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Abstract

In the decades to come, the European electricity system must undergo an unprece-
dented transformation to avert the devastating impacts of climate change. To
devise various possibilities for achieving a sustainable yet cost-efficient system, in
the thesis at hand, we solve large optimisation problems that coordinate the siting
of generation, storage and transmission capacities. Thereby, it is critical to capture
the weather-dependent variability of wind and solar power as well as transmission
bottlenecks. In addition to modelling at high spatial and temporal resolution, this
requires a detailed representation of the electricity grid. However, since the re-
sulting computational challenges limit what can be investigated, compromises on
model accuracy must be made, and methods from informatics become increasingly
relevant to formulate models efficiently and to compute many scenarios.

The first part of the thesis is concerned with justifying such trade-offs between
model detail and solving times. The main research question is how to circumvent
some of the challenging non-convexities introduced by transmission network
representations in joint capacity expansion models (CEMs) while still capturing
the core grid physics. We first examine tractable linear approximations of power
flow and transmission losses. Subsequently, we develop an efficient reformulation
of the discrete transmission expansion planning (TEP) problem based on a cycle
decomposition of the network graph, which conveniently also accommodates
grid synchronisation options. Because discrete investment decisions aggravate
the problem’s complexity, we also cover simplifying heuristics that make use of
sequential linear programming (SLP) and retrospective discretisation techniques.

In the second half, we investigate other trade-offs, namely between least-cost
and near-optimal solutions. We systematically explore broad ranges of techno-
logically diverse system configurations that are viable without compromising the
system’s overall cost-effectiveness. For example, we present solutions that avoid
installing onshore wind turbines, bypass new overhead transmission lines, or
feature a more regionally balanced distribution of generation capacities. Such
alternative designs may be more widely socially accepted, and, thus, knowing
about these degrees of freedom is highly policy-relevant. The method we employ
to span the space of near-optimal solutions is related to modelling-to-generate-
alternatives (MGA), a variant of multi-objective optimisation (MOO). The robustness
of our results is further strengthened by considering technology cost uncertain-
ties. To efficiently sweep the cost parameter space, we leverage multi-fidelity
surrogate modelling techniques using sparse polynomial chaos expansion (PCE)
in combination with low-discrepancy sampling and extensive parallelisation on
high-performance computing infrastructure.
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Introduction

1

As governments across the world are planning to increase their shares of renew-
able energy supply, energy system models have become a pivotal instrument to
find cost-efficient system layouts that satisfy ambitious climate change mitiga-
tion targets [14–17]. The commitment to reaching net-zero emissions by mid-
century to prevent the calamitous consequences of global warming means we
need to find answers today to what infrastructure is required, where it should
be built, and how much it costs [18]. Thereby, the speed of change needed to
achieve these goals is unprecedented. Because a sustainable energy system will
radically differ from today’s system and the transition will entail exceptional fi-
nancial outlay throughout the upcoming decades, detailed modelling becomes
crucial to address these questions systematically.

Most analysis indicates that future energy systems will primarily be based on
wind and solar generation because they represent two low-emission technologies
that unite rapidly falling costs with more than enough expansion potential to
cover worldwide energy demands [19]. But the chief challenge that arises for
systems with high shares of weather-dependent renewable energy sources is
dealing with their variability. Throughout a year, a system based on wind and
solar power is exposed to many different supply situations.

In recent years, the rising shares of variable renewable energy have increasingly
put power transmission grids under strain. The connection of wind turbines to
the grid far from demand has led to frequent occasions of high network loading
in countries such as Denmark, Germany and the United Kingdom, resulting in
high levels of wind curtailment. In 2019, grid congestion caused curtailment in
Germany of around 3% of renewable energy produced [20]. This raises questions
about the system integration of more and more renewables.

Fortunately, there is a range of different choices that help us harmonise the rising
spatio-temporal mismatch patterns of supply and demand. Preferable to maintain-
ing fossil backup power plants and wastefully curtailing renewable generation,
in the electricity sector, we have the options to balance renewable generation in
space by transmitting energy across long distances or in time by storing energy.
Continent-spanning transmission networks can smooth over multiple weather
systems and connect remote high yield sites to demand centres. Conversely, stor-
age technologies shift energy from times of surplus to times of deficit, whereas
demand-side management works the other way around.
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Thereby, different balancing technologies satisfy different balancing needs. For in-
stance, batteries and pumped-hydro storage can deal well with the dominant daily
variations of solar generation. In contrast, the characteristic weekly variability of
wind power tends to pair better with hydrogen storage or hydro reservoirs. Both
wind and solar variability also feature antithetical seasonal components that par-
tially balance out if mixed [21]. Another prominent example concerns the spatial
allocation of renewable generation capacities, namely whether it is better to build
offshore wind turbines and the transmission network required to deliver the elec-
tricity or to locate renewable generation closer to where demand is while accepting
a setback in productivity and possibly using energy storage. Both electricity net-
works and storage also induce an indirect cost from transmission and conversion
losses, which affect the cost-optimal amount and location of renewable capacities.

Because the interactions between demand, generation, and balancing options
are complex and cost-efficient solutions are not obvious, we build optimisation
models of the energy system to be able to assess the different options thor-
oughly. These are known as investment planning models, capacity expansion
models (CEMs) or, more recently, macro-energy systems models [22]. Their pur-
pose is to weigh the many possible investment decisions in planning sustain-
able energy systems against each other.

Broadly speaking, in these models, we adopt the perspective of a social planner. We
ask what is the cost-minimal system design and operation that satisfies emission
reduction targets given that there are some technical constraints we must obey.
These include meeting the demand at each location and hour of the year whilst
considering the spatio-temporal availability and geographical potentials of variable
renewables like wind and solar. Moreover, we must account for the limits of trans-
mission capacities and the physics of power flow. In the context of these formalised
mathematical models, we often initially abstract from market integration aspects,
regulation and other policy instruments (e.g. subsidies and taxes) and, following
equilibrium theory, idealise by assuming perfect competition among the technolo-
gies as well as long-term dynamic efficiency. Put into an economist’s words, we
search for the system composition that maximises the long-run social welfare.

The modelling requirements for systems with high shares of renewables are radi-
cally different than for conventional systems with only dispatchable power gen-
eration. In the absence of weather-dependent renewables, simple heuristics like
screening curves used to suffice to dimension fossil-fuelled power plants [23].
However, the focus on variable renewables needs much higher model resolutions
and an integrated system perspective: it has been demonstrated that such models
require coordinated planning of generation, storage, and transmission infrastruc-
ture to capture their complex interactions and strong dependencies [24, 25]; high
temporal resolution and scope to account for extreme weather events, storage
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operation, and investments shaped by the characteristic daily, synoptic and sea-
sonal patterns of renewables and load [26, 27]; high spatial resolution and scope
to also capture the spatio-temporal patterns, such as correlations of wind speeds
across the continent, and to represent grid bottlenecks [28, 29].

Many of the existing models have not been able to meet these modelling needs.
Frequently, there is no joint planning which ignores the trade-offs between the
siting of generation capacity, grids and storage [30, 31]. Most often, analyses
are based on fragmented, insufficiently many typical days [32–34], which cannot
capture the full variability of renewables and demand, or extreme weather events
that test the reliability of the systems. Many models also do not surpass a country-
level model resolution [35–38]. Such a low spatial resolution also means that
only a simple representation of power flows based on net transfer capacities
(NTCs) is applicable [14]. All too often, these are moreover closed-source models,
which means that results are neither transparent, reproducible, nor verifiable for
outsiders (e.g. LEAP [39] and, until 2020, TIMES [40]).

On the contrary, the open-source power system model, PyPSA-Eur [13], which
will be used in this thesis, fulfils many of the prerequisites mentioned above. By
combining detailed grid modelling with joint spatially explicit capacity expansion
planning across thousands of operating conditions, it builds a bridge between broad
energy system models (e.g. calliope [41], oemof [42], OSeMOSYS [43], Temoa [44]),
for which power flow modelling does not exceed NTCs, and detailed power system
analysis tools (e.g. pandapower [45], PYPOWER [46], PowerModels.jl [47]), that
conversely do not perform coordinated investment optimisation.

Indeed, there has never been a more opportune time for raising model detail since
Sørensen’s pioneering efforts in renewable energy system modelling in the 1970s
[48, 49]. Driven by the growing urgency of climate change mitigation and encour-
aged by the plummeting costs of renewables in the past decade [50–52], we can
now avail of decades-spanning historical weather datasets [53], substantial ad-
vances in algorithms to solve large-scale problems [54], and extensive performance
optimisation in open-source modelling software like PyPSA [12]. Moreover, parallel
computation of optimisation runs on high-performance clusters with modern
hardware has become widely accessible, allowing for various model configurations
and scenarios to be studied even at high resolution.

Nonetheless, solving sufficiently detailed CEMs still presents a computational chal-
lenge, even with state-of-the-art software. Besides the need for high spatial and
temporal detail and the joint planning, which drives up the overall problem size, rep-
resenting electricity transmission networks adds considerably to the problem com-
plexity [55–57]. This is because correctly accounting for the physics of prevalent AC
power flow and transmission losses introduces nonlinear constraints, and aspects of
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transmission expansion planning (TEP) typically involve discrete decisions, each of
which makes the optimisation model non-convex and, hence, NP-hard to solve [58].

Consequently, all aspects of the energy system at meticulous levels of detail
cannot currently be contained in a single model. Instead, we must make sim-
plifications. For instance, in the present thesis, we limit the scope of analysis
to the electricity sector of Europe rather than modelling the entire global en-
ergy system, adjust the model resolution by spatial and temporal aggregation
according to limits and needs, and compromise on how accurately we represent
power flows. One part of the thesis is about justifying such compromises between
model accuracy and computational speed. Focussing on the representation of elec-
tricity transmission networks in coordinating CEMs, we investigate what model
details can be simplified, or formulated more efficiently, to remain sufficiently
accurate within acceptable computation times.

Quantifying these modelling trade-offs is highly relevant because, with a justifiable
complexity reduction in one dimension, we would be able to increase model detail
in another, where coarse approximations may have a bigger effect [59, 60]. Also,
even though capacity expansion planning is a strategic problem, computational
speed matters for reasons beyond mere solvability. As many influential model
parameters, like technology cost assumptions, reference weather years, technology
choices, and resource potentials contain a high level of uncertainty, performing
sensitivity analyses is crucial but often limited by computational resources and time
at hand. The resulting common focus of design studies on a single or few scenarios
misses not only parametric but also structural modelling uncertainties that result
from the choices made to simplify the model’s representation of reality [61].

Hence, it is highly advisable to also look beyond single least-cost solutions, which
can easily give a false sense of exactness [62, 63]. In retrospective analyses, it
has been shown that developments in the electricity sector have rarely followed
cost-optimal paths [64, 65]. Additionally, modelling results are known to be
sensitive to small perturbations of input parameters because the space of feasible
solutions near the optimum is very flat. It is, therefore, widely uncontroversial
that while we can reveal insights about the key technology interactions that shape
investments, given the modelling uncertainties involved, there is little we can tell
with certainty about the exact capacities to be built [66, 67]. Furthermore, pure
least-cost optimisation rarely reflects societal preferences and attitudes towards
renewable energy infrastructures. Local communities may oppose new overhead
transmission lines and onshore wind turbine developments for various reasons.
Because social acceptance is critical for a successful energy transition, it would
be negligent not to contemplate alternative system designs which would be more
widely accepted, even if they entail a limited additional cost. Such trade-offs
are investigated in the second half of this thesis.
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Trade-Offs Between Model Detail and Computational Speed
Part I:

Trade-Offs Between Cost-Optimality and Near-Optimal Alternatives
Part II:

Chapter 3: Chapter 4: Chapter 5:

Chapter 8:Chapter 6: Chapter 7:

Transmission Expansion

Planning Using Cycle Flows

Transmission Expansion
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Approximating Power
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• sequential linear programming
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Solutions
Robust Near-Optimal
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• polynomial chaos expansion

• low-discrepancy sampling
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• modelling to generate
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• multi-objective
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Regional Equity
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discrete line expansion
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further alternative search directions
robustness to cost uncertainty
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Chapter 2:

Foundations
• capacity expansion planning problem

• optimisation theory and algorithms

• electricity system model PyPSA-Eur

Chapter 9:

Conclusion and Outlook

Figure 1.1: Graphical outline of the contents and methods of the present thesis.
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Outline and Contributions

Overall, compromises and trade-offs are the common themes of the thesis. Fol-
lowing Figure 1.1, the present thesis is organised in two major parts, enclosed by
preliminary considerations and concluding remarks, each examining insightful
compromises in power system planning from different angles.

Part I concerns trade-offs between model detail and computation times. From a
modelling and algorithmic perspective, we seek to address the question of how we
can circumvent some of the computationally challenging non-convexities induced
by AC power flow equations, transmission losses, and discrete TEPwhile still captur-
ing the core grid physics that many current energy system planning models ignore.

On the other hand, Part II examines trade-offs between cost-optimal solutions and
marginally more expensive alternative system designs. Driven by the prospect
of accommodating unmodelled social constraints, we explore broad ranges of
robust investment configurations that are technologically diverse while taking
account of technology cost uncertainty. In the context of this analysis, we apply
various methods from sensitivity and uncertainty analysis, such as multi-objective
optimisation (MOO), modelling-to-generate-alternatives (MGA), polynomial chaos
expansion (PCE), the determination of Sobol indices, and low-discrepancy sam-
pling techniques in a high-performance computing environment to cope with
the incurred plethora of scenarios in parallel.

Chapter 2 – Foundations contains the preliminaries. Throughout the thesis,
we consistently use variants of the same basic problem formulation, the
same model of the European electricity system, and employ algorithms
implemented in state-of-the-art software to solve the resulting optimisation
problems. This chapter introduces these.

Chapter 3 – Approximating Power Flow and Transmission Losses [5]
starts Part I with approximations of two nonlinear phenomena in power
systems, AC power flow and transmission losses, in the context of linear
CEMs. To navigate around the computationally burdensome non-convexities
of the resulting nonlinear problems (NLPs), we apply convex envelopes in
addition to further linearisation and relaxation techniques to derive various
simplified power flow representations. We then compare and evaluate these
based on differences in investment decisions, nodal prices, computational
performance, and, foremost, by how much the modelled flows and losses
deviate from simulated AC power flows. Particularly the latter is relevant to
judge whether the model results from coarsely-resolved planning models
are sufficiently physical to be used in more detailed feasibility studies.

6 Chapter 1 Introduction



Chapter 4 – Transmission Expansion Planning Using Cycle Flows [1]
turns to another prominent non-convexity in power system planning:
the discrete expansion of transmission lines with changing effective line
impedances when transmission corridors are reinforced. Using a big-𝑀
disjunctive relaxation, this involves a mixed-integer linear problem (MILP)
that is commonly founded on a power flow linearisation that uses auxiliary
optimisation variables for voltage angles to describe Kirchhoff’s voltage
law (KVL). As well as introducing a large number of auxiliary variables, this
angle-based TEP formulation has the disadvantage that it is not well-suited to
considering the connection of multiple disconnected networks. By exploiting
insights from graph theory, we derive an equivalent reformulation of TEP
based on a cycle decomposition of the network graph. This alternative
formulation circumvents the auxiliary variables and reduces the required
number of constraints by expressing KVL directly in terms of the power
flows.

Since the new formulation neither compromises on model detail nor re-
solves the non-convexity of discrete line expansion options, unlike the other
chapters of Part I, the focus is on computational benefits achieved solely
by restating the solution space more efficiently. To demonstrate this, we
compare the cycle-based reformulation to the standard angle-based TEP for-
mulation and emphasise the combinatorics of the connection of multiple
disconnected networks. This topic had not received attention in the literature
but has particular relevance to regions like Europe, North America, China,
Japan, and the Philippines with island systems or multiple synchronous
zones.

Chapter 5 – Transmission Expansion Planning Using Heuristics [2]
continues the search for efficient ways to incorporate integer trans-
mission expansion and changing line impedances. Since as a MILP even
the cycle-based reformulation of TEP is hard to solve with state-of-the-art
solvers in coordinating capacity expansion planning, in this chapter, we
follow an alternative approach. To regain the lower computational effort of
convex problems, we develop heuristics based on sequential linear program-
ming (SLP), relaxation and retrospective discretisation, and benchmark their
performance against the MILP formulation in terms of their computational
gain, deviation from optimal system cost, and similarity of transmission line
expansion.

Chapter 6 – Near-Optimal Solutions [3] initiates Part II, which centres on
the perils of narrowly following optimisation results in electricity sys-
tem planning. As previous modelling-focused chapters indicate degrees
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of freedom in siting infrastructure without compromising the system’s cost-
effectiveness, in this chapter, we investigate the feasible space near the
cost-optimum more systematically. We apply methods from multi-objective
optimisation (MOO) and modelling-to-generate-alternatives (MGA) to delin-
eate trade-offs between increasing system cost andminimising ormaximising
the build-out of individual technologies for generating, storing and trans-
mitting electricity. Especially along dimensions that affect levels of public
acceptance, e.g. the volume of transmission expansion or the scale of onshore
wind capacities, we aim to establish a better understanding of which tech-
nologies are essential for given cost penalties. This allows us to communicate
a broad spectrum of possibilities to policymakers.

