 = �88 − |28 |2_, (2.18)

A value for _ can be obtained from more accurate quantum-chemical methods. This

approach, which I will refer to as implicit relaxation saves some computational e�ort

at the cost of completely eliminating any changes in the geometry of a fragment as its

occupation changes except for simple electrostatic e�ects. Nevertheless, models using this

approximation can still give good results[36] depending on the speci�cs of the system.

2.4.3. Adaptation of the Formalism to Exciton Transfer

The formalism described above can also be adapted to work for the transfer of excitons. An

exciton is a quasiparticle, representing an excitation of molecular electronic states which

can be passed on from molecule to molecule. Exciton transfer occurs in organic light-

emitting diodes (OLEDs), solar cells, as well as proteins involved in e.g. photosynthesis or

vision. The exciton is a combination of an electron and a hole resulting from an excitation

of the electron from an orbital it occupies in the ground state to a higher-lying orbital. The

electron and hole can be located at the same molecule, at molecules close to each other in

proximity or be completely separated from each other. Which of these states is the case is

determined by the Coulomb interaction between the positive charge of the hole and the

negative charge of the exciton, as well as the dielectric constant of the material.

When electron and hole are tightly bound and the exciton is small, we speak of Frenkel

excitons [72, 73], which frequently form in molecular organic semiconductors. In Wannier-

Mott excitons, in contrast, electron and hole are loosely bound and can easily be separated,

leading to a large e�ective radius for the exciton. They frequently occur in inorganic

semiconductors like GaAs, but are of no further relevance to this work. An intermediate

case are charge-transfer (CT) excitons, where the electron and hole are located on adjacent

molecules. As these excitons propagate, the excess charges are passed from one molecule

to its neighbor. CT excitons frequently form in molecular organic crystals in addition to

Frenkel excitons.

Simulating exciton dynamics in quantum-chemical calculations requires non-adiabatic

molecular dynamics and a theory based on the time-dependent Schrödinger equation, in

order to capture the dynamics of the system transitioning from one electronic state to an-

other. Therefore, a direct MD simulation of any but the smallest molecules is prohibitively

expensive without further approximations.

In order to adjust the framework introduced above for charge transfer and apply it for

exciton transfer, the Hamiltonian for propagation must be constructed. For this, the excited

24



2.4. Simulating Charge and Exciton Transfer

states of the entire system must be decomposed to local excitation on individual fragments,

and the notion of a site energy and couplings between the states must be introduced. Note,

that I only describe the treatment of Frenkel excitons here, as these were used for the

method described in chapter 4. The formalism can easily be expanded to include CT states,

which are used in chapter 6.

The Frenkel Hamiltonian is thus constructed as follows[74]:

� =
∑
8

n8 |8〉 〈8 | +
∑
8≠ 9

)8 9 |8〉 〈 9 | , (2.19)

for the excited states 8 and 9 . The site energies n8 are simply calculated as the excitation

energies corresponding to the given state.

There are, however, two methods to calculate the pairwise couplings between the exci-

tations. In a symmetrical dimer, two adiabatic states are obtained from the diagonalization

of the diabatic Hamiltonian (which, in the context of this work, is always obtained using

LC-TD-DFTB). The splitting of these states determines the supermolecular excitonic cou-

pling, and is calculated from excited state calculations of the dimer and both monomers

as

)8 9 =
1

2

√
(�2 − �1)2 −

(
�8 − � 9

)
2

, (2.20)

where �1 and �2 are the �rst two excitation energies of the dimer and �8 and � 9 are the �rst

excitation energies of the monomers 8 and 9 . With this method, the coupling can become

imaginary if the monomer excitation energies are unfavorable. To avoid the occurrence of

imaginary couplings as well as the monomer calculations, the supermolecular coupling

can be approximated as

)8 9 =
1

2

(�2 − �1) (2.21)

This approximation is best if both monomers have the same internal geometry and are

arranged in speci�c manners[75]. Supermolecular couplings include exchange e�ects

and are essential when the distance between the fragments is small. As the exchange

contribution vanishes compared to the Coulomb interaction at larger distances, the costly

dimer calculation can be avoided by using Coulomb couplings. Using an excited state

calculation for each monomer, the atomic transition charges & can be obtained and used

for the evaluation of the Coulomb coupling as[37]

)8 9 =
∑

0∈8,1∈ 9
&0&1W01 (2.22)

where W01 is the function introduced for the Coulomb interactions in the second order of

the DFTB formalism as described in Equation 2.10. The calculation of the excited states

can be performed using LC-TD-DFTB2, which is far more computationally costly than the

calculations required in the simulations of charge transfer, for which time-independent

non-SCC DFTB can be used.

The exciton di�usion constant is the main metric for the speed of the propagation of

the exciton. It is calculated from the mean square displacement as described in Equa-

tion 2.12[37].
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3.1. Introduction to Machine Learning

The termmachine learning (ML) subsumes a variety of statistical methods for systematically

extracting patterns from data. This pattern extraction can take several forms: On the one

hand, supervised learning methods are used where there is a clear input-target relationship

in the data, such as when the goal is to predict the energy of a molecule from its geometry

or to determine whether a compound is drug-like. On the other hand are the unsupervised
ML methods, where the goal is to �nd structure and patterns in large data sets without a

reference for the optimal solution. Unsupervised learning can be used to analyze molecular

dynamics trajectories of large biosystems and extract geometries representing distinct

intermediate states. Dimensionality reduction is a form of unsupervised learning used

to extract the most relevant features from high-dimensional inputs which is also an

established tool in the analysis of molecular dynamics simulation. In machine learning

contexts, it is frequently used to preprocess data for other ML models or determine

the relevant variables. In this work, I only use supervised learning, and thus will not

further discuss unsupervised ML methods. The interested reader is encouraged to consult

textbooks [76] and overview articles on dimensionality reduction techniques [77, 78].

To give a very general de�nition, a supervised ML model is a parametrized function

mapping inputs x to targets y, whose parameters w have been adjusted using a set of

reference data points to reproduce the input-target relationship as closely as possible.

Model : (x,w) → y (3.1)

The shape of the function determines the complexity of relationships the model is able

to handle. For example, a linear regression model will not be able to accurately capture

nonlinear behavior, while a neural network with millions of parameters can describe

exceedingly complex dependencies.

The adjustment of the function’s parameters is usually performed by minimizing some

form of cost or loss function which measures the deviation between the model’s prediction

and the reference value for a given input. The basic functional shape of the cost is

determined by statistical considerations of the distributions of the errors, such as the

Gauss-Markov theorem[79], and the type of problem the model faces.

ML models can be used to solve both regression and classi�cation problems. Regression

models take one or multiple input variables (called features) assumed to be independent and

use them to quantitatively predict the target(s), i.e. one or multiple dependent variables.

Fitting a line to a set of measurements using the least-squares method is the most commonly

used form of regression. In contrast, classi�cation problems arise when the target is not

a continuous variable (i.e. a number), but some form of discrete property. Identifying
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speci�c objects within images, for example, is a classi�cation problem encountered in the

development of autonomous vehicles. While both regression and classi�cation models

�nd applications in computational chemistry, in this work I will discuss and use mainly

regression models. The fundamentals of all ML techniques presented in this chapter are

covered extensively in textbooks such as [76, 80, 81], which I used as sources for the

content of this chapter.

3.1.1. Linear Regression: A Toy Example

Linear regression is a technique which has been used for centuries in scienti�c applications

to learn relationships between observables, e.g. in order to determine the constants within

natural laws. While most natural scientists would not intuitively describe linear regression

as a machine-learning method, it does in fact share the same conceptual foundation with

modern machine learning methods, namely the �tting of parameters based on empirical

data. The main di�erence between linear regression and e.g. a neural network lies in

the number of �ttable parameters, which for neural networks can be millions. Therefore,

training neural networks typically requires machine support, where linear regression

is simple enough to be performed with pen on paper. Due to fundamental similarities

between linear regression and modern machine learning methods, I will introduce the

core principle and terminology using a simple linear regression example before moving

on to more complex methods.

Given a set of = values - = {G1, G2, . . . G=} at which a given property . is measured and

assuming a linear dependency of . w.r.t. - , linear regression is the process of �tting a line

through all available pairs (G8, ~8) as closely as possible.

As an example, let’s take a (synthetic) data set for the photoelectric e�ect, measuring

the kinetic energy of the electrons knocked out of the metal w.r.t. the frequency of the

incoming light. Figure 3.1 shows a set of sample measurements for the kinetic energies

at various frequencies above the threshold frequency
1
. These quantities evidently have a

roughly linear relationship to each other.

A linear model with only one input variable only has two parameters: the slope of the

line and the intercept with the y-axis. Generalized to multiple variables, the linear model

can be written as

~̂8 = 1 +
∑
9

G8 9F 9 (3.2)

where 1 is the intercept (also called bias) andF8 are the slopes of the line with respect to

the di�erent input variables G8 . From here on, all predicted values will be designated with

a caret to distinguish them from the true values (i.e. ~ vs ~̂). To train the model here simply

means to determine the optimal parameters F8 (and 12
) for a given set of training data

pairs. The most frequently used way to �nd the optimal parameters is to minimize the

1
The code used to generate these plots can be found in section A.1.

2
Frequently, 1 is rephrased as the slope for a �ctitious, constant input variable G1 = 1, so that all parameters

can be combined into one vector which is scalarly multiplied with the input vector to obtain a prediction.

This notation is especially handy for more complex models like neural networks.
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Figure 3.1.: A synthetically generated data set simulating measurements of the photoelec-

tric e�ect in sodium. 50 data points were generated by adding randomized

noise to the true function whose slope ℎ[82] and intercept, (Na)[83] were

obtained from reference data.

sum of the squares of the di�erence between each reference value ~8 and each predicted

value ~̂8 , for a model with only one input variable:

RSS(F) =
=∑
8

(~8 − ~̂8)2 =
=∑
8

(~8 − (G8F8 + 1))2 (3.3)

The residual sum of squares of a linear regression model is a function with a well-de�ned

minimum, for which a closed-form solution exists. In more complex models like neural

networks, the minimum is no longer globally unique and must be determined numerically

or using some form of gradient descent algorithm. Minimizing the sum of squares for this

speci�c data set results in the �t shown in Figure 3.2.

The residual sum of squares for this �tted model is around 0.1 eV
2
, but this metric is not

very intuitive to understand. Instead, there are other quality metrics which are frequently

used to quantify the quality of �tted models: Very often, the mean absolute error (MAE) is

calculated, which describes the (euclidean) distance of each point from the �tted line:

MAE =
1

=

=∑
8

| ~8 − ~̂8 | (3.4)

However, the MAE is not a relative error measure, and comparing models across data sets

using the MAE can be problematic. An MAE of 0.5 may be great for a model for which

the reference values . are on the order of magnitude of 100, but if they are on the order

of 0.1, a model with that MAE would be useless. To allow comparison of model quality

independently of the magnitude of the target values, the MAE can be normalized to give a

mean relative error (MRE):

MRE =
1

#

#∑
8

|~8 − ~̂8 |
~̄

(3.5)
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Figure 3.2.: A linear model (orange line) for the sodium photoelectric e�ect data set. The

�tted parameters of the model correspond to the quantities in the equation

�:8= = ℎ5 −, : the slope of the model is 4.13 × 10
−15

eV s (≈ ℎ), the intercept

is −2.33 eV (≈, (Na))

The MRE, however is not frequently used, as most formulations encounter numerical

instabilities, e.g. when the mean of the reference values ~̄ approaches 0. The coe�cient of

determination (also referred to as '2
) is the most frequently used magnitude-independent

quality metric for empirically �tted models. It is calculated as

'2 = 1 −
∑
8 (~8 − ~̂8)2∑
8 (~8 − ~̄)2

, (3.6)

where ~̄ is again the mean of the target values. Intuitively, the coe�cient of determination

compares the errors made by the �tted model (numerator) with the error of the null model

which only ever predicts the mean of the reference data distribution. A perfectly �tted

model has '2 = 1, the null model has '2 = 0 and '2
can be arbitrarily negative for an

arbitrarily bad model.

The �tted model can now be used to predict the target values for new G 9 that it has not

seen during training by interpolating between the training data points using Equation 3.2.

Note, however, that extrapolating beyond the bounds of the area sampled by the training

data using the model can be problematic. In our photoelectric e�ect example, extrapolating

the trained linear model to lower frequencies leads to an area where the kinetic energy of

the expelled electrons is predicted to be negative, while when running the experiment,

no electrons are expelled at all when the threshold energy is reached. As this is a very

simple system, it is easy to see that the model’s output in that region of input space is not

reasonable at all, but as input spaces and data sets grow larger and both problems and

models get more complex, determining when an ML model is extrapolating can become

very challenging.

An essential step in evaluating a machine learning model is to evaluate how well it is

able to deal with data it has not been trained on. If a randomly chosen subset of the data

set is ‘held out’, i.e. not given to the model to train on, the model can then be evaluated
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Figure 3.3.: Visualization of the evaluation of the linear regression example model by

plotting predictions vs references. For a perfect model, all predicted points are

on the orange line representing ~̂ = ~

by comparing the predictions it makes for this test data to the reference value. The same

evaluation metrics can be used as discussed above to get a quantitative estimate of whether

the model has learned the properties of the data set well.

Testing the �tted example model on 150 data points it has not previously seen, we see

that it has achieved an '2
score of over 0.99 and a mean absolute error of approximately

0.1 meV on the test set. The quality of the model’s predictions can be visualized by plotting

the predicted values vs the reference values like in Figure 3.3. In such a plot, a model

which perfectly reproduces the reference has a slope of 1 and an intercept of 0, and is

represented by the orange line. Each blue dot is one test data point, and they all closely

follow the diagonal showing how well our model has learned. This type of plot can uncover

interesting properties of the model, e.g. the frequency and intensity of outliers, or whether

the targets in one interval are learned better than those in another. They are therefore a

valuable tool for the evaluation of ML models and frequently used throughout this work.

Obviously, this kind of testing does not overcome the fundamental limitation resulting

from the limited data set size – if the test data set does not contain any values below

the threshold frequency at all, the model performance on these obviously cannot be

tested. However, it is still an important step, as it allows checking whether the model

is performing badly in its interpolation (e.g. because there is a part of the input space

which is undersampled in the training data). This can be especially problematic in more

�exible systems, such as neural network or kernel ridge regression models, whose behavior

between data points can be chaotic (subsection 3.1.3).

The data set is therefore crucial to the success of the model and must cover all regions of

input space in which the model will be asked to make predictions. Some techniques exist

to detect when model predictions are not reliable and are discussed below (see section 3.7),

but that does not mitigate the importance of a good data set and a robust evaluation routine

for trained models.

One �nal thing to note for the evaluation of ML models is that in general, a model’s

prediction error on the test set should decrease as training set size grows. The reasoning for
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this metric is that the larger the training data set, the easier it is for the model to interpolate

between known data points, and the lower the prediction error. Of course, this trend is not

linear – as the training set size grows, the model converges to a characteristic value for the

error, which describes the maximum amount of complexity in the reference data that the

model can capture. This convergence is visualized in learning curves: doubly logarithmic

plots of prediction errors vs training set size, where models whose hyperparameters are

well-optimized for every training set size usually form a line. If a model cannot be shown

to improve its prediction error with added data, it is e�ectively already converged and the

limiting factor to prediction accuracy is not the size of the training set, but the �exibility

of the model.

3.1.2. Interpretability of ML Models

I want to note an important distinction here about the nature of regression models used

in di�erent contexts and the intent behind their application. In the example above, the

slope parameter of the linear model corresponds to a fundamental and universal physical

constant – Planck’s constant, ℎ, which reappears in many other contexts. The intercept is a

material parameter, the work function of the metal determining the amount of work needed

to remove an electron from the surface, which is again not speci�c to this experiment. Both

model parameters used here are therefore assigned a direct and mostly intuitive physical

meaning, and are fundamental enough to be transferable to other data sets, experiments

and physical laws. The reason why the parameters have this connection, though, is that

in the context of our mathematical description of the involved processes, there is indeed a

linear relationship between the involved quantities
3
.

Machine learning models, however, are usually employed as universal approximators

when we either do not know the explicit functional form connecting the input and target

variables (e.g. in image recognition, where it’s very di�cult to de�ne what patterns fully

determine and constitute e.g. a cat) or when we do know, but want to avoid using it for

some reason, usually because it is too computationally costly, a frequent motivation for

the application of ML in computational chemistry. In order to ful�ll the role of e�cient

universal approximators, ML models are usually composed of simple, easy to evaluate

functions with su�cient parameters to adapt to arbitrary dependencies between input and

target variables. This becomes especially relevant when the relationship between inputs

and targets is not linear. The number of parameters an ML model needs to be �tted to data

corresponding to input-output pairs of a nonlinear function is frequently far larger than

the number of parameters the function itself needs. Therefore, the parameters of an ML

model may not have any intuitive connection to the parameters of the function it is �tted

to reproduce.

This does not mean that no insights about the underlying problem can be gleaned from

the structure and parameters of an ML model �tted to solve it. The structure of neural

networks currently used for image recognition, for example, consists of many individual

components, whose contribution to the �nal prediction can be separately investigated.

3
When Einstein formulated his theoretical explanation, this was not the case – this model was therefore

crucial for the development of quantum mechanics as it is today.
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x

y

Figure 3.4.: Schematic representation of a generic data set (red dots) and three di�erent

models (blue, orange and green lines).

Thus, parts of the network can be identi�ed as recognizing patterns which bear some

relation to what we would use to describe the objects in the image (e.g. pointy ears on a

cat, a dot pattern on a dalmatian)[84, 85]. While this form of decomposition is not possible

with all ML models, further information about which patterns the model uses to solve the

problem can almost always be extracted.

As a �nal remark, interpretability of ML models is less important when they are used

to approximate a known, but computationally costly function. Here, the basis for the

model’s decisions is not important to better understand the problem at hand or to explain

the decision-making process. In contrast to assigning some interpretation to the learned

parameters, understanding the mathematical processes in the model can be crucial to ML

models used in chemistry, as some applications require speci�c mathematical properties of

the model (e.g. an ML model used to calculate energies and forces during an MD simulation

must be continuous and smooth).

3.1.3. Overfitting and Underfitting

Figure 3.4 shows three models (represented by the blue, orange and green lines) �tted to a

set of data points (red). Intuitively, the blue model is not a good model: It has a large RSS,

has mostly learned the mean of the values for ~ and does not even come close to reproduce

the input–target relationship. Models like this which do not reproduce the variance of

the target values with changing inputs are called under�t. Generally under�tting can be

a sign that the assumed correlation between input and target is not valid or not strong.

For example, a linear model which attempts to learn a non-linear function would always

severely under�t. Under�tting may also be caused due to inconsistencies in the training

data (e.g. due to statistical noise), or may be a result of poorly-chosen hyperparameters.

It also occurs if the training set size is too small to fully represent the nuances relevant

for the problem at hand, so the model can only capture the general trend of the data. In

models which learn iteratively, such as neural networks, an under�t model may also be a

sign that the training was aborted too early.
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Compared to the orange one, the green model also looks like it could be under�t – the

orange model captures far more of the nuances of the training set. However, this is not

clear-cut: If the training data has been determined through some empirical process or

has a certain numerical uncertainty, the �uctuations which the orange model has learned

can be just statistical noise, and may result in larger errors when the model is asked to

predict the value for previously unseen data. A model which has learned too much of

the idiosyncrasies of its training data set is called over�t. Symptoms of over�tting are

excellent metrics on the training set, but notably worse performance on data outside it.

Whether the orange model is over�t or not can therefore only be decided by not training a

model on the complete data set, instead creating a ‘hold-out’ or test set and using this set

to evaluate the model’s performance after training. If multiple models (e.g. with di�erent

hyperparameters) are to be compared against each other, it is a good idea to �rst evaluate

each model on its own subset of the data (validation set) and then evaluate the best model

on a �nal test set
4
. This reduces the probability that models are over�t on the test set.

If number of overall available data points is limited, cross-validation can make sure

that the performance metrics are stable and independent of the speci�c subset of data

points the model saw during training. In :-fold cross validation, the data is partitioned

in : subsets. : models are then trained on di�erent combinations of : − 1 subsets and

evaluated on the remaining subset. Five or ten folds are usually su�cient to get robust

results for the metrics.

Other techniques to mitigate over�tting are reducing the model complexity (i.e. the

number of �ttable parameters) or increasing the amount of training data, or �nding a

way to ‘push’ the model to more universal parameters. The latter technique is called

regularization, and can take di�erent forms depending on the speci�c model architecture.

I will therefore discuss regularization as it is used in KRR and NN models in the respective

sections.

3.2. Machine Learning Data Sets: Requirements, Preparation
and Preprocessing

The available data is the foundation on which the rest of the model is built. There are

some requirements which a data set must ful�ll in order for good models to be trained

on its contents which result from the fundamental statistical assumptions from which

the ML formalism is derived[79]. First and foremost, it is crucial that the data set gives

a good representation of the input-target relationship over as large part of the relevant

input space as possible. This includes a good sampling of the input coordinates and target

variables, the distributions of which should be as close to Gaussian as possible. If the data

set contains incomplete, contradictory or redundant examples, these should be removed.

If there are multiple input variables with strongly disparate magnitudes, this can make it

di�cult for the model to learn more than just general trends. In this case, it is frequently a

good idea to independently scale the various inputs and targets to normal distributions

4
The term ‘validation set’ is also used in the context of neural networks with a similar but not identical

meaning. See section 3.5
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with identical mean and variance (usually, a mean of 0 and a variance of 1 are preferred)

before the data is used in the model. The scaled value for an input or target variable E is

then obtained as

E′ =
E − Ē
fE

, (3.7)

using the mean Ē and standard deviation fE of the variable in the training data set. Other

important metrics to keep track of in the data set are the means and variances of the output

distributions. Knowing the these values is crucial for the interpretation of quality metrics

calculated for trained models.

As per the mathematical basis for most ML methods, input variables should not be

correlated to each other. If there are such correlations, either removing some of them

may help, as can combining them into a new variable. In many applications, almost all

input variables must be pre-processed in this manner. In ML for chemical applications,

the inputs are frequently the Cartesian coordinates of the involved particles, whereas the

properties to be predicted are invariant to rotations or translations of the entire system.

