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Abstract
In magnetic confinement fusion research, the achievement of high plasma pressure is key to
reaching the goal of net energy production. The magnetohydrodynamic (MHD) model is used
to self-consistently calculate the effects the plasma pressure induces on the magnetic field used
to confine the plasma. Such MHD calculations—usually done computationally—serve as
input for the assessment of a number of important physics questions. The variational moments
equilibrium code (VMEC) is the most widely used to evaluate 3D ideal-MHD equilibria, as
prominently present in stellarators. However, considering the computational cost, it is rarely
used in large-scale or online applications (e.g. Bayesian scientific modeling, real-time plasma
control). Access to fast MHD equilibria is a challenging problem in fusion research, one which
machine learning could effectively address. In this paper, we present artificial neural network
(NN) models able to quickly compute the equilibrium magnetic field of Wendelstein 7-X.
Magnetic configurations that extensively cover the device operational space, and plasma
profiles with volume-averaged normalized plasma pressure 〈β〉 (β = 2μ0 p

B2 ) up to 5% and
non-zero net toroidal current are included in the data set. By using convolutional layers, the
spectral representation of the magnetic flux surfaces can be efficiently computed with a single
network. To discover better models, a Bayesian hyper-parameter search is carried out, and 3D
convolutional NNs are found to outperform feed-forward fully-connected NNs. The achieved
normalized root-mean-squared error, the ratio between the regression error and the spread of
the data, ranges from 1% to 20% across the different scenarios. The model inference time for a
single equilibrium is on the order of milliseconds. Finally, this work shows the feasibility of a
fast NN drop-in surrogate model for VMEC, and it opens up new operational scenarios where
target applications could make use of magnetic equilibria at unprecedented scales.
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1. Introduction

The computation of magnetohydrodynamic (MHD) equilib-
ria is central in magnetic confinement fusion, where it repre-
sents the core component of most modeling and experimen-
tal applications. In the stellarator community, the 3D ideal-
MHD variational moments equilibrium code (VMEC) [1] is
the most widely used, e.g. to infer plasma parameters [2, 3],
to reconstruct magnetic equilibria [4–8], and to design future
devices [9–11]. VMEC is also employed for equilibrium stud-
ies in perturbed, and hence non-2D, axisymmetric configura-
tions [12–22]. However, a single VMEC equilibrium evalua-
tion can take up toO(10) minutes1 even on a high-performance
computing facility, especially for a reactor-relevant high-β
plasma configuration. Table 1 reports the orders of magni-
tude of VMEC total iterations and wall-clock time typically
encountered in target applications. The high computational
cost limits an exhaustive exploration of the use case input
space. A parallel version of VMEC has recently been devel-
oped [23], however, for example, the wall-clock time of a sin-
gle free boundary equilibrium reconstruction, both in the case
of a stellarator and a tokamak scenario, is still on the order of
hours [24, 25].

In this paper, we use artificial neural networks (NNs) (see
section 2.3) as function approximators to build a fast surro-
gate model for VMEC. A reduction in run times of up to 6
orders of magnitude can be achieved. The models are trained
on VMEC runs from two independent data sets: Dconfig and
Dβ (see section 2.2.2). Dconfig includes a wide range of vac-
uum magnetic configurations, whileDβ covers a distribution of
plasma profiles for a fixed magnetic configuration. To find bet-
ter models, and to take the human out of the loop, a Bayesian
hyper-parameter (HP) search is performed (see section 2.4).

Since NNs poorly extrapolate beyond the expressiveness
of training data, a large and experimentally relevant data set
is essential for good out-of-sample performance (see section
2.2). Training runs are sampled as employed in the Bayesian
scientific modeling framework Minerva [28, 29], aiming to
reduce the covariate shift between the training and test data
set. The magnetic configurations are sampled from a large
hyper-rectangle around the nine Wendelstein 7-X (W7-X) ref-
erence configurations [30], while the plasma profiles are mod-
eled as Gaussian processes (GPs) [31], and domain knowledge
is embedded in the training data through virtual observations
[32–35].

Since VMEC assumes nested magnetic flux surfaces, mag-
netic islands in the equilibrium field are not included by design.
Furthermore, an ideal coil geometry (i.e. no coil misalignment
or electro-magnetic deformations) is considered, while ideal
coil currents and plasma profiles (i.e. error-free measurements)
are assumed. The relaxation of these assumptions is not in the
scope of this paper.

In the past, Sengupta et al successfully regressed sin-
gle Fourier coefficients (FCs) of the VMEC output magnetic

1 Run time on the Max Planck computing and data facility (MPCDF) cluster
‘DRACO’, using the small partition and 16 cores.

Table 1. Order of magnitude of VMEC iterations and wall-clock
time in target applications. Fixed-boundary equilibria are
considered in stellarator optimization, while the inference of plasma
parameters and equilibrium reconstruction usually requires
free-boundary equilibria. VMEC computation time strongly
depends on the run requirements (e.g. radial resolution, Fourier
resolution, field periodicity, convergence tolerance), thus the
101 –104 s range has been considered in this table.

Application Iterations Time (s)

Bayesian inference [26] 104 105 –108

Equilibrium reconstruction [4, 25] 100 101 –104

Stellarator optimization [27] 103 104 –107

field, using function parameterization (FP) with quadratic or
cubic polynomials for vacuum [36] and finite beta [37] mag-
netic configurations. The regression of the full VMEC output
was broken down into subproblems, where an FP model was
derived for each FC, leading to many free parameters to learn.
In this work, on top of the previously mentioned components
(i.e. physics-like plasma profiles and HP search), the learning
task is to infer the full magnetic field geometry with a sin-
gle multiple-input multiple-output model, where all the VMEC
output FCs are regressed at once (see section 2.2.2). Using a
single model drastically reduces the number of free parameters
to learn, and it forces the NN to efficiently share them among
the outputs. Contrary to FP, it is well-known that sufficiently
wide or deep NNs can approximate a broad class of functions
[38–42]. In addition, convolutional neural networks (CNNs),
as powerful tools of current deep learning methods, are bet-
ter suited to extract and reproduce translation-invariant spa-
tial features from grid data, and to share their free parameters
between the features while reducing overfitting. Furthermore,
from the user standpoint, a single model can more easily be
improved, adapted, and deployed.

For real-time plasma control, having access to low-cost
magnetic equilibria can improve traditional strategies, and
enable completely new data-driven approaches (e.g. reinforce-
ment learning (RL) based control). In fusion research, the use
of NN models to compute the plasma topology [43–45] and to
speed up slow workflows [46–50] is not a novel idea, never-
theless, to our knowledge this paper represents the first which
effectively addresses the 3D MHD physics in W7-X scenarios.