Chapter 7 – Robust Near-Optimal Solutions [6] subsequently augments the
robustness of outlined alternatives by additionally taking account of a wide
range of different technology cost projections, given that rapidly evolving
technologies like solar photovoltaics, batteries and hydrogen storage contain
a high level of uncertainty. To manage the explosion of scenarios induced
by searching for many near-optimal solutions alongside comprehensively
sweeping the cost parameter space, we leverage multi-fidelity surrogate
modelling techniques using sparse PCEs in combination with advanced low-
discrepancy sampling techniques. Besides being able to allocate induced
output uncertainty to individual cost parameters through Sobol indices,
thereby, we can underpin alternative solutions beyond least-cost that have
a high chance of involving a limited cost increase, just as we can identify
regions of the solution space that are unlikely to be cost-efficient.

Chapter 8 – Regional Equity and Autarky [4] explores further dimensions
of near-optimal alternatives besides the technology-oriented axes of Chap-
ters 6 to 7. It is motivated by the observation that the purely resource-induced
cost optimum can lead to very inhomogeneous regional distributions of ca-
pacities in a fully renewable European electricity system. This is deemed
to be another factor that can be detrimental to levels of social acceptance.
Within the context of sensitivity analysis, we explore the cost impact and
changes in the system composition when the development of power supply
infrastructure is more evenly shared among countries and smaller regions.
Thereby, we also assess fully self-sufficient solutions without electricity
transmission between individual regions.

Chapter 9 – Conclusions and Outlook offers a concluding review of the the-
sis, summarising the main insights from across all chapters and outlining
worthwhile extensions to the conducted work for future investigations.
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Foundations

2

The purpose of the present chapter is to set the foundations. It introduces the opti-
misation problem for joint long-term capacity expansion planning of electricity sys-
tems with high shares of renewables and energy storage (Section 2.1), and describes
how can we solve such optimisation problems in general (Section 2.2) as well as
how realistic inputs are obtained to model the European power system (Section 2.3).

2.1 Power System Planning Problem

For systems with high shares of renewables, the cost-optimal allocation of renew-
able generation capacities, energy storage and transmission reinforcements to
supply electricity demands is strongly driven by operational aspects. Variable
weather conditions largely determine generator dispatch, grid congestion, and stor-
age needs. Because long-term investments in electricity system infrastructure and
short-term system operation are so heavily intertwined, in this thesis, we assess
different capacity expansion options based on an optimisation model that jointly
optimises both, subject to physical, technical, and environmental constraints.

A successfully solved model returns both the optimised locations of genera-
tion, storage, and transmission capacities as well as the optimal dispatch of
generators, storage units, and controllable network components like HVDC
links throughout a reference year. It also shows levels of curtailment, net-
work congestion, and nodal electricity prices.

In this partial equilibrium model [68], we seek to minimise the total annual system
costs that comprises both investment costs and operational expenditures. To
express both as annual costs, we use the annuity factor (1 − (1 + 𝜏 )−𝑛)/𝜏 that,
like a mortgage, converts the upfront investment of an asset to annual payments
considering its lifetime 𝑛 and cost of capital 𝜏 . Thus, the objective includes on
one hand the annualised capital costs 𝑐∗ for investments at locations 𝑖 in generator
capacity 𝐺𝑖,𝑟 ∈ R+ of technology 𝑟 , storage power capacity 𝐻𝑖,𝑠 ∈ R+ of technology
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𝑠, and transmission line capacities 𝑃𝓁 ∈ R+, as well as the variable operating costs
𝑜∗ for generator dispatch 𝑔𝑖,𝑟 ,𝑡 ∈ R+ on the other:

min
𝐺,𝐻 ,𝐹 ,𝑔 [

∑
𝑖,𝑟
𝑐𝑖,𝑟 ⋅ 𝐺𝑖,𝑟 +∑

𝑖,𝑠
𝑐𝑖,𝑠 ⋅ 𝐻𝑖,𝑠 +∑

𝓁
𝑐𝓁 ⋅ 𝑃𝓁 +∑

𝑖,𝑟 ,𝑡
𝑤𝑡 ⋅ 𝑜𝑖,𝑟 ⋅ 𝑔𝑖,𝑟 ,𝑡]

. (2.1)

Thereby, the representative time snapshots 𝑡 are weighted by the time span 𝑤𝑡

such that their total duration adds up to one year; ∑𝑡∈ 𝑤𝑡 = 365 ⋅ 24h = 8760h.
The subsequent problem description largely follows [5].

In addition to the cost-minimising objective function, we further impose a set of
linear constraints that define limits on (i) the capacities of generation, storage and
transmission infrastructure from geographical and technical potentials, (ii) the
availability of variable renewable energy sources for each location and point in time,
typically derived from historical weather data, (iii) the budget for greenhouse gas
(GHG) emissions, (iv) storage consistency equations, and (v) a multi-period linear
optimal power flow (LOPF) formulation. Overall, this results in a linear problem (LP).

The capacities of generation, storage and transmission infrastructure are con-
strained from above by their installable potentials and from below by any existing
components:

𝐺 𝑖,𝑟 ≤ 𝐺𝑖,𝑟 ≤ 𝐺 𝑖,𝑟 ∀𝑖, 𝑟 (2.2)
𝐻 𝑖,𝑠 ≤ 𝐻𝑖,𝑠 ≤ 𝐻 𝑖,𝑠 ∀𝑖, 𝑠 (2.3)
𝑃 𝓁 ≤ 𝑃𝓁 ≤ 𝑃 𝓁 ∀𝓁 (2.4)

Moreover, the dispatch of a generator may not only be constrained by its rated
capacity but also by the availability of variable renewable energy, which may be
derived from reanalysis weather data. This can be expressed as a time- and location-
dependent availability factor 𝑔 𝑖,𝑟 ,𝑡 , given per unit of the generator’s capacity:

0 ≤ 𝑔𝑖,𝑟 ,𝑡 ≤ 𝑔 𝑖,𝑟 ,𝑡𝐺𝑖,𝑟 ∀𝑖, 𝑟 , 𝑡 (2.5)

The dispatch of storage units is split into two positive variables; one each for charg-
ing ℎ+𝑖,𝑠,𝑡 and discharging ℎ−𝑖,𝑠,𝑡 . Both are limited by the power rating 𝐻𝑖,𝑠 of the stor-
age units.

0 ≤ ℎ+𝑖,𝑠,𝑡 ≤ 𝐻𝑖,𝑠 ∀𝑖, 𝑠, 𝑡 (2.6)
0 ≤ ℎ−𝑖,𝑠,𝑡 ≤ 𝐻𝑖,𝑠 ∀𝑖, 𝑠, 𝑡 (2.7)

This formulation does not prevent simultaneous charging and discharging, in order
to maintain the computational benefit of a convex feasible space but can be counter-
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acted by adding a small marginal cost to the storage dispatch variables. The energy
levels 𝑒𝑖,𝑠,𝑡 of all storage units have to be consistent with the dispatch in all hours

𝑒𝑖,𝑠,𝑡 = 𝜂𝑤𝑡𝑖,𝑠,0 ⋅ 𝑒𝑖,𝑠,𝑡−1 + 𝑤𝑡 ⋅ ℎinflow𝑖,𝑠,𝑡 − 𝑤𝑡 ⋅ ℎ
spillage
𝑖,𝑠,𝑡 ∀𝑖, 𝑠, 𝑡

+ 𝜂𝑖,𝑠,+ ⋅ 𝑤𝑡 ⋅ ℎ+𝑖,𝑠,𝑡 − 𝜂
−1
𝑖,𝑠,− ⋅ 𝑤𝑡 ⋅ ℎ−𝑖,𝑠,𝑡 , (2.8)

whereby storage units can have a standing loss 𝜂𝑖,𝑠,0, a charging efficiency
𝜂𝑖,𝑠,+, a discharging efficiency 𝜂𝑖,𝑠,−, natural inflow ℎinflow𝑖,𝑠,𝑡 and spillage ℎspillage𝑖,𝑠,𝑡 .
Furthermore, the storage energy levels are assumed to be cyclic given that
we consider a single reference year,

𝑒𝑖,𝑠,0 = 𝑒𝑖,𝑠,| | ∀𝑖, 𝑠, (2.9)

and are constrained by their energy capacity

0 ≤ 𝑒𝑖,𝑠,𝑡 ≤ 𝑇 𝑠 ⋅ 𝐻𝑖,𝑠 ∀𝑖, 𝑠, 𝑡 . (2.10)

To reduce the number of decision variables, here we link the energy storage
volume to power ratings using a technology-specific parameter 𝑇 𝑠 that describes
the maximum duration a storage unit can discharge at full power rating.

Regarding the balance of supply and demand, Kirchhoff’s current law (KCL) re-
quires local generators and storage units as well as incoming or outgoing flows
𝑓𝓁 ,𝑡 of incident transmission lines 𝓁 to balance the perfectly inelastic electricity
demand 𝑑𝑖,𝑡 at each location 𝑖 and snapshot 𝑡

∑
𝑟
𝑔𝑖,𝑟 ,𝑡 +∑

𝑠
(ℎ−𝑖,𝑠,𝑡 − ℎ

+
𝑖,𝑠,𝑡) +∑

𝓁
𝐾𝑖𝓁 𝑓𝓁 ,𝑡 = 𝑑𝑖,𝑡 ∀𝑖, 𝑡 , (2.11)

where 𝐾𝑖𝓁 is the incidence matrix of the network.

The power flows 𝑝𝓁 ,𝑡 are limited by their nominal capacities 𝑃𝓁

|𝑝𝓁 ,𝑡 | ≤ 𝑝𝓁𝑃𝓁 ∀𝓁 , 𝑡 , (2.12)

where 𝑝𝓁 acts as an additional per-unit security margin on the line capacity to allow
a buffer for the failure of single circuits (𝑁 − 1 criterion) and reactive power flows.

Kirchhoff’s voltage law (KVL) imposes further constraints on the flow of AC lines
and there are several ways to formulate KVL with large impacts on performance.
As we will deal with the modelling implications of KVL in greater detail later
in Chapter 3, for now we complete the problem description with one of them:
Using linearised load flow assumptions, the voltage angle difference around every
closed cycle in the network must add up to zero. Using a cycle basis 𝐶𝓁𝑐 of the
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network graph where the independent cycles 𝑐 are expressed as directed linear
combinations of lines 𝓁 [69], we can write KVL as

∑
𝓁
𝐶𝓁𝑐 ⋅ 𝑥𝓁 ⋅ 𝑓𝓁 ,𝑡 = 0 ∀𝑐, 𝑡 (2.13)

where 𝑥𝓁 is the series inductive reactance of line 𝓁 . Controllable HVDC links
are not affected by this constraint.

We may further regard a constraint on the total annual CO2 emissions ΓCO2

to achieve sustainability goals. The emissions are determined from the
time-weighted generator dispatch 𝑤𝑡 ⋅ 𝑔𝑖,𝑟 ,𝑡 using the specific emissions 𝜌𝑟
of fuel 𝑟 and the generator efficiencies 𝜂𝑖,𝑟

∑
𝑖,𝑟 ,𝑡

𝜌𝑟 ⋅ 𝜂−1𝑖,𝑟 ⋅ 𝑤𝑡 ⋅ 𝑔𝑖,𝑟 ,𝑡 ≤ ΓCO2 . (2.14)

Note, that this formulation does not include pathway optimisation (i.e. no se-
quences of investments), but searches for a cost-optimal layout corresponding to a
given GHG emission reduction level and assumes perfect foresight for the refer-
ence year based on which capacities are optimised. This optimisation problem is
implemented in the open-source Python-based modelling framework PyPSA [12].

2.2 Optimisation Theory and Algorithms

Before we shortly proceed with populating the raw problem formulation with
data, we first take a step back and briefly cover which algorithms we can use
to solve optimisation problems in general.

Let us initially consider an objective function 𝑓 ∶ R𝑘 → R which we seek to min-
imise

min
𝑥

𝑓 (𝑥). (2.15)

In Section 2.1 this corresponds to a mapping of investment and dispatch de-
cisions 𝑥 ∈ R𝑘 to the total system cost. This decision space is further con-
strained by some equalities and inequalities

𝑔𝑖(𝑥) = 𝑐𝑖 ⟂ 𝜆𝑖 𝑖 = 1,… , 𝑛, (2.16)
ℎ𝑗(𝑥) ≤ 𝑑𝑗 ⟂ 𝜇𝑗 𝑗 = 1,… , 𝑚. (2.17)
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For example, in Section 2.1 we have inequality constraints for capacity limits
and equality constraints to model the Kirchhoff laws. These constraints define
the feasible space 𝑋 ⊂ R𝑘 , which forms a convex polytope, a multi-dimensional
polygon, if all constraints are affine. The dual variables 𝜆𝑖 and 𝜇𝑖 are the so-
called Karush-Kuhn-Tucker (KKT) multipliers, which can be used to rewrite the
constrained optimisation problem as a Lagrangian function

(𝑥, 𝜆, 𝜇) = 𝑓 (𝑥) +∑
𝑖
𝜆𝑖 (𝑔𝑖(𝑥) − 𝑐𝑖) +∑

𝑗
𝜇𝑗 (ℎ𝑗(𝑥) − 𝑑𝑗) . (2.18)

Based on this Lagrangian function, we can apply the KKT conditions [70] formulate
the necessary conditions for an optimal solution 𝑥⋆, 𝜇⋆, 𝜆⋆, namely:

stationarity: 𝜕
𝜕𝑥𝓁

=
𝜕𝑓
𝜕𝑥𝓁

+∑
𝑖
𝜆⋆𝑖
𝜕𝑔𝑖
𝜕𝑥𝓁

+∑
𝑗
𝜇⋆𝑗
𝜕ℎ𝑗
𝜕𝑥𝓁

= 0 (2.19)

primal feasibility: 𝑔𝑖(𝑥⋆) = 𝑐𝑖 (2.20)
ℎ𝑗(𝑥⋆) ≤ 𝑑𝑗 (2.21)

dual feasibility: 𝜇⋆𝑗 ≥ 0 (2.22)
complementary slackness: 𝜇⋆𝑗 (ℎ𝑗(𝑥

⋆ − 𝑑𝑗)) = 0 (2.23)

For optimisation problems with a convex objective function and exclusively affine
constraints, the KKT conditions are even sufficient.

In the context of minimising the cost of future energy system designs, the KKT
multipliers also have insightful economic interpretations. For instance, the KKT
multipliers can translate a carbon cap to a carbon price, map a renewable generation
target to a required subsidy, allocate a scarcity cost to limited potentials, or even
convey the transmission congestion as nodal prices [71]. As they measure the
local sensitivity of the objective function to relaxing the associated constraint at
the optimal point, they are frequently referred to as shadow prices.

In general, solving optimisation problems (and computing shadow prices on the
side) is at worst NP-hard; i.e. there is no known all-encompassing algorithm that is
guaranteed to solve in polynomial time. Non-convex objectives, constraints and
discrete decision variables are the primary agitators of this level of complexity; and
unfortunately we encounter quite a few of these in electricity system modelling.
However, if we can force the investment planning problem into convexity, by formu-
lating it as LP as in Section 2.1, we can avail of fast polynomial-time algorithms [72].

Simplex Methods The simplex algorithm is one of the standard method to solve
LPs. Starting at any vertex, it works by traversing the edges of the convex polytope
that defines the feasible space. The method traces back to Dantzig’s work in the
late 1940s [73], and exploits the fact that the optimum occurs at (at least) one of
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the polytope’s vertices. But although the simplex method is demonstrated to solve
in polynomial time on average, it requires exponential time in the worst case [74].

Interior-Point Methods On the other hand, interior-point methods (or barrier
methods) are a more recent group of solving algorithms, which can even solve con-
vex nonlinear problems (NLPs) in addition to LPs. Rather than examining the feasible
space’s vertices, interior-point methods approach the optimal solution from the
inside by amending the objective with a barrier term that penalises solutions which
come close to the feasible space boundary. In the 1980s, Karmarkar [75] developed
an interior-point algorithm that completes in weakly polynomial time for LPs [76].

Branch and Bound Methods While the problem formulation in Section 2.1 did
not feature any discrete decision variables so far, the expansion of transmission
lines is often considered to be a discrete decision because circuits are only available
in limited configurations. This results in a mixed-integer linear problem (MILP)1,
which complicates the search for the cost-optimal transmission reinforcement
in some of the following chapters (4 and 5). One common practice for solving
MILPs is the branch and bound method that originates from work in the 1960s
by Land & Doig [77] and Dakin [78]. The branch and bound principle builds on
a tree search rooted on an LP relaxation of the MILP which initially ignores all
integrality constraints. Recursively the feasible space is then split on a chosen
integer but fractionally optimised branching variable, whereby each new node
entails a slightly more constrained LP relaxation until integer feasible solutions may
be found. Based on continuously updated lower and upper bounds, parts of the
tree known not to contain an optimal solution are then iteratively discarded. The
lower bound climbs from the continuous relaxation’s objective value, whereas the
upper bound drops by leaps to the best known feasible solution. Throughout the
tree search, the upper and lower bounds approach each other, and the algorithm
terminates once they match up to a given tolerance.