Just as a neural network should recognize a cat independently of whether it is facing left

or right, the energy of a molecule in vacuum predicted by an ML model should not change.

Input variables which are not well-suited for direct use must therefore be transformed

into a representation or descriptor to introduce such invariances. Because this step is so

crucial for the models in this work, I will discuss di�erent representations for molecular

geometries in detail in the following section.

3.3. Representations of Molecular Geometry for Machine
Learning

For use in an ML model, it is advantageous to transform the 3D-coordinates of the molecule

or system into a more suitable representation that obeys common invariances, e.g. invari-

ance to rotations and translations as well as permutation of the atomic index ordering, as

this often leads to faster-learning models.[86] The simplest way to introduce invariance

to rotations and translations to the 3# Cartesian coordinates of an # -atomic system is

to use internal coordinates, e.g. the interatomic distances, or combinations of distances

and angles. As chemical interactions between atoms decay with increasing interatomic

distance, the matrix of inverse interatomic distances is a frequently-used, easy to calculate

representation. If the chemical element of every atom is encoded in the diagonal term

of the distance matrix, the resulting representation is called the Coulomb matrix (CM)

representation[87]:

G8 9 =

{
0.5/ 2.4

8 , 8 = 9
/8/ 9

‖r9−r8 ‖ , 8 ≠ 9
(3.8)

As the numbering of the atoms in a system (and therefore a given atom’s position in the

CM) is arbitrary, swapping the indices of two atoms of the same element should not have

any e�ect on the representation. In order to introduce this permutational invariance, the

CM can be sorted by row norms.
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Both the CM and the inverse distance matrix contain quite a bit of redundant information,

and this is compounded the larger the number of atoms is: An # -atomic molecule has

3# − 6 internal degrees of freedom, but the corresponding distance matrix has # 2
entries

((# (# + 1))/2, if only the upper triangular is used). Both representations are also global,
i.e. they encompass the entire system. There are many other global representations which

add bonds or many-body terms, e.g. the bag-of-bonds or SLATM representations[88].

All global representations have a �xed size dependent on the number of atoms in the

system, so using them with models which should be able to give predictions for molecules

of varying size can become problematic. This can be circumvented to some extent by

padding the representation for a small molecule with zeros until it has the same size as

the largest representation in the training set. However, this padding introduces yet more

redundancies, and the trained models still have an upper bound to the number of atoms

which can be described at once.

In general when training models to learn chemical quantities, the more of the underlying

physics is encoded in the representation, the faster and easier it will be for the model

to learn. The representation can expose the relevant patterns in the data by handling

some of the more fundamental functional dependencies, e.g. that interatomic interactions

are weaker the further two atoms are from each other. One time-honored approach

in theoretical chemistry is to describe molecular properties as a combination of atomic

contributions (c.f. the LCAO ansatz), and this method is also used in ML for chemistry.

Local representations describe the environment of an atom by probing the space around

the atom with a set of two- and multi-body basis functions to quantify the presence and

location of atoms. The resulting representation takes the form of a (frequently long) vector

for each atom, which can then be combined to predict properties for the entire system.

The individual basis functions are usually of the form

� (G) = b (G) 5cut(G) exp

(
−2G2

)
(3.9)

where G is the distance of a pair of atoms, resulting in a two-body contribution, or a pair of

distances for three-body terms. 5cut is a smooth cuto� function, 2 is an empirical constant

and b is a relative weight factor for the two- and multi-body contributions.

Examples of representations using this approach include the symmetry functions intro-

duced by Behler and Parrinello [89], atomic environment vectors [9], the SOAP kernel

[86] or the FCHL representation [90, 91]. These representations can result in excellent

models[86, 92] because they make so much of the information about the environments

of atoms available and transparent. However, they are also comparatively expensive to

calculate and are not very well suited when the property cannot easily be decomposed into

atomic contributions. They therefore have di�culties with large molecules, intermolecular

interactions and long-distance e�ects such as Coulomb interactions.

For large, rigid molecules, frequently reduced geometric representations are used such

as a few characteristic distances between atoms or angles[93]. This type of representation

has a lot in common with the choice of collective variables for metadynamics simulations

or the analysis of complex MD trajectories. The resulting representations are very system-

speci�c and �nding them requires signi�cant domain knowledge. Additionally, they

frequently reduce the system too much, limiting the upper bound of any ML model’s

prediction quality.
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3.4. Kernel Ridge Regression (KRR)

The kernel trick is a clever way to solve a nonlinear regression problem using linear

regression[94]. At its core lies the idea of transforming the input-target pairs from the

training set into a higher-dimensional space, where the relationships between each input

and the target are linear, performing the linear regression in that space, and transforming

its coe�cients back to the original feature space. In most cases, however, �nding this

perfect higher-dimensional space would be impossible. Using the kernel trick allows us

to avoid explicitly formulating the mapping function to the higher dimensional space by

instead describing the relationship of the data points in that space via a kernel function.

More formally, a kernel ridge regression model uses a basis of kernel functions placed

on a number of training samples to expand the target value:

~̂ =

#train∑
8

: (G@, G8)F8 (3.10)

where G@ is the representation of the query sample, the G8 are the representations of the

training data points, and the coe�cientsF8 are the trainable parameters. : is the kernel

function depicting the similarity of two points in the higher-dimensional kernel space.

The most frequently used non-linear kernel is the Gaussian kernel, de�ned as

: (G, G′) = exp

(
−
‖G − G′‖2

2

2f2

)
, (3.11)

where f is kernel width or length scale of the problem, a hyperparameter of the model, for

which the optimal value is strongly coupled to distances between the training data points.

The Laplacian kernel is also used especially in chemical contexts where the training data

is almost noiseless [94]:

: (G, G′) = exp

(
− | G − G

′ |
2f2

)
, (3.12)

Given a set of input–target pairs (x, y), there is a closed-form solution to obtain the

regression coe�cients:

w = (K − _I)−1y, (3.13)

Here, the kernel matrix K contains the pairwise kernels between all data points in the

training set. _ is called the regularization coe�cient, a hyperparameter of the model used

to guarantee that the kernel matrix is invertable. The value for _ also reduces the terms

on the diagonal of the kernel matrix, thus lowering the in�uence of each individual data

point for the prediction and helping to avoid over�tting.

The prediction for a new data point is then obtained using Equation 3.10 by evaluating

the kernel function between the query data point G@ and each of the training data points

G8 and multiplying the resulting vector with the vector of �tted weights w.

Compared to neural network or other iteratively learning models, KRR has the advan-

tage of a closed-form solution which can be easily calculated by inverting the matrix in

Equation 3.13. A KRR model has only very few hyperparameters – the regularization

strength _, the type of kernel used and kernel-speci�c parameters such as the Gaussian
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width f . The various kernel types can capture di�erent types of nonlinearity, and the

value of the kernel of a query data point with the training examples can be used as an

estimate of the uncertainty associated with the prediction.

However, obtaining a prediction for a single data point requires that the kernel between

that point and all training samples is evaluated. The computational cost for prediction

therefore scales with increased training set size. When training sizes are large, the con-

struction and inversion of the kernel matrix can also become prohibitively costly. Due

to the closed-form solution, KRR models do not provide an easy way to adapt the loss

function to a speci�c application, nor are they amenable to active learning approaches

where data is successively added to the training set. Additionally, obtaining the gradients

of a KRR model w.r.t. its input coordinates is quite complex and costly. KRR models

therefore shine especially in contexts with small data sets or when used in conjunction

with a technique to decide a priori which data points are included in training.

3.5. Neural Networks

Neural networks are non-linear statistical models which are widely used to solve complex

regression or classi�cation problems. At its core, a neural network consists of ‘layers’,

where each layer makes multiple linear combinations of its inputs, transforms them via

a non-linear activation function, and passes the results to the next layer. An intuitive

representation of this structure is shown in Figure 3.5. The simplest kind of neural

networks takes a vector of inputs (G1, G2, . . . G8) and makes a number of linear combinations

(=1, =2, . . . = 9 ) referred to as neurons of these inputs, each with a di�erent set of weights

F8 9 for each of the inputs. The result of each linear combination = (i.e. the value of each

neuron) is then passed through a non-linear activation function 5 , and the results taken as

the inputs for the next layer of neurons. The output of the 8th neuron in the ;th layer is

then calculated as:

=;8 = 5
©«
# ;−1∑
9

F ;−1

8 9 =
;−1

9

ª®¬ , (3.14)

where# ;−1
is the number of neurons in the previous layer andF ;−1

8 9 is the weight parameter

connecting the 9th neuron in layer ; − 1 to the 8th neuron in the current layer. In the

very �rst layer, instead of the previous layer’s output =;−1

9 , the elements of the input

representation G are used instead. The �nal layer of the network then carries the result,

i.e. the prediction the network makes for a given input.

The non-linear activation function is what allows the neural network to approximate

arbitrarily complex functions. Originally, activation functions like the tangens hyperbolicus
(tanh) or sigmoid functions were overwhelmingly used, inspired by the biology of �ring

synapses. The sigmoid function takes the following form:

5sigmoid(E) =
1

1 + exp
−E (3.15)

Both the sigmoid and tanh functions saturate the larger the absolute value E of the linear

combination of the neuron’s inputs. This behavior can cause problems if networks with
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Figure 3.5.: A neural network represented as a directed graph. Green circles represent the

individual neurons, which are arranged in clearly de�ned layers. The leftmost

layer receives the inputs to the network, and the sole neuron in the rightmost

layer carries the network’s output. The arrows between the neurons represent

the linear combinations which determine the input of every neuron beyond

the �rst layer. The weights associated with the edges in the graph are the

trainable parameters in the model.

many layers are trained, as the saturated areas can lead to the gradient needed for training

the model vanishing. To alleviate this, activations like the recti�ed linear unit (ReLU)

became more popular:

5ReLU(E) = max(0, E) (3.16)

For positive E , the gradient of the ReLU certainly does not vanish, but for negative inputs,

the gradient is 0 and can cause the neurons to get stuck during training. The leaky variant

of the ReLU function has a small, but nonzero gradient for negative values E , circumventing

this problem:

5leakyReLU(E) =
{
E if E > 0

UE otherwise

(3.17)

The ReLU function is not smooth, so smooth approximations like the softplus function

5so�plus(E) = log (exp(E) + 1) (3.18)

are used to obtain fully di�erentiable models and can be combined with a leaky slope for

negative values to avoid the vanishing gradients.

The weights in the NN are initialized randomly and adjusted such that the prediction

for inputs for which the result value is known matches the reference value as closely as

possible as measured by a metric referred to as cost function. Cost functions can be as

simple as the mean squared error (MSE) between prediction or reference,

MSE =
1

#

#∑
8=0

(~8 − ~̂8)2 (3.19)

but can also include other terms to impose additional constraints on the structure of the

network.
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Training is then the process of minimizing the cost function by giving the network inputs

from the training data set and evaluating the cost. Minimization uses the backpropagation

algorithm, repeatedly making small steps towards the nearest local minimum of the

function
5
. Starting from a network with randomly generated initial weights, the derivative

of the cost function � w.r.t. each weight F8 9 is calculated by the chain rule with some

optimizations to avoid redundant calculations. Then, for every input–target pair in the

training set, the gradients
m�
mF8 9

are evaluated, and an optimizer algorithm follows these

gradients to generate a new set of weights by making a small step in the direction of the

minimum:

F<+18 9 = F<8 9 − A
m�

mF8 9
(3.20)

The parameter A determines the size of the steps and is called learning rate. If the learning

rate is too high, the model will not be able to fully converge into local minima, if it is too

low, the learning process becomes exceedingly slow, raising computational costs during

training. This process takes many passes over the training data set to converge to a

minimum, and it is not uncommon to train NN models for hundreds or thousands of such

epochs.
The gradient descent algorithm used during the training and its parameters are a crucial

factor for the quality of the results. Due to the high-dimensional nature of the loss surface

traversed during training, there are potentially very many local minima, some of them

very shallow. While �nding the global minimum is not computationally feasible, several

techniques have been developed to avoid getting stuck in narrow or shallow minima. One

simple yet e�ective technique is changing the learning rate (the length of each ‘step’ in

the descent) as training progresses, initially making large steps to �nd wide, low basins

and only then reducing the learning rate to re�ne the results.

Due to the large number of trainable parameters, neural networks can be quite prone

to over�tting. An essential tool to avoid over�tting on an NN on the training set is the

technique referred to as early stopping: By periodically evaluating the model’s performance

on a set of data points not used to adjust the weights (the so-called validation set), the point

at which the model starts learning idiosyncrasies of the training set can be determined, as

the loss function calculated for the validation set will begin increasing as the loss on the

training set continues to decrease. Model training can then be stopped at the point where

the network gives the best performance on the validation set, which should correspond to

the most generalizable parameters.

Another method to avoid over�tting in neural networks is regularization. The smaller

the weights in the network are, the smoother the resulting function is w.r.t. the input

parameters. Therefore, by adding the sum of the weight norms as a penalty to the cost

function, the model can be pushed to converge to smoother functions. !1 regularization

adds the following term to the loss function:

!1 = −_
∑
8 9

| F8 9 |, (3.21)

where the sum of the absolute values of weights is weighted by the regularization strength

_, which corresponds to the strength of the push to more general parameters. An over-

5
For a detailed and intuitive look at the backpropagation algorithm, consult [81]
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regularized model (i.e. a model where _ is too large) will under�t. A stronger regularization

penalty to large weights can be applied with the !2 function:

!2 = −_
∑
8 9

| F8 9 |2, (3.22)

Of course, both functions may also be applied in combination if necessary. Dropout
regularization is another method to prevent an NN model from over�tting. By switching

o� random subsets of neurons in each epoch, it can ensure that no individual connections

in the network are overpowering or irrelevant. As a result, the distribution for the weights

in the network becomes narrower and the entire model again becomes smoother.

Neural networks are powerful universal approximators, and architectural variants

not discussed here can make them applicable to problems as diverse as protein folding

and complex team-based problem-solving in strategic multiplayer games. However, this

�exibility also comes at a cost – neural networks have far more hyperparameters to

choose from than e.g. KRR models, and the extremely large amount of parameters makes

training opaque and cost-intensive. These challenges notwithstanding, neural networks

have become an essential tool in many applications due to their versatility and prediction

power.

3.6. Hyperparameters and Optimization Strategies

Apart from the parameters �tted to the training data, any machine learning model has

hyperparameters. In the case of a neural network model, common hyperparameters can be

the number of neurons and layers, activation functions or the type of cost function. The

conceptually simpler KRR models have three main hyperparameters: the kernel function,

kernel width and regularization strength. These parameters represent design choices, and

are not optimized in the process of �tting the model to training data. Nevertheless, the

choice of hyperparameters can strongly in�uence the performance of the resulting models,

and bad hyperparameters can prevent models from learning at all. Finding the proper

values for the hyperparameters of a model is far from trivial, however.

Hyperparameter optimization usually requires repeated training of models on the

same data set while the values for the hyperparameters are varied. This can be quite

computationally demanding, as the search space can grow rather large very quickly. While

educated guesses about the in�uence of speci�c hyperparameters on model performance

can reduce the search space for hyperparameter optimization, this space can be too large to

fully sample, requiring clever techniques for parameter exploration. A complex method for

systematic hyperparameter optimization may have tunable parameters itself, only shifting

the optimization problem one level upwards. Therefore, a crucial rule to keep in mind is

that the goal of hyperparameter optimization is not to �nd the best possible parameters,

but to �nd a set of parameters which is su�ciently good for solving the problem at hand.

3.6.1. Grid Search and Random Search

The naive approach to hyperparameter optimization is to formulate the search space as a set

of values to be tested for every optimizable hyperparameter. Then, a candidate model can
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be trained for each such combination, the models evaluated on out-of-sample data, and the

model with the lowest error or best metrics is the designated winner. This method, known

as grid search is simple and systematic. The sampling resolution for every hyperparameter

is tunable by the density of the predetermined grid, but determining reasonable bounds

and intervals to test for each hyperparameter may be di�cult without some preliminary

exploration or multiple iterations of the grid search as the method does not converge on

promising parts of the search space itself. The number of candidate models to be trained

is known a priori, so it is easy to adjust the search space to the amount of computational

power one is willing to invest. However, the number of candidate models quickly grows

large, and every candidate model is trained to completion, even if it’s clear that that

speci�c set of hyperparameters is far o� the optimum. To reduce the computational cost,

instead of training all candidate models in the search space, a certain amount of parameter

combinations can be chosen at random from the grid. The resulting random search allows

balancing the time invested with the thoroughness of the search and can alleviate some

disadvantages of the grid search.

3.6.2. Hyperband Algorithm

The Hyperband algorithm[95] for hyperparameter optimization in iterative learning meth-

ods uses random search to sample the hyperparameter space. However, instead of training

every model to full convergence, the algorithm trains a large amount of models for very few

epochs and only continues training the models which show most promise. The algorithm

has two main loops, brackets and rounds. Each bracket of the algorithm is assigned a

computational budget, which can be stated in terms of e.g. a maximum allowable number

of epochs to train across all models. At the beginning of each bracket, the algorithm

generates a population of candidates with random hyperparameters. Then, a certain

fraction 5 of the budget available for the bracket is distributed among these candidates to

begin their training. The candidates are then compared, and all but the top-performing

5 -th part of the population are discarded. The best models then go to the next round of

training, where one-5 -th of the remaining budget is used to continue their training. This

process continues until the budget has been fully used and only one model remains, which

is the winner of this bracket. Then, a new bracket can be started to sample more of the

hyperparameter space. In each bracket, the number of models in the population is varied.

This allows the method to switch between training a lot of models for a short time each

and training few models for longer before deciding which to discard.

This approach has one great advantage to many other hyperparameter optimization

methods: its only user-facing parameter is the factor 5 , with which the speed at which

the population is culled can be adjusted. It leverages the strength of random sampling to

cover large search areas and avoids the pitfall of investing resources in obviously unusable

models. However, the Hyperband algorithm can run into di�culties when the learning

rate of the models is a tunable hyperparameter, or when other hyperparameters a�ect the

convergence rate too strongly (as the number of layers or neurons in an NN model can).
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3.7. Uncertainty Estimation and Outlier Detection

Generally, it is not easy to give error bars for predictions obtained from ML models, as the

error can vary wildly depending on the speci�c inputs. Additionally, the behavior of a

model for inputs for which it is forced to extrapolate depends heavily on the type of model,

the training data, and often even random factors such as the initialization of weights.

Having an estimate of the uncertainty of a given prediction can be very important during

the use of the model: If a computer vision model used in a self-driving car is only 60 %

sure that a given object is a shadow and not a person, it should be very careful in driving

over that spot. In ML models for computational chemistry, having an uncertainty estimate

is especially helpful if the model predicts forces used in an MD simulation, because on bad

prediction, the simulation framework can fall back to a reference method. Uncertainty

estimates can also be used to augment or tailor the training set, only adding those data

points for which the model does not give good predictions already. This technique known

as active learning is especially valuable for models where the number of data points which

can be included in the model are limited (e.g. KRR), or when generating training data is

expensive (e.g. high-level QM calculations).

Some metrics evaluated on the test set can be used to give rough estimates for the error

distribution in the predictions of the model. The mean and variance of the absolute error

can give estimates for overall reliability, while the maximum errors on the test sets can

give an indication of the worst-case scenarios. However, these metrics must be calculated

on the test set, and cannot be calculated for a given query point without calculating the

ground truth value of the target.

Some types of ML models have built-in uncertainty estimates (Gaussian process regres-

sion and Bayesian models in general), but these models have other disadvantages such

as large computational costs during training and limited �exibility. In KRR models, the

kernel function calculated during prediction shows the similarity between a query point

and each point in the training set. If the elements of the kernel are very small, the query

point is very dissimilar to the training set and the prediction will tend to the baseline of 0.

This can be used as a rough estimate of model uncertainty.

In neural networks, there are a few ways to obtain estimates for the uncertainty of

the prediction. A simple and commonly used method is to train not one but multiple

networks for a given task with di�erent hyperparameters or on di�erent subsets of the

data. For each query, the predictions of all networks are collected and compared. If the

predictions are similar, it is likely that the queried data point was indeed well-represented

in the training set and the prediction error is low. In contrast, if the networks disagree,

chances are high that what’s determining their predictions is the random factors during

their training and the point was undersampled in the training set.
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4. Charge and Exciton Transfer
Simulations Using Kernel Ridge
Regression Models

Charge and exciton transfer simulations using the methods described in section 2.4 are a

useful tool for materials discovery, as they allow screening of materials for desirable prop-

erties without synthesizing them. Additionally, they allow insights into the mechanism

and pathways of the transfer, which are essential for understanding the function of bio-

logical systems such as light-harvesting complexes involved in photosynthesis. However,

the computational cost of the simulations limits their applicability. The approximations

introduced in subsection 2.4.2 allow for simulations of charge transfer in organic semi-

conductor candidates at the relevant time scales, but only by limiting the propagation

to a one-dimensional chain of molecules within the system. The calculations necessary

to run exciton transfer simulations within the propagation formalism are much more

expensive, as they require the orbital structure of both the ground and excited states of

every fragment.

Therefore, a faster way to obtain the site energies and pairwise couplings within such

systems is desirable. Any machine learning model for this application must be able to

capture the changes of site energies and couplings during an MD simulation, as well as be

simple to train and give predictions exceedingly quickly in order to compete with DFTB

for charge transfer.

Machine learning methods for charge and exciton transfer properties have been inves-

tigated previously: Lederer et al. [93] used a kernel ridge regression model with a very

small geometric representation to predict charge transfer couplings in pentacene crystals.

Musil et al. [96] trained Gaussian process regression models for charge transfer couplings

in both pentacene and azapentacene using a simpli�ed SOAP-Kernel, reaching errors of

a few meV with only a few thousand high-quality training examples. Çaylak et al. [97]

presented a neural network model, which predicted hole mobilities and charge transfer

couplings for an amorphous aluminum complex. For excitonic properties, Häse et al. [98,

99] used a modi�ed Coulomb matrix together with a neural network to predict excitation

energies of Bacteriochlorophyll in the Fenna-Matthews-Olson complex and study the

exciton dynamics. Finally, Wang et al. [100] published a systematic investigation into the

e�ects of representation and target value on model training and prediction performance

of ML models for charge-transfer properties.