2. Methods

In the following relevant concepts and employed methodolo-
gies are described.

2.1. The VMEC code

The equilibrium problem under the ideal-MHD model is char-
acterized by the force balance equation, Ampere’s and Gauss’s
law

�J × �B = �∇p (1)

�∇× �B = μ0�J (2)

�∇·�B = 0. (3)
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VMEC uses a variational principle to solve the inverse for-
mulation, which computes the mapping f : �ζ → �x between
flux coordinates �ζ = (s, θ,ϕ), normalized toroidal flux (s =
Φ

Φedge
, where Φ(s) is the toroidal magnetic flux enclosed

between the magnetic axis and the flux surface labeled s),
poloidal and toroidal angle, respectively, and real space cylin-
drical coordinates �x = (R,ϕ, Z), major radius, azimuth and
height above mid-plane, respectively. VMEC adopts a spec-
tral representation of �x along the poloidal and toroidal angles.
Assuming stellarator symmetry, the cylindrical coordinates
can be expressed as

R(s, θ,ϕ) =
∑
mn

Rmn(s) cos(mθ − nNfpϕ), (4)

Z(s, θ,ϕ) =
∑
mn

Zmn(s) sin(mθ − nNfpϕ), (5)

where Nfp ∈ N is the number of field periods. Furthermore,

λ(s, θ,ϕ) =
∑
mn

λmn(s) sin(mθ − nNfpϕ) (6)

is an angle renormalization parameter such that θ∗ = θ +
λ(s, θ,ϕ) represents the poloidal angle for which magnetic
field lines are straight in (s, θ∗,ϕ) [1]. The equilibrium mag-
netic field �B can be written in contravariant form

�B = Bsês + Bθ êθ + Bϕêϕ = Bθ êθ + Bϕêϕ, (7)

where �B· �∇p = Bs = 0 under the assumption of nested mag-
netic flux surfaces. The non-zero components are given by
[1]

Bθ =
1
√

g
Φ′

(
-ι− ∂λ

∂ϕ

)
, (8)

Bϕ =
1
√

g
Φ′

(
1 +

∂λ

∂θ

)
, (9)

where t is the rotational transform, the prime denotes ∂/∂s,
and

√
g = (�∇s· �∇θ × �∇ϕ)−1 is the Jacobian of the coordinate

transformation f .
The covariant representation of �B can be obtained from

equations (8) and (9) and the metric tensor gi j = êi· ê j =
∂�x
∂ζi

· ∂�x
∂ζ j

as follows

Bθ = �B · êθ = Bθgθθ + Bϕgϕθ, (10)

Bϕ = �B · êϕ = Bθgθϕ + Bϕgϕϕ. (11)

Finally, the magnetic field vector strength is given by

B2 =
∑

i

BiBi = (Bθ)2gθθ + 2BθBϕgθϕ + (Bϕ)2gϕϕ. (12)

As in case of �x, the magnetic field strength is described by
VMEC using a spectral representation:

B(s, θ,ϕ) =
∑
mn

Bmn(s) cos(mθ − nNfpϕ). (13)

Like in [1], �x is redefined as �x = (R,λ, Z), where the angle
renormalization parameter λ replaces the toroidal angle ϕ.

2.2. Data set generation

To generate a large and W7-X relevant data set of magnetic
configurations and plasma profiles, Minerva [28, 29] is used.
Within Minerva, models are described as directed, acyclic
graphs. Each node can be deterministic (e.g. a diagnostic
model or a physics code) or probabilistic (e.g. plasma param-
eters or diagnostic observed quantities). The edges define the
dependencies between nodes. Model free parameters can be
described via probabilistic nodes, where the node a priori dis-
tribution encodes the domain knowledge on the parameter. In
the forward mode, observed quantities can be computed, while
in the inverse mode, the model free parameters can be inferred
with different inversion techniques (e.g. maximum a posteriori
and Markov chain Monte Carlo methods).

Using Minerva to generate physics relevant samples for
NNs training has already been explored [51]. Here, a VMEC
node is included in a Minerva model. Free parameters are rep-
resented by the magnetic configuration and the plasma profiles.
The model is relatively simple and can be built as a stand-alone
object, yet Minerva allows embedding domain knowledge (i.e.
the prior distribution of the model free parameters) in the NN
surrogate by reducing the covariate shift between the train-
ing data set D and the target application data set Dtarget. This
approach is similar to that described in [52], where experi-
mental data have been used to populate the training data set.
However, in this work, experimental data are not used directly,
but simulated data drawn from experimentally validated dis-
tributions are used instead. This allows a dense coverage of
the input parameter space, while restricting its extension to
physically relevant regions only.

W7-X possesses a Nfp = 5-fold stellarator symmetry, i.e.
the main coil system comprises five identical modules, each
of which is point symmetric toward the module center (see
section 2.1). The resulting magnetic field has a five-fold sym-
metry along the toroidal direction. Each half module includes
five different non-planar and two planar coils. The vacuum
field depends only on the currents I1...5 and IA,B, respectively,
the currents in the non-planar and planar coils. Except for a
scaling of the magnetic field strength, the vacuum magnetic
configuration does not depend on the absolute values of the
coil currents but only on their ratios with respect to I1, i2...5 and
iA,B. The current ratios are uniformly sampled from a hyper-
rectangle whose boundaries are provided in table 2. These
boundaries cover the nine reference configurations of W7-X
[30], while extending to a larger set of conceivable configu-
rations. To obtain a magnetic field strength of approximately
2.5 T on axis, at ϕ = 0 and for the standard configuration, the
normalization coil current I1 is set to I1 = 13 770 A.

The plasma profiles cover a broad range of W7-X discharge
scenarios, and include plasma pressure on axis up to 200 kPa,
corresponding to volume-averaged 〈β〉 of approximately 5%,
and a net toroidal current ranging from −10 kA to 10 kA. The
profiles are defined as a function of the normalized toroidal
flux s: p(s) is the pressure of the plasma at the flux surface
labeled s, and I(s) is the enclosed toroidal current flowing
inside the surface s. With this definition, I(s = 1) is the total
toroidal current in the plasma, which we will refer to as Itor.
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Table 2. Hyper-rectangle boundaries for the vacuum magnetic
configurations, pressure and toroidal current profile included in the
data set. Each parameter is uniformly sampled.