Software For solving problem instances of both LPs and MILPs we draw on spe-
cialised software, which employs various additional speed-up techniques beyond
the basic concepts sketched above. While there exist notable open-source solvers
like Cbc [79] and GLPK [80], the immense computational burden incurred by
resolving the European power system with hundreds of nodes and thousands of
operating conditions in a single coordinating capacity expansion problem con-
strains us to significantly more performant commercial2 solvers like Gurobi [54]
or CPLEX [81] alongside utilising high-performance computing infrastructure.

1Other common considerations that lead to MILPs in the context of power system expansion
planning are so-called unit commitment constraints which impose constraints on the on-off
status of individual generators, which is not regarded in this thesis’ highly renewable scenarios.

2Both Gurobi and CPLEX provide free academic licenses.
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2.3 Model of the European Power System

Knowing themathematical problem formulation and how to solve such, this section
outlines how we compile the data inputs for the planning problem of Section 2.1
to prepare realistic case studies. For that purpose, we introduce PyPSA-Eur [13],
the model of the European power system based on which the thesis’ various
algorithmic improvements, approximations and sensitivities are evaluated.

PyPSA-Eur is one of the only high-resolution models openly available. It is best
described as a Python-based workflow that compiles and solves models of the
European transmission system from publicly available data. PyPSA-Eur processes
data on the topology of the power transmission network, historical time series
of weather observations and electricity consumption, conventional power plants
both fossil-fueled and hydro-electric, technical wind turbine and solar panel speci-
fications, the geographic expansion potentials of wind and solar power, and cost
and efficiency projections for generation, storage and transmission technologies to
build a model that incorporates the complex spatio-temporal patterns that shape
future investment decisions in renewable power systems with sufficient detail.

Thereby, the coming together of many different types of data presents a chal-
lenge to documentation and reproducibility. PyPSA-Eur handles this challenge
by linking all intermediary processes in a dependency graph, where nodes rep-
resent scripts which are connected by edges that map outputs to inputs, using
the snakemake workflow management tool [82].

Besides coherently compiling model instances, the PyPSA-Eur workflow is also
immensely useful to conveniently manage numerous scenarios. This is because
it is highly configurable. Among other settings, the spatio-temporal resolution
and scope, the considered technologies, technology cost assumptions and aspired
emission reduction levels can easily be varied. Additionally, snakemake provides
user-friendly interfaces to high-performance computing infrastructure, such that
many computationally burdensome scenarios can be run in parallel.

In the following, we outline the workflow’s main steps and features. More de-
tails can be found in the source code repository at github.com/pypsa/pypsa-
eur and the associated publication [13].

2.3.1 Transmission Network and Conventional Power Plants

The topology of the European transmission network is retrieved from the inter-
active ENTSO-E map [83] using a modified version of the GridKit [84] tool. As
displayed in Figure 2.1, the dataset includes HVAC lines at and above 220 kV across
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HVAC 220 kV
HVAC 300 kV
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Figure 2.1: European transmission network topology at full resolution.
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Figure 2.2: Exemplary Voronoi
cells of the transmission net-
work’s substations.

the multiple synchronous zones of the ENTSO-E area, but excludes Turkey and
North-African countries which are also synchronised to the continental European
grid, interconnections to Russia, Belarus and Ukraine, as well as small island net-
works with less than four nodes at transmission level, such as Cyprus, Crete and
Malta. In total, the network encompasses around 3000 substations, 6600 HVAC
lines, and around 70 HVDC links, some of which are planned projects from the Ten
Year Network Development Plan (TYNDP) that are not yet in operation [85].

Capacities and electrical characteristics of transmission lines and substations,
such as impedances and thermal ratings, are inferred from standard types for
each voltage level. For each HVAC line, we further restrict line loading to 70%
of the nominal rating to approximate 𝑁 − 1 security, a criterion that mandates
the system operation to continue in case any one line fails. This conservative
security margin is commonly applied in the industry [37, 86].

Each substation has an associated Voronoi cell that describes the region that is
closer to the substation than to any other substation except for country borders,
which are kept to retain the integrity of country totals. Exemplary Voronoi cells
are illustrated in Figure 2.2. We use these as geographical catchment area for
electricity loads, renewable resource potentials, and power plants, assuming that
supply and demand always connect to the closest substation of the transmission
network and disregarding any constraints on the low-voltage distribution level.

Besides the existing transmission network, PyPSA-Eur also includes the fleet of
operational conventional power plants. This data is obtained from the power-
plantmatching tool, which merges datasets from a variety of sources [87]. It
provides data on the power plants about their location, technology and fuel type,
age, and capacity, including hard coal, lignite, oil, open cycle gas turbine (OCGT),
combined cycle gas turbine (CCGT), nuclear, and biomass generators. Further-
more, existing run-of-river, hydro-electric dams, pumped-hydro storage plants
are also part of the dataset. In general, we suppose these to be non-extendable
due to assumed geographical constraints. Because the continent-wide availabil-
ity of data on the locations of wind and solar installations is fragmentary, we
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Figure 2.3: Assumed
eligible land for on-
shore wind turbine
development near
Karlsruhe. Red zones
are excluded.

disregard already existing wind and solar capacities and build them from zero
at each node individually. The same applies to storage technologies for which
the reasoning is more intuitive. They have not yet been deployed to a significant
extent. We consider two extendable storage technologies: battery storage with
a energy-to-power ratio of six hours representing short-term storage suited to
balancing daily fluctuations and hydrogen storage which exemplifies long-term
synoptic and seasonal. The latter constitutes a combination of electrolysers to
convert electricity to hydrogen, steel tanks or caverns for storage, and fuel cells
for the reconversion to electricity subject to conversion losses.

2.3.2 Land Eligibility and Renewable Potentials

Eligible areas for developing renewable infrastructure are calculated per tech-
nology and the grid nodes’ Voronoi cells using the glaes tool [88]. How much
wind and solar capacity may be built in a particular region is constrained by
eligible codes of the CORINE land use database and is further restricted by dis-
tance criteria and the natural protection areas specified in the Natura 2000 dataset.
For instance, wind turbines may not be built in forests or urban areas and must
keep a minimum distance of 1000 metres to housing estates. Moreover, offshore
wind farms may not be developed at sea depths exceeding 50 metres, as indicated
by the GEBCO bathymetry dataset. This currently disregards the possibility of
floating wind turbines. Figure 2.3 showcases the exclusion procedure’s level of
detail by the example of available areas for onshore wind turbine development
near Karlsruhe. To finally express the potential in terms of installable capacities,
the available land is multiplied with an allowed deployment density, which we
consider to be a fraction of the technology’s technical deployment density to
preempt public acceptance issues and conceivable regulation.
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2.3.3 Time Series of Supply and Demand

The location-dependent renewables availability time series are generated based
on two historical weather datasets. We retrieve wind speeds at 100 metres, sur-
face roughness, and surface run-off from rainfall or melting snow from the ERA5
reanalysis dataset provided by the European Centre for Medium-Range Weather
Forecasts (ECMWF) [53]. It provides hourly values for each of these parameters
since 1950 on a 0.25◦ × 0.25◦ grid. In Southern Germany, a weather cell expands ap-
proximately 20 km from east to west and 31 km from north to south. For the direct
and diffuse solar irradiance, we use the satellite-aided SARAH-2 dataset, which as-
sesses cloud cover in more detail than the ERA5 dataset. It features values from 1983
to 2015 at an even higher resolution with a 0.05◦×0.05◦ grid and 30-minute intervals
[89]. In general, the single reference weather year can be freely chosen for the opti-
misation, but throughout this thesis all analyses are based on the year 2013, which
is regarded as a characteristic year for both wind and solar resources (e.g. [90]).

Models for wind turbines, solar panels, and the inflow into hydro basins convert
the weather data to hourly capacity factors. Using power curves of typical wind
turbines wind speeds scaled to the according hub height are mapped to power
outputs. The solar photovoltaic panels’ output is calculated based on the inci-
dence angle of solar irradiation, the panel’s tilt angle, and conversion efficiency.
The tool atlite [9] provides functionality to perform such calculations efficiently.
Finally, we aggregate the obtained time series to each grid node’s Voronoi cell
heuristically in proportion to the capacity factor.

In combination with the capacity potentials derived from the assumed land use
restrictions, we can use the time-averaged capacity factors to determine the energy
that could be produced from wind or solar energy in different regions of Europe.
This is shown in Figures 2.4a to 2.4b, which exhibit locations that unite both highly
productive sites and extensive land availability. For wind, the North Sea appears as
the most attractive region, whereas for solar, the most promising locations are in
the South of Spain and Italy. Figures 2.4c to 2.4d moreover present exemplary time
series of wind and solar capacity factors, demonstrating the daily cycles of solar
generation, the weekly patterns of wind, and also the smoothing effect of averaging
over larger areas that is possible to realise with adequate transmission grids.

Like the renewable generation time series, data on electricity consumption in
Europe is obtained from historical data. Because the load time series from the
ENTSO-E statistics are only available on a country-level, the spatial detail is in-
comparably lower. Heuristically, they are distributed to each grid node to 40%
by population density and to 60% by gross domestic product based on a regres-
sion performed for [13]. Figures 2.4e to 2.4f show a selection of the resulting
spatio-temporal patterns, clearly outlining densely populated areas.
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(c) exemplary wind time series
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(e) spatial distribution of loads
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(f) exemplary load time series
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Figure 2.4: Spatial distribution of wind and solar resource potential (including land-use
eligibility, deployment density and annual yield), patterns of electricity consumption in
Europe, and exemplary hourly time series

20 Chapter 2 Foundations



(a) 256 nodes (b) 128 nodes

Figure 2.5: European transmission network clustered to varying spatial resolutions. Red
lines indicate HVAC connections. Green lines indicate HVDC connections.

2.3.4 Network Simplification and Other Limitations

Modelling the European transmission system at full resolution is too complex to
be solved in a reasonable time. Therefore, we must simplify the network topology
by lowering the spatial and temporal resolution.

In terms of spatial detail, we initially remove the network’s radial paths, i.e. nodes
with only one edge, by connecting remote resources to adjacent nodes and trans-
form the network to a uniform voltage level. We also aggregate generators of the
same kind that connect to the same substation. Based on these initial simplifica-
tions, the network resolution can be further reduced using a k-means network clus-
tering algorithm, which by default uses regional electricity consumption as weights
[28, 29]. The extent of the spatial aggregation can be flexibly chosen. It can be any-
thing between the original resolution and one node per country (and synchronous
zone if a country, like Denmark, is part of two synchronous areas). Figure 2.5 de-
picts two such levels of aggregation, 128 nodes and 256 nodes, that are within reach
for solvers and exemplary of the network resolutions applied throughout this thesis.

To be able to evaluate energy storage needs properly, it is important to retain the
sequence of time steps when adjusting the temporal resolution for computational
gain. PyPSA-Eur allows two methods of temporal aggregation: simple downsam-
pling from hourly to e.g. three-hourly snapshots and segmentation clustering
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with the tsam package [91], which clusters only adjacent snapshots based on
the similarity of the supply and demand time series.

Throughout the thesis, PyPSA-Eur will be a constant companion in various settings
and scenarios, dynamically adapting the spatial and temporal resolution to reflect
what is feasible to solve in a reasonable time for the respective problem types.
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To weigh the use of local renewable resources with storage against the costs of grid
extension to sites with better resources, the siting of new wind and solar power
plants requires close coordination with grid planning [24]. While co-optimisation
of generation, storage and transmission capacity expansion is not always possible
within the regulatory structures of some markets, the impetus may grow as public
acceptance limits how much grid expansion is possible. However, co-optimisation
demands high spatial detail to factor in grid bottlenecks and renewable potentials
and temporal detail to capture the variability of renewables and loads [26, 28,
29]. Together, this leads to a high problem complexity.

Therefore, as a necessary reduction in accuracy, many capacity expansion mod-
els (CEMs) either employ a simple transport model for power transmission, which
ignores grid physics, or assume a linearised power flow formulation but do not ac-
count correctly for how grid impedances change as lines are expanded nor include
transmission losses. Chapter 3 distils the differences of established formulations
in addition to contributing a convex loss approximation.

Furthermore, considerations of classical transmission expansion planning (TEP)
complicate the problem because they typically entail modelling the available
line types and the change of power flows in response to line expansion more
realistically [30, 92]. Consequently, even if the power flow equations are linearised,
the optimisation problem is still bilinear and mixed-integer due to the dependence
of line expansion on line impedance and a discrete set of line expansion options
[24, 93]. While Chapter 4 develops a more efficient equivalent reformulation of
the problem using a cycle decomposition of the transmission network topology,
Chapter 5 evaluates approximating LP-based heuristics that use sequential linear
programming (SLP) and retrospective discretisation methods.

Recomposed from abstracts and introductions of papers forming this part’s chapters [1, 2, 5].
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Approximating Power Flow

and Transmission Losses

3

Contents of this chapter based on

Neumann, F., Hagenmeyer, V. & Brown, T. Approximating Power Flow and
Transmission Losses in Coordinated Capacity Expansion Problems. arXiv:
2008.11510 (2020). cb

3.1 Introduction

To find credible capacity expansion plans as higher shares of renewables increase
the frequency of transmission bottlenecks, more detailed grid modelling is needed
that looks beyond import and export capacities but accounts for physical condi-
tions such as loop flows, transmission losses, and curtailment due to otherwise
overloaded lines [30, 94]. Especially for planning problems with both static in-
vestment and time-dependent dispatch variables spanning across thousands of
operational conditions, a tractable yet sufficiently trustworthy representation of
power flows is essential. Ideally, outputs are detailed enough to be used as inputs
for more accurate analyses, bridging the granularity gap between coarsely-resolved
planning models and more detailed engineering models. At the same time, the
problem should still be solveable within reasonable time. Unfortunately, the first-
choice AC power flow equations are nonlinear and non-convex, which makes the
embedded AC optimal power flow problem NP-hard [58, 95, 96].

The transport model, that takes account only of power transfer capacities while
ignoring impedances, and the linearised power flow model, which includes
impedances to consider both Kirchhoff laws but no losses, are commonly used in
capacity expansion models (CEMs). Among the models reviewed by Ringkjøb et al.
[14] around four in five models use a transport model if flows are represented,
whereas only one in five uses a linearised power flow model. Previous work has
compared these two major variants [97–100], and some performed simulations of
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AC power flow after optimisation [86, 100]. The comparisons indicate little discrep-
ancy regarding total system cost and cross-border transmission, but also differences
in nodal prices and overlooked line overloadings when checked against AC power
flow calculations. However, the significance of existing comparisons is limited by
the use of low spatial resolution models with fewer than 25 nodes. Furthermore,
the consideration of losses is underrepresented in design studies, but alongside
characteristic weather patterns shapes the trade-offs regarding the volume of
transmitted energy because losses increase as more power is transported [101, 102].

In the present chapter, we offer a comprehensive comparison of linear repre-
sentations of power flow and losses in theory and practice. We outline their
characteristic benefits and shortcomings in the context of coordinated capacity
expansion problems, where generation, transmission and storage infrastructure is
jointly planned. Given the multitude of modelling uncertainties, we assess under
which circumstances it is worth embedding more elaborate flow models than a sim-
ple transport model. We further extend beyond previous research by introducing a
computationally inexpensive loss approximation that incorporates an efficient re-
formulation of the linearised power flow equations based on a cycle decomposition
of the network graph. By using PyPSA-Eur [13], the open model of the European
power system introduced in Section 2.3, which spans the whole continent with
hundreds of nodes and hourly temporal coupling due to the consideration of stor-
age units, we achieve advanced and reproducible comparisons in systems with
high shares of renewables. While we take an investment planning perspective,
the way that the transmission of power is represented is relevant beyond system
planning. For instance, it plays a role in the design of future electricity markets
with multiple bidding zones and flow-based market coupling [93, 99, 103].

We structured the present chapter as follows. We briefly review the physics of
power flow in Section 3.2, before we continue with the different linear power flow
representations and how they are embedded in the investment planning problem
(see Section 2.1) in Section 3.3. In Section 3.4 we present the experimental setup, the
results of which are discussed in Section 3.5 and critically appraised in Section 3.6.
The chapter is concluded in Section 3.7 with a summary and recommendations.

3.2 Nonlinear Power Flow and Losses

The representation of power flows is one decisive constituent component of the
full long-term power system planning problem we outlined in Section 2.1, but
must be linearised to solve in reasonable time. Before we introduce different
variants of such linearised power flow models, this section briefly revises the
nonlinearAC power flow equations, important electrical parameters of transmission
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lines, and how to calculate active power losses on a line. We do this to set the
foundations for derivations of the covered flow models. For notational simplicity,
the subsequent descriptions will omit the time index 𝑡 .