However, most previously published methods require large amounts of ab initio level

training data, system-speci�c representation design or extensive hyperparameter optimiza-

tion. These factors hinder the easy applicability of the model training procedure developed
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for one molecular system to other contexts. None of the aforementioned procedures

attempt to generalize across chemical space and give predictions for systems with di�erent

chemical compositions, so going to a new system requires completely re-training the

models. Also, it is unclear how the raw accuracy of the ML model on low-level electron

transfer parameters such as couplings a�ects the observable properties of the system

obtained from simulations. Evaluating the models in that respect requires their explicit

use in direct simulations, which has previously not been done.

In this chapter, I describe a method to directly predict charge and exciton transfer site

energies and couplings from a given geometry using kernel ridge regression models. I

develop a simple and automatable training procedure, which can be easily integrated into

multi-scale work�ows and avoids the need to generalize across chemical space. Finally, I

apply the trained models in direct charge and exciton dynamics and compare the obtained

observables to reference data from DFTB and experiment.

The results presented in this chapter have been published[101], parts of this chapter

follow that publication closely and are used with permission. Training data for the models

was generated by Daniel Holub and Philipp Dohmen, with the latter also performing

all propagation simulations. Model design, training and evaluation was done by me,

with Anders Christensen and Weiwei Xie contributing in advisor roles. Klara Eckhard

contributed to automating the model training process as a student assistant. All model

design, experiments and evaluation were performed by me.

4.1. Basic Requirements and Design Decisions

In order to replace DFTB in CT and ET propagation simulations, a machine learning model

needs to ful�ll several requirements.

First, it must be able to capture the geometry-dependent changes of site energies and

coupling data adequately well to reproduce observables as closely to the DFTB reference

as possible. This is challenging to evaluate, as there is no clear quantitative cuto� in

form of an error metric for prediction (e.g. ‘absolute errors for couplings no bigger than x

meV’). The only way to properly evaluate whether a model is good enough for running

the propagation is to use it in the simulations, which requires implementing the model

into the simulation code. Therefore, the second requirement is that implementation of the

prediction should be as fast and easy as possible.

Third, model training can be decoupled from the simulation code, but must be as au-

tomatable as possible in order to allow easy training of models for new molecular systems.

This approach of training models for individual molecular systems (e.g. one model for

anthracene, another for pentacene, etc) avoids two of the most complex problems that

machine learning models for chemical application face: constant size molecular repre-

sentations and generalization across chemical space. The di�culty of designing e�cient

yet universally applicable molecular representations has been discussed in section 3.3.

Creating models which are able to learn a given property for all known molecules is orders

of magnitude more di�cult than creating models which only capture the limited part of

chemical space which represents a given molecule and its thermally accessible distortions.

Therefore, I limited the models’ applicability to a single molecular system of identical
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monomers of constant size, and automated the process of training models from scratch.

While this requires generating new training data for every system for which a model is to

be trained, calculating the DFTB references for several thousand structures is very cheap.

The structures themselves can be obtained from the equilibration step of the molecular

dynamics work�ow. In this manner, it is possible to seamlessly insert training an ML

model between equilibration and propagation.

The �nal critical requirement is that the ML models should be able to outperform

DFTB for both charge and exciton transfer applications. The approximations taken in the

CT propagation formalism using DFTB make it extremely e�cient, as calculation of the

orbital structure of the charged state is avoided. Additionally, the fragmentation allows

calculating one fragment at a time, and the values for site energies and couplings obtained

from non-self-consistent DFTB are of su�cient quality to perform the simulation. Thus,

the entire calculation is reduced to one diagonalization per fragment and step, with the

calculations of couplings being comparatively inexpensive matrix operations. Therefore,

beating DFTB for charge transfer in terms of speed is a high bar to clear. For exciton

transfer, the calculation of the excited state cannot be avoided, and therefore the DFTB

reference calculation is signi�cantly slower.

With these requirements in mind, a reasonable �rst candidate model was the kernel

ridge regression (KRR) method. As introduced in section 3.4, KRR uses the kernel trick

to allow for a linear regression in a non-linear problem by implicitly transforming the

problem into a higher-dimensional kernel space. Training of and prediction by KRR models

can be summarized neatly in a few equations, and the prediction speci�cally can be very

concisely implemented. Additionally, KRR models have very few hyperparameters, which

is advantageous for optimizing the training and hyperparameter search process.

As the site energy is a monomeric and the coupling a dimeric property, the question arises

whether to attempt training a single model for both quantities, or whether separating the

problems into two models is better. Training a single KRR model for both properties would

require a representation which has the same dimensionality for a monomer as for a dimer

structure. Most representations developed for chemical coordinate data (section 3.3) do not

have constant size. Therefore, if a model is to be trained for both site energies and couplings,

the dimensionalities of the monomer and dimer representations must be made compatible.

One simple method to do this is padding the monomer representation with zeros until

it reaches the dimensionality of the dimer representation. Another option is to calculate

the representation for monomers as though they were dimers of two identical geometries.

Both options introduce redundancy to the representation, which may unfavorably a�ect

model performance.

Additionally, the respective targets (i.e. site energies and couplings) lie orders of magni-

tude apart. For anthracene, site energies are about 5.8 eV on average, while magnitude

of couplings ranges between 0 meV–150 meV. The formalism for training most ML mod-

els (including KRR) is derived under the assumption that the target variable follows an

uni-modal normal distribution (see section 3.1 for details). Therefore, a single KRR model

asked to reproduce this bimodal distribution will not be able to do so with good quality
1
.

1
Neural network models would struggle as well.
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Both the input dimensionality and target distributions therefore point towards training

two separate models – one model gets monomer coordinates as input and predicts site

energies, the other uses dimer structures to predict couplings.

4.1.1. Generation of the Reference Data Set

Crystalline anthracene is a very well-studied organic semiconductor, making it a suitable

test system for the development of ML methods. Regarding number of atoms, anthracene

ranges at the lower end of the spectrum of interesting semiconductor materials, but on

the high end of what ML representations and models for chemical structures are tested

and evaluated on. Training and test data was sampled from an MM MD simulation of

an anthracene crystal. Force �eld parameters for the MM dynamics were obtained from

the general AMBER force �eld (GAFF)[102, 103]. Atomic charges were obtained using

the restrained electrostatic potential �tting procedure (RESP) [104, 105] calculated at

the HF/6–31G* [106, 107] level of theory using Gaussian09 [108]. Setup of the system

and classical MD simulations used version 5.0.4 of the GROMACS package [109, 110].

The initial structure was constructed from the data published in Mason[111], which was

expanded to form a crystal containing 10×40×5 molecules along the a, b, and c crystal axes.

The energy of the initial structure was minimized and the temperature then equilibrated

at 300 K for 1 ns using the Nose-Hoover thermostat [112]. Structures for the data set were

then obtained from every 1000th step of a 10 ns simulation originally performed with a

time step of 2 fs to minimize the temporal correlation of the structures. Within the crystal,

a subset of 75 molecules was chosen (a continuous 5 × 5 × 3 block) for the reference data

generation.

Keeping training set sizes low and without redundancy is advantageous for KRR model

performance (both in terms of prediction time and quality). Within the block of molecules

there are many pairs which are far away from each other and have no meaningful coupling

interaction. Therefore, three di�erent data sets for couplings were generated: First, the

full data set, which contains all pairwise couplings in the 5 × 5 × 3 block. Two other data

sets were generated by including only dimers whose center of mass distance was below

0.75 nm (short data set) and 1.25 nm (long data set). The cuto� of the short data set was

chosen so that it includes the �rst neighbors of every fragment along the a- and b-crystal

axes, while long cuto� also includes the �rst neighbors along the c-axis, as well as the

second neighbors along the b-axis.

The reference charge transfer site energies and couplings for the geometries in each

data set were then calculated using the non-self-consistent variant of DFTB [1, 46] using

the approximations and implementation described in Heck et al.[36]. Only the HOMOs

were considered for these calculations, and electronic couplings were scaled by the factor

of 1.54 which has previously been determined to improve the accuracy of the couplings

obtained with DFTB to that of second-order coupled cluster (CC2) calculations.[66] For

the exciton transfer data sets, excited states calculations were performed using long-range

corrected time-dependent density functional tight binding (LC-TD-DFTB) [2, 3, 47, 51] as

implemented in DFTB+ [4, 5].

50



4.1. Basic Requirements and Design Decisions

Figure 4.1.: Distributions of the target values for site energies and the absolute value of

couplings in the three data sets for both charge and exciton transfer.

4.1.2. Choice of Prediction Targets

Figure 4.1 shows the distributions of site energies and couplings for both charge and

exciton transfer across all three data sets. For the site energies (rightmost column), the

distributions are almost normal, and the values can be used without further preprocessing

as targets for KRR models
2
.

For the couplings, the situation is a bit more complex. As previous studies of similar

learning problems[93, 96] used the logarithm of the coupling as prediction target, I initially

also trained models to predict log|+ |. While this worked well for data sets sampled from

one-dimensional chains of molecules along one crystal axis, the models performed worse

for the data sets described above. Wang et al.[100] investigated di�erent methods for

KRR models and reported that taking the logarithm was unnecessary if the models were

well-optimized. We therefore adjusted our methods and removed the logarithm from our

models and I only repeated the experiments whose results directly depend on the scaling

of the targets.

Without the logarithmic scaling of the couplings, it became possible to also consider the

sign of the coupling integral as part of the calculation. The sign of an individual coupling

is a consequence of the usually arbitrary signs of the wave functions on the individual

fragments. Along a dynamics simulation and across many pairs, the relative relationships

between the signs must be preserved in order to make the simulation as a whole consistent.

This is usually done by �xing the sign of the wave function coe�cients to some geometric

parameter (e.g. the direction of a given bond relative to the rest of the molecule) in the

2
Contrary to neural networks, for KRR models it is not necessary to scale features or targets to a normal

distribution with a mean of 0 and variance of 1. In the application presented here, scaling the features can

actually be detrimental to the model performance (see orange line in Figure 4.4c)
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initial calculations of the fragments. However, the connection between the geometry and

the sign of the coupling can be tenuous, and �rst experiments showed that KRR models

were not able to reproduce the sign correctly unless given very large amounts of data

(≈ 60 000 structures). KRR models become increasingly unwieldy in both training and

prediction with larger training sets, and this problem is exacerbated by the size of the

representation necessary to capture the degrees of freedom. In order to circumvent these

issues, we decided to train models only on the absolute value of the couplings, and use

a chain of anthracene molecules as a proof-of-concept system for propagation. If the

charge is limited to movement along a one-dimensional chain, the sign of the coupling is

irrelevant for the propagation mechanics.[113]

Using the absolute value of the coupling distorts the distributions (which are slightly

multi-modal due to the clear presence of �rst and second neighbors) to the forms seen in

Figure 4.1. In �rst experiments, the KRR models were nevertheless able to reproduce the

target distributions, indicating that the partial undersampling of parts of the target space

and the reduction to the absolute value did not invalidate the core assumptions for the �t.

For both the charge and exciton transfer case, it is evident that increasing the cuto�

from the short to the full data sets mostly adds structures whose couplings are close to

or equal to 0. In the charge transfer case, the long and full data sets are identical. This is

due to the fact that the integrals tabulated in the Slater-Koster �les for DFTB are limited to

interatomic distances of 2000 (1.05 nm). While the cuto� used for construction of the data

set was framed in terms of center-of-mass distance, it is apparent that in the anthracene

crystal, there are no pairs whose centers of mass have a distance larger than 1.25 nm for

which two atoms are close enough to each other to result in a nonzero coupling interaction.

In the following, I nevertheless treat the long and full data sets as separate, in order to

keep the presentation consistent with the exciton transfer data sets where these data sets

are distinct.

4.1.3. Comparison of Representation Variants

As noted in section 3.3, choice of representation can make or break an ML model. The

decision to make models system-speci�c with a �xed atomic composition allowed the use

of both global and local representations. However, the size of the representation (e.g. the

number of entries in a vector) and the computational cost to calculate it can strongly impact

the speed of individual predictions. Therefore, I decided to investigate two representations

– coulomb matrices (Equation 3.8) and FCHL19 (section 3.3). Implementations of both

representations are readily available from the QML python package [114].

The coulomb matrix (CM) is a conceptually simple representation, based on the inverse

of the interatomic distance matrix. It is cheap, easy to calculate and compatible with

standard kernels such as the Gaussian or Laplacian. However, an # -atomic system has

3# − 6 degrees of freedom, but its CM representation has
# ·(#+1)

2
entries

3
. The CM

representation is therefore somewhat redundant and its size grows with the square of the

number of atoms per fragment.

3
As the matrix is symmetric, its upper triangular contains the same information as the entire matrix.
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FCHL19[91] is a local density-based representation similar to the symmetry functions

introduced by Behler et al. [89] or the SOAP kernel [115]. Using FCHL19 for KRR models

requires using a kernel speci�c to that representation in order to di�erentiate chemical

elements. Both the representation itself and the kernel are more costly to calculate than the

coulomb matrix representation. However, the FCHL19 representation has been shown to

reduce the number of training examples required to reach a given accuracy threshold[116],

which might compensate for the increased computational cost.

In the following, I present and brie�y evaluate several variants of the coulomb matrix

representation and the FCHL19 representation for use in this project. All models presented

in this section use log|+ |as learning target and the full data set. Due to the exploratory

nature of these models, I do not give a detailed evaluation of each model and instead focus

on the relative changes between the di�erent representation variants. This exploration

was only necessary for the coupling models, as �rst tests with the site energies showed

that they trained very well regardless of the model con�guration. As the CT and ET data

is fundamentally similar, the initial parameter exploration was only performed for the CT

models.

4.1.3.1. Heavy-Atom CoulombMatrix

In order to reduce the redundancy of the coulomb matrix, I investigated whether including

only the non-hydrogen (‘heavy’) atoms can capture enough information for learning to be

successful. As the Carbon-Hydrogen bond vibrations are not activated at 300 K, the relative

motions of the hydrogen atoms to the anthracene core should be relatively small and may

not contribute much to the variance of the couplings. Slight modi�cation of the default

QML version of the coulomb matrix representation allowed omitting the hydrogen atoms.

With the number of atoms reduced to 14 per fragment, the coulomb matrix representation

for the site energy models was reduced from 300 elements to 105 elements and the pairwise

representation used for coupling predictions shrank from 1176 to 741 elements.

To compare the two representations, I trained one model for charge transfer couplings

using the default coulomb matrix and another using the heavy-atom version. Both models

were trained and evaluated on the same subset of 25 000 structures from the short data

set using the Gaussian kernel with log|+ |as �t target.

As can be seen in Figure 4.2, both models were able to learn similarly well. However,

the model with hydrogen atoms showed a prediction MAE of 5.5 meV, while the model

without them reached only a MAE of 46 meV. Additionally, evaluation of the model using

the heavy-atom coulomb matrix showed more outliers, i.e. that model had a far greater

tendency to be very wrong in its predictions. Due to the log scaling of the prediction target,

the couplings for these outliers are o� by several orders of magnitude. These extreme

cases may introduce instabilities to the transfer simulations, leading to erratic behavior of

the charge or exciton. While only extensive test simulations can determine whether this

occurs frequently enough to be a problem, the small bene�t of a reduced representation

did not warrant the investment of time and computational resources. I did not repeat this

experiment for the other data sets or targets, as it was evident that the positions of the

hydrogen atoms in the molecules encode information vital for the value of the couplings,

and the reduction of computational cost was not very notable.
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(a) (b)

Figure 4.2.: Two models for CT couplings in anthracene, (a) trained on the full coulomb

matrix, the other (b) on the heavy-atom CM. Outliers in the heavy-atom model

indicate that essential information is lost in this dimensionality reduction

process.

4.1.3.2. Normalization of CoulombMatrix Terms

For neural network models, it has been frequently established that scaling the individual

input features to resemble normal distributions with a mean of 0 and variance of 1 facilitates

the learning process[76, 81]. For KRR models, feature scaling may not always be necessary

or helpful.

Therefore, I tested whether scaling the Coulomb matrix entries to normal distributions

according to Equation 3.7 using the StandardScaler included in the scikit-learn[117]

package. Results are shown in Figure 4.3, with the model using scaled features showing

a slightly lower mean absolute error (4.8 meV vs 5.3 meV). The model using the scaled

CM terms has a slightly narrower error distribution, and especially fewer outliers. This

e�ect is small, however, with the variance of the absolute error distribution on the test set

decreasing from 8.5 × 10
−2

meV to 6.0 × 10
−2

meV. Scaling the elements of the Coulomb

matrix therefore appears to have small but tangible advantages for the quality of the model.

(a) (b)

Figure 4.3.: Prediction performance of a model using the default Coulomb matrix (a) and

one for which the entries of the CM have been scaled (b) as described in

section 3.2.
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4.1.3.3. Forgoing Permutational Invariance of CoulombMatrices

Sorting the Coulomb matrix by row-norm is the established method to make the rep-

resentation invariant to swapping the indices of two atoms of the same element. This

invariance is a desirable property for machine learning of molecular properties, as it

uncouples the model’s prediction from the order in which the atoms are listed. In this

application, however, the atom indices do not change as the goal is to train the model from

data generated during system equilibration where the atomic indices are already �xed.

This allows us to forgo the sorting of the CM by row-norm, as this process introduces

discontinuities in the function mapping atomic positions to the representation. These

discontinuities can occur because near equality of the row norms does not necessarily

imply chemical equivalence. As an example, an atom which is fairly close to most other

atoms may have a very similar row-norm to one that is very close to a few atoms, but far

away from the rest. The thermally accessible molecular motions may then cause these

two atoms to swap places in the CM representation, depending on which of the two is

currently closer to the center of mass of the molecule. These two atoms are chemically far

from identical, however, and this may create di�culties for an ML model operating on the

sorted CM representation.

Avoiding these discontinuities can make it easier for ML models to learn the true

(smooth) geometry-dependence of the target value without spurious interference. While

the continuity and smoothness of the predicted site energies and couplings is not a strict

requirement for the propagation method to work, a smooth model is a closer approximation

to the underlying physics and may give better results during propagation.

To examine the e�ects of using the unsorted CM, I trained three sets of models for

charge transfer couplings on identical data sets of varying sizes. One set used the sorted

CM, another used the unsorted CM, and a third set used the unsorted CM but applied

feature scaling as described in subsubsection 4.1.3.2. All models used the Gaussian kernel

and the logarithm of the absolute value of the coupling as target, learning curves were

calculated on 100, 500, 1000, 5000, 10 000 and 25 000 training examples each to evaluate the

prediction quality of the model as a function of training set size. Hyperparameters were

optimized using the largest training set size for each representation variant and applied to

models trained on fewer data points to calculate a rough learning curve without elaborate

hyperparameter optimization at every step.

The results of model evaluation are shown in Figure 4.4. Leaving the Coulomb matrix

unsorted helps the model to properly learn the couplings without having to �lter out

the noise from atoms switching places, as can be seen when comparing Figure 4.4a with

Figure 4.4b. The model using the unsorted CM reaches an accuracy of ≈ 5 meV with far

fewer training examples, and there are also fewer outliers. With an unsorted Coulomb

matrix, however, scaling the feature and target distributions is actually detrimental to the

prediction performance of the model. The model using the unsorted, unscaled CM reaches

a prediction MAE of 1.4 meV with 25 000 training examples.
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(a) sorted CM (b) unsorted CM

(c)

Figure 4.4.: A model trained on the sorted Coulomb matrix (a) performs far worse than

the model trained on the unsorted representation (b). The learning curve

(c) re�ects this as well. Scaling the elements of the unsorted CM to normal

distributions results in a worse model than leaving them as-is.
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4.1.3.4. Comparison to the FCHL19 Representation

Many of the recently developed representations are far more elaborate than the CM, and

have been shown to give more accurate models, reducing the number of training examples

to learn properties drastically. However, they come at a higher cost for generating the

representation, and in some cases more costly kernel function evaluations.[89, 9, 86, 90,

91] A more sophisticated representation could improve the prediction performance of the

coupling models. Among the many density-based representations developed in the recent

years, the FCHL19 representation was developed for and extensively tested in KRR models.

The reference implementation of FCHL19 and its corresponding kernel are freely available

in the qmlcode program package
4

and therefore provided an interesting alternative to the

coulomb matrix.

A �rst test with the FCHL19 representation showed errors around 2.8 meV for after

training on just 1161 data points. This far exceeds the best CM model (unsorted, unscaled

CM) until now, which needed 10 000 examples to reach similar errors lower than when us-

ing either the sorted or unsorted Coulomb matrices. Unfortunately, the cost for prediction

using KRR models based on this representation far exceeded the computational cost of both

the simpler CM-based model and the reference method, and was found to be impractical

in comparison. One of the core ideas of the density/distribution based representations like

FCHL is that the inclusion of some physically motivated structure in the representation

can improve the performance of ML models by ‘front-loading’ part of the physics. The

increased computational cost for the calculation of the representation is not a problem

for most of the published applications of ML models using density or distribution based

representations, as the prediction times of the models are usually compared to ab initio
methods (usually DFT variants). However, in this application the ML model is trained to

replace DFTB, which due to its semi-empirical nature is orders of magnitude faster than

DFT. Here, the reduction in training set size that is achieved by using FCHL is insu�cient

to o�set the comparatively exorbitant costs of the representation and kernel.

4.1.4. Comparison between Gaussian and Laplacian Kernels

I �rst tested the di�erence between using the Gaussian and Laplacian Kernels in combina-

tion with the sorted CM representation. Laplacian kernels had been shown to perform

better on quantum-chemical reference data[94], but the implementation available in

scikit-learn as of this writing is quite slow. As the learning curves in Figure 4.5 show,

the errors with the Laplace kernel were indeed slightly lower, albeit not by a large margin.

In the absence of large advantages of the Laplacian kernel and in the interest of e�ciency

during model training and hyperparameter optimization, I decided to use the Gaussian

kernel for the other experiments.