Magnetic configuration

Free parameter Min Max Unit

Φedge −2.5 −1.6 Wb
i[1...5] 0.6 1.3 —
i[A,B] −1.0 1.0 —

Pressure profile
p0 0 200 kPa
σ f 2.0 4.0 —
lcore 2.0 3.0 —
ledge 1.0 2.0 —
s0 0.7 0.9 —
sw 0.3 0.4 —

Toroidal current profile
Itor −10 10 kA
σ f 2.0 3.0 —
lcore 2.0 3.0 —
ledge 3.0 5.0 —
s0 0.1 0.6 —
sw 0.01 0.1 —

Theoretically, all the possible continuous functions for s ∈
[0, 1] should be sampled. The exploitation of domain knowl-
edge obtained from experience with W7-X discharges allows
us to restrict the function space of the profiles, and to sam-
ple the region of interest denser as compared to unconstrained
parameterization. The profile shapes are modeled via GPs [53],
stochastic processes whose joint distribution of every finite,
linear combination of random variables is a multivariate Gaus-
sian. GPs are usually employed in the modeling context, as
they can be seen as distributions of functions. For example, a
one dimensional function f : s ∈ R→ R with a GP prior is

f (s) ∼ GP(μ(s),Σ(s, s′)), (14)

where μ(s) is the mean function, and Σ(s, s′) is the covariate
function. Then, for a set S∗ := {s ∈ R}, the corresponding F∗
are distributed as

F∗ ∼ N (μ(S∗),Σ(S∗, S∗)), (15)

where the covariate function matrix is computed element-wise.
In Minerva, plasma profiles are usually specified as GPs

with zero mean, which does not restrict the mean of the
posterior process to be zero [53], and squared exponential
covariance function [54]. In particular, since profiles can have
substantially different gradients in the core and edge regions
[55], a non-stationary covariance function [56] is used [57].
Here, the GP mean and covariance functions are

μ(s) = 0, (16)

Σ(si, s j) = σ2
f

√
2σx(si)σx(s j)
σ2

x (si) + σ2
x (s j)

× exp

(
− (si − s j)2

σ2
x (si) + σ2

x (s j)

)
+ σ2

yδi j, (17)

where σy is usually fixed to σy = 10−3σ f [34], and σx , which
represents the length scale function, is a hyperbolic tangent
function

σx(s) =
lcore + ledge

2
− lcore − ledge

2
tanh

(
s − s0

sw

)
, (18)

where lcore and ledge are the core and edge length scale, respec-
tively. s0 is the transition location and sw represents the length
scale for the transition. The domain knowledge on the plasma
profiles is encoded via the HPs of the GP used to represent
them, which define the distributions from where the profiles
are drawn. The values of the GP HPs are uniformly sampled
from a hyper-rectangle, whose boundaries are given in table
2. These values are adapted from previous works where the
plasma profiles in W7-X are modeled via GPs [34, 49, 54, 58].

The profiles are further constrained by the use of virtual
observations [34], such that the GP prior is refined with ‘virtual
diagnostic measurements’, described by a normal distribution.
As usually observed in W7-X experiments, the electron and
ion density and temperature profiles are peaked2 in the core
[59–61]. Therefore, the normalized pressure profile is con-
strained to 0 at the last closed flux surface (LCFS) and 1 on
axis. Contrarily, the normalized toroidal current profile is set
to 0 on axis, and 1 at the LCFS. Figure 1 shows a subset of
the normalized plasma profiles, which are independently sam-
pled from the two refined GPs. Finally, the profiles are scaled
to the desired values: the pressure profile is multiplied by p0,
the pressure value on axis, and Itor, which is the total toroidal
current enclosed by the plasma, is provided as input parameter
to VMEC.

All VMEC calculations are performed in free boundary
mode, where the confined region is characterized with the total
enclosed magnetic toroidal flux, Φedge = Φ(s = 1). Given the
large input space, VMEC runs which are not relevant for W7-
X, e.g. runs which did not converge or exhibit values for the
plasma volume and minor radius outside the boundaries given
in table 3, are discarded.

2.2.1. Training scenarios. To decouple the regression com-
plexity of the 3D ideal-MHD equilibrium from the vac-
uum field computation, the problem is broken down in two
different scenarios: a null and finite-〈β〉 cases, which lead to
two independent data sets, Dconfig and Dβ . Dconfig is populated
with vacuum magnetic configurations, i.e. pressure and plasma
current profiles are constant 0. This scenario targets two appli-
cations: discharges with low 〈β〉 values which could be effec-
tively studied with a vacuum field, and further investigations
of the properties of the vacuum configurations of W7-X. In
particular, the use of a slightly modified model is envisioned
to further explore the richness of the vacuum magnetic config-
urations of W7-X, searching for optimized equilibria in terms
of, e.g. neoclassical transport via the effective helical ripple
amplitude εeff [62] or ideal MHD stability via the magnetic
well [63]. In Dβ , the standard magnetic configuration (EJM +
252) [30] is fixed, and the data set is populated with plasma

2 A globally decreasing function of the radial profile, not to be confused with
a high ‘peaking factor’ as used in the fusion community.
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Figure 1. Subset of normalized plasma profiles included in the data set as a function of the flux radial coordinate s. Only plasma profiles
which resulted in a valid VMEC equilibrium are depicted.

Table 3. Plasma volume and minor radius boundaries of valid
VMEC runs included in the data set.

Variable Min Max Unit

Vp 22.0 38.0 m3

aeff 45 60 cm

profiles as described in section 2.2. This scenario covers dis-
charges with volume-averaged 〈β〉 up to 5% and net toroidal
current up to 10 kA.

The number of VMEC simulations for the two scenarios
are 11 360 and 11 709, respectively. Of these, only 10 339 and
9675 converged. Finally, after filtering out the equilibria based
on the ranges given in table 3, the data sets contain |Dconfig| =
9589 and |Dβ| = 9332 valid runs, respectively.

In this work, the two dimensions to characterize a W7-X
magnetic configuration, the vacuum field geometry and the
plasma profiles, are independently explored in Dconfig and Dβ .
Given the large vacuum magnetic configuration space probed
in Dconfig and the relatively low values of 〈β〉 included in
Dβ , the spread of the FCs describing the equilibrium field is
expected to be higher in Dconfig than in Dβ . Furthermore, W7-
X is an optimized stellarator where the plasma influence on
the magnetic configuration has been strongly reduced by the
minimization of the bootstrap current and the Shafranov shift
[64]. Hence, the equilibrium field coefficients are expected to
be smooth functions of the main parameters characterizing the
plasma, p0 and Itor, in contrast to the flexibility of the vacuum
magnetic configurations of W7-X. In the scope of the next
steps of this proof of concept, working models in these two
extreme cases can give valuable insights on the use of NNs for
the regression of the equilibrium magnetic field in an arbitrary
finite-〈β〉 configuration.