3.2.1 Nonlinear Alternating Current Power Flow

The active power flow 𝑝𝓁 (𝑖,𝑗) of a line 𝓁 ≡ 𝓁 (𝑖, 𝑗) from bus 𝑖 to bus 𝑗 can be de-
scribed in voltage-polar coordinates by

𝑝𝓁 (𝑖,𝑗) = 𝑔𝓁 |𝑉𝑖 |2 + |𝑉𝑖 | ||𝑉𝑗 || [𝑔𝓁 cos(𝜃𝑖 − 𝜃𝑗) − 𝑏𝓁 sin(𝜃𝑖 − 𝜃𝑗)] (3.1)

and, analogously, the reactive power flow 𝑞𝓁 (𝑖,𝑗) is given by

𝑞𝓁 (𝑖,𝑗) = 𝑏𝓁 |𝑉𝑖 |2 + |𝑉𝑖 | ||𝑉𝑗 || [𝑔𝓁 sin(𝜃𝑖 − 𝜃𝑗) − 𝑏𝓁 cos(𝜃𝑖 − 𝜃𝑗)] , (3.2)

where |𝑉𝑖 | is the per-unit bus voltage magnitude, 𝜃𝑖 is the bus voltage angle, 𝑔𝓁
is the line conductance, and 𝑏𝓁 is the line susceptance [104].

3.2.2 Nonlinear Active Power Losses

To derive an expression for the active power losses in a transmission line, we apply
the convention that departing power flows are positive and arriving power flows are
negative. Consequently, if power flows from bus 𝑖 to 𝑗, 𝑝𝓁 (𝑖,𝑗) > 0 and 𝑝𝓁 (𝑗,𝑖) < 0. The
losses𝜓𝓁 are the difference between power sent and power received [104], therefore

𝜓𝓁 = 𝑝𝓁 (𝑖,𝑗) + 𝑝𝓁 (𝑗,𝑖). (3.3)

Substituting Equation (3.1) into Equation (3.3) yields

𝜓𝓁 = 𝑔𝓁 |𝑉𝑖 |2 + |𝑉𝑖 | ||𝑉𝑗 || [𝑔𝓁 cos(𝜃𝑖 − 𝜃𝑗) − 𝑏𝓁 sin(𝜃𝑖 − 𝜃𝑗)] (3.4)
+ 𝑔𝓁 ||𝑉𝑗 ||

2 + ||𝑉𝑗 || |𝑉𝑖 | [𝑔𝓁 cos(𝜃𝑗 − 𝜃𝑖) − 𝑏𝓁 sin(𝜃𝑗 − 𝜃𝑖)] (3.5)

and using the trigonometric identities cos(−𝛼) = cos(𝛼) and sin(−𝛼) = − sin(𝛼)
translates to

𝜓𝓁 = 𝑔𝓁 |𝑉𝑖 |2 + |𝑉𝑖 | ||𝑉𝑗 || [𝑔𝓁 cos(𝜃𝑖 − 𝜃𝑗) − 𝑏𝓁 sin(𝜃𝑖 − 𝜃𝑗)] (3.6)
+ 𝑔𝓁 ||𝑉𝑗 ||

2 + ||𝑉𝑗 || |𝑉𝑖 | [𝑔𝓁 cos(𝜃𝑖 − 𝜃𝑗) + 𝑏𝓁 sin(𝜃𝑖 − 𝜃𝑗)] . (3.7)

We can further simplify this expression to the loss formula

𝜓𝓁 = 𝑔𝓁 (|𝑉𝑖 |2 + ||𝑉𝑗 ||
2
) − 2 |𝑉𝑖 | ||𝑉𝑗 || 𝑔𝓁 cos(𝜃𝑖 − 𝜃𝑗), (3.8)
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which we will use in Section 3.3.4 to derive a linear approximation for losses.

3.2.3 Electrical Parameters of Transmission Lines

The electrical parameters of transmission lines play a significant role in deter-
mining the power flows and are therefore briefly reviewed in the following. The
complex per-unit impedance 𝑧𝓁 = 𝑟𝓁 + 𝑖𝑥𝓁 is composed of resistance 𝑟𝓁 and reac-
tance 𝑥𝓁 . Likewise, the admittance 𝑦𝓁 = 𝑔𝓁 + 𝑖𝑏𝓁 is composed of conductance 𝑔𝓁
and susceptance 𝑏𝓁 . Impedance and admittance are reciprocals (𝑦𝓁 = 𝑧−1𝓁 ). Hence,
if we assume a dominance of reactance over ohmic resistance (𝑟𝓁 ≪ 𝑥𝓁 ), as applies
for high voltage overhead transmission lines, we obtain the approximations

𝑔𝓁 ≈
𝑟𝓁
𝑥2𝓁
, (3.9)

𝑏𝓁 ≈
1
𝑥𝓁
. (3.10)

Following e.g. [105], the complex per-unit impedance 𝑧𝓁 = 𝑟𝓁 + 𝑖𝑥𝓁 is composed
of ohmic resistance 𝑟𝓁 and reactance 𝑥𝓁 Likewise, the admittance 𝑦𝓁 = 𝑔𝓁 + 𝑖𝑏𝓁
is composed of conductance 𝑔𝓁 and susceptance 𝑏𝓁 Impedance and admittance
are reciprocals (𝑦𝓁 = 𝑧−1𝓁 ), hence we obtain the relations

𝑔𝓁 + 𝑖𝑏𝓁 =
1

𝑟𝓁 + 𝑖𝑥𝓁
, (3.11)

𝑔𝓁 + 𝑖𝑏𝓁 =
𝑟𝓁 − 𝑖𝑥𝓁

(𝑟𝓁 + 𝑖𝑥𝓁 )(𝑟𝓁 − 𝑖𝑥𝓁 )
, (3.12)

𝑔𝓁 + 𝑖𝑏𝓁 =
𝑟𝓁 − 𝑖𝑥𝓁
𝑟2𝓁 + 𝑥2𝓁

. (3.13)

By splitting real and imaginary parts we can express conductance and suscep-
tance in terms of impedance and reactance:

𝑔𝓁 = Re [
𝑟𝓁 − 𝑖𝑥𝓁
𝑟2𝓁 + 𝑥2𝓁 ]

=
𝑟𝓁

𝑟2𝓁 + 𝑥2𝓁
, (3.14)

𝑏𝓁 = Im [
𝑟𝓁 − 𝑖𝑥𝓁
𝑟2𝓁 + 𝑥2𝓁 ]

=
𝑥𝓁

𝑟2𝓁 + 𝑥2𝓁
. (3.15)

We will use these relations in Section 3.3.3 and Section 3.3.4. In view of the approxi-
mation of line losses in later sections, note that although we suppose that resistance
is dominated by reactance, we do not assume resistance to be zero (see [106, 107]).
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Figure 3.1: Illustration of the scope of the present chapter and its context. It shows the
connections between the covered linear power flow models, their main features, and how
they are related to other (convexified) nonlinear formulations.

3.3 Linearised Power Flow Models

The AC power flow Equations (3.1) to (3.2) are nonlinear and non-convex. This
is challenging because multiple local minima exist due to the trigonometric ex-
pressions and when directly incorporated in the optimisation problem they would
make the problem NP-hard [58, 95, 96]. To be able to run large optimisation
problems of the continental power system at sufficient spatial and temporal res-
olution it is hence inevitable to retain a convex problem that can be solved in
polynomial time and does not possess local minima.

In this section we describe and develop various linear representations of power
flow. These are introduced in the order from least to most accurate, progressively
increasing the complexity; namely (i) the common transport model, (ii) a lossy
transport model, (iii) the lossless linearised power flow, and (iv) a lossy linearised
power flow model. Figure 3.1 shows the relations between the formulations and
Table 3.1 documents differences in the number of variables and constraints. The
scope of the present chapter is deliberately constrained to:
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Table 3.1: Comparison of the number of variables and equality/inequality constraints
related to flow models per snapshot 𝑡 ∈  . The constraint count excludes variable bounds.
|| is the number of lines, || || is the number of nodes, and 2𝑛 represents the number of
tangents used for the loss approximation.

Model Variables Eq. Constraints Ineq. Constraints

Transport Section 3.3.1 || || || − 1 0
Lossy Transport Section 3.3.2 2 || || || − 1 0
Linearised Power Flow Section 3.3.3 || || 0
Linearised Power Flow Section 3.3.4 2 || || 2𝑛 ||
with Loss Approximation

• only linear problems: To avail of powerful, scalable and fast interior-point
solvers, and to guarantee an optimal solution, we only include formulations
that entail linear problems. However, there exist promising second-order
cone or semidefinite convex relaxations of the power flow equations. For
excellent theoretical reviews of convex relaxations and approximations of
power flow see Molzahn & Hiskens [108], Taylor [104], and Coffrin & Roald
[109].

• only active power: We furthermore confine our analysis to formulations
that do not capture reactive power flows or information on bus voltages.
Nonetheless, linear problems that capture selected aspects of this are under
active research; see e.g. Coffrin & Van Hentenryck [110].

• only comparison of different feasible spaces: We compare different linear flow
models that define different feasible spaces. We do not compare equivalent
reformulations of identical models, since this has been analysed in Hörsch
et al. [69].

• no copper plate model: Although occasionally encountered in generation and
storage CEMs, we do not include the copper plate relaxation in our compar-
isons because it does not capture information on power flows in transmission
networks. The copper plate model removes all lines and aggregates all com-
ponents to a single node. It is a relaxation because any transmission of
power becomes unconstrained and incurs no cost. For the impact of spatial
clustering – of which the copper plate model is the extreme – on optimal
investments we refer to Hörsch & Brown [28] and Frysztacki et al. [29].

3.3.1 Transport Model

The transport model is also known as a network flow model, trade model, trans-
shipment model or net transfer capacity (NTC) model [104]. It ignores the effect of
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impedances on flows (including losses) and, besides the capacity constraints of lines,
only requires nodal power balance according to Kirchhoff’s current law (KCL); i.e.
the power injected at each bus must equal the power withdrawn by attached lines

𝑝𝑖 = ∑
𝓁
𝐾𝑖𝓁𝑝𝓁 ∀𝑖 ∈  , (3.16)

where 𝑝𝑖 is the active power injected or consumed at node 𝑖 and 𝐾 is the in-
cidence matrix of the network graph which has non-zero values +1 if line 𝓁
starts at bus 𝑖 and −1 if line 𝓁 ends at bus 𝑖.

Because the columns of the incidence matrix each sum up to zero, KCL yields
|| || − 1 linearly independent constraints. These are not sufficient to uniquely
determine the || unknown flows. The transport model allows arbitrary flows as
long as flow conservation is fulfilled, also because it is free and lossless to transmit
power. This makes the transport model degenerate, which can be detrimental to
the solving speed. Also, of course, this does not adequately reflect the physical
behaviour of power flows in the transmission network.

Despite its drawbacks, the transport model is very popular due to its simplicity.
In the comprehensive review by Ringkjøb et al. [14], it is applied in a majority of
models. This minimalistic representation of flows is useful to develop an under-
standing for the potential of increased transfer capacity between regions, rather
than assessing specific transmission bottlenecks and reinforcement needs. It is
often applied in investment models where the grid is highly aggregated to a few
nodes (e.g. one node per country in Europe or federal state in the United States) or
analyses of energy markets across multiple bidding zones. Its main advantages are
ease of implementation and fast solving speed. For pure dispatch problems without
investment decisions one can even utilise specialised network flow algorithms;
for instance the minimum cost flow algorithm [111].

3.3.2 Transport Model with Loss Approximation

Part of the drawbacks and degeneracy of the transport model stems from the disre-
gard of transmission losses. As partial remedy, we can amend the transport model
with a simple loss approximation which assumes lines to have a constant transmis-
sion efficiency 𝜂𝓁 depending on their length. In this case, the power arriving at the
receiving bus is lower than the power injected at the sending bus. To differentiate
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between sending bus and receiving bus, we need to split the bidirectional power
flow variable 𝑝𝓁 into forward flows 𝑝+𝓁 and backward flows 𝑝−𝓁 with capacity limits

0 ≤ 𝑝+𝓁 ≤ 𝑝𝓁𝑃𝓁 ∀𝓁 ∈  (3.17)
0 ≤ 𝑝−𝓁 ≤ 𝑝𝓁𝑃𝓁 ∀𝓁 ∈  (3.18)

which substitute the variables 𝑝𝓁 and their bounds given in Equation (2.12). Fur-
thermore, we need to adjust the nodal balance constraints Equation (3.16) to reflect
the transmission losses and separated power flow variables to

𝑝𝑖 = ∑
𝓁
𝐾+
𝑖𝓁𝑝

+
𝓁 −∑

𝓁
𝐾−
𝑖𝓁𝑝

−
𝓁 ∀𝑖 ∈  , (3.19)

where 𝐾+ is the lossy incidence matrix of the network graph regarding forward
flows 𝑝+𝓁 which has non-zero values +1 if line 𝓁 starts at bus 𝑖 and −𝜂𝓁 if line 𝓁
ends at bus 𝑖. Analogously, 𝐾− regards backward flows 𝑝−𝓁 with non-zero values
𝜂𝓁 if line 𝓁 starts at bus 𝑖 and −1 if line 𝓁 ends at bus 𝑖.

The transmission losses alleviate some degeneracy of the transport model since
considering losses yields an incentive to minimise power flows rather than to
distribute them arbitrarily. However, this is paid for with a doubling in the number
of flow variables. Additionally, while the use of a constant transmission efficiency
is an improvement from the plain transport model, it still ignores the quadratic rela-
tionship between power flow and losses [101]. Note, that if all lines have no losses
(𝜂𝓁 = 1), the lossy transport model is equivalent to the regular transport model.

3.3.3 Linearised Power Flow

The linearised power flow model, which is also known as linearised load flow,
DC power flow or BΘ model, extends the lossless transport model. In addition
to the nodal power balance constraints Equation (3.16) from KCL and capacity
limits Equation (2.12), linear constraints for Kirchhoff’s voltage law (KVL) are
included, which define how power flows split in parallel paths. We derive these
by simplifying the nonlinear power flow Equations (3.1) to (3.2). Assuming

• all per-unit voltage magnitudes are close to one (|𝑉𝑖 | ≈ 1),

• conductances 𝑔𝓁 are negligible relative to susceptances 𝑏𝓁 (𝑏𝓁 ≫ 𝑔𝓁 ),

• voltage angle differences are small enough
(sin(𝜃𝑖 − 𝜃𝑗) ≈ 𝜃𝑖 − 𝜃𝑗 and cos(𝜃𝑖 − 𝜃𝑗) ≈ 0),

• reactive power flows 𝑞𝓁 are negligible compared to active power flows 𝑝𝓁
(𝑞𝓁 ≈ 0),
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leads to the constraint

𝑝𝓁 = 𝑏𝓁 (𝜃𝑖 − 𝜃𝑗), (3.20)

and when we further assume 𝑟𝓁 ≪ 𝑥𝓁 , by substituting Equation (3.10) we obtain

𝑝𝓁 =
𝜃𝑖 − 𝜃𝑗
𝑥𝓁

. (3.21)

This angle-based formulation is the most common linear formulation of KVL [104].
But it is possible to avoid the auxiliary voltage angle variables and reduce the
required number of constraints by using a cycle basis of the network graph [69].
Namely, KVL states that the sum of voltage angle differences across lines around
all cycles in the network must sum up to zero. Considering a set of independent
cycles 𝑐 of the network forming a cycle basis, which are expressed as a directed
linear combination of the lines 𝓁 in a cycle incidence matrix

𝐶𝓁𝑐 =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

1 if edge 𝓁 is element of cycle 𝑐,
−1 if reversed edge 𝓁 is element of cycle 𝑐,
0 otherwise,

(3.22)

KVL is formulated by

∑
𝓁
𝐶𝓁𝑐(𝜃𝑖 − 𝜃𝑗) = 0 ∀𝑐 ∈ . (3.23)

Using Equation (3.21), we can express KVL directly in terms of the power flows
and circumvent the auxiliary voltage angle variables

∑
𝓁
𝐶𝓁𝑐𝑝𝓁𝑥𝓁 = 0 ∀𝑐 ∈ . (3.24)

Although less common, this cycle-based formulation Equation (3.24) has been
shown to significantly outperform the angle-based formulation Equation (3.21)
in operational problems generation capacity expansion planning [69]. In a sub-
sequent chapter of this thesis (Chapter 4), we will further evaluate whether the
computational advantage of the cycle-based formulation persists in the context of
discrete transmission expansion planning (TEP). There are even further equivalent
reformulations of the linearised power flow [69]; for example the power transfer
distribution factor (PTDF) formulation, which directly relates nodal power injec-
tions to line flows. Because our focus lies on the comparison of different flow
models, not their diverse reformulations, we only evaluate the computationally
performant cycle-based formulation in the present chapter.
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With the cycle-based formulation one can clearly see that the transport model is
equivalent to the linearised power flow in radial networks; i.e. when the network
has no cycles. Also, the absence of auxiliary voltage angle variables facilitates
the insight that the transport model is a relaxation of the linearised power flow
because the latter only adds constraints in the same variable space.

The linearised power flow model is claimed to be accurate when reactance domi-
nates (𝑥𝓁 ≫ 𝑟𝓁 ) and when parallel lines have similar ratios [112], but very long lines
in highly aggregated networks can deteriorate the quality of the approximation
(see Section 3.5.3). An advantage of this model over the transport model is that
it captures some meaningful physical characteristics observed in the operation
of electrical grids. Namely, it is capable of revealing loop flows in meshed net-
works; for instance recurring spillover effects between Germany and the Czech
Republic. Nevertheless, it still disregards losses.

