KIT | KIT-Bibliothek | Impressum | Datenschutz

Unveiling the Intricate Intercalation Mechanism in Manganese Sesquioxide as Positive Electrode in Aqueous Zn‐Metal Battery

Ma, Yuan 1; Ma, Yanjiao 1; Diemant, Thomas; Cao, Kecheng; Liu, Xu 1; Kaiser, Ute; Behm, R. Jürgen; Varzi, Alberto 1; Passerini, Stefano 1
1 Karlsruher Institut für Technologie (KIT)


In the family of Zn/manganese oxide batteries with mild aqueous electrolytes, cubic α-Mn$_{2}$O$_{3}$ with bixbyite structure is rarely considered, because of the lack of the tunnel and/or layered structure that are usually believed to be indispensable for the incorporation of Zn ions. In this work, the charge storage mechanism of α-Mn$_{2}$O$_{3}$ is systematically and comprehensively investigated. It is demonstrated that the electrochemically induced irreversible phase transition from α-Mn$_{2}$O$_{3}$ to layered-typed L-Zn$_{x}$MnO$_{2}$, coupled with the dissolution of Mn$^{2+}$ and OH$^{-}$ into the electrolyte, allows for the subsequent reversible de-/intercalation of Zn$^{2+}$. Moreover, it is proven that α-Mn$_{2}$O$_{3}$ is not a host for H$^{+}$. Instead, the MnO$_{2}$ formed from L-Zn$_{x}$MnO$_{2}$ and the Mn$^{2+$ in the electrolyte upon the initial charge is the host for H$^{+}$. Based on this electrode mechanism, combined with fabricating hierarchically structured mesoporous α-Mn$_{2}$O$_{3}$ microrod array material, an unprecedented rate capability with 103 mAh g−1 at 5.0 A g−1 as well as an appealing stability of 2000 cycles (at 2.0 A g$^{-1}$) with a capacity decay of only ≈0.009% per-cycle are obtained.

Verlagsausgabe §
DOI: 10.5445/IR/1000137112
Veröffentlicht am 31.08.2021
DOI: 10.1002/aenm.202100962
Zitationen: 28
Web of Science
Zitationen: 25
Zitationen: 29
Cover der Publikation
Zugehörige Institution(en) am KIT Helmholtz-Institut Ulm (HIU)
Institut für Nanotechnologie (INT)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 16.09.2021
Sprache Englisch
Identifikator ISSN: 1614-6832, 1614-6840
KITopen-ID: 1000137112
HGF-Programm 38.02.01 (POF IV, LK 01) Fundamentals and Materials
Erschienen in Advanced energy materials
Verlag Wiley-VCH Verlag
Band 11
Heft 35
Seiten Art.Nr. 2100962
Vorab online veröffentlicht am 28.07.2021
Nachgewiesen in Dimensions
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page