4
At the time of writing, this was only available in the develop branch of the project available on GitHub.
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Figure 4.5.: Learning curves using the Gaussian (green) and the Laplacian (blue) kernels.

The slope of the model with the Gaussian kernel changes as the kernel width

was not optimized for every point in the learning curve, while the Laplace

kernel seems to be less sensitive to this parameter.

_site 1 × 10
−3

, 1 × 10
−4

, 1 × 10
−5

, 1 × 10
−6

, 1 × 10
−8

and 1 × 10
−9

fsite 5, 10, 25 and 50

_coupling 1 × 10
−2

, 1 × 10
−3

, 1 × 10
−4

, 1 × 10
−5

and 1 × 10
−6

fcoupling 5, 10, 15 and 20

Table 4.1.: Grid points sampled in hyperparameter optimization for site energy and cou-

pling models for charge transfer.

4.2. Details on Training and Evaluation Procedures

4.2.1. Model Training and Hyperparameter Optimization

I trained models on charge and exciton data for each of the data sets short, long and

full as well as for site energies using the unsorted Coulomb matrix representation as

implemented in the QML[114] code package. For each data set, a model was trained on 100,

1000, 5000, 10 000 and 25 000 training examples with optimized hyperparameters obtained

from a �ve-fold cross-validated grid search as implemented in the scikit-learn[117]

python package. As the training set distribution is strongly skewed towards 0 by the

frequency of pairs with negligible couplings, all data points which were equal to 0 were

discarded from the training set. Because KRR model predictions go to 0 when the model is

forced to extrapolate, these data points were nevertheless included in the test set to ensure

that the models do indeed give the correct behavior. In a �rst evaluation step, I then tested

each model on 60 000 data points from its respective data set, which were not used during

training or hyperparameter optimization.

The values used for the hyperparameter optimization grids for charge transfer and

exciton transfer are given in Table 4.1 and Table 4.2, respectively. The full results of the

grid search for all data sets and training set sizes can be found in section A.2.
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_site 1 × 10
−3

, 1 × 10
−4

, 1 × 10
−5

, 1 × 10
−6

, 1 × 10
−8

and 1 × 10
−9

fsite 5, 10, 15 and 20

_Coulomb 1 × 10
−2

, 1 × 10
−3

, . . ., 1 × 10
−8

, 1 × 10
−9

and 5 × 10
−10

fCoulomb 2.5, 5, 7.5, 10, 15, 20, 25, 30, 40, 50, 60 and 70

Table 4.2.: Grid points sampled in hyperparameter optimization for excitation energy and

coupling models for exciton transfer.

As evaluation metrics for each model, I used the mean absolute error (MAE), the

coe�cient of determination'2
, the maximum error, as well as the mean relative error (MRE)

with respect to the average target value (Equation 3.5) to evaluate model performance.

Contrary to many other applications of ML methods to quantum-chemical problems, it is

not possible to a priori formulate a quantitative threshold for when a model is good enough.

Proper evaluation of the models thus requires using them in propagation simulations and

comparing results for both time series of Hamiltonian elements and observables.

4.2.2. Evaluation in Charge and Exciton Transfer Simulations

A second anthracene crystal containing 40 × 30 × 14 molecules along the crystal axes

was constructed using the same process as described for training data generation in

subsection 4.1.1. Simulations of charge and exciton transfer using both DFTB and the

trained ML models were performed in this system. The calculation of the CM representation

and KRR prediction were implemented directly in the code used for CT simulations using

DFTB.

As QM zones, one-dimensional chains located in the middle of the crystal along the

a- and b-direction of the crystal were chosen. The chain along the a-axis contained

36 fragments, while the one along the b-direction contained 28. No simulations were

performed along the c-direction, as the couplings in this direction are very small, resulting

in very low mobilities which would have necessitated overly long simulations to be

reliably calculated. Additionally, the crystallographic and experimental c-direction di�er

by about 35° [118], and thus direct comparison between observations from simulations and

experiments is di�cult. Snapshots of the equilibrated system were taken in equidistant

time intervals and used as starting structures for the ensemble of simulations of charge

and exciton transfer.

The mean-�eld Ehrenfest [55, 56](MFE) and Boltzmann-corrected fewest switches sur-

face hopping [60] (BC-FSSH) methods were used for non-adiabatic dynamics as described

in section 2.4. Time steps of 1.0 fs were used for the MFE simulations, while for the BC-

FSSH simulations the time step was 0.1 fs. The hole/exciton wave function was initially

localized on the �rst molecule, Ψ(0) = q1(0) and the TDSE was integrated numerically

with the fourth-order Runge-Kutta algorithm with an integration time step of 0.01 fs.

Observables were obtained from averages over swarms of 100 (MFE) and 500 (BC-FSSH)

trajectories, simulated for 1 and 5 ps, respectively. The propagation used a local version

of GROMACS 4.6 [119], wherein both the propagation methods and DFTB had already

been implemented as a part of previously published work[69, 36, 37]. Coulomb matrix and
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4. Charge and Exciton Transfer Simulations Using Kernel Ridge Regression Models

Gaussian kernel calculation as well as the �nal prediction step for the ML model were

added by W. Xie and me.

The KRR models do not support easy calculation of gradients of the Hamiltonian

elements w.r.t. atomic coordinates, which are necessary to properly describe the relaxation

of fragments in response to a change in occupation. Therefore, the implicit relaxation

scheme introduced in subsection 2.4.2 was used, regardless of whether DFTB or the KRR

model was used to calculate the Hamiltonian elements. The reorganization energy used

for charge transfer simulations was calculated using DFTB as 0.084 eV [36]. For exciton

transfer, the reorganization energy was obtained from LC-TD-DFTB as 0.563 eV, which is

in good agreement with previously published CC2 calculations [120].

Hole mobility was calculated using the Einstein-Smoluchowski equation as described in

section 2.4.

4.3. Results of Model Evaluation

Overall, I trained 2 × 4 × 5 = 40 models (site energy+three coupling data sets for CT

and ET each, with �ve training set sizes). In the interest of brevity, I only present the

results for the training set sizes of 100, 1000 and 25 000 here. I also only discuss in detail

the coupling models trained on the short data set, as these were the only models used

in the propagation simulations later on. The full results for all models can be found in

section A.2.

4.3.1. Evaluation of Trained Models on Held-Out Data

All models were able to learn their data sets and systematically improve with increasing

training set size, as demonstrated in Figure 4.6. For the site energies, it is evident that

the relative errors are far lower than for the couplings, indicating that the models have

achieved better �ts.

4.3.1.1. Evaluation of Charge Transfer Models

The mean and relative errors on the test sets are summarized in Table 4.3. Figure 4.7a–c

shows the agreement between prediction and reference along the learning curve for the

site energies and the short data set.

The site energies gave very good results, with errors reaching 1.2 meV at a training set

size of 25 000, and a mean relative error below 1 % at all training sizes. For all training

set sizes, there are few outliers, with maximum errors decreasing from 45 meV to 14 meV

as the training set size grows. The standard deviation of the distribution of unsigned

prediction errors decreases from 8.6 meV to 1.5 meV. That very small training set sizes are

already su�cient to obtain low relative prediction errors is bene�cial for the propagation,

as the computational cost of the prediction increases linearly with the size of the training

set.

At a training set size of 1000, the model for the couplings trained on the short data set

reached a MAE of 6.0 meV, saturating at 3.1 meV for 25 000 training examples. Comparison

60



4.3. Results of Model Evaluation

(a) (b)

Figure 4.6.: Learning curves showing the decrease of test set error of models trained on

site energies and the three coupling data sets for both charge transfer (CT) and

exciton transfer (ET). a) shows the absolute errors in meV, while b) uses the

relative error de�ned in Equation 3.5.

MAE in meV max. error in meV MRE (Equation 3.5)

100 1000 25000 100 1000 25000 100 1000 25000

site energy 6.75 4.12 1.16 45.8 36.3 14.1 0.1 % 0.07 % 0.02 %

short 10.7 6.02 3.10 124 74.4 66.7 35 % 20 % 10 %

long 3.29 1.97 0.87 120 108 62.9 58 % 34 % 15 %

full 3.34 1.85 0.88 129 94.3 71.0 57 % 32 % 15 %

Table 4.3.: Mean absolute and maximum errors in meV and mean relative errors for charge

transfer models at 100, 1000 and 25000 training examples.

of the errors on the three data sets con�rms that the long and full data sets are equivalent,

as the results are almost identical. While the absolute errors for the long and full models

are lower than those of the short model, this does not indicate that these models perform

better. The average coupling in the short data set is 30.7 meV, much higher than the

5.7 meV average in the data sets with longer cuto�s. Thus, direct comparison of the MAE

across the data sets is misleading, and mean relative errors must be compared instead. The

MREs of the short model are lower at all training set sizes, indicating that this model has

indeed learned its data set better.

4.3.1.2. Evaluation of Exciton Transfer Models

Results for excitation energies were similar to charge transfer site energies, with predic-

tion errors of 15 meV to 0.9 meV along the learning curve and similar error distributions

Figure 4.8 and Table 4.4). Again, the models showed few outliers even with small training

set sizes, and relative errors are below 1 % for all training set sizes.

For the ET couplings, errors decreased from 5.1 meV to 1.1 meV along the learning curve

for the short model. Again, the relative errors for the long and full models were slightly
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4. Charge and Exciton Transfer Simulations Using Kernel Ridge Regression Models

Figure 4.7.: Prediction on test set vs reference for CT site energies (top) and couplings

(bottom) along the learning curve for the short data set.

MAE in meV max. error in meV MRE (Equation 3.5)

100 1000 25000 100 1000 25000 100 1000 25000

site energy 15.1 7.37 0.87 110 69.3 11.7 0.45 % 0.22 % 0.03 %

short 5.09 2.45 1.12 35.4 35.6 32.8 23 % 11 % 5 %

long 3.10 2.22 0.82 34.0 26.3 23.6 26 % 18 % 7 %

full 1.46 1.16 0.60 38.5 31.2 25.3 38 % 30 % 16 %

Table 4.4.: Mean absolute and maximum errors in meV and mean relative errors for exciton

transfer models at 100, 1000 and 25000 training examples.

higher. Maximum prediction errors were lower overall compared to those for the CT

couplings, reaching 32.8 meV for 25 000 training examples on the short data set.

4.3.2. Time Evolution of Predicted Couplings

The next step in the evaluation was to apply the models to temporally consecutive struc-

tures and compare the predictions obtained from the models with the reference. The

geometries of one arbitrarily chosen pair of �rst neighbors in a and b direction each

were extracted from the equilibration trajectory of the crystal which was to be used for

propagation. For each pair, I calculated predictions for CT and ET couplings on the ge-

ometries along the 0.6 ps time series. The results for the short models for both CT and

ET are shown in Figure 4.9. As expected, the use of a smooth kernel and the unsorted

CM results in generally smooth predictions. Compared to the DFTB curves, there is some

noise in the predictions, but no extreme outliers are visible in these trajectories. While

this small sample does not exhaustively analyze the behavior of the models along long
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Figure 4.8.: Prediction on test set vs reference for ET site energies (top) and couplings

(bottom) for the short model along the learning curve.

MD trajectories, it is a good indicator that the models could perform well enough to give

reasonable results in propagation.

Evidently, the models start learning the couplings along the a axis properly only at a

training set size of 1000. With only 100 training examples, there is not enough information

to learn much more than the mean of the coupling in this direction. The predictions for

the b direction are better at the lowest training set sizes, indicating that these couplings

are predominantly learned at lower training set sizes. However, already the models trained

on 1000 examples show close agreement with the reference curve for both crystal axes.

4.3.3. Application in Propagation Simulations

In the following, I present the application of the trained models for propagation simulations.

First, I compare the computational costs of the simulations driven by DFTB and by the ML

models. Then I show the results of the propagation simulations and compare observables

obtained from DFTB and the ML models to reference data.

4.3.3.1. Performance Comparison to the DFTB Reference

To evaluate performance, I timed the duration of the Hamiltonian calculation in our

test system and broke down this duration to obtain the time for one pairwise coupling

calculation for both charge and exciton transfer. All times were recorded using a single

core of an Intel Xeon CPU E5-2630 v4 @ 2.20GHz processor. Times for the CT Hamiltonian

calculations using DFTB were obtained within the GROMACS code used for propagation,

while times for the ET Hamiltonian were recorded using the method used to generate the

training data using standalone LC-TD-DFTB as described in subsection 4.1.1. I estimated
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4. Charge and Exciton Transfer Simulations Using Kernel Ridge Regression Models

Figure 4.9.: Time evolution of the electronic and excitonic couplings between a pair of �rst

neighbors in a and b directions. DFTB reference in black, colored lines show

predictions of models trained on the short data set with training set sizes of

100 (blue), 1000 (orange) and 25000 (green).

times for one ML prediction within the python framework which was used for training.

The python libraries used here use e�cient implementations in Fortran (for the CM

calculation) and C (Kernel calculation and prediction) for the individual steps necessary

to obtain the prediction. I then summed times recorded for the individual steps to obtain

the average time for one coupling prediction. While this is not directly comparable to

the �nal computational costs in the simulation code, the sum of costs of the e�ciently

implemented individual steps gives a lower bound to the overall time per prediction which

can be compared to the time necessary to obtain the same value using DFTB.

Calculation of the CT Hamiltonian using DFTB took on average 0.57 ms per anthracene

pair, while for the ET Hamiltonian 55 ms per pair were necessary on the same processor.

The timings for the di�erent ML models varied strongly with the number of training

examples, as the kernel calculation is the rate-limiting step. For site energies, a model

trained on 1000 examples was always used as it gave excellent accuracy, while the number

of training examples for the coupling model was varied.

As shown in Table 4.5, only machine learning models trained on 1000 or fewer examples

could outperform DFTB for charge transfer couplings. This is a consequence of the

simplicity of DFTB and the coarse-grained formalism – the costly calculations are done

individually for the fragments, and assembling the Hamiltonian is then an almost trivial

operation. In contrast, the ML model must calculate the comparatively costly kernel

function with every training representation, as well as the interatomic distance matrix

needed for the CM representation, and then needs one prediction from the site model per

fragment and an additional (more costly) prediction per fragment pair to obtain couplings.

Overall, cost for both DFTB and the ML predictions scale equally, roughly with the

square of the number of fragments if all pairwise couplings in a system are calculated. If a
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ML DFTB

=train CT ET

100 3.1 × 10
−4

s

5.7 × 10
−4

s 5.5 × 10
−2

s1000 3.8 × 10
−4

s

25000 3.1 × 10
−3

s

Table 4.5.: Comparison of timings (in seconds) for the calculation of couplings per pair.

cuto� is introduced beyond which the couplings are not evaluated, this scaling converges

towards linear behavior. However, for the ML model, the computationally costly part are

the pairwise evaluations (as the models are larger both in training set and representation

size), while for DFTB, the limiting step are the fragment-wise diagonalizations to obtain

orbital coe�cients. This diagonalization step in DFTB scales with the cube of the number of

atoms per fragment. In the ML model, the calculation of the CM representation introduces

a quadratic scaling with fragment size. Therefore, the larger the individual fragments are

in number of atoms, the more the ML models’ will win out compared to the cubic scaling

of DFTB. This improved scaling can make simulations of systems with large fragments

(such as Rubrene or Phthalocyanine) feasible, which are currently too costly to perform

in DFTB. In contrast, the DFTB calculations necessary for exciton transfer are far more

costly than those for charge transfer, so the ML model for anthracene is at least one order

of magnitude faster even with the largest training set size tested here.

The ML models I present can also provide a signi�cant gain in e�ciency for simulations

using the kinetic Monte Carlo model for hopping-like transfer. These simulations require

an e�cient sampling of average couplings in a system to calculate accurate transfer rates.

For highly ordered structures such as crystalline anthracene, this is simple, as the average

couplings for only one fragment pair along each crystal axis must be computed on a set of

sampled structures (usually hundreds or thousands). In more disordered materials, this

sampling is far more complex and costly, as the similarity of structures along the axes

cannot be exploited, leading to a combinatorial explosion of computational e�ort. In such

simulations, using an ML model instead of QM methods for the calculation of the couplings

can thus result in a substantial decrease in computational cost.

4.3.3.2. Charge Transfer Simulations

Here, I present the application of the ML models to perform non-adiabatic dynamics of

hole transfer along the a- and b-crystallographic axes of anthracene. Simulations were

performed and analyzed by Philipp Dohmen, and I brie�y summarize them here. Again,

the results from the ML models trained on 100, 1000 and 25000 examples are compared to

simulations using the DFTB reference, and the full results can be found in section A.2. All

propagation simulations used the short model, as only nearest-neighbor couplings were

calculated using both DFTB and the ML models.

The averaged time-dependent MSD obtained using the MFE method can be found in

Figure 4.10a, and mobilities calculated from these simulations are given in Table 4.6. As

expected, the model with 100 training data points gives a large error in the mobility along

the a-direction, overestimating it by a factor of two compared to the DFTB reference. For the
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(a) (b)

Figure 4.10.: Time evolution of the averaged MSD in a- and b-direction using the MFE (a)

and BC-FSSH (b) methods for hole propagation with DFTB and ML models

with various training-sizes.

b-axis, all models give reasonable results. The model with 1000 training examples already

comes within 0.12 cm
2

V
−1

s
−1

(8.5 %) of the DFTB value and within 0.79 cm
2

V
−1

s
−1

(34 %)

of the experiment. Further increasing the training set size does not improve this margin

signi�cantly, showing that spurious and small errors only have a low impact on the

mobilities obtained after averaging over the swarm of simulations.

Exp.[118] DFTB ML-100 ML-1000 ML-25000

MFE

a 1.14 1.41 3.20 1.53 1.58

b 2.93 3.36 3.67 3.72 3.22

BC-FSSH

a 1.14 8.00 10.05 7.73 8.14

b 2.93 13.32 14.30 11.08 11.02

Table 4.6.: Hole mobility in cm
2

V
−1

s
−1

as calculated from the averaged MSD in a- and

b-direction using the MFE and BC-FSSH methods for hole propagation with

DFTB and ML models with various training-sizes.

For simulations using the BC-FSSH method, the time-dependent MSD is shown in

Figure 4.10b. The performance of the machine learned models compared to the DFTB

reference is overall similar to the MFE simulations, including the overestimation of the

mobility along the a-axis by the smallest model.

However, the absolute hole mobilities obtained from all BC-FSSH simulations di�er

strongly from the experimental values – even when DFTB was used to calculate the Hamil-

tonian. The overestimation of mobilities observed here is rooted in two approximations

which were necessary because of the machine learning model:

First, in any SH method, atomic velocities must be adjusted after each hop to guarantee

energy conservation [33], usually by scaling them in the direction of non-adiabatic coupling

vectors (see section 2.4) obtained from the gradients of the Hamiltonian elements w.r.t.

the atomic positions. As these cannot be obtained from the KRR model, we use the
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Boltzmann-corrected version of the FSSH method, where the hopping probabilities are

rescaled with a Boltzmann factor, as an approximation of the true correction. This leads to

an overestimation of hole mobilities as demonstrated by Xie et al.[65].

Additionally, the relaxation of the fragments in response to the change in occupation is

not fully taken into account (see Equation 2.18 and subsection 2.4.2). Again, to fully take

this into account, the gradients of the Hamiltonian elements w.r.t. the atomic positions

would be needed but cannot be obtained from the KRR model. To examine whether the

explicit relaxation alone is su�cient for an accurate description, additional simulations

were performed using DFTB with full relaxation of every fragment. This method decreases

the MSD and slows down the corresponding mobility to 1.83 and 4.03 cm
2

V
−1

s
−1

for the a-

and b-directions. These values are in much better agreement with the experimental values

of 1.14 cm
2

V
−1

s
−1

and 2.93 cm
2

V
−1

s
−1

, indicating that the relaxation scheme accounts for

the bulk of the error. In the MFE simulation, this is not a problem as the charge delocalizes

quickly and thus the forces on every fragment are smaller than in the BC-FSSH simulation

where the charge remains localized.

4.3.3.3. Exciton Transfer Simulations

For the exciton transfer case, only the BC-FSSH simulations were performed, as the

di�usion is in the hopping regime and the MFE method would overestimate di�usion

constants due to overly strong delocalization.[37] Additionally, no simulation code for

explicit exciton transfer propagation using LC-TD-DFTB was available, and thus no DFTB

reference could be obtained. Instead, the di�usion constants calculated using the ML

models are compared to those obtained by solving the master equation (ME) with Marcus

theory [121, 122] using kinetic Monte Carlo simulations. The time average over 5000

structures of one pair along each axis was used to compute the average couplings for the

Marcus rate formulae. The di�usion constants obtained from this reference and the ML

models are shown in Table 4.7.

The BC-FSSH method again shows an overestimation of the di�usion constants by a

factor of 40 compared to ME results. Using the same arguments as in subsubsection 4.3.3.2,

the implicit relaxation scheme and lack of non-adiabatic coupling vectors are likely the

causes of the overestimation here as well, although lacking a DFTB implementation of

propagation no detailed investigation can be made.

ME ML, BC-FSSH

a 7.4 × 10
−9

2.8 × 10
−7

b 4.2 × 10
−8

1.9 × 10
−6

Table 4.7.: Di�usion constants in m
2

s
−1

as calculated from the averaged MSD in a- and b-

direction using the ME and BC-FSSH with an ML model for Coulomb couplings

with di�erent methods for propagation.
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(a)

(b)

Figure 4.11.: Predictions on the test set for models trained on supermolecular ET couplings

using a) the absolute value and b) the logarithm of the coupling as targets.

4.4. KRRModels for Supermolecular Exciton Transfer
Couplings

Originally, I intended to also train KRR models for supermolecular ET couplings using

same procedure as described for the Coulomb couplings in subsection 4.2.1 above. Su-

permolecular couplings were calculated for the pairwise geometries present in the short

data set using LC-TD-DFTB according to Equation 2.21. In the following, I only show the

results for the models trained on 25 000 training data points.