If we would consider that lines can be built between buses where there are
currently none, another variant is the so-called hybrid model. This version
formulates linearised power flow constraints for existing lines and employs
a transport model for candidate lines.

3.3.4 Linearised Power Flow with Loss Approximation

Neglecting resistive losses is considered to be among the largest sources of error
in the linearised power flow formulation, particularly in large networks [112]. The
following extension of the lossless linearised power flow (Section 3.3.3) is a mixture
of similar variants encountered in the literature with a focus on computational
efficiency. We reference where we follow or deviate from previous work below.
This or similar formulations have rarely been applied in the co-optimisation of
transmission, storage and generation capacities, but rather in detailed operational
optimal power flow (OPF) or TEP problems; see overview in [94].

We start by adding a loss variable 𝜓𝓁 ∈ R+ for each line. Losses reduce the
effective transmission capacity of a line

|𝑝𝓁 | ≤ 𝑝𝓁𝑃𝓁 − 𝜓𝓁 (3.25)

and must be accounted for in the nodal balance Equation (3.16)

𝑝𝑖 = ∑
𝓁
𝐾𝑖𝓁𝑝𝓁 +

|𝐾𝑖𝓁 |
2
𝜓𝓁 ∀𝑖 ∈  . (3.26)

We split the losses 𝜓𝓁 equally between both buses (like in [113–115]) and do not
allocate them at the sending bus exclusively (like in [107, 116]). The latter could
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be modelled with an absolute value function in the linear problem. However, this
would involve splitting flow and loss variables each into positive and negative
segments. Because this adds many auxiliary decision variables, we decided in
favor of distributing the losses evenly. This choice is paid for with the possibility
of overestimating losses due to an extensive convex relaxation.

Assuming close to nominal per-unit voltage magnitudes |𝑉𝑖 | ≈ 1 the loss for-
mula given in equation Equation (3.8) becomes

𝜓𝓁 = 2𝑔𝓁 [1 − cos(𝜃𝑖 − 𝜃𝑗)] . (3.27)

This is the basis for the linearised loss formulation in [115]. We can also express this
in terms of active power flows 𝑝𝓁 by substituting Equation (3.21) into Equation (3.27)

𝜓𝓁 = 2𝑔𝓁 [1 − cos(𝑝𝓁𝑥𝓁 )] . (3.28)

This makes the loss formulation independent from the voltage angle vari-
ables and we can therefore avail of the speed-up obtained by using the
cycle-based formulation Equation (3.24).

Using the small-angle approximation cos(𝛼) ≈ 1 − 𝛼2/2, Equation (3.28) becomes
quadratic

𝜓𝓁 = 2𝑔𝓁 [1 −(1 −
(𝑝𝓁𝑥𝓁 )2

2 )] = 𝑔𝓁 (𝑝𝓁𝑥𝓁 )
2. (3.29)

By inserting Equation (3.9) we get

𝜓𝓁 =
𝑟𝓁
𝑥2𝓁

(𝑝𝓁𝑥𝓁 )2 (3.30)

or simply

𝜓𝓁 = 𝑟𝓁𝑝2𝓁 . (3.31)

This is the basis for the linearised loss formulation in [107]. Because Equation (3.31)
is a quadratic equality constraint, it is still non-convex. Other works have dis-
cussed or applied a piecewise linearisation of Equation (3.31) [108, 114, 115, 117,
118]. But because the use of integer variables to define the segments would en-
tail a non-convex mixed-integer linear problem (MILP), we choose not to pursue
this approach. Instead, by building a convex envelope around this constraint
from the upper and lower bounds for 𝜓𝓁 as well as a number of tangents as in-
equality constraints, we can incorporate transmission losses while retaining a
linear optimisation problem. This is illustrated in Figure 3.2. For setting the
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Figure 3.2: Illustration of the
feasible space in the flow–loss
(𝑝𝓁–𝜓𝓁 ) dimensions.
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lower limit, by definition losses are positive

𝜓𝓁 ≥ 0 (3.32)

and by substituting maximal line flows

𝑝𝓁 ≤ 𝑝𝓁𝑃𝓁 ≤ 𝑝𝓁𝑃 𝓁 (3.33)

into Equation (3.31) we obtain the upper limit

𝜓𝓁 ≤ 𝑟𝓁 (𝑝𝓁𝑃 𝓁 )2. (3.34)

Next, we derive 2𝑛 evenly spaced (like in [108]) mirrored tangents which approxi-
mate Equation (3.31) as inequalities from below. These have the form

𝜓𝓁 ≥ 𝑚𝑘 ⋅ 𝑝𝓁 + 𝑎𝑘 ∀𝑘 = 1,… , 𝑛 (3.35)
𝜓𝓁 ≥ −𝑚𝑘 ⋅ 𝑝𝓁 + 𝑎𝑘 ∀𝑘 = 1,… , 𝑛 (3.36)

At segment 𝑘 we calculate the losses

𝜓𝓁 (𝑘) = 𝑟𝓁 (
𝑘
𝑛
⋅ 𝑝𝓁𝑃 𝓁)

2

(3.37)

and the corresponding slope

𝑚𝑘 =
d𝜓𝓁 (𝑘)
d𝑘 = 2𝑟𝓁 (

𝑘
𝑛
⋅ 𝑝𝓁𝑃 𝓁) (3.38)
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and the offset

𝑎𝑘 = 𝜓𝓁 (𝑘) −𝑚𝑘 (
𝑘
𝑛
⋅ 𝑝𝓁𝑃 𝓁) . (3.39)

Together, Equation (3.32) and Equations (3.34) to (3.36) form a convex envelope of
Equation (3.31).

A recurring criticism of this extensive convex relaxation is the possibility of so-
called fictitious or artificial losses [108, 119–122]. As illustrated by Figure 3.2, the
model does indeed allow for overestimating losses. This can be economical if
negative locational marginal prices occur. Overestimating losses is equivalent to
dissipating power at a node. Another component in the problem formulation that
already permits this behaviour are storage units (see Equations (2.6) to (2.8)). To
avoid binary variables, storage units may charge and discharge at the same time.
Power is then lost by cycling through the conversion efficiencies. We argue that
fictitious losses are not problematic because (i) negative nodal prices are rare, (ii)
such behaviour could be realised in operation by low-cost resistors and demand
response, and (iii) the loss overestimation is bounded. We will substantiate this
argument with experimental results in Section 3.5.2.

3.3.5 Iterative Linearised Power Flow (with Losses)

When using the linearised power flow, with and without losses (Section 3.3.3
and Section 3.3.4 respectively), the impedances of transmission lines affect the
flows and losses. The relations of reactances 𝑥𝓁 determine the distribution of
flows (see Equation (3.24)). The resistances 𝑟𝓁 set the losses (see Equation (3.31)).
Thus, for reactances we are only interested in relative values, whereas for the
resistances the absolute values are decisive.

Line impedances change as line capacities are increased (𝑥𝓁 ∝ 1/𝑃𝓁 and 𝑟𝓁 ∝ 1/𝑃𝓁 ).
Ignoring this dependency would result in distorted power flows. Expanded lines
would experience less flow than they should. Losses may also be overestimated
as the extension of parallel lines reduces the effective resistance.

Consequently, the representation of grid physics is improved by taking account
of the relation between line capacities and impedances, yet also complicates the
problem. If we considered discrete expansion options we would use a big-𝑀
disjunctive relaxation to resolve the nonlinearity [1]. We discuss this case in detail
in the subsequent Chapter 4. But since we assume continuous line expansion
in view of computational performance, we instead pursue an iterative heuristic
approach, which we show later in Chapter 5 to be an acceptable approximation [2].
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We sequentially solve the optimisation problem from Section 2.1 and in each
iteration update the line impedances according to their optimised capacities. We
repeat this process until (i) line expansion choices do not change in subsequent
iterations and convergence is reached, or (ii) a predetermined number of iterations
are performed. In the latter case, the final iteration should be run with fixed line
capacities such that impedances do not change anymore.

3.4 Simulation Setup

Having developed the individual power flow models in theory, this section outlines
the setup we use to test them. First, in Section 3.4.1 we list the settings we apply to
the power system model we use as the case study. Second, we outline the method-
ology we use to validate the resulting approximated line flows in Section 3.4.2.

3.4.1 Model Inputs

We evaluate the different flow models on the open power system dataset PyPSA-Eur
we described in Section 2.3, which covers the whole European transmission system
[13]. We choose a spatial resolution of 250 nodes and a temporal resolution of
4380 snapshots, one for every two hours of a full year. This reflects the maximum
for which all flow models presented in Section 3.3 could be solved.

Targeting an emission reduction of 100% in the power sector, we only consider
renewable resources [19]. Following the problem formulation from Section 2.1,
solar PV, onshore and offshore wind capacities are co-optimised with battery stor-
age, hydrogen storage, and transmission infrastructure in a greenfield planning
approach, subject to spatio-temporal capacity factors and geographic potentials.
Exceptions to greenfield planning are existing transmission infrastructure, which
can only be reinforced but not removed, and today’s run-of-river and hydropower
capacities including pumped hydroelectric energy storage, which are not extend-
able due to assumed geographical constraints. HVDC links are assumed to have
losses of 3% per 1000 km [123] and can be expanded continuously up to 20 GW
(each composed of several smaller parallel circuits). We only apply link losses to
flow models which also account for losses in HVAC lines. HVAC line capacity can
also be expanded continuously; by the maximum of doubled capacity or additional
5 GW. When using the lossy transport model, HVAC lines are assumed to have
constant losses in the order of 5% per 1000 km [123].

Technically, the optimisation problem is implemented using the free Python mod-
elling framework Python for Power System Analysis (PyPSA) (v0.17.0) working
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with the Pyomo solver interface [12]. Both optimality and feasibility tolerances
are set to a value of 0.1%, which is sufficient given the mentioned approxima-
tions made in the model. We use the cycle-based formulation of KVL for any
model that accounts for it. The code to reproduce the experiments is openly
available at github.com/fneum/power-flow-models.

In accordance with descriptions in Section 3.3, the following flow models are evalu-
ated:

• lossless transport model as Transport,

• lossy transport model as Lossy Transport,

• lossless linear power flow with no iterations as Lossless,

• lossless linear power flow with 3 iterations as Iterative Lossless,

• lossy linear power flow with 6 tangents and no iterations as Lossy, and

• lossy linear power flow with 6 tangents and 3 iterations as Iterative Lossy.

3.4.2 Nonlinear Power Flow Simulation

All presented flow models approximate the AC power flow equations (Section 3.2).
Thus, to identify possibly overlooked line overloading, and to demonstrate char-
acteristic features of particular flow models, we use the AC power flow equations
to assess the quality of the respective approximations.

We compare optimised flows to simulated flows which we obtain by solving the
AC power flow equations ex-post based on the optimised dispatch of controllable
system components. Specifically, we do not reoptimise dispatch decisions subject to
the AC power flow model due to computational constraints given such large multi-
period problems, but only check their feasibility. We use the Newton-Raphson
method (see e.g. [105]) and distribute the total slack power across all buses in
proportion to their total generation capacity [102, 124]:

Power Flow Calculation Without Distributed Slack Given nodal power imbal-
ances 𝑆𝑛 at any given snapshot for each bus 𝑛 the AC power flow equations are given
by

𝑆𝑛 = 𝑃𝑛 + 𝑖𝑄𝑛 = 𝑉𝑛𝐼 ∗𝑛 = 𝑉𝑛 (
∑
𝑚
𝑌𝑛𝑚𝑉𝑚)

∗

, (3.40)
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where 𝑉𝑛 = |𝑉𝑛| 𝑒𝑖𝜃𝑛 is the complex voltage, whose rotating angle is taken relative to
the slack bus and 𝑌𝑛𝑚 is the bus admittance matrix, based on the branch impedances
and shunt admittances (including those attached to buses).

For the slack bus 𝑛 = 0 it is assumed |𝑉0| is given and that 𝜃0 = 0; 𝑃 and 𝑄 are
to be found. For the PV buses, 𝑃 and |𝑉 | are given; 𝑄 and 𝜃 are to be found. For
the PQ buses, 𝑃 and 𝑄 are given; |𝑉 | and 𝜃 are to be found.

Considering PV and PQ as sets of buses, then there are |PV|+2 |PQ| real-valued equa-
tions to solve:

Re
[
𝑉𝑛 (

∑
𝑚
𝑌𝑛𝑚𝑉𝑚)

∗

]
− 𝑃𝑛 = 0 ∀ PV ∪ PQ (3.41)

Im
[
𝑉𝑛 (

∑
𝑚
𝑌𝑛𝑚𝑉𝑚)

∗

]
− 𝑄𝑛 = 0 ∀ PQ (3.42)

We need to find 𝜃𝑛 for all PV and PQ buses and |𝑉𝑛| for all PQ buses.

These equations 𝑓 (𝑥) = 0 are solved using the Newton-Raphsonmethod, with the Ja-
cobian

𝜕𝑓
𝜕𝑥

= (

𝜕𝑃
𝜕𝜃

𝜕𝑃
𝜕|𝑉 |

𝜕𝑄
𝜕𝜃

𝜕𝑄
𝜕|𝑉 |)

(3.43)

and the initial guesses 𝜃𝑛 = 0 and |𝑉𝑛| = 1 for unknown quantities [105]. Commonly,
the total active slack power, which balances remaining mismatches of power
generation and demand resulting from the AC power flow equations, is fully
allocated to the slack bus. This can be a crude assumption, particularly for large
networks with a high penetration of renewables.

Power Flow Calculation With Distributed Slack A better alternative is
to distribute the total active slack power across all generators in propor-
tion to their capacities (or another distribution scheme) [124]. The active
power flow equations are altered to

Re
[
𝑉𝑛 (

∑
𝑚
𝑌𝑛𝑚𝑉𝑚)

∗

]
− 𝑃𝑛 − 𝑃slack𝛾𝑛 = 0 ∀ PV ∪ PQ ∪ slack (3.44)

where 𝑃slack is the total slack power and 𝛾𝑛 is the share of bus 𝑛 of the total genera-
tion capacity, which is used as distribution key. We add an additional active power
balance equation for the slack bus since it is now part of the distribution scheme.
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The distributed slack approach extends the Jacobian by an additional row for
the derivatives of the slack bus active power balance and by an additional col-
umn for the partial derivatives with respect to 𝛾

𝜕𝑓
𝜕𝑥

=
⎛
⎜
⎜
⎜
⎝

𝜕𝑃0
𝜕𝜃

𝜕𝑃0
𝜕|𝑉 |

𝜕𝑃0
𝜕𝛾

𝜕𝑃
𝜕𝜃

𝜕𝑃
𝜕|𝑉 |

𝜕𝑃
𝜕𝛾

𝜕𝑄
𝜕𝜃

𝜕𝑄
𝜕|𝑉 |

𝜕𝑄
𝜕𝛾

⎞
⎟
⎟
⎟
⎠

. (3.45)

If 𝛾𝑛 = 0 for all buses but the slack bus, this is equivalent to a single slack bus model.

Moreover, we consider PV buses1 at each node since the reactive power set points
are unknown. Hence, we suppose that there is sufficient reactive power con-
trol infrastructure to maintain nominal voltages. We argue that in systems with
high shares of renewables the PV bus assumption is justified in view of a grow-
ing number of distributed power generation units, each capable of contributing
to voltage control by reactive power injection or consumption, and power elec-
tronic devices such as Flexible Alternating Current Transmission Systems (FACTS).
While the linearised power flow approximations neglect the shunt capacitance
of lines, these are taken into account in the subsequent AC power flow simu-
lation according to the standard equivalent Π model [125]. Suitable short- to
medium-length lines between 25km and 250km make up about 85% of all lines
in the model. The remaining 15% of lines, which are longer than 250km, are
modelled identically although more rigorous alternatives exist. These include
partitioning long lines into multiple shorter sections to model series compensation
[125], or using equations specifically for long lines that include fewer simplifying
approximations of impedances than the Π model [126].

3.5 Results and Discussion

Having introduced the various model formuluations and simulation setup, this
section presents and discusses the results from the experiments as described in Sec-
tion 3.4. As evaluation criteria we consider the total system costs and the optimal
system composition (Section 3.5.1), the error of optimised losses (Section 3.5.2),
the error of optimised flows compared to simulated flows (Section 3.5.3), as well
as peak memory consumption and solving time (Section 3.5.4).

1For PV buses, the nodal active power injections 𝑝𝑖 and voltage magnitudes |𝑉𝑖 | are known (we
assume nominal voltage magnitudes |𝑉𝑖 | = 1). Bus voltage angles 𝜃𝑖 and reactive power feedin
𝑞𝑖 are to be found. Conversely, for PQ buses the nodal active power injections 𝑝𝑖 and reactive
power injections 𝑞𝑖 are known. Bus voltage magnitudes |𝑉𝑖 | and angles 𝜃𝑖 are to be found.
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Table 3.2: Various statistical indicators compared accross covered flow models.