2.2.2. Models inputs and outputs. In Dconfig, the inputs are
represented by Φedge and the six independent coil current
ratios, while in Dβ , Φedge, p0, Itor, and the normalized pres-
sure and toroidal current profiles are used. In both scenarios
the regressed outputs are the iota profile, -ι(s), the Fourier series
of the flux surface coordinates, represented by Rmn(s), λmn(s)

and Zmn(s) and the Fourier series of magnetic field strength,
Bmn(s). The output FCs are regressed instead of the real space
values for the following reasons: first and foremost, the Fourier
series profiles are a compressed representation of the magnetic
field, thus letting the network learn a reduced number of inde-
pendent outputs. Furthermore, we seek to replace VMEC with
similar input and output signature as the original code such that
our application can serve as a drop-in replacement for existing
use cases. For example, in the context of the application of
this work in the inference of plasma parameters, the flux sur-
face coordinates are needed to map real space diagnostic mea-
surements to flux coordinates [54, 65], and the magnetic field
strength plays a crucial role in the analysis of many diagnostics
(e.g. electron cyclotron emission [26]).

For the generation of the data set, the resolution of the
VMEC output is set to Ns = 99 flux surfaces and mpol =
ntor = 12, where |m| < mpol and |n| � ntor are the poloidal
and toroidal Fourier modes respectively. Since all the out-
puts are real quantities, omn = (o−m,−n)∗ for o ∈ {R,λ, Z, B}.
This limits the independent FCs to a subplane (usually m � 0).
Despite this symmetry consideration, still 28 512 coefficients
remain per output3. Figure 2 shows the FCs of the three coor-
dinates for one sample in the data set, evaluated at the LCFS.
However, it has been argued that mpol = ntor = 6 modes are
sufficient to represent the magnetic field in case of W7-X con-
figurations [37]. In this work, the sufficient Fourier resolution
is further investigated. For the radial profile, a subset of N̂s

flux surfaces is selected, while up to m̂pol and n̂tor poloidal and
toroidal modes are used for the FCs. To more densely cover
the plasma region near the axis, the flux surfaces are selected
such that their radial locations s follow a quadratic progres-
sion in [0, 1]. To compute the loss of information due to the
downscaling, the reduced representation is upscaled to match
the full resolution by asserting xmn = 0 for x ∈ {R,λ, Z} if
m � m̂pol or |n| > n̂tor. Then, the outputs R, λ, Z and B are
evaluated with equations (4)–(6) and (13) on a grid along the
θ and ϕ angles, using Nθ = 18 poloidal and Nϕ = 9 toroidal
points per period. Finally, the full radial resolution is recovered

3 The number of FCs per coordinates scales as O(Ns·mpol· ntor).
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Figure 2. FCs of the cylindrical coordinates evaluated at the LCFS. The Fourier series have poloidal modes m < mpol and toroidal modes
|n| � ntor. A logarithmic colormap is used to show the span in orders of magnitude expressed by the data.

by cubic interpolation along s. Similarly, a reduced resolution
of the iota profile is investigated, using N̂s flux surfaces (the
same as those employed for �x and B). To compare the reduced
to the full resolution, the iota profile is then upscaled via cubic
interpolation.

Given a set Y = {y ∈ R
K} of generic quantities y with

true or reference value y∗, the root-mean-square error (rmse)
between y and y∗ is computed as

rmseY =
1
K

K∑
k=1

√√√√ 1
|Y|

|Y|∑
i=1

(yki − y∗ki)
2 . (19)

Here it is used to compare the two resolutions, where for
each output, y is the reduced output representation of y∗, and
K is the number of evaluation points: K-ι = N̂s, and KR = Kλ =

KZ = KB = N̂sNθNϕ. Figure 3 shows the rmse for different
values of the resolution parameters.

In case of the iota profile, N̂s = 20 flux surfaces are suffi-
cient for a deviation of approximately rmse∗-ι = 10−4, N̂s = 10,
m̂pol = 6 and n̂tor = 4 are needed for the flux surfaces coor-
dinates to achieve rmse∗R,Z = 10−3 m and rmse∗λ = 10−3 rad,
and N̂s = 10, m̂pol = 6 and n̂tor = 12 are used for B to obtain
rmse∗B = 10−3 T. These choices result in 20 locations for the
iota profile, while 1500 FCs describe the flux surface coor-
dinates and the magnetic field strength4. This resolution rep-
resents a practical trade-off between the complexity of the
regression task and the reconstruction fidelity. It is important
to note that rmse∗-ι , rmse∗R,Z, rmse∗λ and rmse∗B represent a lower

4 Each output is described by NFCs = NoN̂s[m̂pol(2n̂tor + 1) − n̂tor] FCs, where
No is the output dimension (No = 3 for �x and No = 1 for B).
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Figure 3. Analysis of the rmse between the full and reduced
representation of the iota profile, flux surface coordinates and
magnetic field strength. In figures 3(b) and (c) the truncated Fourier
resolutions are ordered based on the total number of FCs used,
which scales as O(m̂pol × n̂tor). In the case of the flux surface
coordinates and magnetic field strength, and for the Fourier
truncated resolution of interest (i.e. m̂pol ≈ 6 and n̂tor ≈ 6), an
increased radial resolution of 20 flux surfaces does not significantly
differ from using only 10 flux surfaces.

bound of the reconstruction error that can be achieved by using
the models presented in this work.

Given the two data sets, Dconfig and Dβ , and the three
output quantities, -ι, �x and B, six independent regression
tasks are defined: config-iota and β-iota, config-surfaces and
β-sur faces, and config-B and β-B. In the config-iota and
β-iota tasks, an NN is trained to compute the reduced resolu-
tion iota profile, using respectively Dconfig and Dβ as data set.
Similarly, in the config-surfaces,β-sur faces, config-B andβ-B
tasks, an NN is trained to compute the FCs of the reduced res-
olution �x or magnetic field strength B, using Dconfig and Dβ ,
respectively.

Considering the scope of this paper which attempts to
develop a VMEC proof-of-concept surrogate model, it is use-
ful to investigate the performance on independent subprob-
lems. In future works, a single NN could be trained to compute
all outputs and to handle both vacuum and finite-〈β〉 runs.