I attempted to train models with both the logarithm and the absolute value of the

coupling as targets. The results are summarized in Figure 4.11, where it is evident that

neither of the targets leads to satisfactory models. The model using the absolute value

appears to have issues with larger couplings, so I also trained a model on the logarithm of

the coupling in an attempt to make it easier for the model to bridge the di�erent orders of

magnitude. However, this made the model predictions even worse, so I used the absolute

value as target for further experiments. Considering that these di�culties might result

from the fast decay of the strength of supermolecular couplings with intermolecular

distances, I also trained models using modi�ed coulomb matrix representations, where

the default
1

A
dependency is changed to

1

A 6
or even exp(−A ). This shorter range of the CM

representation terms could perhaps aid the model in learning the true distance dependency

of the couplings. However, as Figure 4.12 shows, this did not signi�cantly a�ect the results

of the training.

My next attempt to determine what made the supermolecular data set so di�cult to

learn was to go back to the way they are calculated. Philipp Dohmen investigated this in

more detail, and concluded that the approximation in Equation 2.21 breaks down when

the di�erence between the monomer geometries becomes too large and the symmetry of
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(a) (b)

Figure 4.12.: Predictions on the test set for models trained on supermolecular ET couplings

using modi�ed CM representations, with a)
1

A 6
and b) exp(−A ) scaling.

the system is reduced[schieschke_Geometry]. Therefore, the supermolecular couplings

were re-calculated using the exact formula (Equation 2.20), and all structures which gave

imaginary couplings were discarded from the data set. Additionally, to test whether the

problem with imaginary couplings could be avoided, a linear approximation to the exact

diagonalization result was also tested:

)8 9 =
1

2

(
(�2 − �1) −

(
�8 − � 9

) )
(4.1)

Figure 4.13 shows the results for two models trained on the exact and approximated

supermolecular couplings. The model using the exact formula gave very good results,

with a MAE of 1.05 meV and an '2
score of 0.92. In contrast, the linear approximation

did not seem to give a good model. This is an indication that Equation 4.1 is not a good

approximation for the exact diagonalization result.

4.5. Application of KRRModels in Light-Harvesting Systems

As a �nal note, the models presented in this work were also applied by Sopheak Seng

during his Bachelor’s thesis for learning exciton transfer site energies and couplings in

Bacteriochlorophylls (BChl) from the biological system LH2, and performed quite well in

this context[123]. LH2 from Rhodoblastus Acidophilus is part of a larger complex involved

in light-harvesting and contains 24 Bacteriochlorophyll molecules arranged in two rings

referred to as B800 and B850 for their spectral properties (see Figure 4.14). It is these BChl

molecules which are crucial to the absorption of light and the transport of the excitation

to the reaction center in a di�erent protein nearby.

Using the KRR models and the unsorted CM representation, the site energies of all

BChl sub-units could be learned. For the couplings, the models were able to learn both
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Figure 4.13.: Predictions on the test set for models trained on supermolecular ET couplings

using di�erent formulae for the supermolecular coupling: a) exact solution

(Equation 2.20) and b) linear approximation (Equation 4.1).

Figure 4.14.: Visual representation of the LH2 system. The Bacteriochlorophyll molecules

are rendered in cyan. Image reproduced with permission from [123]
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Figure 4.15.: Performance of ML models trained on 1000 data points for the site energies and

excitonic couplings of the Bacteriochlorophyll rings in the light-harvesting

system LH2. Image reproduced from work by S. Seng[123] with permission

(modi�ed)

the intra-ring couplings (subplots of Figure 4.15 labeled “B800” and “B850”, respectively)

and the couplings between all BChl units regardless of ring membership (subplots labeled

“both”).

This system is not only interesting for its biochemical properties, but also because each

BChl molecule is about four times the size as an anthracene fragment. If ML-enabled

simulations of exciton transfer in biological systems is to be feasible, the ML models should

be able to work with representations of molecules of this size. Due to the # 2

atoms
scaling

of the Coulomb Matrix representation, this is not a foregone conclusion, as the larger a

molecule gets, the more redundant the representation is compared to the actual molecular

degrees of freedom and the longer the prediction using KRR takes. However, for molecules

the size of BChl, the cubic scaling of DFTB raises the computational costs even higher,

so direct simulations are infeasible. While the KRR models trained for the chlorophyll

systems were far larger and slower than those for anthracene, they were indeed able to

give good results. Indeed, if the representation is further reduced e.g. by only taking

the intermolecular terms in the CM for the dimer as suggested by Wang et al.[100], both

prediction time and accuracy can be even further improved.

4.6. Chapter Summary

In this chapter, I showed that it is possible to create compact and simple ML models which

are able to provide Hamiltonians and closely match the observables given by the reference
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method when used in direct charge and exciton transfer simulations. I investigated the

e�ects of di�erent design decisions for the model architecture and experimented with

di�erent representations to arrive at a suitable compromise between accuracy and speed.

Additionally, I designed the models to be easily applicable to new systems by making the

data generation, training and optimization procedures automatable, so that they can be

integrated in existing simulation work�ows.

Even a low amount of training data is su�cient to reproduce hole mobilities within

8.5 % of the DFTB reference and within 30 % of the experimental values in anthracene.

This accuracy comes at a computational cost several orders of magnitude lower than ab
initio methods, but only a little faster than the semiempirical DFTB method in this speci�c

application. However, the models outperform DFTB signi�cantly for exciton transfer, and

will pull ahead even for charge transfer with increasing size of the individual fragments

due to their more favorable scaling with fragment size.

The experiments on the supermolecular coupling data set showed that ML models can

be used to sanity-check existing approximations: A bad approximation can confuse the

patterns in the structure-property relationship in a manner that prevents ML models from

learning.

The large overestimation of charge transfer mobilities when using the BC-FSSH propa-

gation algorithm could be traced back to the problem of obtaining gradients from the ML

model. These gradients enable the calculation of additional properties such as nonadiabatic

coupling vectors and molecular relaxation e�ects to give reliable estimates of mobilities or

di�usion constants in systems where the MFE propagator is unsuitable. In the following

chapter, I will present my work on making these gradients obtainable from the machine

learning method.

For an application to biological systems like light-harvesting complexes [53], the in�u-

ence of an electrostatic environment on electronic structure properties is essential. To this

end, the representation can be modi�ed and additional interaction terms such as those in

Ref. [98] can be added.

While the ML models presented here do not generalize across chemical space, the use

of a fast but accurate semi-empirical model as reference, the low requirements on the

number of training data points and the automatable training procedure enable the quick

and easy training of an ML model for any speci�c system. This training step could be

included in the setup of a multi-scale simulation approach, where the machine learning

models trained using structures obtained during equilibration can then directly be used

for propagation of charges or excitons.
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In the previous chapter, I presented simple Kernel Ridge Regression (KRR) based models

which could drive simulations for charge and exciton transfer. With a very small training

set size the models could already reproduce hole mobilities obtained with DFTB when used

together with the mean-�eld Ehrenfest method for propagation. However, the KRR models

imposed some harsh limitations on the applicability of the method, as it became evident

that for a proper description of hopping-like transfer, occupation-dependent forces and

nonadiabatic coupling vectors are necessary. Both of these properties can be calculated

from the gradients of the diagonal and o�-diagonal Hamiltonian elements (i.e. site energies

and couplings) with respect to the atomic positions. In the following, I will explain why

these properties are important and present neural network models which can predict the

Hamiltonian elements as well as their gradients.

First, the gradients of the diagonal elements of the Hamiltonian provide the forces used

for the relaxation of a site’s geometry in response to a change in occupation. As described

in subsection 2.4.2, we approximated this process implicitly by arti�cially reducing the

site energy of the charge-carrying fragment by a speci�c amount. This ‘reorganization

energy’ was obtained a priori from quantum chemical calculations[37]. However, this

arti�cial change in energy does not a�ect the fragment’s geometry in any way, so cannot

truly capture the process of relaxation. As Figure 5.1 shows, using this approximation in

FSSH simulations leads to large errors, even when DFTB and not the ML model is used

to calculate site energies and couplings. This problem did not occur in MFE simulations,

as the charge delocalizes strongly across the fragments, spreading this e�ect out over

multiple sites. Second, as the charge hops from one potential energy surface to another, the

potential energy of the system changes instantly. As total energy must be conserved, the

kinetic energy of the system must be adjusted to match. Usually, this is done by re-scaling

the velocities of the atoms in the system[124]. Scaling factors can be obtained from the

Boltzmann-distribution[63], but a more precise method is to use nonadiabatic coupling

vectors (NACVs)[125, 124], which can in turn be calculated from the derivatives of the

o�-diagonal Hamiltonian elements. Further details can be found in section 2.4.

Unfortunately, obtaining the gradients of a KRR model w.r.t. its input features is cum-

bersome. While the model is smooth and continuous when the CM representation is

not sorted, the derivatives of the model must be calculated analytically (or approximated

numerically), which is computationally costly and can limit which representations, kernel

functions or training set sizes can to be used. To my best knowledge, at the time of writing
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Figure 5.1.: Propagation along the b crystal axis in an anthracene crystal using the

Boltzmann-corrected Fewest Switches Surface Hopping (BC-FSSH) propagator.

Both the ML result (the model trained on the 1000 data points from the short

data set in subsection 4.2.1) and the result from DFTB using implicit relaxation

are far o� from the DFTB result with full relaxation, which is closer to the

experimental value[118].

the only publicly available implementation of KRR gradients is included in the QML code

package [114] but requires using the slow FCHL19 representation.

Here, moving from a KRR model to a neural network architecture can help, as the

commonly used NN frameworks (e.g. Tensor�ow[126] or Theano[127]) have e�cient

automatic di�erentiation routines built-in. Furthermore, the computational e�ort needed

to get a prediction from an NN only depends on the network architecture. For KRR models,

prediction time scales linearly with the number of training data points that the model was

trained on, limiting the training set size for all practical applications to a few thousand

data points. Because DFTB is so computationally e�cient (see subsubsection 4.3.3.1), this

scaling severely restricts the usual approach of systematically improving the ML model

by increasing training set size. A good sampling of conformational space is especially

important when ML forces are used to change the system geometry, as bad force predictions

can lead to catastrophic failures.

Previous work on learning non-adiabatic coupling vectors has focused on their appli-

cation in excited-state dynamics [128, 129, 130, 131] and have used reference data from

costly ab initio calculations. The resulting models work by learning the energy and its

gradients for the ground and relevant excited states. As the reference values for every

state are obtained from an individual calculation, a phase correction scheme is necessary

to track and �x the absolute phase of the wave functions and obtain consistent signs for all

values involved. In the context of the simulation formalism used in this work, this phase

correction can be avoided, and only the properties of one state must be calculated.

In the following sections, I describe the design, training, optimization and application

of a neural network model for the Hamiltonian elements for charge transfer propagation
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and their derivatives w.r.t. atomic positions. As a test system, I again use the anthracene

crystal to allow direct comparison of the new models with the KRR models presented

in the previous chapter. For the NN models, I only use charge transfer Hamiltonians, as

the formalism and implementation to calculate gradients and NACVs for exciton transfer

using DFTB is not ready yet.

All training data calculations for the models in this chapter were performed by Weiwei

Xie, while the propagation simulations were done by Philipp Dohmen.

5.1. Requirements and Fundamental Design Decisions

Several of the points discussed in section 4.1 apply here as well: Models should be as

computationally e�cient as possible while capturing the geometry-dependence of Hamil-

tonian elements, this time also including the gradients. In order to obtain gradients usable

in MD simulations, the models must be continuous and smooth, and predicted energies

and gradients must be consistent. Model training should use geometries sampled from MD

simulations and be as automatable as possible in order to slot neatly into the simulation

work�ow for obtaining mobilities. For the same reason, no generalization across chemical

space is necessary.

The decision to train separate models for the site energy and coupling elements moti-

vated by the di�erent representation sizes and scales of the targets needs to be reevaluated.

On the one hand, an NN model has a lot more �exibility to handle these two factors

compared to the rigid KRR models and could be set up to take as input a dimer geometry

and return both site energies and the coupling (as well as the respective gradients). By

scaling the targets separately to normal distributions with a mean of 0 and a standard

deviation of 1, the scale separation is made irrelevant. Obtaining both site energies and

the coupling for a pair of fragments with one network call may sound e�cient, but as

every fragment is contained in multiple pairs, multiple predictions of every site energy

are made. This redundant calculation motivates the decision to make two separate models

again – one takes the monomer structure and gives the site energies and their gradients,

while a second model takes dimers, predicting couplings and their gradients.

In order to facilitate integration into GROMACS, the models must be as self-contained

as possible. A clear de�nition of the interface between GROMACS and the models allows

experiments with the architecture, representation, and other model speci�cs without

modi�cations of the simulation code itself. Optimally, the model should require only the

coordinates of the fragments/pairs and return the predicted couplings and gradients. Scal-

ing or preprocessing steps should be part of the model if possible. For the representation,

this is especially important, as not only the function for the calculation of the representa-

tion but also the calculation of its derivatives must be implemented. Implementing the

representation as a layer of the NN model is therefore crucial for the �exibility of the

approach. For scaling transformations of coordinates and model outputs, this is less crucial,

as the simple multiplication with a scalar value is easy, e�cient, and is independent of the

functional model architecture.

As the gradients obtained from the model will be converted to forces applied to the

system, it is especially important for force predictions to be as reliable as possible. Due to
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the feedback of the forces to the geometries, a bad force prediction can push the atoms

into conformations which are out of the area of the PES sampled during training. There,

the model must extrapolate and can give erratic predictions for the forces, which can lead

to even more distorted geometries. These errors can add up to not only single physically

nonsensical geometries, but lead to catastrophic failures of the simulation by pushing

atoms into each other.

One way to avoid this issue would be to quantify the uncertainty in the prediction,

which allows falling back to DFTB whenever necessary or using active learning to craft

the training set to be minimally redundant yet maximally representative. However, most

techniques for uncertainty estimation in neural network models are formulated for classi�-

cation problems or come at a large added computational cost (e.g. by training an ensemble

of models). Because DFTB is so fast, this approach runs the risk of slowing down the

propagation for charge transfer instead of speeding it up. Therefore, I decided to forgo

uncertainty estimation for the time being in favor of training as fast a model as possible

and reconsider that decision once a speed comparison between DFTB and the NN model

is available.

Instead, to make the gradients as stable as possible I attempted to minimize the proba-

bility that extrapolation is needed during the course of an MD simulation by extensively

sampling the conformational space, ensuring the inclusion of ‘exotic’ geometries in the

training set. I describe this approach in detail in section 5.2, and evaluate whether the

models obtained this way are su�ciently stable in subsection 5.5.2.

As far as the speci�c structure of the neural network is concerned, simple fully-connected

networks with a nonlinear activation have been previously used to predict site/excitation

energies or couplings[96, 93]. Recently, Li et al.[132] have presented an NN architecture

speci�cally for photodynamics simulations of organic molecules. Published in the pyNNsMD

package, it allows predicting energies and gradients of multiple electronic states, uses a

simple representation whose calculation is integrated into the model, and is implemented

using Tensor�ow. It is very well suited to the problem as posed in this work, and forms

the basis for the models in this chapter.

5.2. Generation of Data Sets for Training and Validation

All training data calculations in this chapter were performed by Weiwei Xie. Training data

points for both diagonal and o�-diagonal elements and their respective gradients were

obtained from an MD simulation of the anthracene similarly to how the data for the KRR

models was generated (subsection 4.1.1): An anthracene crystal supercell was constructed,

containing 30 × 15 × 6 molecules along the crystal axes (a, b and c), respectively. Force �eld

parameters were derived from the general AMBER force �eld (GAFF) [102, 103]. Atomic

charges were generated from restrained �tting on the electrostatic potential (RESP) [104,

105], calculated at HF/6-31G* [106, 107] using Gaussian09 [108]. All MD simulations were

performed with the GROMACS 5.0.4 software package [109, 110]. After an initial energy

minimization the temperature was equilibrated for 1 ns with the Nose-Hoover thermostat

[112]. Productive MD simulations were run for 10 ns with a time step of 2 fs, in which

structures were saved every 5000 steps. A subset of 10 anthracene molecules from the
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supercell was used for obtaining training data. Hamiltonian elements and their derivatives

with respect to atomic coordinates were calculated for every data point with the highest

occupied molecular orbital (HOMO) as frontier orbital using non-self-consistent DFTB [1,

66, 67].

An initial data set referred to as orig was obtained from simulations equilibrated at 300 K.

This data set contains 30 980 data points for the diagonal and o�-diagonal elements each

and was used for �rst tests of the model architecture and rough tests on hyperparameter

e�ects, as well as tests of the implementation of NN prediction in GROMACS.

However, during the course of this work, the importance of thorough sampling of

geometries became evident. When forces predicted by the ML method are used to change

atomic positions in simulations, the adverse consequences of individual bad predictions

can be catastrophic: If a geometry is encountered for which the model gives a drastically

bad prediction for the energies, the predicted forces can become quite large and displace

the geometry of the molecule to a point in the PES even farther outside the training set,

where the prediction in the next step will then give even worse predictions. Therefore,

strong enough outliers can cause the ML model to become stuck in a vicious cycle of

deteriorating predictions until the simulation crashes. Avoiding outliers requires careful

sampling of the conformational space of the fragments and pairs in the crystal to make

sure that no thermally accessible geometries are far outside the training set. As this project

progressed, the data sets I used for training evolved as well to improve this sampling,

reduce outliers and minimize the probabilities of simulations crashing.

One approach to improve MD-based sampling for ML purposes is to sample the training

geometries from a simulation performed at a temperature far higher than the temperatures

for which the model would be asked to provide forces (e.g. sample training data at 1000 K

and use the model for simulating at 300 K). This approach has previously been shown

to work well for ML-driven molecular dynamics simulations of silicon crystals [133]. By

obtaining the structures from a simulation with very high temperature, even the parts of

the PES which are rarely seen in the lower-temperature MD are sampled for the training

data set. In the anthracene crystal, however, the feasibility of this approach appears limited

by the phase transition points of anthracene: Outside of MD simulations, anthracene melts

at 489 K and boils at 614 K[83]. However, these phase transitions do not occur noticeably

at the times scales along which the geometries are sampled. The geometries seen in high

temperature MD simulations beyond the melting point (and arguably even a bit beyond the

boiling point) are therefore obtained from sampling a similar but expanded conformational

space compared to that seen at lower temperatures.

Using this approach, a second data set (henceforth called mixed_temperatures ) was

created by obtaining structures from simulations of the crystal equilibrated at 300 K and

500 K. For each temperature, 10 000 data points for diagonal elements and 45 000 data

points for the o�-diagonal elements were included in the mixed_temperatures data set.

This data set was used during the tests of the di�erent hyperparameter optimization

methods.

There is another e�ect which must be taken into account for the minimization of outliers:

The structures for the training data were previously sampled from an MD simulation of

the uncharged sites. I will illustrate why this is a problem using the diagonal elements of

the Hamiltonian (i.e. site energies), but the same argument applies for the o�-diagonal
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Figure 5.2.: Schematic PES of uncharged molecule and molecule occupied by a hole. Sam-

pling of training data happens on the uncharged PES, but following the learned

gradients of the charged PES towards its minimum can lead to geometries

unknown to the model yet thermally accessible (orange interval).

terms. In the procedure described above, the site energy and gradient information is

sampled around the minimum of the PES of the uncharged molecule, as no charge is

present on any of the fragments used in the training sets orig or mixed_temperatures .

However, in charge transfer simulations following the forces calculated from the gradients

on an occupied fragment leads into the minimum of the PES of the charged molecule
1
,

which may be notably di�erent from the minimum of the uncharged state. The bigger

the di�erence between the PESs of charged and uncharged states, the more structures

which are thermally accessible for the charged fragment lie outside the originally sampled

geometry space. This e�ect is schematically illustrated in Figure 5.2 for a diatomic molecule.

The conformational space sampled for training data generation using the uncharged state

at a given temperature is shown in blue. As the teal PES of the charged fragment is shifted

to shorter distances, there is a part of the charged PES which is fairly close to the minimum

but outside the range sampled in the training set. For geometries with a bond length from

the orange interval, any model trained on data from the blue interval must extrapolate,

and bad force predictions here can move the structure even further outside the model’s

area of competence. These e�ects can compound, leading to crashes in the simulation as

atoms are pushed together or restraints placed on the fragment geometries are exceeded.

In order to also sample this area of the conformational space of the anthracene system,

the training set must be augmented by including geometries of charged fragments sam-

pled from MD simulations where the fragment occupations were kept constant and no

movement of the charge was possible. This data set I will refer to as charged_uncharged .

These simulations were performed exclusively at 500 K to increase the structural variance

1
This a rephrasing of the goal to reproduce the relaxation of the fragments on occupation changes
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in the training data set. To obtain diverse structures of charged fragments, ten 0.63 ns

simulations were performed with a hole �xed on each of the ten fragments from the same

subset used above. This gave 42 000 data points for the diagonal elements and 63 000 data

points for the o�-diagonals sampled from the PES of charged fragments. These data points

were combined with data for the uncharged state obtained in the same manner as in the

mixed_temperatures data set, adding 47 800 data points for the diagonal and 45 000 for

o�-diagonal elements. The total amount of data available in the charged_uncharged set

was therefore 89 800 and 108 000 for diagonal and o�-diagonal elements, respectively.

5.3. Architecture of Neural Network Model

Here, I describe the model architecture presented by Li et al.[132] and the modi�cations

made to the network by me or Patrick Reiser for application to DFTB Hamiltonians for

anthracene. In the aforementioned work, two di�erent kinds of networks are used: One

model is trained to predict the energies and forces of both ground and excited states of the

molecule. For this model, the loss function takes into account the errors on both energies

and gradients. The second network predicts NACVs as the derivatives of a physically

meaningless potential by using the same network architecture as for energies and forces,

but only including the gradient term in the loss function.

While in this work, the goal is to obtain NACVs from the NN prediction, the approxima-

tions made in the DFTB reference method for propagation allow using only the energy-

gradient network: The diagonal elements of the DFTB Hamiltonian for charge transfer are

the energies of the charged fragment’s frontier orbital, so the energy in the uncharged state

is not needed. The gradients of the Hamiltonian elements are not the NACVs themselves,

but the forces that would apply were the involved fragments occupied by the charge

carrier which are then used to calculate NACVs with little added cost. Therefore, using

one energy+gradient network for the diagonal elements and another for the o�-diagonals

is su�cient. Each of these networks functions like described by Li et al.[132], but is trained

to predict the Hamiltonian elements and their gradients instead of the energies and forces

of several electronic states.