Lossy Iterative Iterative
Indicator Unit Transport Transport Lossless Lossless Lossy Lossy

System cost bnep.a. 220.2 226.2 224.9 225.7 243.8 238.5
e/MWh 70.2 72.1 71.7 71.9 77.7 76.0

Energy transmitted EWhkm 1.56 1.26 1.36 1.28 0.90 0.94
Network expansion TWkm 216 214 206 206 160 170
Transmission losses % of load 0 2.3 0 0 5.1 3.7
Curtailment % 2.0 1.9 2.3 2.4 2.2 2.4
Share of ||𝜃𝑖 − 𝜃𝑗 || ≥ 30◦ % 5.1 3.7 4.6 3.9 1.4 1.5
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Figure 3.3: Comparison of total annual system costs split by system component for the
covered flow models.

3.5.1 Investments, Nodal Prices and Total System Costs

Table 3.2 presents total transmission losses to sum up to around 4% of the total
load when updated impedances according to line expansion are used. In com-
parison to the 1.2% transmission losses reported by the German Federal Network
Agency for the year 2019 [127], this value is higher owing to the larger volume
of power transmission across the whole continent in scenarios with high shares
of renewables. Skipping the update of impedances overestimates losses (5.5%)
because additional parallel lines reduce the total impedance. The lossy transport
model underestimates losses (2.5%) since it neglects the quadratic relationship
between power and losses. Table 3.2 further shows low curtailment at around 2%
across all flow models due to generous line expansion allowances.

At first sight, the optimised technologymix appears relatively similar across all flow
models, both in terms of cost composition in Figure 3.3 and the map of investments
in Figure 3.6. This is further underlined by the high correlations of optimised
capacities shown in Figure 3.4. Potentially due to some placement degeneracies,
lowest correlations are found for battery and hydrogen storage. Further notable
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Figure 3.4: Capacity correlation of nodal investments distinguished by technology.
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Figure 3.5: Nodal price duration curves (snapshots and nodes) for selected flow models.
In the omitted section, prices rise steadily and similarly for all models. Some models allow
for negative nodal prices with occurence below 0.2%.
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Figure 3.6: Maps of cost-optimal capacity expansion for the covered lossless flow models.
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differences concern grid reinforcement. The lossless and lossy transport models
featuremany new transmission lines in France and Scandinavia, which disappear as
more accurate flow models are applied. The difference adds up to 20% less network
reinforcement. Likewise, the energy transmitted decreases as more constraints
are imposed on power transmission. In order to avoid grid losses, models that
consider transmission losses and KVL transmitted up to 66% less energy than the
transport model. The reduced spatial transport of power is then compensated by
a shift towards hydrogen storage and controllable HVDC links (e.g. in the West
of Germany). Despite the involved conversion losses, balancing renewables in
time through storage becomes more attractive. Additionally, to offset the energy
lost by transmission but also the reduced amount of power transmission, lossy
models feature more wind and solar generation capacity. This includes both more
localised generation (e.g. more solar panels in Southern Germany andmore onshore
wind turbines in Eastern Europe) where previously there were few production
sites, and more concentrated generation in the North Sea region to pair with
the appended storage units. The added capacities raise the system cost. In total,
the annual system costs increase by approximately 5.7% compared to iterative
linearised power flow, or 8% relative to the transport model.

Besides investments, we also compare electricity prices in an idealised nodal
market by using the dual variables of the nodal balance constraints. The price
duration curves depicted in Figure 3.5 show that nodal prices are more evenly
distributed in the lossless linear power flow compared compared to the transport
model. The even distribution of prices was also found in Gunkel et al. [99]. The
transport model and lossy transport model do not have the properties that would
allow negative prices. Negative nodal prices are a consequence of KVL and occur
when increasing demand at a bus relieves a transmission line, allowing power
to be exported from somewhere cheap to somewhere expensive. This lowers
the system cost and consequently results in a negative price at that bus. Other
constraints that can generally entail negative prices are unit commitment con-
straints, but these are not considered in this contribution. We find that even for
models with KVL and loss approximations, negative prices are rare (≤ 0.2%). The
major differences regarding nodal prices can be observed in the 10% of highest
prices. The transport model features step-like price profiles, whereas the profiles
of the other models are smoother. The iterative lossy linearised power flow model
possesses the highest yet smoothest price duration curve.

3.5.2 Validation of Loss Approximation

Figure 3.7 relates optimised line flows 𝑝𝓁 ,𝑡 to optimised losses 𝜓𝓁 ,𝑡 for the lossy
transport model and the iterative lossy linearised power flow model. The lossy
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Figure 3.7: Examination of convex envelope relaxation around loss formula 𝜓 = 𝑟𝑝2 given
in Equation (3.31) for lossy transport model and the iterative lossy linearised power flow
model in a two-dimensional histogram. The line flows are normalised by their nominal
capacity including the 𝑁 − 1 security margin (𝑝𝓁 ,𝑡/𝑝𝓁𝑃𝓁 ) and maximum losses according to
security-constrained line capacity respectively, such that lines with different electrical
parameters can be mapped onto the same chart. The count refers to a tuple (𝓁 , 𝑡) of line
and snapshot. The black line depicts the normalised quadratic loss formula Equation (3.31).
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Figure 3.8: Comparison of simulated losses from AC power flow equations and optimised
losses for iterative and non-iterative lossy linearised power flow in a two-dimensional
histogram. Relative losses are shown as 𝜓𝓁 ,𝑡/𝜓max

𝓁 according to security-constrained line
capacity 𝑝𝓁𝑃𝓁 . The count refers to a tuple (𝓁 , 𝑡) of line and snapshot. The black line
indicates perfect alignment of simulated and optimised losses.
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Table 3.3: Flow errors compared accross covered flow models.

Lossy Iterative Iterative
Indicator Unit Transport Transport Lossless Lossless Lossy Lossy

Root Mean Squared (RMSE) MW 1468 1059 790 679 298 60
Mean Absolute (MAE) MW 775 707 269 207 194 35
Pearson Correlation (R) – 0.91 0.94 0.97 0.98 0.99 0.998
Coef. of Determination (R2) – 0.83 0.89 0.94 0.95 0.98 0.996

transport model underestimates losses under high loading conditions depending
on the assumed constant loss factor and fails to reflect the quadratic relationship
between losses and flow. On the contrary, the results also confirm that approxi-
mating losses in linearised optimal power flow with a convex envelope does not
degrade the obtained solutions. Although the envelope around the loss parabola
Equation (3.31) (see Section 3.3.4, approximates cosine in Equation (3.28)) allows
for losses to take values above the parabola, the cost associated with losses tends
to push losses downwards. Substantial deviations from the parabola to above
only occur when there is no cost (or even a benefit in the case of negative nodal
prices) associated with higher losses; e.g. when energy is being curtailed, or when
there is some extra consumption of interest to control power flows or some other
problem degeneracy. As previously shown in Figure 3.5, negative nodal prices
and consequently incentives for loss overestimation are rare (≤ 0.2%). These
circumstances cause the generous convex relaxation to function well. Underesti-
mating losses is also possible, albeit to a much smaller extent, as a small fraction
of the feasible space lies between the loss parabola and the tangents that form
the convex envelope. Recall that the loss parabola Equation (3.31) is already an
approximation of the cosine terms in Equation (3.28).

Figure 3.8 compares transmission losses retrieved from the optimisation problem
to the simulated losses from AC power flow for the iterating and non-iterating loss
approximation. Like in Figure 3.7, we note that the iterative lossy formulation
manages to sufficiently represent losses observed in the respective AC power flow
simulation. However, when the iteration is skipped and hence line impedances are
not updated according to their optimised capacities, losses are overestimated.

3.5.3 Validation of Optimised Line Flows

Figure 3.9 compares line flows from optimisation to simulated line flows from AC
power flow for each of the flowmodels in a two-dimensional histogram. Figure 3.10
displays the same information from a different perspective as duration curves of
relative line loading for both simulated and optimised flows (inspired by Brown et
al. [86]). Table 3.3 quantifies the alignment of optimised and simulated flows with
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Figure 3.9: Two-dimensional histograms comparing simulated flows (AC power flow) and
optimised flows of the indicated flow models. Relative line flows are shown as 𝑝𝓁 ,𝑡 /𝑃𝓁 . The
count refers to a tuple (𝓁 , 𝑡) of line and snapshot. The black line indicates perfect alignment
of simulated and optimised flows.
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Figure 3.10: Flow duration curves of simulated flows (AC power flow) and optimised
flows for the indicated flow models. Relative line loading is shown as 𝑝𝓁 ,𝑡 /𝑃𝓁 . The count
refers to a tuple (𝓁 , 𝑡) of line and snapshot.

Figure 3.11: Dura-
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some standard absolute and relative measures of error that are frequently encoun-
tered in the literature (see [107]): root mean squared error (RMSE), mean absolute
error (MAE), Pearson Correlation Coefficient (𝑅), Coefficient of Determination (𝑅2).

First and foremost, the results reveal that the iterative lossy model matches simu-
lated flows almost perfectly. Other formulations show deficiencies particularly un-
der high loading conditions, but generally get the direction of flow right. The errors
become significantly less pronounced and produce less undesired line overloading,
the more physical characteristics of power flow are considered during optimisation.
Limiting the utilisation of line capacities to 70% prevents abundant overloading.
Remarkably, a high Pearson correlation coefficient of 0.91 is already achieved with
the transport model, indicating that despite its simplicity the model can capture
the dominant flow patterns we observe in the ex-post AC power flow simulation.

Lines with zero flow occur strikingly frequently in the lossy transport model,
causing high deviations from the simulated flows. This can be explained with the
aid of Figure 3.11. There are many cases where prices are (almost) the same at two
neighbouring buses. In such cases, there is no strict economic need to move power
between them. With a lossless transport model there is no penalty for moving
power between the two nodes, such that the optimisation yields a random value.
However, for the lossy transport there is an incentive to set the flow to zero to
avoid the losses, which is why exactly this phenomenon frequently occurs when
there is no price difference. The physical flow constraints enforced by KVL make it
complicated to realise zero flow on a line. This is the reason why we do not observe
many lines with zero flow for models that enforce KVL. Conversely, Figure 3.11
also shows that congested lines cause high nodal price differences.

In some cases the Newton-Raphson algorithm does not converge. Typical causes
can be high voltage angle differences, voltage drops, and reactive power flows. The
power flow simulation is run separately for each snapshot and each synchronous
zone, so we can check individually what prevalent network characteristics, in
combination with the underlying flow models, cause the failure to converge. The
resulting share of snapshots not converged for each synchronous zone is pre-
sented in Figure 3.12. Almost exclusively, difficulties are observed in the Nordic
synchronous zone which possesses many long (aggregated) lines, which lead to
high voltage angle differences. With regard to the whole European system, the
number of snapshots where no convergence is reached is low. We observe better
convergence rates for more detailed flow models and the issue is found to become
less problematic as the spatial resolution of the transmission network is increased.

Given that high voltage angle differences diminish the accuracy of the linear
power flow approximation, a maximum of up to ±30◦ is commonly tolerated in
the literature [106, 128, 129]. This domain links to the range beyond which the
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Figure 3.13: Comparison of computational performance in terms of peak memory con-
sumption and solving time.

relative error of the small-angle approximation of the sine exceeds 5%. Since
the cosine approximation is a second order Taylor series expansion, unlike the
first order sine approximation, it does not reduce the acceptable range of angle
differences further (see Table 3.3). We observe that across all flowmodels a majority
of voltage angle differences lies within an uncritically low range where the sine
approximation is quite precise (Table 3.2). The share of voltage angle differences
outside ±30◦ reduces considerably with more physically accurate grid modelling
(5% for transport model versus 1.5% for lossy model).

3.5.4 Computational Performance

The computational performance of the different flowmodels, both in terms of mem-
ory and computation time, is shown in Figure 3.13. More variables and constraints
leads to higher peak memory consumption. The spectrum ranges from 70 GB to 130
GB (around factor 2). Particularly the loss approximation raises memory require-
ments significantly in relation to added KVL constraints or constant efficiencies, also
depending on the number of tangents used for the convex envelope. Solving times
range between 5 hours and 50 hours (factor 10). Lossy and lossless transport model
are solved the fastest by far. The lossless linearised power flow model requires al-
most twice the time. Iteration has the biggest impact on solving times, multiplying
with the number of iterations. Finally, we notice that the lossy formulations are
more prone to numerical issues, which could be circumvented by increasing the
numeric accuracy parameter of the solver at the cost of computational speed.

3.5 Results and Discussion 53



3.6 Critical Appraisal

The disregard of voltages and reactive power flows during optimisation ranks
among the severest shortcomings of the presented flow models. The cost and
required capacities for reactive power control are not assessed. The confinement
to linear formulations may also be considered as a weakness in view of recent
promising developments in convex second-order cone solvers.

Additionally, we consider the high-voltage transmission network only and do not
assess the performance of flow models in low-voltage distribution grids. This is
especially relevant in view of further closing the granularity gap. Furthermore,
losses on the distribution level are not directly modelled but taken into account
only through the electricity demand. Typically, the scale of losses is higher than at
the transmission level, as for instance the German Federal Network Agency reports
[127]. In 2019, losses at the transmission level amounted to 1.2%, whereas losses at
the distribution level were as high as 3%. Moreover, the relations between ambient
temperature, dynamic line rating and losses are not addressed. Higher ambient
temperatures reduce the amount of power a transmission line can transmit safely
but simultaneously increase the resistance, affecting the losses.

Although the clustered transmission system is of course also simplified due to com-
putational constraints, we could observe consistent results for spatial aggregation
to 100, 200 and 250 nodes in complementary simulations. However, the extent of
network clustering also affects the length of modelled lines and we note that for
very long lines with voltage angle differences beyond ±30◦ in highly aggregated
grid models the standard equivalent Π model may not be suitable [125].

3.7 Conclusion

In the present chapter, we discussed best practices for incorporating two in-
herently nonlinear phenomena, power flow and transmission losses, into lin-
ear capacity expansion problems that co-optimise investments in generation,
storage and transmission infrastructure.

High model fidelity comes at the cost of high computational burden. Given the
cross-disciplinary nature of energy systemmodelling and differences in complexity,
the selection of a suitable representation of power flows depends on the application,
the user’s availability of computational resources, and the level of spatial detail
considered. A highly aggregated network will not benefit from detailed power
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flow modelling, whereas modelling losses is critical in the presence of continent-
spanning power transmission at sub-national detail. The present chapter provides
a detailed comparison to facilitate this choice.

We find that already as little as three tangents are sufficient to accurately approxi-
mate the quadratic losses, which in turn approximate the trigonometric losses. We
do not observe excessive fictitious losses despite the broad convex relaxation. How-
ever, we conclude that accounting for changing impedances as lines are expanded
is essential. Otherwise, losses will be overestimated.

The literature predominantly employs the lossless transport model in design
studies, which can already capture the main features of a cost-efficient system,
but is too inexact for subsequent nonlinear power flow calculations. However,
a representation of power flows that considers transmission losses as well as
both Kirchhoff laws allows us to bridge between techno-economic models and
more detailed electrotechnical models.
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Contents of this chapter based on

Neumann, F. & Brown, T. Transmission Expansion Planning Using Cycle
Flows in Proceedings of the Eleventh ACM International Conference on Future
Energy Systems (ACM e-Energy 2020) (2020), 253–263. doi:10/d3qk. arXiv:
2004.08702. ©2020 Neumann, F. and Brown T. Publication rights licensed to
ACM. Reprinted with permission.

4.1 Introduction

Other than in the previous Chapter 3, where the detailed coordination between
generation, storage and transmission infrastructure coerced us to using an LP
formulation with exclusively continuous variables, the classical transmission ex-
pansion planning (TEP) problem is often formulated as discrete optimisation prob-
lem, where line capacities cannot be continuously expanded because the choice
of circuit types is limited. Nonetheless, large shares of weather-dependent re-
newables mean that also transmission grid reinforcements need to be optimised
over many representative weather and load conditions, which together with the
first-choice nonlinear AC power flow and the discrete line expansion choices
drives up the computational burden of TEP [130].

A common approach to TEP in the literature is to linearise the power flow equa-
tions as a trade-off between computational complexity and accuracy. Using a
big-𝑀 disjunctive relaxation, the linearisation allows TEP problems to be written as
mixed-integer linear problem (MILP) and solved using decomposition methods and
specialised commercial solvers [24, 131–133]. However, as we have seen in Chap-
ter 3, the common angle-based approach to power flow linearisation introduces
many auxiliary variables for the voltage angles, which has two major drawbacks:
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it introduces many new variables and constraints, which can lead to performance
problems, and it is difficult to consider the connection of multiple disconnected
networks. The latter difficulty is due to the fact that the voltage angles are only
defined up to a constant in each connected network, and this redundancy must be
managed with care when changing the connectivity. The connection of previously-
disconnected networks is particularly relevant for the connection of island systems
and regions with multiple synchronous zones, like Europe, North America, China,
Japan, and the Philippines, where synchronisation via HVAC transmission lines
competes with other technologies such as HVDC back-to-back coupling.