2.3. NN architectures

In general, given two quantities �ψ ∈ R
K and �γ ∈ R

D, and a set
of N observations (�ψi,�γi) sampled from a fixed but unknown
distribution p(�ψ,�γ), an NN, parameterized with a set of free
parameters �w, can be employed to learn a mapping f̃ : RK →
R

D which minimizes the empirical loss 1
N

∑
i l(�γi, f̃ (�ψi; �w)),

where l : RD × R
D → R is a given loss function. In this work,

the expressive power of NNs is exploited to learn a low-cost
approximation of a known function, using observations sam-
pled from a known distribution. An NN usually employs suc-
cessive layers of artificial neurons to create the mapping f̃ ,
where each neuron computes a non-linear transformation of
the neurons from the previous layer. The NN free parameters �w
are derived during the training process to minimize the empir-
ical loss on the given training set. For a detailed introduction
on NNs please refer to [66].

Two NN architectures are adopted herein. One is a feedfor-
ward fully-connected neural network (FF-FC), which is com-
posed of a sequence of dense blocks, each comprising a dense
layer with L2 regularization and a non-linear activation func-
tion. The number of hidden units is halved for each successive
block. The activation function for the last block is the iden-
tity. Figure 4 illustrates the architecture for the config-iota task,
where a network with five of such blocks is shown.

The FF-FC architecture is used on the iota reconstruction,
where the regressed output is composed of only 20 elements.
However, its number of free parameters grows linearly with
the dimensionality of the output. Thus, more efficient archi-
tectures are needed for the surfaces and magnetic field strength
reconstruction, where each sample has 1500 output elements.
Hence, 3D CNNs [67, 68] and encoder–decoder like architec-
tures [69–71] are explored. In these architectures an encoder
processes variable-length input features and generates a fixed-
length, flattened representation. Conditioned on the encoded
representation, the decoder then builds the required outputs.

For the these tasks the �x coordinates are stacked. Figure 5
displays an example of such architecture for the β-sur faces
task, where a CNN architecture with transposed convolution
is used. In the encoder tree, high-level features are extracted
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Figure 4. FF-FC architecture for the config-iota task. The gray
blocks represent the input and output features, where the dimension
is indicated on the right. A single block is composed of: a ‘dense, m’
layer with m units and a non-linear activation function (e.g. the
scaled exponential linear unit (SeLU)). The last block uses the
identity function. The values of the HP of the best performing model
in the config-iota task are shown here (see sections 2.4 and A.1).
The use of the SeLU activation function, as discovered by HP
search, leads to whitened layer input distributions, which improve
the convergence of the training process [79].

from the plasma profiles via consecutive 1D convolutional
blocks and concatenated back with the scalar inputs into a
flattened representation. Then, a decoder tree gradually builds
up the output via consecutive transposed convolutional blocks.
Finally, the output shape is matched via a 3D cropping opera-
tion. Each encoder block comprises a 1D convolutional layer,
batch normalization [72], and a non-linear activation function
with dropout [73]. Similarly, a decoder block is composed of
a 3D transpose convolutional layer, batch normalization, and a
non-linear activation function with dropout. For the last block,
batch normalization is not included and the identity activation
function is used. For each block the number of filters in the
encoder tree is doubled, while halved in the decoder tree. Con-
volutional layers with stride are employed over up-sampling
operations, as suggested by [74].

The stacking of consecutive convolutional layers acting
on inputs of different length scales, in conjunction with a
scaling of the feature channels, is a common approach in
modern deep convolutional neural network architectures. This
structure decreases the number of free parameters by forcing
the model to learn a hierarchical representation of high- and
low-level features, while imposing a regularizing effect dur-
ing training. A subset of the NN architecture HPs is not fixed
a priori, but optimized via HP search. The lists of the explored
HPs (e.g. the layer non-linear activation function) are provided
in section A.1.

Figure 5. The 3D CNN architecture for the β-sur faces task. The
gray blocks represent the input and output features, the yellow ones
the 1D convolutions, the blue ones the 3D convolutions, and the red
ones tensor operations. For each block, the output dimension is
indicated on the bottom right, where the last number is always the
number of features, and the antecedent ones the feature dimension
(e.g. 10 × 6 × 9 × 3 refers to 3 features of size 10 × 6 × 9). For the
convolutional blocks, the number of filters, kernel size, and stride (in
bracket) are indicated in sequence. The use of batch normalization is
indicated via bn. The values of the HP of the best performing model
in the β-sur faces task are shown here (see sections 2.4 and A.1).
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Table 4. Main results across all learning tasks. The nrmse, training and inference time mean and 95%
confidence interval are evaluated with bootstrapping [91]. The inference time is conservatively estimated with a
batch size of 1 on a single Intel Xeon Gold 6136 CPU. However, orders of magnitude in inference time can be
gained by parallel computation, pre- and post-training optimizations (e.g. model pruning and quantization).
The nrmsebest, which refers to the error on the cross-validation fold used in HP search, is within the 95% of the
nrmse distribution for all tasks, meaning that the model discovered in the HP search is robust across the whole
data set.

Task nrmse (10−2) ttrain (102 s) tinference (10−3 s) NNfree parameters nrmsebest (10−2)

config-iota 1.51 ± 0.19 1.45 ± 0.26 4.25 ± 0.67 3436 1.4
β-iota 4.77 ± 0.50 3.71 ± 0.87 5.51 ± 0.80 14 276 4.5
config-surfaces 14.17 ± 0.37 9.0 ± 1.9 5.93 ± 0.74 244 989 14.4
β-sur faces 19.16 ± 0.67 13.1 ± 2.7 14.7 ± 3.0 1607 535 19.5
config-B 3.39 ± 0.27 8.2 ± 1.4 7.23 ± 0.88 316 193 3.5
β-B 9.87 ± 0.35 3.29 ± 0.59 8.7 ± 1.3 541 921 10.2

In both architectures all weights are uniformly initialized as
suggested by [75], while the bias terms, where present, are ini-
tialized to zero. The weights are then optimized via the Adam
optimizer [76], while reducing the learning rate by a fixed mul-
tiplier factor once a validation loss plateau is reached. Early
stopping [77] is employed during training. The NN models are
built, trained and evaluated via the open source software pack-
age Tensorflow [78] on a single NVIDIA RTX8000P virtual
graphical processing unit (GPU).

2.4. Training and evaluation pipeline

For each task defined in section 2.2, the training and evaluation
pipeline includes the following steps:

Data scaling. It is known that NN models converge faster
during training if the input distributions are whitened [80], i.e.
linearly transformed to have zero mean and unit variance. All
scalar inputs are mapped to [−1, 1], while non-scalar inputs
and outputs (plasma profiles, -ι profile and FCs) are scaled to
the inter-quartile range. These steps are performed via the open
source software package Scikit-learn [81].