The networks use the spatial coordinates of either a single fragment or a fragment

pair as inputs and transform them into a matrix of inverse distances between atoms.

This representation ful�lls all necessary invariances, is inexpensive to calculate and can

easily be integrated in the network architecture for automatic gradient calculation. As the

representation using inverse interatomic distances is already redundant compared to the

degrees of freedom of the system and is also quite large for molecules as big as anthracene,

I did not include angles or dihedrals. Instead, for the coupling network I experimented

with further reducing the representation to only include the intermolecular distances

between atoms. This reduction roughly halves the size of the representation without loss

of information and has previously been shown to improve learning of electronic couplings

[100]. For the monomeric representation, such a trivial reduction is not possible, but also

not quite as necessary: Due to the # 2

atoms
scaling of the distance matrix, the monomer

representation is one fourth the size of the dimer representation.
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The individual entries of the representation are then scaled so that every entry resembles

a normal distribution with mean 0 and variance 1 across all points in the training data

set. This scaling is essential for the successful training of the neural network. The energy

value (diagonal or o�-diagonal Hamiltonian element) is also scaled in the same way, while

for the gradients, care must be taken to keep consistency with the energy. Therefore, the

gradient values are only scaled with the variance obtained from the energy distribution in

the training set and not shifted at all.

The trainable part of the network consists of a stack of fully-connected layers using a

leaky soft plus activation function

leaky_softplus(E) = (1 − U) · log (exp(E) + 1) + U · E, (5.1)

where U quanti�es the leakiness of the slope (see Equation 3.17) and is �xed at its default

value of 0.3. The �nal output layer uses a linear activation to give the Hamiltonian element.

The number of hidden fully-connected layers as well as the number of neurons per layer

are optimized during the hyperparameter search (see subsection 5.3.2 below).

The loss function includes the mean squared errors on both the energy and force

predictions as proposed by Schütt et al.[134] shown in Equation 5.2.

! = UMSE

(
�ref, �pred

)
+ VMSE

(
� ref, � pred

)
(5.2)

U and V are hyperparameters used to balance the impact of errors on energies with errors

on force components.

A notable technical aspect of these networks is that they are implemented in Tensor�ow,

which provides bindings for working with neural network models in the C programming

language. This is especially useful, as it means that the models can be loaded and used

in GROMACS with little e�ort, and even extensions to active learning schemes would be

feasible for the future.

5.3.1. Configuration of Model Training

In order to speed up model training, the features of the training data and their gradients

were calculated once and reused in every epoch.

I trained all models using the Adam optimizer [135]. While the learning rate was

included in the hyperparameter search, other optimizer parameters were kept constant at

their default values.

All models received training and validation data in a 9:1 ratio, and the loss on the

validation set was monitored in order to prevent the model from over�tting on the training

set. The training process was stopped if the loss on the validation set did not improve for

a certain number of epochs, and the model parameters restored to the point where that

loss was minimal.

I included the type of regularization (L1 or L2) in the hyperparameter search space, with

regularization strengths at their default values of 0.01.
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5.3.2. Hyperparameter Optimization

In �rst tests of the NN architecture described above, it became evident that several param-

eters are crucial to the performance of the trained models. These included the number of

hidden layers and neurons per layer, as well as the relative weights of the losses on the

energy and the forces. Additional hyperparameters whose e�ects were not as transparent

were the type of regularization and the starting learning rate. In order to sample the large

search space, I experimented with several techniques for hyperparameter optimization.

An initial rough exploration of hyperparameter combinations showed that especially the

loss weights heavily impact the �nal score of the model, and best results were obtained

with the energy:gradient losses at ratios as disparate as 5:1 – 1000:1. I was therefore able

to reduce the search space a bit by �xing the gradient loss to a value of one, and only

including the energy loss weight in the hyperparameter optimization.

In order to automatically optimize the hyperparameters, an optimization criterion is

needed. Usually, the loss on the validation set or the '2
coe�cient can be used, but this

is not as straightforward when the model has two outputs. The losses are not directly

usable as a target, as they are scaled with the loss weight hyperparameters, which are

part of the optimization process. While '2
coe�cients are not directly dependent on the

hyperparameters in the same manner, the '2
values for the energy and force outputs

must still be combined into a single metric in order to be compatible with standard

hyperparameter optimization algorithms. It is desirable to keep the behavior of the

combined'2
coe�cient consistent with that of the individual'2

values, so any combination

should have an optimal value of 1, the value of 0 should correspond to the null model, and

there should be no lower bound. Additionally, I want to favor models which perform equally

well on site energies and forces so that the optimization does not converge to models

which are excellent for one but terrible for the other. In a �rst attempt, I experimented

with criteria which take the sum or arithmetic mean of the two '2
coe�cients and apply a

penalty which scales with the di�erence of the coe�cients, e.g.

'merged = '2

energy
+ '2

force
− _ |'2

energy
− '2

force
|. (5.3)

However, this type of criterion introduces an additional hyper-hyperparameter _ to adjust

the relative importance of the di�erence term to the original '2
coe�cients. To avoid

this, I decided on another approach: The individual '2
coe�cients would be scaled using

a nonlinear function which punished low '2
values and �nal combined score is their

arithmetic mean:

'merged =
'scaled

energy
+ 'scaled

force

2

(5.4)

I experimented with a quadratic and an exponential scaling for the individual'2
coe�cients,

as it is a priori unclear which scaling is better.

'scaled

quadratic
= −('2 − 1)2 + 1 (5.5)

'scaled

exponential
= − exp(−('2 − 1)) + 1 (5.6)

As for the optimization algorithm, I had to �nd a balance between the computational

cost of the algorithm and the coverage of the search space. A grid search approach has
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the disadvantage that it must naively cover all points in the search space and does not

converge on the most promising areas. Considering that an individual �t of the NNs on

a training set size of 9000 took around two hours on a GTX 1080Ti GPU, a grid search

would take an unreasonable amount of time.

Among the optimization algorithms which converge on promising parts of the search

space, I �rst experimented with a genetic algorithm. While this algorithm was able to

converge to satisfying results, the need to fully train every candidate model drove the

computational costs of the search to an unacceptable level. Therefore, I moved on to use

the Hyperband search (subsection 3.6.2) as implemented in the keras-tuner package. This

algorithm has several parameters which can be adjusted to reduce the search time to

around 3 h to 6 h despite the large search space.

5.4. First Generation of Models: Proof of Principle

Using the original training data set orig I performed a few initial experiments with the

NN model. I did not systematically optimize hyperparameters at this point, but some

exploration of the relative loss weight parameter was necessary to get the model to learn

both the Hamiltonian elements and their gradients.

5.4.1. Models for O�-Diagonal Elements

For the o�-diagonal elements, I used a training set size of 45 000 structures, with a validation

set size of 5000. The hidden part of the network consisted of four layers á 100 neurons,

with the loss of the energy weighing 5 times as much as the force loss. I used early stopping

combined with a learning rate scheduler to periodically decrease the learning rate when

there was no improvement for ten epochs and �nally stop training before the model could

over�t, resulting in learning rates of 10
−3

, 10
−4

, 10
−5

and 10
−6

. I trained two models in

order to compare two variants for the representation – one model used the full upper

diagonal of the distance matrix, while a second model used only its intermolecular block

(see above).

The model using all interatomic distances (coupling-full) converged to an MAE of

1.7 × 10
−4 �h (4.5 meV) on the couplings and 4.9 × 10

−5 �h 00

−1
(2.5 × 10

−3
eV Å

−1

) for the

gradients. It reached '2
scores of 0.92 for the couplings and 0.94 for the gradients. The

performance of the trained model on 10 000 structures from the held-out test set is shown

in Figure 5.3b.

When the reduced representation was used, the model reached a MAE of 1.6 × 10
−4 �h

(4.4 meV) for the coupling and 4.3 × 10
−5 �h 00

−1
(2.2 × 10

−3
eV Å

−1

) for the gradients. The

'2
score for the coupling is 0.92 and for the gradients '2 =0.96, so the model has learned

both properties about equally well. The results for this model, which I will refer to as

coupling-inter, are summarized in Figure 5.3b.

While these two models reached very similar levels of accuracy, there was a signi�cant

di�erence in the computational cost for the training of these two models although the

convergence criteria for the early stopping method were identical. Using the full represen-

tation, the model needed 744 epochs to converge, while with the reduced representation,
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5.4. First Generation of Models: Proof of Principle

(a) o�-diagonal elements with full representation (coupling-full)

(b) o�-diagonal elements with reduced representation (coupling-inter)

Figure 5.3.: Performance of two NN models trained to o�-diagonal elements of the Hamil-

tonian and their gradients. Model a) uses the full upper triangular of the

interatomic distance matrix as representation, while b) only uses its inter-

molecular block.

the model already gave excellent results after 210 epochs. The change of the training

set MAEs on the couplings and gradients during the course of the training is shown in

Figure 5.4 for both models.

As the reduced representation speeds up both the training and the prediction and has a

slightly positive e�ect on the prediction quality, I only used this representation in further

experiments.

5.4.2. Models for Diagonal Elements

I trained diagonal element models on 45 000 structures as well, with a validation set

containing 5000 structures. Again, I used early stopping combined with a learning rate

reduction (5 × 10
−3

, 5 × 10
−4

, 5 × 10
−5

, 5 × 10
−6

and 5 × 10
−7

). For the diagonal elements,

it was far more di�cult to �nd good values for the hyperparameters to give good results

for both energies and gradients.

At a loss-weight ratio of 1000:1 (Figure 5.5a) with a trainable network of four layers á 200

neurons, the energies were learned well, but the gradients showed errors where especially

large gradients were overestimated. This model reached a site energy MAE of 3.7 × 10
−4 �h

(10.1 meV) and a MAE of 7.4 × 10
−4 �h 00

−1
(3.8 × 10

−3
eV Å

−1

) for the gradients on the test

set. '2
scores were quite good as well, 0.93 for the site energy and 0.97 for the gradients.

In contrast, a ratio of 500:1 (Figure 5.5b, referred to as site) and below and smaller

network sizes (four layers á 30 neurons) resulted in almost perfect forces, but the site

83



5. Neural Network Models for Nonadiabatic Coupling Vectors and Relaxation
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Figure 5.4.: Training set MAEs of couplings (solid line) and gradients (dashed line) for the

coupling-full (blue) and coupling-inter (orange) models.

(a) diagonal elements with loss weights 1000:1

(b) diagonal elements (loss weights 500:1, site)

Figure 5.5.: Performance of two NN models trained to diagonal elements of the Hamiltonian

and their gradients. The model in a) uses a 1000:1 ratio of the loss weights

of energy and gradients and a large NN, while the model in b) uses a smaller

network and a 500:1 ratio.
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Figure 5.6.: MAE (a) and '2
(b) as a function of training set size for the coupling-full,

coupling-inter, and site models.

energies showed a systematic shift, so that large site energies were underestimated by

the model. For the site energies, the MAE was 6.5 × 10
−4 �h (17.6 meV), with an '2

score

of 0.8, while the gradient MAE was 2.6 × 10
−4 �h 00

−1
(13.6 × 10

−3
eV Å

−1

), giving an '2

score of 0.99.

As accurate gradients are crucial for obtaining a stable simulation, I preferentially

used the diagonal element models with better forces for �rst tests of the GROMACS

implementation. For more productive use, a model which gives good results for both site

energies and gradients is required, which should be discoverable with a more extensive

and systematic hyperparameter search.

5.4.3. E�ects of Training Set Size on Model Accuracy

In order to evaluate the behavior of the coupling-full, coupling-inter, and site mod-

els as training set size increases, using the hyperparameters given above I trained �ve

versions of each model at training set sizes of 90, 900, 9000 and 45 000. I used identical

hyperparameters for each training set size because I wanted to avoid repetitively running

the costly hyperparameter optimization scheme. In contrast to the kernel width f in KRR

methods, this NN model does not have any hyperparameters with such a tight coupling to

the training set size. Figure 5.6a shows the mean absolute error and Figure 5.6b the '2
score

of every model evaluated on a 10 000 structure test set. Evidently, the coupling-inter

model performs far better even at low training set sizes, while the model using the full

representation needs more data to reach satisfactory results. This observation is in agree-

ment to the analysis performed by Wang et al. [100]. All models improved as training size

increased, a good indicator that they are systematically learning patterns in the training

data set. However, models with a training set size below 10 000 data points were frequently

completely unusable as the low '2
scores show. This information is crucial for the hyper-

parameter search, as this gives a minimum amount of data necessary to reliably obtain

working models.
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Figure 5.7.: Hamiltonian elements and their gradients as calculated by DFTB and the NN

models. Upper row diagonal elements, lower row o�-diagonal elements.

5.5. Implementation in GROMACS and Performance
Considerations

I implemented the Hamiltonian prediction using the NN models in GROMACS using the

Tensor�ow C API and was able to load pre-trained models, pass the fragment and pair

coordinates to the model and the predictions for Hamiltonian elements and gradients back

to the propagation code. When the Hamiltonian is calculated using DFTB, the coupling is

only evaluated if the there is an intermolecular pair of atoms which are closer together than

the 2000 cuto� of the DFTB SK �les. I ensured that the ML method uses the same criteria

to decide which pairs to calculate the coupling and gradients for to keep computational

costs comparable.

I tested the implementation by performing a 0.1 ps (1000 MD steps) simulation without

propagation in a system whose QM zone consists of a chain of 25 anthracene molecules

along the b crystal axis using DFTB and then re-running the simulation to obtain the ML

results on the same trajectory. As ML models, I used networks very similar to the o�-

diagonal model and 500:1 diagonal model presented above. The results are summarized in

Figure 5.7. The systematic error in the site energy can be observed here as well, otherwise

the results appear quite similar to the results outside GROMACS. A look at the time series

for the couplings and site energies can highlight the e�ects of the prediction errors during

the simulation. For the site energy, Figure 5.8a shows that the ML model favors the mean

of the distribution and does not capture the variance of the site energies. In Figure 5.8b, it

is evident that the coupling model reproduces the general trends of the coupling as the

geometry changes over time, but cannot capture its small �uctuations. In chapter 4 it

became evident that good values for the hole mobilities could indeed be obtained with

models which did not capture these �uctuations, so the couplings predicted by this model
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Figure 5.8.: Comparison between values calculated using DFTB (blue) and the NN (orange)

along the trajectory of a simulation of an anthracene crystal. a) Site energies

of a randomly chosen fragment, (b) coupling between a randomly chosen pair

of neighboring fragments.

should be su�cient. However, the systematic issue with the site energy model must be

resolved and the quality of the gradients tested before propagation simulations can be

performed.

5.5.1. E�ects of Outlier Predictions on Stability of MD Simulations

In order to evaluate if the ML method is stable enough to drive MD simulations, I also started

some test simulations where the ML forces were used to relax the fragment geometries. The

'2
coe�cients for both the site energy and the coupling models shown above looked quite

promising. However, every one of the �ve long simulations I started crashed after 20 000

to 40 000 steps. Closer examination revealed that in every simulation, outlier predictions

occurred, whose unusually large gradients pushed the geometry into a con�guration

where the predictions became even worse. Figure 5.9 shows one such example, where

the site energy predicted at one point is −500�h and the simulation crashes brie�y after.

In Figure 5.9b it is evident that not every outlier results in a fatal crash – small outliers

do occur previously in the simulation, but after 3.27 ps the predictions get successively

worse until the breaking of positional restraints of the MM simulation framework brings

the simulation to a stop. I could not determine more precisely what causes these crashes,

aside from the potential ‘runaway’ outliers. Detailed analysis of the NN prediction routine

in GROMACS ruled out common programming errors which might cause bogus data to be

87



5. Neural Network Models for Nonadiabatic Coupling Vectors and Relaxation

5.5

6.0

0 500 1000 1500 2000 2500 3000
time [fs]

550

500

450

400

(a)

3200 3210 3220 3230 3240 3250 3260 3270 3280
time [fs]

500

400

300

200

100

0

sit
e 

en
er

gy
 [H

a]

3230 3240 3250 3260 3270

5.5

6.0

(b)

Figure 5.9.: Example for a site energy prediction so bad that the simulation crashes after

32 804 steps (3.28 ps). a) Overview over the entire simulation, b) a detailed look

at the last few steps without the interpolated line.

read from memory instead of the predictions. As a next experiment, I decided on reducing

outlier frequency by including structures sampled from high-temperature simulations in

the data set. If this did improve the stability of the simulations, this would be evidence

that it is indeed catastrophic outliers causing the crashes. The results of this experiment

are discussed in section 5.7 below.

5.5.2. Performance Comparison with DFTB

To compare running times with DFTB and the NN, I re-ran and timed both the NN and

DFTB calculations on the previously generated trajectory using a 0.1 fs timestep. On one

core of an Intel Xeon CPU E5-2630 v4 @ 2.20GHz Processor, the DFTB calculation required

2314 h ns
−1

, while a calculation using the NN models only needed 578 h ns
−1

. This is a

speedup by a factor of four compared to the highly optimized DFTB1 method, which

is a considerable improvement in the size in which propagation is possible. Additional

improvements can be achieved by reducing the size of the inverse distance representation

for the o�-diagonal terms to the intermolecular block of the distance matrix, and further

optimizing the interfacing code. Additionally, when this scheme is applied to systems with

larger monomers, the advantage of the NN model will increase signi�cantly due to the

unfavorable # 3

atoms
scaling of the DFTB diagonalization.
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model depth =neurons energy loss weight regularizer learning rate

o�-diagonals 5 375 21 L2 1 × 10
−4

diagonals 4 460 3940 L1 1 × 10
−4

Table 5.1.: Best parameters for the diagonal and o�-diagonal models found in the hyperpa-

rameter search.

5.6. Second Generation of Models and Hyperparameter
Optimization

As a next step, I augmented the data set by adding in geometries sampled from higher

temperatures, which should increase the geometric diversity of the training set and reduce

the frequency of outliers. This resulted in the mixed_temperatures data set. At this

point, I also began using only the intermolecular terms of the inverse distance matrix

as representations for the o�-diagonal models in order to further reduce model size and

prediction costs. Additionally, having shown the general applicability of the NN models

for learning Hamiltonian elements and their gradients, I was now ready to optimize the

models in an extensive hyperparameter search.

For the hyperparameter search I used the Hyperband algorithm (section 3.6) as im-

plemented in the keras-tuner package. In order to keep computational costs low while

ensuring that the training data is su�cient for the model to learn, I used a training set size

of 9000 data points during the hyperparameter optimization. Again, I used early stopping

to avoid over�tting models to the training set, however, this time I did not couple this

to a learning rate schedule and used a longer patience of 20 epochs. I set the maximum

number of epochs to 1000 and the factor parameter of the Hyperband search to 3. For the

search for the o�-diagonal model, I used the merged '2
coe�cient with quadratic scaling

(Equation 5.5). In order to push the model for the diagonal elements to an area where

both the site energies and the gradients are well-learned, I used the exponential scaling

(Equation 5.6).

For both the diagonal and the o�-diagonal models, the search space was 3, 4 and 5

layers for the depth and 20 to 200 for the number of neurons per layer. For the learning

rate, values of 1 × 10
−3

, 5 × 10
−4

and 1 × 10
−4

were possible, and either L1 or L2 weight

regularization (Equation 3.21 and 3.22 in section 3.5) was used. The relative loss of the

forces was held �xed at the value 1, while the search space for the energy loss weight was

500 to 5000 (diagonal elements) and 1 to 1000 (o�-diagonals), respectively.

The results of the search are summarized in Table 5.1, and the results of the evaluation

on the test set are visualized in Figure 5.10. When evaluated on a test set of 10 000

held-out structures from the mixed_temperatures data set, the model for the o�-diagonal

elements gave an MAE of 1.6 × 10
−4 �h (4.3 meV) for the couplings and 4.7 × 10

−5 �h 00

−1

(2.4 × 10
−4

eV/Å) for the gradients, resulting in '2
scores of 0.91 and 0.93, respectively.

These values are very similar to those obtained for the model trained on 9000 data points

from the orig data set.

For the model trained on the diagonal terms, the results are again very similar to those

obtained above for the orig data set. On the test set, I obtained MAEs of 6.9 × 10
−4 �h
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(a) o�-diagonal elements

(b) diagonal elements

Figure 5.10.: Performance of NN models trained to a) o�-diagonal and b) diagonal elements

of the Hamiltonian and their gradients with hyperparameters optimized using

the Hyperband algorithm.

(18.7 meV) for the site energies and 8.8 × 10
−4 �h 00

−1
(4.5 × 10

−2
eV/Å) for the gradients.

The '2
scores were 0.83 and 0.98 for site energies and gradients, respectively.

While the mixed_temperatures data set does have more structural variety, it is unfor-

tunate that the hyperparameter search does not give hyperparameters which give better

results. However, this may be due to the fact that no learning rate scheduling was used

for this model or the addition of weight regularization pushing the model farther to the

mean. As an additional factor, the Hyperband algorithm fundamentally relies on a random

sampling of the search space, so running the algorithm multiple times could �nd better

areas
2
. However, this also would be quite costly, making it more and more impractical for

the long-term use case of training models between MD equilibration and propagation sim-

ulations. Another reason for this lack of improvement the Hyperband algorithm achieves

may be the de�nition of the combined '2
score, and other objective functions may be

compared and evaluated. The upside of the relative lack of success of the automated search,

however, is that the surface of the objective seems to be quite �at, so the parameters found

by simple manual exploration are already quite good.

5.6.1. Comparison to Diagonal Elements Obtained from LC-DFTB2

Crucially, the automated hyperparameter search for the diagonal element models did not

�nd any areas where site energies and gradients were both learned well. This observation

2
And of course, moving from Hyperband to Bayesian Optimization may also improve the results, but there,

every model is trained to completion, requiring many additional epochs of training.
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Figure 5.11.: Results for the delta model trained on the gradients from LC-DFTB2.

supports the theory that the models’ failure to predict both quantities together is not

an issue in the model or its con�guration, but may be a problem in the data set. If the

function–derivative relationship between site energy and gradients is not valid due to an

error in the construction of the data set, this could lead to the behavior observed here.