An alternative formulation of the linearised power flow equations has been used
for operational linear optimal power flow (LOPF) problems without discrete TEP
that uses constraints imposed directly on the power flows themselves, without the
use of auxiliary variables, using a cycle decomposition of the flow patterns defined
by Kirchhoff’s voltage law (KVL) [69]. This cycle-based formulation was shown to
reduce computation times by an order of magnitude compared to the angle-based
formulation in LOPF problems with generation capacity expansion. Moreover, such
an alternative formulation may converge in instances where the other does not.

The cycle-based formulation has also previously been applied to the optimal trans-
mission switching (OTS) problem which is moderately related to the TEP problem
[134]. OTS is an operational problem where the network topology can be changed
by switching lines on and off. In many regards OTS could be viewed as reverse TEP.
While TEP is about adding new transmission lines permanently, OTS is about delib-
erately deactivating transmission lines temporarily. However, using a cycle-based
formulation in TEP has a distinct advantage over using it in OTS: while OTS needs to
consider all simple cycles [134], TEP can be formulated by supplementing the initial
cycle basis with new candidate cycles because existing lines are not removed.

In the present chapter, the cycle-based formulation is therefore extended to TEP
problems. Unlike the previous Chapter 3 the angle of attack is not approximation
of a non-convex feasible space, but a nimble reformulation of the identical feasible
space. It is shown how to choose the big-𝑀 parameters necessary for the disjunctive
relaxation, which is also present in the angle-based formulation. This is important
because previous studies have reported a large impact of big-𝑀 coefficients on
computation times and numerical stability [30]. For both formulations, it is shown
how to formulate problems where multiple disconnected networks (also called
synchronous zones) may be connected, which involves managing the choice of
big-𝑀 parameters and, in the case of the angle-based formulation, the relaxation
of the slack voltage angle constraints. The connection of networks is found to be
both easier to formulate and faster to solve for the cycle-based formulation.
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Realistic benchmark cases with varying spatial and temporal resolution are
provided using the open model dataset PyPSA-Eur from Section 2.3 [13, 28].
The model covers the European transmission system and includes regionally
resolved time-series for renewable generator availability and is used to formulate
a coordinated expansion planning problem of generation and transmission
infrastructure. All formulations have been implemented for the Python-based
power system analysis toolbox PyPSA [12].

The remainder of the chapter is structured as follows. First, Section 4.2 guides
through the foundations of angle-based and cycle-based linear power flow con-
straints, which are subsequently adapted to the TEP problem in Section 4.3. The
competing TEP formulations are benchmarked and assessed in Section 4.4 and
Section 4.5, before conclusions are drawn in Section 4.6.

4.2 Linear Optimal Power Flow

LOPF problems typically optimize the dispatch of generation assets in a network
with the objective to minimise costs at the same time as enforcing the physi-
cal flow of power using the linear approximation of the power flow equations.
More general problems consider multiple time periods, so that storage assets
can be optimised as well as investments in assets taking into account repre-
sentative load and weather situations.

The present chapter considers long-term investment planning problems like the
one presented in Section 2.1, that seek cost-effective solutions to reduce greenhouse
gas emissions in the power system, of which LOPF is one principal building block.
Among others, such problems constrain the absolute active power flows 𝑝0𝓁 in all
existing lines 𝓁 ∈ 0 to remain within their nominal capacities 𝑃 0

𝓁

|𝑝0𝓁 | ≤ 𝑃
0
𝓁 . (4.1)

The label 0 indicates lines in the existing network. Additionally, Kirchhoff’s
current law (KCL) and KVL govern the flow 𝑝0𝓁 . A variety of mathematically equiva-
lent LOPF formulations exists, many of which were compared and benchmarked
in previous work [69]. In continuous linear capacity expansion problems with-
out discrete transmission expansion planning the choice of the LOPF formulation
was shown to impact computation times greatly.

In preparation for their extension to discrete transmission expansion planning in
subsequent Section 4.3, this section reviews two LOPF formulations used in this
setting. These are (i) the common angle-based formulation using voltage angles as
auxiliary variables (Section 4.2.2) and (ii) a more efficient cycle-based formulation
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deduced from graph-theoretical considerations (Section 4.2.3). Both formulations
share the constraints for representing KCL (Section 4.2.1), but differ in their formu-
lation of KVL. While the former has previously been widely used in TEP studies
[24, 131, 132], the application of the latter is a novel contribution of this chapter.

4.2.1 Kirchhoff’s Current Law (KCL)

As known from Chapter 3, KCL requires the power injected at each bus to equal
the power withdrawn by attached lines; i.e.

𝑝𝑖 = ∑
𝓁
𝐾𝑖𝓁𝑝0𝓁 ∀𝑖 ∈  (4.2)

where 𝑝𝑖 is the active power injected or consumed at node 𝑖 ∈  , 𝑝0𝓁 is the active
power flow on line 𝓁 , and 𝐾 ∈ R| |×|0 | is the incidence matrix of the network
graph which has non-zero values +1 if line 𝓁 starts at bus 𝑖 and −1 if line 𝓁 ends
at bus 𝑖. The orientation of lines is arbitrary but fixed [135].

KCL provides | | linear equations for the |0| unknown flows 𝑝0𝓁 , of which
one is linearly dependent [69]. If the network is a tree with |0| = | | − 1,
Equation (4.2) is already sufficient to uniquely determine the flows 𝑝0𝓁 . How-
ever, in meshed networks |0| − | | + 1 additional independent equations
are required. These are provided by KVL.

4.2.2 Angle-based Kirchhoff’s Voltage Law (KVL)

In textbooks and software toolboxes, KVL for the linearised power flow is commonly
formulated in terms of the voltage phase angles {𝜃𝑖}𝑖∈ [104, 105]. This angle-based
formulation originates directly from applying the assumptions for linearised power
flow to the nonlinear power flow equations in voltage-polar coordinates of lines
𝓁 ∈ 0 (see Equations (3.1) to (3.2)). Assuming (i) all voltage magnitudes |𝑉𝑖 | are
close to one per unit, (ii) conductances 𝑔𝓁 are negligible relative to the susceptances
𝑏𝓁 , (iii) voltage angle differences are small enough such that sin(𝜃𝑖 −𝜃𝑗) ≈ 𝜃𝑖 −𝜃𝑗 , and
(iv) reactive power flows 𝑞𝓁 are negligible compared to real power flows 𝑝𝓁 leads to

𝑝0𝓁 =
𝜗𝓁
𝑥0𝓁

=
1
𝑥0𝓁

∑
𝑖
𝐾𝑖𝓁𝜃𝑖 ∀𝓁 ∈ 0 (4.3)
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where 𝑥0𝓁 = 𝑏−1𝓁 is the line reactance and 𝜗𝓁 = 𝜃𝑖 − 𝜃𝑗 is the voltage angle difference
between nodes 𝑖 and 𝑗 which line 𝓁 connects [104]. Additionally, a reference
voltage angle is commonly set at one bus for each synchronous zone

𝜃𝑖 = 0 ∀𝑖 ∈ 0, (4.4)

where 0 denotes the set of slack buses. This circumvents the rotational de-
generacy1 that originates from the invariance of the network flows to adding
a constant to all voltage angles 𝜃𝑖 → 𝜃𝑖 + 𝑐 [108]. Together with the KCL con-
straints, the angle-based formulation provides |0| + | | independent equality
constraints to determine the |0| flows and | | angles.

4.2.3 Cycle-based Kirchhoff’s Voltage Law (KVL)

KVL states that the sum of voltage angle differences across lines around all cycles
in the network must sum to zero. This allows a reformulation of the linearised
power flow equations which circumvents the auxiliary voltage angle variables.
The consistency of voltage angle summations within a connected network can
alternatively be achieved by using a cycle basis of the network graph  = ( ,0).
A cycle basis is a subset of all simple cycles of  such that any other cycle can be
described by a linear combination of cycles in the cycle basis [136, 137]. It can be
constructed from aminimum spanning tree  of the network graph in �̃�(| |⋅ |0|2)
[138]. The tree  has | | − 1 edges [139]. Together with the path in  connecting
their nodes, each of the |0|−| |+1 remaining edges of  creates a cycle of the cycle
basis. These cycles are linearly independent because each cycle contains an edge
that is not contained in the other cycles and consequently constitute a basis of the
cycle space of  [140]. These are sufficient to express KVL and uniquely determine
the flows 𝑝0𝓁 [141]. The independent cycles 𝑐 ∈ {1,… , |0| − | | + 1} are expressed
as a directed linear combination of the lines 𝓁 in the cycle incidence matrix

𝐶0
𝓁𝑐 =

⎧⎪⎪
⎨⎪⎪⎩

1 if edge 𝓁 is element of cycle 𝑐,
−1 if reversed edge 𝓁 is element of cycle 𝑐,
0 otherwise.

(4.5)

Then, KVL can be written as

∑
𝓁
𝐶0
𝓁𝑐𝜗𝓁 = 0 ∀𝑐 = 1,… , |0| − | | + 1. (4.6)

1The term degeneracy is used to describe the condition where different values for optimisation
variables yield same optimal objective value. Degeneracy is known to have a detrimental impact
on the convergence of both simplex and interior-point methods.
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where 𝜗𝓁 is the voltage angle difference. By substituting Equation (4.3) into Equa-
tion (4.6), KVL can be expressed in terms of the power flows as

∑
𝓁
𝐶0
𝓁𝑐𝑥

0
𝓁 𝑝

0
𝓁 = 0 ∀𝑐 = 1,… , |0| − | | + 1. (4.7)

Consequently, while the angle-based formulation defines KCL and KVL with |0| +
| | variables and |0| + | | independent equality constraints, the equivalent
cycle-based formulation requires only |0| variables and |0| independent equality
constraints. Besides fewer variables and constraints, the cycle-based formulation
moreover features sparser constraints than the angle-based formulation.

The computational appeal of this reformulation was evaluated in [69] for multi-
period linear optimal power flow problems with generator capacity expansion and
has been applied in other publications [134, 135, 139, 140, 142]. It has further been
proven in [139] the cycle-based formulation also holds for multigraphs2 which is
particularly relevant for its extension to transmission expansion planning.

Retrospective Calculation of Voltage Angles

The cycle-based formulation does not include variables for the voltage an-
gles. However, if needed for instance to assess the validity of linear power
flow assumptions, they can be calculated after optimisation using the ob-
served net nodal power injection or consumption 𝑝𝑖 . By substituting Equa-
tion (4.3) into Equation (4.2) one obtains

𝑝𝑖 = ∑
𝓁∈0

𝐾𝑖𝓁
1
𝑥𝓁

∑
𝑗∈

𝐾𝑗𝓁𝜃𝑗 ∀𝑖 ∈  . (4.8)

This can be rewritten with a weighted Laplacian 𝐿 = 𝐾𝐵𝐾⊤ where 𝐵 is a diagonal
matrix with elements 𝐵𝓁𝓁 = 𝑏𝓁 = 𝑥−1𝓁 , leading to

𝑝𝑖 = ∑
𝑗
𝐿𝑖𝑗𝜃𝑗 ∀𝑖 ∈  . (4.9)

This can be solved for 𝜃𝑖 with

𝜃𝑖 = ∑
𝑗
(𝐿−1)𝑖𝑗 𝑝𝑗 ∀𝑖 ∈  . (4.10)

However, 𝐿 is not invertible as it has a zero eigenvalue with eigenvector 𝟏. Since
Equation (4.4) provides a reference voltage angle for one bus, the remaining voltage

2Multigraphs are graphs allowing parallel edges between the same two vertices.
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angles {𝜃𝑖}𝑖∈ ⧵0 can be found by inverting the submatrix 𝐿′ ∈ R| ⧵0 |×| ⧵0 | of
𝐿 which omits the row and column corresponding to the slack bus.

4.3 Transmission Expansion Planning

In TEP we consider the discrete reinforcement of transmission lines based on a
set of candidate lines 1. The label 1 indicates candidate lines. We extend the
optimisation problem from Section 4.2 by introducing a binary investment variable
𝑖𝓁 ∈ B for each candidate line 𝓁 ∈ 1 and then formulate constraints on the
power flow 𝑝1𝓁 depending on the investment decision.

If the candidate line 𝓁 is not built, the power flow must be zero. Otherwise,
the absolute power flow must not exceed the nominal capacity 𝑃 1

𝓁 of the can-
didate line. This is expressed by the constraint

|𝑝1𝓁 | ≤ 𝑖𝓁𝑃
1
𝓁 ∀𝓁 ∈ 1. (4.11)

Just like existing lines 𝓁 ∈ 0 the capital cost of candidate lines 𝓁 ∈ 1 are included
in the objective function and nodal balance constraints in Equation (4.2) defining
KCL.

To define KVL for candidate lines, both angle-based and cycle-based KVL con-
straints, given in Equation (4.3) and Equation (4.7), need to be edited such that
they can only be active if the associated candidate lines are built. To achieve
this, both formulations make use of the big-𝑀 disjunctive relaxation. These mod-
ifications are subsequently developed in Section 4.3.1 for the angle-based and
Section 4.3.2 for the cycle-based KVL constraints.

4.3.1 Angle-based Transmission Expansion Planning

The angle-based KVL constraint of the TEP problem is widely known from
[24, 104, 131, 132]. It transforms the KVL equality constraint from Equa-
tion (4.3) into the two inequalities

𝑝1𝓁 −
𝜗𝓁
𝑥1𝓁

≥ −𝑀KVL
𝓁 (1 − 𝑖𝓁 )

≤ +𝑀KVL
𝓁 (1 − 𝑖𝓁 ) ∀𝓁 ∈ 1, (4.12)

4.3 Transmission Expansion Planning 63



Example A.1 Example A.2 Example A.3
v1

v2

l1

c1

v1

v2 v3

l1 l2

c1

v1

v2 v3

l1 l2

c1

c2

Figure 4.1: Example Group A. Candidate lines within a synchronous zone. Candidate
lines denoted by 𝑐𝑖 and existing lines by 𝑙𝑖 .

where, as previously, 𝜗𝓁 = 𝜃𝑖 − 𝜃𝑗 . If the big-𝑀 parameters 𝑀KVL
𝓁 are suitably

chosen, the inequalities in Equation (4.12) are inactive if 𝑖𝓁 = 0, but together
form the original equality constraint if 𝑖𝓁 = 1.

However, big-𝑀 parameters are known to easily incur numerical challenges
[30, 131]. Therefore, 𝑀KVL

𝓁 are ideally chosen as large as necessary, to guaran-
tee that the KVL constraint is inactive whenever the candidate line is not built,
and as small as possible, to avoid a detrimental large value range in the op-
timisation problem’s coefficient matrix.

For the derivation of appropriate values it is necessary to distinguish candidate
lines which connect buses within the same synchronous zone (1

intra ⊆ 1,
Section 4.3.1) and candidate lines which connect multiple synchronous
zones (1

inter ⊆ 1, Section 4.3.1).

Big-𝑀 Parameters for KVL Constraints Within Synchronous Zone

The derivation of minimal values for 𝑀KVL
𝓁 for candidate lines 𝓁 ∈ 1

intra
which connect buses of the same synchronous zone largely follows [131,
143], but is reproduced here to facilitate a comparison with the novel cycle-
based formulation and to set the notation.

Theorem 1 The value of the disjunctive constant 𝑀KVL
𝓁 for a candidate line 𝓁 that

connects two buses 𝑖 and 𝑗 of the same synchronous zone can be chosen following

𝑀KVL
𝓁 ≥

|min
𝑖,𝑗 |
𝑥1𝓁

(4.13)

where |min
𝑖,𝑗 | is the length of the shortest path between the buses 𝑖 and 𝑗 along edges 𝑘

of the existing network graph  = ( ,0) with weights 𝑃 0
𝑘𝑥0𝑘 .
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Proof 1 Let 𝓁 ∈ 1
intra be a particular candidate line for which Equation (4.11) and

Equation (4.12) hold. In the case 𝑖𝓁 = 0 it follows from Equation (4.11) that 𝑝1𝓁 = 0
and from Equation (4.12) that

−𝑀KVL
𝓁 𝑥1𝓁 ≤ 𝜃𝑖 − 𝜃𝑗 ≤ 𝑀KVL

𝓁 𝑥1𝓁 . (4.14)

Equation (4.14) represents a limit on the voltage angle difference and the value of𝑀KVL
𝓁

must be chosen such that for as long as 𝑖𝓁 = 0 this limit is never reached. Otherwise
invalid limits on the angle difference are imposed. We must therefore derive valid
big-𝑀 parameters from constraints on the voltage angle difference that are already
enforced through the existing network.