Bayesian HPs search. The large number of HPs and the
significant training time of the considered NN architectures
make a manual model optimization procedure hardly effec-
tive. Therefore, to standardize the search of more perform-
ing models, an automated approach to HPs search is used
in this work. In particular, the tree-structured Parzen esti-
mator (TPE) [82] algorithm, provided via the open source
software package hyperopt [83], is employed. TPE is a sequen-
tial model-based optimization (SMBO) algorithm, where the
true fitness function, e.g. the model training and evaluation, is
approximated with a low-cost model that is cheaper to evalu-
ate. The proxy model is then numerically optimized to retrieve
new configurations to be evaluated. Contrarily to other SMBO
strategies where the fitness function is directly learned, TPE
models the distribution function of configuration values given
classes of optimal and non-optimal fitness function values. It
then optimizes the expected improvement criterion [84] with a
heuristic procedure. Its main advantage over other HP search
approaches is the sampling efficiency on tree-structured con-
figuration spaces [82], i.e. spaces in which not all dimensions

Figure 6. Results for the config-iota (blue) and β-iota (red) tasks.
Lines show the rmse mean and 95% confidence interval as a
function of the radial coordinate s. While the rmse in the β-iota task
is generally lower than 10−3, the rmse in the config-iota scenario
increases along the radial profile, following the characteristic
vacuum W7-X -ι profile.

are well-defined for all the configurations (e.g. number of hid-
den units in the second layer of a single-layer FF-FC model).
For a detailed description of the algorithm, please refer to [82].
On each learning task, 30 search iterations are performed. The
data set is split in 20% for testing, 10% for validation and 70%
for training. For each search iteration, the training data is used
to train the model, while the validation data is used to assess
the model regression error and inform the search strategy. The
best performing model is then adopted in the cross-validation
scheme. To ease the computational cost of the search, a sim-
ple mean-squared error (mse) loss is used for training and HP
validation.

Repeated k-fold cross-validation. To estimate the regres-
sion error on out-of-sample data, a five-fold cross-validation
evaluation is repeated 10 times. In a k-fold cross validation
scheme [85, 86], the data set is partitioned into k-folds of equal
cardinality. Then, for each fold, the training process is repeated
k-times, using the selected fold as test set, and the remain-
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Figure 7. Worst and median predicted samples for the config-iota
(blue) and β-iota (red) tasks. The solid lines represent the true -ι
profiles as evaluated by VMEC, while the dotted (worst) and dashed
(median) lines show the predicted profiles by the model. The results
from the worst performing cross-validation fold are shown.

Figure 8. Shear profiles of the worst and median predicted samples
in the config-iota (blue) and β-iota (red) tasks (same samples as in
figure 7). The solid lines represent the true shear profiles as
evaluated from the VMEC -ι profiles, while the dotted (worst) and
dashed (median) lines show the shear profiles derived from the
model -ι predicted profiles. The results from the worst performing
cross-validation fold are shown. The shear profile is computed as
d-ι/dΦ. Even in the case of the worst predicted samples, which
feature a particular sheared profile, the -ι shear is qualitatively
regressed.

ing folds for the training and validation sets. The estimate of
the regression error is the average of the test error on each
fold. However, the cross-validation estimate of the regression
error can be highly variable due to the single partition of the
data set into the k-folds [87]. To overcome this limitation, in
the repeated k-fold cross-validation scheme, the k-fold cross-
validation scheme is repeated n-times, partitioning the data set
into a different k-fold each time. The average of the test error
on each fold is then used as the final estimate.

3. Results

The results achieved on each task are now presented. It is
important to remember that Dβ includes plasma profile for
a fixed magnetic configuration (the standard configuration),
while Dconfig explores the rich space of W7-X vacuum mag-
netic configurations. The changes inDβ , induced by finite-beta
effects, are then small compared to those in Dconfig, induced
by coil currents (i.e. finite-beta effects span a space that only
slightly expands the vacuum solution). Therefore, the spread
of the output data in the finite-beta cases is smaller than in the
vacuum scenarios: the coil system of W7-X has been designed
to allow a large flexibility in the vacuum magnetic configu-
ration space [88, 89], while the W7-X optimization explicitly
targeted robustness against changes in plasma profiles, in par-
ticular pressure profiles [64, 90]. These features are expected
to make the output data in the finite-〈β〉 tasks more difficult
to resolve because of the smaller spread. Therefore, to quan-
titatively compare the results across all tasks, the normalized
root-mean-squared error (nrmse) is used instead.

Given Y = {y ∈ R
K} (see section 2.2.2), the nrmse

between the predicted y and the true or reference y∗ is com-
puted as:

nrmseY =
1
K

K∑
k=1

√√√√√√√√
|Y|∑
i=1

(yki − y∗ki)
2

|Y|∑
i=1

(yki − ȳk)2

, (20)

where ȳk =
1
|Y|

∑|Y|
i=1 yki. The -ι profile is evaluated along the

radial profile with N̂s flux surfaces, so Kι- = 20. As employed
in section 2.2.2, an evaluation grid with Nθ = 18 and Nϕ = 9
is used for the flux surface coordinates and the magnetic field
strength. The use of the nrmse allows us to aggregate the
regression error on the three flux surface coordinates, and to
compare the results across all outputs and scenarios.

Table 4 summarizes the results for all tasks. As expected,
on each output, the nrmse in the vacuum scenario is lower as
compared to the finite-〈β〉 case. Moreover, a nrmse below 10%
is consistently achieved for the -ι profile and the magnetic field
strength. In the flux surface coordinates tasks, nrmse values
between 14% and 20% are achieved instead.

Given the relative small size of the data sets and of the NNs,
the model training time is on the order of magnitude of minutes
but less than an hour. More importantly, the inference time,
even in the most conservative evaluation (i.e. with a single
thread on 1 CPU core with a batch size of 1) is on the order of
few milliseconds. However, parallel computation (e.g. batched
inference and GPU deployment), pre- and post-training opti-
mizations (e.g. model pruning and quantization), are expected
to deliver consistent orders of magnitude speed-up [92, 93].
These optimizations are out of the scope of this paper.

Tables 5–10 list the HP values for the best performing mod-
els discovered via HP search (see section 2.4). As reported in
table 4, the nrmse obtained during search is compatible with
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Figure 9. rmse along the radial profile for flux surface coordinates in the config-surfaces and β-sur faces tasks. The plotted values are the
poloidal and toroidal average over each flux surface. The solid lines show the mean values for the cross-validation folds, while the shaded
area the 95% confidence interval. The rmse generally increases from the magnetic axis toward the edge on all tasks, apart for R near the axis.