The gradients used until now were calculated from the non-SCC DFTB electronic

structure, and the orbital structure of the charged fragment is assumed to be equal to

the orbital structure of the neutral molecule aside from the HOMO
3
. This avoids the

calculation of the charged fragment completely, as the site energy is the HOMO energy

and the gradients for relaxation are those resulting from the HOMO only. I wanted to

double-check whether it is this calculation of the gradients which causes a �t con�ict due to

the approximation breaking down or an error in the implementation of this approximation

which is used to calculate training data. To achieve this, I worked with Philipp Dohmen,

who re-calculated all site energies and couplings in the orig data set using LC-DFTB2 as

implemented in dftb+. I will refer to the resulting models as delta models, as the gradients

for a given structure are evaluated as the true di�erence of the gradients in the neutral

and charged states.

I performed the hyperparameter optimization for the delta model in the same manner as

described above, hyperparameter grid settings for this search can be found in Table A.4. The

best model found had an NN with 4 layers and 430 neurons per layer, the energy:gradient

loss weight ratio was 553:2, and L2 weight regularization and a learning rate of 5 × 10
−4

were used. The results for the delta model were very di�erent from for the model using

the non-SCC DFTB diagonal elements: While the results for the site energies greatly

improved (MAE 3.5 × 10
−4 �h i.e. 9.6 meV, '2 =0.94), the gradients were slightly worse,

only reaching a MAE of 1.0 × 10
−3 �h 00

−1
(5.2 × 10

−2
eV/Å, '2 =0.98). The model showed

neither the systematic shift for the site energies, nor the overestimation of the gradients

that previous models (Figure 5.5) had, as can be seen in Figure 5.11.

As this model is easily able to capture the site energies and their derivatives just as

well as the models for the o�-diagonal elements reproduce the values they were trained

on, I was able to conclude that something is indeed wrong in the data set of non-SCC

diagonal elements. I did not analyze this issue further to determine whether the issue lay

in the implementation, approximation, or the use of LC-DFTB2 vs. DFTB1, but in further

propagation simulations, I only used the delta models for the site energies and couplings.

3
or the LUMO for electron transfer (instead of hole transfer)
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If the problem is indeed a breakdown of one of the approximations employed in the

calculation of the DFTB1 diagonal elements, this inconsistency will be present also in

other simulations using this method and has not been noticed before. While �nding such

errors was not the intended use of the ML model, the nature of the statistical inferences

such models make also prove useful for validating non-ML methods. As a �nal note on

this matter, any DFTB2 version has a greatly increased computational cost compared to

DFTB1. If the DFTB1 approximation is indeed too harsh to give good results here, the

computational cost of the reference method used to perform the propagation simulations

will be greatly increased by the use of (LC-)DFTB2, and the speed advantage that the NN

prediction provides will only grow.

5.6.2. Re-Evaluating Stability of Simulations using NNModels

Using the optimized models for the delta diagonal terms and the o�-diagonal terms from

the mixed_temperatures data set, new simulations were attempted to estimate whether

the models can now give stable simulations. Out of seven 5 ps simulations, two crashed

prematurely, again showing large outliers just before the simulation ended. Compared to

the previously observed frequency of crashes, this is a signi�cant improvement, indicating

that the improved model for the diagonals and the improved sampling for the o�-diagonals

by using the mixed_temperatures data set did indeed make the simulations more stable.

However, the frequency of crashes was still too high.

5.7. Third Generation of Models: Sampling the PES of the
Charged Molecule

To improve stability and further reduce outliers, I began using data sets for which the

geometries had been sampled from both the PES of the neutral and charged systems as

explained in section 5.2. I trained models for the DFTB1 and delta diagonal terms and the

o�-diagonal terms on 30 000 data points each and searched for hyperparameters in the

same manner as described above. For this search, I removed the initial learning rate from

the search space, opting instead for a learning rate scheduler which would reduce the

learning rate at �xed intervals (learning rates of 5 × 10
−4

, 1 × 10
−4

, 1 × 10
−5

and 1 × 10
−6

for 50, 100, 400 and 450 epochs, respectively). This should allow the model to converge

into smaller local minima. I also increased the bounds of the search space for the number

of neurons per layer to 1000 for all models, in the hope that more �exible networks may

�nd better results.

Table 5.2 summarizes the best hyperparameter combinations found in the search, while

further details about the search can be found in Figure A.7. Overall, the Hyperband

algorithm iterated through 2074 candidate models in each of the three searches. One

thing to note here is the fact that both the o�-diagonal and diagonal elements converge

to a value of 100 for the number of neurons per layer. The added �exibility from a larger

network apparently does not result in better models.

The MAEs and '2
scores of all models are compared in Table 5.3, while Figure 5.12

visualizes the performance on the 10 000 structure test sets. '2
scores are overall lower
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model depth =neurons energy loss weight regularizer

o�-diagonals 5 100 31 L2

DFTB1 diagonals 4 100 1651 L2

delta diagonals 3 140 3821 L1

Table 5.2.: Best parameters for the o�-diagonal and both DFTB1 and delta diagonal models

found in the hyperparameter search.

(a) o�-diagonal elements

(b) DFTB1 diagonal elements

(c) delta diagonal elements

Figure 5.12.: Performance of NN models trained to a) o�-diagonal, b) DFTB1 diagonal,

and c) delta diagonal elements of the Hamiltonian and their gradients from

the charged_uncharged data set with hyperparameters optimized using the

Hyperband algorithm.
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Hamiltonian element gradients

model MAE [�h] MAE [eV] '2
MAE [�h 00

−1
] MAE [eV/Å] '2

o�-diagonal 8.3 × 10
−5

2.3 × 10
−3

0.92 3.4 × 10
−5

1.7 × 10
−3

0.83

DFTB1 diagonal 8.1 × 10
−4

2.2 × 10
−2

0.87 1.1 × 10
−3

5.5 × 10
−2

0.96

delta diagonal 1.0 × 10
−3

2.7 × 10
−2

0.79 3.3 × 10
−3

1.7 × 10
−1

0.49

Table 5.3.: Comparison of quality metrics for the models trained on the charged_uncharged

data set.

and MAEs higher than they were on the orig and mixed_temperatures data sets, which

con�rms that the charged_uncharged data set does indeed have a larger structural variance

than the other data sets. The DFTB1 diagonal terms continue to show the same issues

as before. As for the delta diagonal elements, the reason for the bad scores is evident in

Figure 5.12c: The cross shape in the scatter plots for the gradient elements along the G

and I axes shows that their signs appear to be inconsistent and are probably randomly

assigned. When confronted with such con�icting information, the model converges in one

of two local minima, learning what is e�ectively one of the principal components of the

distribution. In order to properly evaluate the delta models and use them for propagation,

this issue must be resolved.

A brief test of the prediction performance of the models on the structures from the orig

data set showed that the models were not consistently better at predicting the Hamiltonian

elements and their gradients at 300 K. Compared to their performance on structures from

the charged_uncharged data set, neither the MAE nor the '2
decreased signi�cantly. An

exception to this was the model for the delta gradients, which was able to perform far

better when the signs of the gradient components were consistent. The maximum errors,

however, were signi�cantly lower when the models were evaluated on the orig data set –

for the couplings they decreased from 60 meV to 39 meV, for the DFTB1 site energies from

22 meV to 18 meV, for the delta site energies from 27 meV to 19 meV. For the gradients,

maximum errors decreased from 267 eV Å
−1

to 197 eV Å
−1

for the o�-diagonal elements

and from 488 eV Å
−1

to 430 eV Å
−1

for the DFTB1 and 2880 eV Å
−1

to 829 eV Å
−1

for the

delta gradients, respectively. This indicates that indeed the charged_uncharged data set

covers an increased part of the conformational space than the orig data set.

With the models trained for the o�-diagonals and the DFTB1 diagonals, propagation

simulations were started to evaluate whether these new methods are �nally stable enough

to be tested in MD simulations. Indeed, in 600 propagation simulations with a duration of

3 ps (30 000 steps) each performed using these models, none crashed.

5.8. Application of Model Training Procedure for the DATT
Molecule

Dianthra[2,3-b:2
′
,3
′
-f]thieno[3,2-b]thiophene (DATT)[25] is a compound with promis-

ing charge transfer properties. The DATT molecule is twice as large as the anthracene

molecule, making it an interesting target for use of NN predicted Hamiltonians versus
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S

S

Figure 5.13.: Structure of DATT

DFTB calculations. The training data for DATT was generated in the same manner as

the mixed_temperatures data set for anthracene by Weiwei Xie. Models were trained

using the same parameters as were used for the learning curve for anthracene before

(subsection 5.4.3). Only the batch size for model training needed to be reduced to �t in the

available GPU memory, from 64 to 32 (diagonal elements) and 16 (o�-diagonal elements).

For the learning curve, only models using training set sizes of 90, 900 and 9000 structures

were trained due to memory limitations from the implementation of the normalization

step in the NN architecture. This limitation can easily be circumvented in the future with

small changes in the pyNNsMD package.

Figure 5.14 shows that for the DATT molecule, the models were able to learn and

improve their prediction when given more data points.
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Figure 5.14.: MAE (a) and '2
(b) as a function of training set size for the coupling-full,

coupling-inter, and site models.

A detailed comparison of the metrics for the largest models can be found in Table 5.4,

showing that MAEs and '2
coe�cients were very similar to those reached for the an-

thracene model. Here, the issue with the site energies calculated from DFTB1 implemented

within GROMACS can be seen again, as the model again does not properly learn the

site energy (Figure 5.15b), while for the o�-diagonal elements there is no such problem

(Figure 5.15a). Note, that the hyperparameters which I used here were not optimized but

just the same as for the anthracene models trained on the orig data set. This hints that

the model performance is indeed not strongly dependent on the speci�c hyperparameters,

except for the relative loss weight parameter, which must favor the energy strongly enough

for it to compete with the forces.
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(a) o�-diagonal elements

(b) DFTB1 diagonal elements

Figure 5.15.: Performance of NN models trained to a) o�-diagonal, b) DFTB1 diagonal

elements of the Hamiltonian and their gradients for the DATT molecule from

the charged_uncharged data set with hyperparameters optimized using the

Hyperband algorithm.

Hamiltonian element gradients

model MAE [�h] MAE [eV] '2
MAE [�h 00

−1
] MAE [eV/Å] '2

o�-diagonal 1.7 × 10
−4

4.5 × 10
−3

0.97 3.8 × 10
−5

1.9 × 10
−3

0.91

DFTB1 diagonal 4.7 × 10
−4

1.3 × 10
−2

0.84 3.6 × 10
−4

1.9 × 10
−2

0.97

Table 5.4.: Comparison of quality metrics for the models trained on the 9.0 × 10
3

structures

from the DATT data set.
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These results show that this method is easily generalizable to other systems, including

molecules far larger than anthracene. The next challenge for these networks will be

learning exciton transfer couplings for Bacteriochlorophylls in biological light-harvesting

systems, which are twice as large again as DATT.

5.9. Chapter Summary

In this chapter I showed that neural network models are able to learn the Hamiltonian

elements for charge transfer propagation, including their gradients and signs (if the latter

are consistent in the training data set) in both Anthracene and DATT. The models I

obtained for anthracene gave a speedup of a factor of four compared to DFTB during

propagation simulations, which can be further increased by several methods: First, the size

of the representation can be further reduced, by using automated dimensionality reduction

techniques or empirical testing to determine a minimal subset of interatomic distances.

Second, the size of the NN model can be included as a factor in the hyperparameter

optimization technique, to drive the algorithms to small models of high quality. Finally,

the NN model pulls farther ahead if a more costly and accurate method than DFTB1 is

used as a reference.

The change of reference may be necessary, as the experiments with the NN model

revealed an inconsistency between the site energies and their gradients as calculated

from the DFTB1 implementation in the GROMACS code used for data generation and

propagation simulations. Using site energies and gradients obtained from LC-DFTB2, the

NN was able to learn both the site energy and its gradients well. While investigating the

speci�c reasons for this inconsistency were out of scope for this work, this is another case

where an ML model’s inability to learn a speci�c property could be traced to inaccuracies

in the reference method.

The hyperparameters of the NN models were not easy to optimize, and more experiments

with the optimization algorithm and search space are necessary to determine how to

e�ciently �nd working parameters. However, excepting the relative loss weights of

energies and gradients, no hyperparameter had a strong in�uence on the quality of

the model, so the hyperparameters may be generalizable enough that hyperparameter

optimization is not necessary for every system.

Another important lesson from the work in this chapter was the exceedingly large

importance of the quality of the force predictions. If an ML model is to change geometries

during a simulation, it is essential to minimize outliers as much as possible to avoid ending

up in a self-perpetuating cycle of bad predictions causing bad geometries causing worse

predictions. Even close to perfect '2
scores do not guarantee the model is good enough to

achieve this. Ensuring that all thermally accessible geometries are su�ciently represented

in both the training and test sets is crucial. Achieving this by sampling at very high

temperatures may not be possible in organic systems, but should be attempted as much as

possible. If the system should switch PES during the simulation, the model needs to be

trained with su�cient data from both PES to give stable simulations.

An e�cient method of uncertainty estimation would go a long way here to sanity-check

the model outputs and prevent catastrophic failures. Lacking that, the model can indeed be
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made su�ciently stable to perform MD simulations by making sure that the training set is

as diverse as possible. Given the easy integration of Tensor�ow models in GROMACS using

the C-API, even an active learning approach on data generated during MD equilibration is

feasible.
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6. Neural Networks for Expanded Exciton
Transfer Hamiltonians

In organic materials and biological systems, the Frenkel states may be insu�cient to

properly describe the exciton transfer process, and charge-transfer (CT) states must be

taken into account in order to get a full picture[136, 137]. Within the formalism for ET

simulations introduced in subsection 2.4.3, the site energies and couplings for the CT states

available in a system can be included in the Hamiltonian for propagation just like the

Frenkel states previously were. The Hamiltonian now must include the couplings of the

CT states with each other as well as with the various Frenkel states. However, inclusion

of the CT states requires costly excited-state calculations for every dimer of neighboring

fragments, as the approximation which resulted in the Coulomb couplings (Equation 2.22)

cannot be employed here.

In the spirit of chapter 4, I therefore decided to train an ML model which was able to

predict the elements for the Hamiltonian including CT states. The KRR models presented

previously for exciton transfer however quickly proved too unwieldy for this task, and I

switched to a neural network model. This project is still in its beginning stages as a problem

in the training data generation method needed to be �xed, and I have not optimized the

model or analyzed its performance in depth.

6.1. Structure of the Expanded Hamiltonian

Including the CT states greatly increases the size of the Hamiltonian. On the diagonal,

the excitation energies of the Frenkel states are joined by the excitation energy of each

CT state. As the CT state includes two fragments, the CT site energies also depend on

pairwise geometries. Additionally, each pair of neighboring fragments results in two

di�erent CT states, depending on which fragment carries the electron and which carries

the hole. Figure 6.1 schematically shows the Frenkel and CT states for a pair of neighboring

molecules. The o�-diagonal elements of the Hamiltonian contain the pairwise couplings

between the states. Only the lowest-energy Frenkel and CT states are included in the

Hamiltonian. The couplings between CT states which do not occupy the same pair of

molecules are negligible and are thus excluded from the Hamiltonian, as are the couplings

between a CT state and any Frenkel states which do not share a fragment with that CT

state.

For a set of three fragments numbered 0, 1, 2 which are arranged in a row with fragment

1 located between fragments 0 and 2, the terms included in the Hamiltonian are shown in

Table 6.1. The quantities marked in green are monomer properties – in the fragment-based
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E

CT01

0 1

CT10

0 1

F0

0 1

F1

0 1

Figure 6.1.: Two Frenkel states and two CT states for two neighboring molecules indexed

0 and 1.

�0 �)01 �)10 �1 �)12 �)21 �2

�0 �0 �0,�)01 �0,�)10 �01 0 0 0

�)01 �0,�)01 �)01 �)01,�)10 �1,�)01 0 0 0

�)10 �0,�)10 �)01,�)10 �)10 �1,�)10 0 0 0

�1 �01 �1,�)01 �1,�)10 �1 �1,�)12 �1,�)21 �12

�)12 0 0 0 �1,�)12 �)12 �)12,�)21 �2,�)12

�)21 0 0 0 �1,�)21 �)12,�)21 �)21 �2,�)21

�2 0 0 0 �12 �2,�)12 �2,�)21 �2

Table 6.1.: Hamiltonian elements for three sites indexed 0, 1, 2 arranged in a chain such

that fragments 0 and 2 are on either side of fragment 1.

approach, the site energy of the Frenkel state on a monomer only depends on its own

geometry. All other entries of the Hamiltonian are dimeric properties.

6.2. Design of the Machine Learning Model

In the ML scheme for predicting Hamiltonian elements as presented in chapter 4, two

models were su�cient to predict the entire Hamiltonian: one model for the monomeric site

energy, and one for the pairwise couplings. Here, there are multiple types of couplings (per

fragment pair, there is one Frenkel-Frenkel, four di�erent types of Frenkel-CT couplings

corresponding to each possible occupation, and one CT-CT coupling), as well as the site

energies corresponding to the Frenkel and CT states, which are not suited to be learned

together in one KRR model because the latter depend on a dimer geometry. While it

is possible to predict all elements of this Hamiltonian using only two KRR models (a

single-target model for the Frenkel energies and a multi-target KRR model for all dimer

properties together), this solution would have problems. Most importantly, the model

for the dimer properties would have required very large amounts of training data to give

reasonable results for all eight of its targets (two CT site energies and all six couplings)

together. KRR models, however, are best suited for problems where few training data

points are su�cient, as the computational cost of prediction and the memory footprint
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coordinates of fragments 0, 1

intra_0 inter_01intra_1

F_0 F_1 F_01
F_0, CT_01
F_1, CT_01
F_0, CT_10
F_1, CT_10

CT_01
CT_10

CT_01, CT_10

Figure 6.2.: NN architecture for the full Hamiltonian between two fragments numbered 0

and 1. The dimer properties are here predicted by two separate subnetworks

depending on whether they involve Frenkel states or not (split grouping)

during training can both become prohibitively large with an increased training set size.

Additionally, the KRR models had previously shown problems with learning the sign of

the couplings, which had required restricting the models to predicting absolute values.

I therefore decided to move away from the KRR description to a neural network. With

a neural network, adding more training data has a far smaller e�ect on the costs of the

training (and does not change the cost of prediction at all). Additionally, in chapter 5, I

could show that NNs were able to learn the sign of the couplings without issue.

I used the inverse distance representation and feature normalization layers introduced in

the pyNNsMD package (see chapter 5). The added structural �exibility which NN models add

allowed me to experiment with a slightly more involved architecture, which is schemati-

cally shown in Figure 6.2. The Cartesian coordinates of the atoms in a fragment pair are

used to calculate the matrix of inverse interatomic distances. Then, the distance matrix is

split into three parts: The two intramolecular parts containing only distances between

the atoms of either fragment 0 or fragment 1 are separated from each other and from the

intermolecular terms of the distance matrix, containing all pairwise interatomic distances

where one atom belongs to fragment 0 and the other to fragment 1. This separation was

motivated by the results from section 5.3 and [100] that the intermolecular part of the

distance matrix is su�cient for the prediction of coupling terms.

As the Frenkel energy of a fragment depends only on its geometry, the Frenkel energies

of the two fragments are predicted by the same sub-network of the model. This network

gets as inputs the interatomic inverse distances of a fragment and predicts the site energy

corresponding to the Frenkel state.

The dimer properties can now be grouped in multiple ways. I created two networks with

somewhat intuitive groupings of properties to compare, but the network architecture is

written in a way that allows for arbitrary groupings. First, I tested to have one sub-network

predict all dimer properties together (which I will refer to as the naive grouping). The

second grouping is the one shown in Figure 6.2, where all dimer properties containing a
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naive split

Frenkel monomer all dimer Frenkel monomer CT-only dimer other dimer

neurons 100 2000 100 1000 1000

layers 3 5 3 5 5

loss weight 1 20 1 10 10

Table 6.2.: Summary of the NN architecture for both the naive and the split grouping.

contribution from a Frenkel state are treated in one sub-net, while the remaining properties

which correspond to charge-transfer states only are treated in another. I will refer to this

grouping as the split grouping.

In both models, the subnetwork for the Frenkel site energies is the same size, three

hidden layers with 100 neurons each. For the naive model, the dimer subnetwork has �ve

hidden layers á 2000 neurons. The split model uses a subnetwork with 1000 neurons

arranged in �ve layers for the CT-only and Frenkel-including dimer properties each.

Table 6.2 summarizes the parameters relevant for the model architectures.

All hidden layers use the leaky softplus activation function (Equation 5.1) with default

parameters, the �nal output layer activations are linear. For training, I used mean squared

error loss and the Adam optimizer with a learning rate of 0.001 and monitored the loss

on a validation set using the early stopping method (maximum 500 epochs, stop if no

improvement for 20 epochs) to avoid over�tting. All models were trained on a randomly

chosen set of 4500 data points, with 500 additional data points used as the validation set.

The models were tested on 10 000 test structures.

6.3. Generation of the Reference Data Set

The data set was generated by Farhad Ghalami using the same method as for the exciton

transfer data in subsection 4.1.1 with the added inclusion of CT states. It includes 29 029

geometries of pentacene dimers sampled from an MD simulation in the same way as the

anthracene structures were previously sampled. For each dimer, the data set includes

both Frenkel site energies, the Frenkel coupling, the site energies of both CT states and

the coupling between them, as well as all four distinct Frenkel-CT coupling elements –

ten properties in total. All coupling elements are signed (see Figure 6.3), but using a NN

instead of KRR model it should be possible to learn the signed value for the coupling as

long as it is consistent and the sign is not randomly assigned.