Figure 10. rmse for the surfaces tasks evaluated at the LCFS on a grid with Nθ = 36 poloidal and Nϕ = 18 toroidal points per period. The
results for the worst performing cross-validation fold are shown. In case of R, the bean-shape (ϕ ≈ 0 rad) cross section exhibits the largest
regression error. While for λ and Z, the ϕ

2π ≈ 0.03 ) cross section has the largest rmse.
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Figure 11. nrmse for the regressed FCs in the config-surfaces and β-sur faces tasks. For each FC, the nrmse value is annotated at the (m, n)
location. The worst performing cross validation fold is shown.

the nrmse estimated via cross-validation (i.e. its value is within
the 95% interval of the distribution). This means that the HP
search procedure did not overfit5 to the validation data, but HP
values which perform well on the whole data set were found.

In the following, the fidelity of the different NNs is
inspected in closer detail and the major influences on the
regression error are identified.

3.1. Iota regression

Figure 6 shows the rmse profile along the radial flux coordi-
nates for the config-iota and β-iota tasks. Although the average

5 High variance of the model error on unseen data.

nrmse in the β-iota case is higher than in the config-iota case,
the rmse is on the order of 10−3 for both. In the config-iota sce-
nario, the rmse increases from the axis to the edge. This may
be caused by the characteristic shear profile of W7-X magnetic
configurations and the hence increasing spread of -ι profile in
the data from the axis to the edge. Instead, in the β-iota task,
the toroidal current (and partially the pressure) profile is the
main parameter affecting -ι. By data set construction, these
have a larger spread at mid-radius (see figure 1). The larger
spread is reflected in the maximum at s ≈ 0.4. In both cases,
this work shows that even shallow, FF-FC NNs can effectively
regress the -ι profile with high accuracy.

The qualitative fitness of the model can be visualized in
figure 7, which shows the worst and median predicted -ι profiles

12



Nucl. Fusion 61 (2021) 096039 A. Merlo et al

Figure 12. True (pink) and predicted (green) flux surfaces for the bean-shape (upper) and triangular (bottom) cross sections on the
config-surfaces task ( ). The worst (left), median (center) and best (right) regressed samples are shown from the worst performing
cross-validation fold.

for the worst performing cross-validation fold. In addition, as
highlighted in figure 8, even in case of the worst predicted sam-
ple in the worst performing cross-validation fold (i.e. the worst
possible scenario included in the data set), the model is still
able to capture the main features of the -ι profile (e.g. the -ι
shear).

3.2. Flux surfaces regression

Figure 9 shows the rmse broken down by flux surface coor-
dinate along the radial profile. The reported rmse values are
the poloidal and toroidal average on each flux surface, on a
grid as employed in section 2.2.2. A solid line depicts the
mean on the cross-validation folds, while the shaded area
represents the 95% confidence interval. An initial decreas-
ing rmse from the magnetic axis till s ≈ 0.1, a plateau, and
a steep increase toward the edge can be observed in R (see
figure 9(a)). Contrarily, the rmse for both λ and Z monoton-
ically increases from the axis till the edge (see figures 9(b)
and (c)).

In all coordinates, apart from R in the β-sur faces task, the
rmse is higher at s = 1, i.e. the LCFS. We find it worth investi-
gating this in more detail, and hence examine the poloidal and
toroidal dependency of the rmse specifically at the LCFS with
figure 10. In order to emphasize the error, the worst perform-
ing cross-validation fold is shown, and a grid with Nθ = 36
poloidal and Nϕ = 18 toroidal points per period has been used.

The error for R is almost flat on the surface, with maxima
at ϕ ≈ 0 rad, representing the tips of the bean-shaped cross
section. On the other hand, the error for Z and λ shows an
m = 1, n = 1 dependency. In the config-surfaces scenario, at
ϕ
2π ≈ 0.03 (and at ϕ

2π ≈ 0.17 following the symmetry) a higher
rmse is observed. In the β-sur faces task, while the rmse for Z
still shows a poloidal and toroidal dependency similar to that
observed in the vacuum case, the dominant rmse factor for λ
is a poloidal m = 1 term.

To further investigate the rmse poloidal and toroidal depen-
dency, figure 11 shows the regression error on the FCs of
(R,λ, Z) evaluated at the LCFS. In this figure, to effectively
compare the error on both low-order and high-order modes
(see figure 2), the nrmse is used. Again, the worst perform-
ing cross-validation fold is shown. It is important to note that
the FCs are the actual quantities which the NN learned. In both
cases, the leading FCs are regressed with a nrmse below 20%.
However, there are some regions in the (m, n) space which the
model struggles to reconstruct, in particular in the β-sur faces
task (see figure 11(b)).

The regression performance is visualized in figures 12
and 13, where the true and regressed flux surfaces at the
bean-shape (ϕ = 0 rad) and triangular ( ϕ

2π = 0.1) cross
sections are represented. Worst (left), median (center), and
best (right) regressed samples from the worst performing
cross-validation fold are shown. The LCFS shows the largest
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Figure 13. True (pink) and predicted (green) flux surfaces for the bean-shape (upper) and triangular (bottom) cross sections on the
β-sur faces task ( ). The worst (left), median (center) and best (right) regressed samples are shown from the worst performing
cross-validation fold.

Figure 14. rmse along the radial profile for the config-B and β-B
tasks. Lines show the rmse mean and 95% confidence interval. The
rmse in the β-B task is considerable lower than in config-B due to
the smaller spread of B in the data set.

inconsistency (as already observed in figure 9), and in
particular the R coordinate of the high-field side of the bean-
shaped cross section (i.e. θ = π) appears to be the most
complicated feature to resolve (as previously observed in
figure 11).

Of the three flux surface coordinates, λ is the most ardu-
ous to reconstruct. Although not needed to compute the

location of the flux surfaces, it gives information on the direc-
tion of the magnetic field lines. In particular, the λ0n FCs
are hardly regressed in both flux surface tasks. Earlier works
have encountered similar challenges and the lack of spec-
tral minimization for λ in VMEC is presumed to cause such
difficulties [37].

3.3. Magnetic field strength regression

The variance of the magnetic field strength contained in the
vacuum and finite-〈β〉 scenario data sets are on different orders
of magnitude. In config-B, the magnetic field strength exhibits
an average spread of σconfig−B = 252 mT, while in β-B, the
spread is only σβ-B = 28 mT. This mainly derives from the
rich vacuum magnetic configuration space of W7-X and the
low impact of pressure and toroidal current on the equilibrium
field [89]. Therefore, the magnetic field strength in theβ-B task
is more difficult to resolve. Indeed, even though the achieved
nrmse for the β-B task is higher than in config-B, the rmse in
β-B is considerably lower than in config-B, as figure 14 shows,
due to the smaller spread in the data set. Additionally, in β-B,
the rmse does not seem to have any radial dependency, while
the regression error increases from the magnetic axis toward
the edge for config-B.

The topology of the regression error of the magnetic field
strength at the LCFS, for the worst performing cross-validation
fold, is visualized in figure 15. In the config-B task, in addi-
tion to a non-zero baseline error (i.e. m = 0 and n = 0), n = 1
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Figure 15. rmse for the magnetic field strength tasks evaluated at the LCFS on a grid with Nθ = 36 poloidal and Nϕ = 18 toroidal points
per period. The worst performing cross-validation fold is shown. In config-B, the errors on the B00, B01 and B10 terms are the major
contributors to the rmse. In β-B instead, the rmse is almost flat with a shallow, high-order structure.

Figure 16. The solid lines represent the true Bmn profiles as evaluated by VMEC, while the marks show the profiles as predicted by the
model. The results from the config-B (blue) and β-B (red) tasks, and the worst performing cross-validation fold are shown.

toroidal and m = 1 poloidal terms are visible. This stems from
the fact that the main FCs of W7-X, besides B00, are B01 and
B10, while in general the other Bmn are much smaller [89]. Con-
trarily, in the β-B task, the rmse surface is more indented and
higher Bmn error terms become the dominant influence on the
regression error.

Figure 16 qualitatively captures the regression of the lead-
ing FCs, where the true and predicted FC profiles are plotted in
case of the worst and median samples. The worst performing
cross-validation fold is shown. As observed in figure 15, B01

shows the largest discrepancy.

4. Summary and outlook

This paper investigates the feasibility of building a fast sur-
rogate NN model of the MHD equilibrium code VMEC in
W7X magnetic configurations. It extends earlier works [36,
37] by using physics constrained plasma profiles, modern NN
architectures and workflows, and by employing single models
to reconstruct multiple output quantities. The decomposition
of the problem into a vacuum and finite-〈β〉 data set allows
the independent study of the two limiting cases, of which the
viability is necessary for a future VMEC surrogate model.
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The reconstruction of the -ι profile shows a nrmse between
1% and 5%. Regression of flux surface coordinates (R,λ, Z)
gives nrmse values between 14% and 20%, where the λ coor-
dinate appears to be the most problematic to regress. For
the magnetic field strength B, nrmse values between 3% and
10% are obtained. In almost all outputs, the regression error
increases from the magnetic axis toward the edge. As expected,
the regression of the finite-〈β〉 samples proves to be more chal-
lenging than the vacuum cases. However, the observed rmse
values were often similar for the two scenarios. Limited to
the investigated scenarios, a relatively small data set (e.g. 10 k
samples) seems to be adequate.

The promising results of this paper show that NNs can
be used to deploy a drop-in surrogate model for VMEC,
although additional questions have to be investigated. First, the
performance of such models to resolve both the vacuum mag-
netic configuration and the finite-beta effects on the equilib-
rium magnetic field has to be assessed by using a data set
which comprises both vacuum and finite-〈β〉 samples. Sec-
ond, to define a quantitative required accuracy for the models,
which strongly depends on the target application, the degree
to which physics quantities of interest, such as MHD stabil-
ity or neoclassical transport rates, are faithfully reproduced
has to be characterized. This verification represents a key
metric to gauge the use of NN models to provide fast, yet
physics-preserving, MHD equilibria.

Given such unexplored application, several paths can still
be investigated. First, multiple output quantities (e.g. -ι and �x)
can be regressed at once with a single model, thus exploit-
ing the correlation between those quantities. Second, to obtain
self-consistent equilibrium magnetic fields and flux surfaces
geometries, the magnetic field strength B could be com-
puted directly from the model’s -ι and �x instead of being
regressed (see equations (8)–(12)). Third, domain knowledge
and physics constraints could be embedded in both NN archi-
tecture and training process [95], and the coil system geometry
could be extended to a generic device geometry, thus opening
up the possibility to use such a surrogate model in a generic
stellarator optimization workflow. Fourth, to reduce the dimen-
sionality of the problem, the radial dependency of the output
quantities could be cast as an additional predictor, also gaining
the ability to compute analytical derivatives with respect to the
radial coordinate.

Furthermore, broader HP search and an ensemble of NNs
could further improve the performance over single base learner
[94], and optimization techniques, such as pruning and quan-
tization, are expected to deliver improved inference times.
Moreover, the results of this work suggest that the full Fourier
resolution is in reach if larger NNs and longer training time are
accessible.

Finally, the use of MHD fast surrogate models can impact
multiple applications: fast Bayesian inference of plasma
parameters and equilibrium reconstruction workflows for

Table 5. Hyper-parameters values for the best FF-FC model on
the config-iota task. The float type hyper-parameters are reported
with two significant digits.

HP Value

Dense layers 4
First layer hidden units 64
Activation function SeLU
Batch size 64
Learning rate 6.50 × 10−4

Learning rate decay rate 4.00 × 10−1

Learning rate decay steps 20
L2 regularization factor 1.60 × 10−5

Early stopping patience epochs 40

Table 6. Hyper-parameters values for the best FF-FC model on
the β-iota task. The float type hyper-parameters are reported with
two significant digits.

HP Value

Dense layers 4
First layer hidden units 128
Activation function SeLU
Batch size 32
Learning rate 2.60 × 10−3

Learning rate decay rate 3.40 × 10−1

Learning rate decay steps 20
L2 regularization factor 1.60 × 10−5

Early stopping patience epochs 40

intra-shot analysis6, access to large and rich optimization
spaces for present and future magnetic confinement devices,
milliseconds-range MHD equilibrium computations for real-
time plasma control, and the generation of very large data sets
of equilibrium computations necessary to investigate machine
learning control strategies (e.g. RL)7.
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Table 7. Hyper-parameters values for the best 3D CNN model on
the config-surfaces task. The float type hyper-parameters are
reported with two significant digits.

HP Value
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Decoder first layer filters 112
Decoder kernel size 3 × 3 × 3
Decoder stride 1 × 1 × 1
Decoder activation function SeLU
Decoder dropout 2.18 × 10−2

Batch size 32
Learning rate 8.90 × 10−4

Learning rate decay rate 2.56 × 10−1

Learning rate decay steps 15
L2 regularization factor 3.35 × 10−6

Early stopping patience epochs 35

Table 8. Hyper-parameters values for the best 3D CNN model on
the β-sur faces task. The float type hyper-parameters are reported
with two significant digits.

HP Value
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Early stopping patience epochs 45
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Appendix A

A.1. Hyper-parameters values

Tables 5–10 report the HP values of the best performing model
on each task discovered via HP search.
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