6.4. Model Evaluation

The �rst model I trained used the naive grouping and the data set as-is, including the

signed values for the couplings. As Figure 6.4 shows, this model was able to learn the

site energies of both the Frenkel and the CT states, but completely failed to learn the

coupling elements beyond their mean of 0.0 eV. Learning the sign of the couplings for hole

transport using an NN had not been a problem previously, so I suspected that the problem
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Figure 6.3.: Distributions of the target values in the data set. For couplings, absolute value

distributions are shown as well.

Figure 6.4.: Results for the model trained for the naive grouping on the data from the data

set (including the signs of the coupling elements).
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lay in this data set. The signs of the couplings are a direct result of the signs of the wave

function coe�cients (in the charge transfer case) or of the transition charges (for exciton

transport). Usually, these are randomly initialized for every calculation, and therefore the

initial sign of the couplings is random, as well. During a simulation, only the relative signs

of the couplings matter, which can be kept consistent by monitoring the wave function

coe�cients in every step, as it is done for the charge transfer simulations using GROMACS.

However, exciton transport simulations using the same code are currently only possible if

the Hamiltonian is provided by an ML method. The reference data used here is therefore

the result of many independent LC-TD-DFTB calculations, which leads to random signs

for the coupling values.

I trained another model, this time using the absolute values for all coupling elements.

This model was indeed able to learn all coupling elements, as can be seen in Figure 6.5. For

Figure 6.5.: Results for the model trained for the naive grouping on the data from the data

set using absolute values for the couplings.

all couplings except for that between the two CT states, the models give very good results,

with '2
coe�cients above 0.8. The coupling between the two CT states (�)01,�)10) appears

to be more di�cult to learn, but this may just be a result of the distorted distribution

resulting from taking the absolute value.

A third model using the split grouping and the absolute value gave very similar results,

shown in Figure 6.6. This similarity indicates that there may be no signi�cant di�erence

between the two groupings, but further investigation of models with various groupings is

needed before more conclusions can be drawn.

In light of the sign inconsistency in the training data, I postponed more detailed experi-

ments and analysis until a scheme for consistent signs could be developed and tested.

6.5. Chapter Summary

In this chapter, I presented a �exible multi-output neural network model which can predict

arbitrary combinations of monomeric and dimeric properties for exciton transfer. Given

the geometries of a fragment pair, the model is able to predict the energies of the Frenkel
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Figure 6.6.: Results for the model trained for the split grouping on the data from the data

set using absolute values for the couplings.

and charge-transfer states, as well as any of the couplings between the fragments. The

model architecture is divided of sub-units, which allows to balance the �exibility available

for the predictions of each individual quantity by varying the number of sub-networks

and assignments of properties to them.

In �rst tests, the model trained on data generated for pentacene was able to learn the

couplings only if their absolute values were taken, indicating that the sign of the coupling

was inconsistent in the reference data. Therefore, I performed no further optimization of

the architecture until a consistent scheme for data set generation could be implemented.

The models presented in this chapter are simple and performant, easily adjustable and

have few hyperparameters. Considering the computational costs of the electronic structure

calculations for the reference, predicting the expanded exciton transfer Hamiltonian using

the ML model will outpace even semi-empirical quantum chemistry methods and enable

direct simulations of exciton transfer even in very large systems.
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7. Summary and Outlook

In this work I investigated the application of ML models for learning electron and exciton

transfer Hamiltonians for propagation simulations. The low computational costs for

ML predictions compared to electronic structure methods promise to enable the direct

simulation of charge and exciton propagation through systems larger than currently

feasible.

I �rst presented simple KRR models trained to predict electron and exciton transfer

site energies and couplings in anthracene. Once a good representation for the inputs

was found, these models were easy to train to high accuracies, and model training and

hyperparameter search was easy to automate. However, only the absolute value of the

couplings could be learned in practice, although the scheme used to generate the training

data produced a consistent, geometry-dependent sign. The models performed well in

reproducing the reference values both when evaluated on a large number of sampled

geometries and along the trajectory for an individual fragment or pair of fragments.

During propagation simulations, the models provided the Hamiltonians at a fraction of

the computational costs of true ab initio methods or time-dependent DFTB, but struggled

to signi�cantly improve upon the speed of non-SCC DFTB used for charge transfer. When

used in combination with the mean-�eld Ehrenfest method for propagation, models trained

on only 1000 geometries were able to reproduce the hole mobilities in the anthracene

crystal to within 8.5 % of the DFTB reference and within 30 % of the experimental values.

When a surface-hopping method was used for propagation, the ML model was able to

reproduce the equivalent DFTB reference, but compared to experiment the mobilities were

greatly overestimated. The reason for this discrepancy to experimental values was the fact

that the ML model could provide neither the forces needed to relax occupied fragments,

nor the non-adiabatic coupling vectors necessary to properly re-scale the velocities of the

nuclei when a hop occurred. To make the comparison to the ML model fair, DFTB also used

implicit relaxation, and when the DFTB simulation was repeated using full relaxation, it

achieved results far closer to the experimental reference. For exciton transfer, it was more

di�cult to evaluate the quality of the resulting models in predicting observables, as there

was no reference implementation for propagation using LC-TD-DFTB. When the results

obtained from a BC-FSSH propagation using the ML Hamiltonian were compared to those

obtained from Marcus theory, the di�usion coe�cients were overestimated similarly as

observed for the hole mobilities.

I subsequently tackled the main limitations of the previously used models: First, the

KRR models’ inability to learn the sign of the couplings would become problematic in

simulations where the charge would be able to move in more than one dimension. Second,

for ML Hamiltonians to be usable in surface-hopping based simulations, the model needed

to provide occupation-dependent forces and non-adiabatic coupling vectors, two quantities

which only become accessible if the gradients of the model w.r.t. the input coordinates can
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be evaluated. Due to the di�culty in obtaining gradients from KRR models, as well as the

di�culties KRR models had in learning the sign of the couplings and their unsuitability to

be used with large training data sets, I moved to a neural network architecture. Using this

approach, I was able to obtain models which predicted (signed) charge transfer couplings

in anthracene to within ≈2 meV and the gradients required to calculate NACVs with errors

less than 0.1 meV Å
−1

. I also applied the method developed here for DATT, an organic

semiconductor which is twice as large as a single anthracene molecule, and obtained

methods which gave very good results even without further hyperparameter optimization.

Obtaining good models for the diagonal elements of the Hamiltonian (i.e. site energies

and their derivatives, which are used for occupation-dependent relaxation) proved more

di�cult, as I could not �nd models which were able to learn both the site energy and its

gradients equally well. At �rst, this seemed like a network con�guration issue, but an

automated hyperparameter search did not improve the results. Indeed, calculating the

reference values using LC-DFTB2 instead of the previously used DFTB1 implemented

in GROMACS gave an alternative data set for the diagonal elements in which both site

energies and gradients could be learned without issue. Therefore, the model’s inability to

learn the two properties together in a function–derivative relationship is evidence for an

inconsistency in the calculation of the gradients implemented in GROMACS. Although I

could not determine conclusively whether the issue is in the speci�c implementation or

the approximations used in DFTB1, this issue warrants further investigation.

When the trained models were used in propagation simulations, however, the importance

of the sampling quality in the training data set for the models became clear: Initially, every

simulation in which forces derived from an ML model’s prediction were used, crashed

due to individual outliers pushing the system to ever more unrealistic geometries. These

outliers occur when the model encounters a structure during the simulation which was

not well-represented in the training data set. I therefore successively re�ned the strategy

used for sampling training data from MD simulations. While the initial data set included

only geometries sampled at 300 K, also including structures from simulations at 500 K

improved the stability of the simulations Including geometries sampled from the PES of

the charged molecule at 500 K reduced the frequency of fatally bad predictions to less than

one in eighteen million time steps, at which point the models were stable enough to be

used in simulations.

A detailed evaluation of these models in propagation was not yet possible, however,

as the cause of the issues in the calculation of the diagonal elements could not yet be

determined and thus no comparable reference simulation could be run. However, a

comparison of the times required to run propagation simulations with the ML models

showed that this method outperformed non-SCC DFTB by a factor of four for anthracene.

For larger molecules or applications where LC-(TD)-DFTB is required, this advantage

would only grow.

Finally, I presented a �exible neural network architecture which is capable of predicting

multiple types of excitonic site energies and couplings for a pair of fragments in one pass.

This network can be used when the Hamiltonian for propagation contains not only the

Frenkel excitons but also charge-transfer states. The architecture consists of multiple

sub-networks which can handle di�erent elements of the Hamiltonian, and can be easily
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extended to include more types of interactions. Trained on a data set of Hamiltonian

elements for pentacene, the network was able to learn both site energies and the absolute

values of all couplings quite well. However, the signs for the couplings in the data set for

this model were randomly assigned, as there no phase correction scheme was used during

training data generation. Therefore, I held o� on further improving and evaluating the

models until I could obtain a data set with consistent signs.

All ML models I presented in this work can be trained and optimized in an automated

fashion, which can be integrated in the standard work�ow for the preparation of simula-

tions. The models can be trained on structures generated as part of the system equilibration,

although this sampling approach might be insu�cient if the model’s gradients are to be

used in the simulation. The interfacing which I implemented between GROMACS and

the Tensor�ow API allows for �exible use of ML model predictions in MD simulations,

so that adaptive sampling and even the re�nement of models during propagation can

be included in the MD simulation with little added implementation e�ort. While any

individual model in this work can only give reasonable predictions for the system it was

trained on, the entire framework and process is purposefully designed to be as generic

as possible. By removing the need for individual models to generalize across chemical

space, I was able to keep the models small and easy to train. As the computational cost

of generating the necessary training data with DFTB is far lower than the costs incurred

by ab initio methods, this approach can create robust, easily applicable and automatically

trainable models for every speci�c system which integrate well in existing multi-step

materials discovery work�ows.

At several points in this work, I encountered situations where the ML models were

unable to learn the desired input–target relationship, but detailed analysis of the issues

revealed that the error was not in the ML model, but the method used for generating

the reference data: When I attempted to learn supermolecular excitonic couplings using

KRR in chapter 4, several attempts at training ML models gave very unsatisfactory results.

The analysis of these results pointed to problems in the reference data, and indeed after

the data was re-generated using the correct formula, the KRR model was able to learn

supermolecular couplings as well. The models for diagonal elements of the Hamiltonian

in chapter 5 were unable to learn both the site energy and its gradients in a function–

derivative relationship when the reference values were calculated using non-SCC DFTB

implemented in GROMACS, but there was no problem when LC-DFTB2 was used as a

reference. In chapter 6, the fact that the signs of the excitonic couplings in the reference

data set were randomized for every geometry became evident when the model failed to

learn anything but the mean value for the couplings. These observations point to a rarely-

considered application of machine learning models as tools for the validation of other,

physically motivated methods. The reliance of the models on the extraction of patterns and

connections between variables in large data sets makes them well-suited as detectors for

cases when expected patterns are not there (such as properties with randomized signs), or

assumed functional relationships do not hold (if one value is not the derivative of another

w.r.t. atomic positions). Designing ML models speci�cally for the evaluation and validation

of methods in computational chemistry may therefore be an interesting �eld for further

research and of great bene�t to the research community.
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7. Summary and Outlook

Not all models presented here resulted in a signi�cant reduction of computational cost

compared to their reference methods: For all exciton transfer applications, the need for

time-dependent QM calculations results in a speed improvement compared to LC-TD-

DFTB of several orders of magnitude. In charge transfer simulations, the picture was

not so clear-cut: While NN methods were indeed several times faster than DFTB during

simulations in anthracene, this factor was smaller than expected, and KRR models only

improved upon the cost of DFTB if small training sets were used. This highlights the

e�ciency of the DFTB method and the approximations introduced for the propagation

scheme. For its high accuracy when predicting charge transfer couplings, DFTB has

computational costs low enough to be competitive with ML methods for systems of up to

≈24 atoms per fragment. However, the DFTB cost scales less favorably with the fragment

size than the cost of an ML prediction of the site energies and couplings. The anthracene

molecule, frequently used for this work, is at the low end of the size spectrum for organic

semiconductors whose charge and exciton transfer properties are of interest. For exciton

transfer simulations in biochemical systems, targets include very large systems like the

Bacteriochlorophyll rings contained in light-harvesting systems like the LH2 complex. In

these systems, performing direct exciton transfer dynamics using semiempirical methods

is currently beyond the scope of what is feasible, and the ML models designed in this work

enable these simulations.

Together, these contributions lay the groundwork for the application of ML methods

for use in charge and exciton transfer simulations where the fragment-based Hamiltonian

and the gradients of its elements w.r.t. atomic positions are the only quantities required

from the electronic structure calculations. The easy and automated training, the use of a

generic geometric representation instead of a system-speci�c one motivated by domain

knowledge, and the interfacing with the GROMACS code for propagation all keep the

barriers to creating and using ML-driven propagation simulations in ever new systems as

low as possible. Using the methods presented in this work, direct simulations of exciton

transfer through multi-protein complexes or simulations of charges moving through

organic electronics components come within reach.
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A. Appendix

A.1. Synthetic Data and Code for the Photoelectric E�ect
Example

#!/usr/bin/env python

import numpy as np

import matplotlib.pyplot as plt

from numpy.random import default_rng

from sklearn.linear_model import LinearRegression

from sklearn.metrics import r2_score, mean_absolute_error

rg =default_rng(42)

phi = 2.36 #eV (sodium)

npoints = 50

h_true = 4.136e-15 # eVs

x = np.linspace(6e14, 1e15, npoints)

sign = rg.choice([-1,1], size=npoints)

noisy = np.random.normal(0, .05, x.shape)

f = (h_true*x - phi)+sign*noisy

print(x)

print(f)

lin = LinearRegression()

lin.fit(x.reshape(-1,1), f)

p = lin.predict(x.reshape(-1,1))

m = lin.coef_

b = lin.intercept_

print(m, b)

rss = ((f-p)**2).sum()

print(rss)

r2 = r2_score(f,p)

print(r2)

ntest = 3*npoints

sign = rg.choice([-1,1], size=ntest)

bigx = np.linspace(6e14, 1e15, ntest)

noisy = np.random.normal(0, 1e13, bigx.shape)
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xtest = bigx+noisy

yref = (h_true*xtest - phi)

ypred = lin.predict(xtest.reshape(-1,1))

r2_pred = r2_score(yref, ypred)

mae = mean_absolute_error(yref, ypred)

print(r2_pred, mae)

A.2. Kernel Ridge Regression for Charge and Exciton Transfer

Detailed Information on Trained Models

Charge transfer

dataset =CA08= _ f '2
MAE (eV) Variance max. error (eV) rel. error (%)

short

100 10
−6

15 0.49 1.1 × 10
−2

1.1 × 10
−4

1.2 × 10
−1

35

1000 10
−3

10 0.83 6.0 × 10
−3

3.5 × 10
−5

7.4 × 10
−2

20

5000 10
−2

10 0.91 4.1 × 10
−3

1.9 × 10
−5

6.9 × 10
−2

14

10000 10
−2

10 0.93 3.7 × 10
−3

1.6 × 10
−5

8.1 × 10
−2

12

25000 10
−2

5 0.95 3.1 × 10
−3

1.0 × 10
−5

6.7 × 10
−2

10

long

100 10
−2

10 0.49 3.3 × 10
−3

8.5 × 10
−5

1.2 × 10
−1

58

1000 10
−6

5 0.79 2.0 × 10
−3

3.4 × 10
−5

1.1 × 10
−1

34

5000 10
−2

10 0.93 1.3 × 10
−3

1.2 × 10
−5

6.5 × 10
−2

23

10000 10
−2

10 0.95 1.1 × 10
−3

8.9 × 10
−6

6.0 × 10
−2

19

25000 10
−2

10 0.97 8.7 × 10
−4

6.0 × 10
−6

6.3 × 10
−2

15

full

100 10
−6

5 0.53 3.2 × 10
−3

8.3 × 10
−5

1.3 × 10
−1

57

1000 10
−2

10 0.85 1.8 × 10
−3

2.7 × 10
−5

9.4 × 10
−2

32

5000 10
−2

5 0.92 1.3 × 10
−3

1.4 × 10
−5

7.5 × 10
−2

23

10000 10
−2

10 0.95 1.1 × 10
−3

9.0 × 10
−6

6.8 × 10
−2

19

25000 10
−2

10 0.96 8.8 × 10
−4

6.3 × 10
−6

7.1 × 10
−2

15

sites

100 10
−4

50 0.97 6.8 × 10
−3

2.9 × 10
−5

4.6 × 10
−2

0.12

1000 10
−6

50 0.99 4.1 × 10
−3

1.1 × 10
−5

3.6 × 10
−2

0.070

5000 10
−6

25 1.00 2.5 × 10
−3

4.3 × 10
−6

2.8 × 10
−2

0.043

10000 10
−6

10 1.00 1.8 × 10
−3

2.2 × 10
−6

1.6 × 10
−2

0.030

25000 10
−6

10 1.00 1.2 × 10
−3

1.0 × 10
−6

1.4 × 10
−2

0.020

Table A.1.: Grid search results for CT models. _ and f are the KRR hyperparameters, '2
is

the coe�cient of determination as calculated during training. Mean absolute

and maximum errors calculated on test set of 60000 held out data points.
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A.2. Kernel Ridge Regression for Charge and Exciton Transfer

Figure A.1.: Prediction vs reference CT couplings for the 60000 data points in the test set

for all models and training set sizes.
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Exciton Transfer

dataset =CA08= _ f '2
MAE (eV) Variance max. error (eV) rel. error %

short

100 5 × 10
−10

20 0.74 5.1 × 10
−3

1.7 × 10
−5

3.5 × 10
−2

23

1000 10
−2

15 0.93 2.4 × 10
−3

5.4 × 10
−6

3.6 × 10
−2

11

5000 10
−4

25 0.96 1.6 × 10
−3

3.3 × 10
−6

3.8 × 10
−2

7.1

10000 10
−4

30 0.97 1.4 × 10
−3

2.7 × 10
−6

3.6 × 10
−2

6.0

25000 10
−3

20 0.98 1.1 × 10
−3

2.3 × 10
−6

3.3 × 10
−2

5.0

long

100 10
−2

15 0.78 3.1 × 10
−3

9.9 × 10
−6

3.4 × 10
−2

26

1000 10
−2

10 0.88 2.2 × 10
−3

5.2 × 10
−6

2.6 × 10
−2

18

5000 5 × 10
−10

7.5 0.96 1.3 × 10
−3

2.1 × 10
−6

2.5 × 10
−2

11

10000 10
−3

7.5 0.97 1.1 × 10
−3

1.7 × 10
−6

2.7 × 10
−2

8.9

25000 10
−3

7.5 0.98 8.2 × 10
−4

1.3 × 10
−6

2.4 × 10
−2

6.8

full

100 10
−2

20 0.83 1.5 × 10
−3

5.5 × 10
−6

3.8 × 10
−2

38

1000 10
−2

7.5 0.88 1.2 × 10
−3

3.8 × 10
−6

3.1 × 10
−2

30

5000 10
−2

5 0.93 9.2 × 10
−4

2.4 × 10
−6

3.1 × 10
−2

24

10000 10
−2

7.5 0.96 7.6 × 10
−4

1.2 × 10
−6

2.5 × 10
−2

20

25000 10
−2

7.5 0.98 6.0 × 10
−4

7.2 × 10
−7

2.5 × 10
−2

16

sites

100 10
−2

20 0.98 1.5 × 10
−2

1.5 × 10
−4

1.1 × 10
−1

0.45

1000 10
−5

20 0.99 7.4 × 10
−3

3.8 × 10
−5

6.9 × 10
−2

0.22

5000 10
−6

20 1.00 3.7 × 10
−3

1.0 × 10
−5

3.7 × 10
−2

0.11

10000 10
−9

20 1.00 2.0 × 10
−3

2.7 × 10
−6

1.9 × 10
−2

0.059

25000 10
−9

20 1.00 8.7 × 10
−4

5.4 × 10
−7

1.2 × 10
−2

0.026

Table A.2.: Grid search results for ET models.

Details on Results for Charge Propagation

Exp. DFTB ML-100 ML-1000 ML-5000 ML-10000 ML-25000

MFE

a 1.1 1.4 3.2 1.5 1.7 1.7 1.6

b 2.9 3.4 3.7 3.7 3.5 3.1 3.2

BC-FSSH

a 1.1 8.0 10 7.7 8.7 7.6 8.1

b 2.9 13 14 11 11 12 11

Table A.3.: Hole mobility in cm
2

V
−1

s
−1

as calculated from the averaged MSD in a- and

b-direction using the MFE and BC-FSSH methods for charge propagation with

DFTB and ML-models with various training-size.
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A.2. Kernel Ridge Regression for Charge and Exciton Transfer

Figure A.2.: Prediction vs reference ET couplings for the 60000 data points in the test set

for all models and training set sizes.

Figure A.3.: Time evolution of the averaged MSD in a- and b-direction using the MFE

method for charge propagation with DFTB and ML-models with various

training-size.

135



A. Appendix

Figure A.4.: Time evolution of the averaged MSD in a- and b-direction using the BC-

FSSH method for charge propagation with DFTB and ML-models with various

training-size.
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A.2. Kernel Ridge Regression for Charge and Exciton Transfer

Details on Results for Exciton Propagation

Figure A.5.: Time evolution of the averaged MSD in a- and b-direction using the MFE

method for exciton propagation with an ML-model with a training-size of

1000.

Figure A.6.: Time evolution of the averaged MSD in a- and b-direction using the BC-FSSH

method for exciton propagation with an ML-model with a training-size of

1000.
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A.3. Hyperparameter Searches using the Hyperband
algorithm

parameter search space

depth 3, 4 and 5

neurons per layer 20 to 500

regularization !1, !2

energy loss weight 1 to 1000

force loss weight 1 to 1000

learning rate 1 × 10
−3

, 5 × 10
−4

and 1 × 10
−4

Table A.4.: Hyperparameter search space for the delta diagonal model.
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A.3. Hyperparameter Searches using the Hyperband algorithm

(a) o�-diagonal elements

(b) DFTB1 diagonal elements

(c) delta diagonal elements

Figure A.7.: Hyperparameters sampled during the Hyperband optimization algorithm vs

the score of resulting model for a) the o�-diagonal, b) DFTB1 diagonal and c)

LC-DFTB2 diagonal elements.
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