If there exists a line 𝓁 ∈ 0 in parallel to the candidate line (e.g. as in Example A.1
in Figure 4.1) we can obtain these by substituting Equation (4.3) into Equation (4.1),
yielding the limits

−𝑃 0
𝓁 𝑥

0
𝓁 ≤ 𝜃𝑖 − 𝜃𝑗 ≤ 𝑃 0

𝓁 𝑥
0
𝓁 . (4.15)

By combining Equation (4.14) and Equation (4.15) we can retrieve a minimum value
for 𝑀KVL

𝓁 :

𝑀KVL
𝓁 ≥

𝑃 0
𝓁 𝑥0𝓁
𝑥1𝓁

(4.16)

Now consider the slightly more complicated case where the candidate line 𝓁 is not
a duplication of an existing line (e.g. as in Example A.2 in Figure 4.1). The theorem
specifies that the buses 𝑖 and 𝑗 of 𝓁 are part of the same synchronous zone. Thus, there
is at least one sequence 𝑖,𝑗 = {𝑘(𝑖, 𝑏1), 𝑘(𝑏1, 𝑏2),… , 𝑘(𝑏𝑛, 𝑗)} of existing lines 𝑘 ∈ 0

along buses {𝑏𝑚}𝑚=1,…,𝑛 which already connects these buses. Hence, just as with an
existing parallel line there is an existing limit on the voltage angle difference, only
that the limit is not given by just one existing line but by a set of existing lines:

− ∑
𝑘∈𝑖,𝑗

𝑃 0
𝑘𝑥

0
𝑘 ≤ 𝜃𝑖 − 𝜃𝑗 ≤ ∑

𝑘∈𝑖,𝑗

𝑃 0
𝑘𝑥

0
𝑘 (4.17)

To find the tightest limit on 𝜃𝑖 − 𝜃𝑗 we need to find the shortest path min
𝑖,𝑗 among all

possible paths 𝑖,𝑗 with weights 𝑃 0
𝑘𝑥0𝑘 using e.g. the Dijkstra algorithm, which then

yields

𝑀KVL
𝓁 ≥

|min
𝑖,𝑗 |
𝑥1𝓁

=
∑𝑘∈min

𝑖,𝑗
𝑃 0
𝑘𝑥0𝑘

𝑥1𝓁
(4.18)

as specified in the theorem.
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Figure 4.2: Example C. Candidate lines across synchronous zones. Candidate lines denoted
by 𝑐𝑖 and existing lines denoted by 𝑙𝑖 .

Big-𝑀 Parameters for KVL Constraints Across Synchronous Zones

If the buses connected by candidate line 𝓁 are not part of the same synchronous
zone and therefore no path exists to infer an existing limit on the voltage angle
difference, it is possible to fall back to a significantly larger value

𝑀KVL
𝓁 ≥

∑𝑘∈0∪1 𝑃𝑘𝑥𝑘
𝑥1𝓁

(4.19)

which has been proven in [144] to be a valid choice for any combination of line
investment decisions, under the condition that a reference angle is defined for all
synchronous zones such that 𝜃𝑖 = 0 ∀𝑖 ∈ 0 if no new lines are built. Otherwise,
due to the rotational degeneracy no relation could be established between the
nodal voltage angles of disconnected networks.

Slack Constraints Across Synchronous Zones

If multiple synchronous zones may be connected by building new lines, the slack
constraint in Equation (4.4) must also be modified, since it applies separately in
each connected network. When two networks are connected, one of the slack
constraints should be relaxed. The slack constraints cannot simply be dropped
because the derivation of big-𝑀 parameters for the KVL constraints across syn-
chronous zones (Section 4.3.1) depends on a calculable maximal voltage angle
difference across synchronous zones even if they are not coupled. Available
transmission expansion studies that alleviate rotational degeneracy of voltage
angles with slack constraints have not dealt with this case. In this section a
novel treatment of the connection of multiple synchronous zones is provided
that handles the slack constraints by managing the combinatorics of possible
relaxations that apply as networks are connected.
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Figure 4.3: Example C shown as different directed rooted trees of the subnetwork graph.
In the depth-first variant, 𝑢 is the root subnetwork, 𝑐3 relaxes the slack of 𝑣 and 𝑐1 or 𝑐2
relax the slack of 𝑤 . In the breadth-first variant, 𝑣 is the root subnetwork, 𝑐3 relaxes the
slack of 𝑢 and 𝑐1 or 𝑐2 relax the slack of 𝑤 .

Initially, consider Example C in Figure 4.2 where only 𝑐1 is a candidate line which,
if built, would synchronize two synchronous zones 𝑣 and 𝑤 . If 𝑐1 is built, one of
the constraints in Equation (4.4) regarding the two slack buses 𝑣1 and 𝑤1 must
be rendered ineffective. Otherwise, the nodal voltage angles would be fixed at
two buses within the same synchronous zone, but the voltage angle difference
between buses determines the flow. The solution would yield invalid or infeasible
power flows. Therefore, we adjust the slack constraint of 𝑤 to |𝜃𝑤1 | ≤ 𝑖𝑐1𝑀 slack

𝑐1 ,
where 𝑀 slack

𝑐1 is a sufficiently large constant.

Now consider for Example C in Figure 4.2 the case where additionally 𝑐2 is a
candidate line which connects the same two synchronous zones as 𝑐1. In this case,
we must agree on a single slack constraint relaxed by 𝑐1 and 𝑐2 as otherwise, if
both are built, no slack constraint would remain to alleviate rotational degeneracy.
Hence, the slack constraint of 𝑤 is adjusted to |𝜃𝑤1 | ≤ ∑𝓁∈{𝑐1,𝑐2} 𝑖𝓁𝑀

slack
𝓁 . The sum

on the right-hand side acts as a logical OR expression such that each positive
investment decision 𝑖𝓁 alone renders the constraint non-binding.

Next, consider the slightly more complicated Example C in Figure 4.2 where now
three synchronous zones may be synchronised by candidates 𝑐1, 𝑐2 and 𝑐3. In this
case, it is essential to select a single root synchronous zone, the slack constraint
of which is to be kept if all candidate lines are built. For instance, not all three
candidate lines can relax the slack constraint of 𝑣 as this would result in two
remaining slack constraints in one synchronous zone.

Figure 4.3 sketches two possible relations between the candidate lines and the slack
constraints they relax without the need to consider complementary investment
decisions. It shows reduced graphs where the nodes  represent all synchronous
zones, and the directed edges represent the candidate lines in 1

inter and point
to the synchronous zone they affect. Since the connecting nodes are formally
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different than in  we label this edge set with 1
 . In the following, we refer

to this graph as the subnetwork graph  = ( ,1
 ).

Generalising from the examples, we define sets of candidate lines 1
𝑣 ⊆ 1

inter
which should turn the slack constraint of synchronous zone 𝑣 non-binding. We
can achieve a structure without complicating interdependencies of line invest-
ment variables if the graph of subnetworks  is a forest of directed trees with
a defined root (but allowing parallel edges). With an associated big-𝑀 constant
𝑀 slack

𝓁 that is large enough regardless of all other investment decisions (see Sec-
tion 4.3.1), we reformulate the slack constraints to

|𝜃𝑣 | ≤ ∑
𝓁∈1

𝑣

𝑖𝓁𝑀 slack
𝓁 (4.20)

which are correct for any combination of line investments.

If the subnetwork graph would not be a forest of directed rooted trees (with
parallel edges), more interdependencies would arise due to the manifold of combi-
nations of synchronisation scenarios. Consider Example D.1 in Figure 4.6 where
considering a dependency is inevitable. It is viable to encode one logical AND
expression for two binary investment variables 𝑖1 and 𝑖2 in linear programming
with an auxiliary variable 𝑖12 and the constraint

0 ≤ 𝑖1 + 𝑖2 − 2𝑖12 ≤ 0 (4.21)

[145]. But the rapidly growing number of additional binary auxiliary variables and
constraints that would be required for only marginally more complicated cases,
such as Example D.2, add to the appeal of reformulating the problem without
voltage angle variables in cases where multiple synchronous zones may be joined.

Big-𝑀 Parameters for Slack Constraints

Having established that the subnetwork graph  must be a forest of directed
rooted trees in order to avoid considering interdependencies of investments,
this section derives suitable big-𝑀 parameters for the modified slack constraints
in Equation (4.20). It follows a similar logic as the preceding derivation
for the KVL constraints in Section 4.3.1.

For a start consider the simple case where there is only a single candidate line
𝓁 that would connect two asynchronous zones with reference buses 𝑣1 and 𝑤1.
Choose, without loss of generality, that 𝓁 relaxes the slack constraint of 𝑣1 (𝓁 ∈
1
𝑣1). Then if the candidate line built (𝑖𝓁 = 1),

𝜃𝑤1 = 0 and |𝜃𝑣1 | ≤ 𝑀
slack
𝓁 , (4.22)
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where 𝑀 slack
𝓁 is chosen such that the constraint is never binding. To determine

𝑀 slack
𝓁 we need to find the maximum absolute voltage angle |𝜃𝑣1 | if the candidate

line is built. This depends on the reference voltage angle 𝜃𝑤1 . We can relate 𝜃𝑣1 and
𝜃𝑤1 by following a path  𝓁

𝑣1,𝑤1
between the slack buses 𝑣1 and 𝑤1 through the graph

𝓁 = ( ,0∪{𝓁}) that consists of the existing network plus the candidate line 𝓁 via

𝜃𝑣1 − 𝜃𝑤1 = ∑
𝑖𝑗∈ 𝓁

𝑣1 ,𝑤1

𝜃𝑖 − 𝜃𝑗 . (4.23)

One can easily see this by following Example C in Figure 4.2.

(𝜃𝑣1 − 𝜃𝑣3) + (𝜃𝑣3 − 𝜃𝑤4) + (𝜃𝑤4 − 𝜃𝑤1) = 𝜃𝑣1 − 𝜃𝑤1 . (4.24)

Knowing this we can calculate the maximum voltage angle difference between
the two slack buses, as previously done in Equation (4.17) using the shortest path
along lines in 𝓁 with weights 𝑃𝓁𝑥𝓁 to determine a lower bound for 𝑀 slack

𝓁 :

𝑀 slack
𝓁 ≥ ∑

𝑘∈ 𝓁 ,min
𝑣1 ,𝑤1

𝑃𝑘𝑥𝑘 . (4.25)

Now consider the slightly more complicated case of |1
𝑣1 | ≥ 2 candidate lines

𝓁 ∈ 1
𝑣1 where either line potentially synchronizes two separate power networks

with reference buses 𝑣1 and 𝑤1. We can repeat the preceding calculation of 𝑀 slack
𝓁

for each candidate line 𝓁 ∈ 1
𝑣1 . However, the maximum voltage angle differ-

ence irrespective of all investment combinations is max
{
𝑀 slack

𝓁 | 𝑙 ∈ 1
𝑣1

}
and

should therefore be chosen for both lines.

A hierarchical strategy based subnetwork graph  is applied if multiple syn-
chronous zones can be connected. We add the maximum big-𝑀 parameter of
the upstream synchronous zone to all big-𝑀 parameters of the downstream syn-
chronous zones, starting at the root. For instance, in Example C in Figure 4.3
using the remote root variant, the big-𝑀 constant for 𝑐3 would be added to those
of 𝑐1 and 𝑐2. This approach does not yield minimal values, as it takes a detour
via the slack bus of intermediate synchronous zones. However, it circumvents
the need to consider investment dependencies to guarantee non-binding slack
constraints. Due to this hierarchical approach, choosing a tree via breadth-first
search from a central node of the subnetwork graph  is advantageous as it
generally results in lower big-𝑀 constants.
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4.3.2 Cycle-based Transmission Expansion Planning

Investing in candidate lines in the transmission system can incur new cycles for
which the KVL constraint in Equation (4.7) must hold if and only if all candidate
lines which are part of a new cycle are built. In the following, these will be
referred to as candidate cycles. Both existing and candidate lines can be involved
in a candidate cycle. Given these candidate cycles as an incidence matrix 𝐶1

𝓁𝑐
where 𝓁 ∈ 0 ∪ 1 we can formulate the KVL constraints analogously to the
cycle-based load flow formulation from Equation (4.7) such that it is enforced
only if all candidate lines of that cycle are built:

∑
𝓁∈0 ∪ 1

𝐶1
𝓁𝑐𝑥𝓁𝑝𝓁 ≥ −𝑀KVL

𝑐 (
∑
𝓁∈1

𝐶1
𝓁𝑐(1 − 𝑖𝓁 ))

∀ 𝑐, (4.26)

∑
𝓁∈0 ∪ 1

𝐶1
𝓁𝑐𝑥𝓁𝑝𝓁 ≤ +𝑀KVL

𝑐 (
∑
𝓁∈1

𝐶1
𝓁𝑐(1 − 𝑖𝓁 ))

∀ 𝑐. (4.27)

Like in the angle-based TEP formulation (cf. Section 4.3.1), the cycle-based TEP
formulation relies on the big-𝑀 disjunctive relaxation with a sufficiently large
parameter 𝑀KVL

𝑐 for each candidate cycle 𝑐. The candidate cycle matrix 𝐶1
𝓁𝑐 on the

right-hand side acts as an indicator for whether candidate line 𝓁 is contained within
the candidate cycle 𝑐. Only if all those 𝑖𝓁 = 1, Equation (4.27) becomes binding.

The cycle-based linear power flow equations have previously been applied to the
related OTS [134]. However, using cycle-based power flow constraints in TEP has a
distinct advantage over using it in OTS. Since usually in TEP problems existing trans-
mission infrastructure cannot be removed, the KVL constraints from Equation (4.7)
remain valid, regardless of the binary decision variables. Conversely, OTS needs to
consider all simple cycles from the start because the initial network topology, and
therefore the cycle basis, may not persist [134]. For TEP it is enough to append KVL
constraints for supplemental candidate cycles according to Equation (4.27).

Candidate cycles can originate from (i) a candidate line parallel to an existing line,
(ii) a candidate line connecting two buses which are already connected and are
thereby part of the same synchronous zone, or (iii) multiple candidate lines connect-
ing two or more synchronous zones which form cycles in the subnetwork graph  .

Candidate Cycles Within Synchronous Zone

Finding candidate cycles within the same synchronous zone follows the subse-
quently described algorithm: For each candidate line 𝓁 ∈ 1 connecting buses 𝑖
and 𝑗 find a shortest path min

𝑖,𝑗 through the network graph  = ( ,0) with edge
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Figure 4.4: Exam-
ple Group B. Choice
of candidate cycles
within synchronous
zone. Candidate lines
denoted by 𝑐𝑖 and ex-
isting lines denoted
by 𝑙𝑖 .
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weights 1, which includes only the existing transmission infrastructure. The edges
of the shortest path and the respective candidate line form a candidate cycle. The
cycle incidence vector is formed according to equation Equation (4.5).

While any path through  from 𝑖 to 𝑗 would yield a valid candidate cycle, it
is computationally advantageous to minimise the size of the cycles to obtain
sparser KVL constraints. For instance, in Example B.1 in Figure 4.4 the cycle for
candidate line 𝑐1 would consist of {𝑐1, 𝑙1, 𝑙6} and not {𝑐1, 𝑙5, 𝑙4, 𝑙3, 𝑙2}. The potential
KVL constraint would contain only three flow variables rather than five.

It is not required to add both cycles to the set of candidate cycles. If 𝑐1 gets
built, already one cycle in addition to the initial cycle basis ({𝑙1, 𝑙2, 𝑙3, 𝑙4, 𝑙5, 𝑙6})
forms a cycle basis of the new network topology.

Furthermore, it is necessary to only consider existing lines and no other candidate
lines for the shortest path search. Otherwise, a KVL constraint might be enforced
only once a combination of candidate lines is built, although building one of the
candidate lines alone would already introduce a new cycle. This is illustrated in
Example B.2 in Figure 4.4. The cycles {𝑐1, 𝑙5, 𝑐2, 𝑙4} and {𝑐2, 𝑙1, 𝑙2, 𝑙3} would incur
incorrect KVL constraints if 𝑐1 is built but not 𝑐2. On the contrary, the longer cycles
{𝑐2, 𝑙1, 𝑙2, 𝑙3} and {𝑐1, 𝑙5, 𝑙1, 𝑙2, 𝑙3, 𝑙4} obtained through the cycle search algorithm
entail a correct modified cycle basis for either combination of investments.

Candidate Cycles Across Synchronous Zones

If two synchronous zones can only be synchronised by one particular candi-
date line (e.g. only 𝑐1 in Example C in Figure 4.2), no new cycle has to be added.
Then KCL alone already determines the power flow.

A new cycle must be introduced if two candidate lines connect to the same two
synchronous zones. The cycle incidence vector is built from the two candidate
lines and the existing lines on the shortest paths of  through the synchronous
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Figure 4.5: Exam-
ple Group D. Choice
of candidate cycles
across synchronous
zones and limits of the
angle-based formula-
tion. Candidate lines
denoted by 𝑐𝑖 and ex-
isting lines denoted by
𝑙𝑖 .
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zones between the connection points, where edge weights are set to 1. In Example
C in Figure 4.2, {𝑐1, 𝑙3, 𝑐2, 𝑙7} would form the according candidate cycle. Note,
that also {𝑐1, 𝑙2, 𝑙3, 𝑐2, 𝑙6, 𝑙5, 𝑙4} would be a correct candidate cycle, but the resulting
conditional KVL constraint would be less sparse.

Additional cycles cannot only be incurred by the complementary investment of
two candidate lines, but also from multiple candidate lines connecting three or
more synchronous zones as depicted in Examples D.1 and D.2 in Figure 4.6. While
Example D.1 has just one candidate cycle ({𝑐1, 𝑙2, 𝑐2, 𝑙7, 𝑐3}), Example D.2 with two
candidate lines per pair of synchronous zones already has 11 candidate cycles to
consider (3 cycles with two edges and 8 cycles with three edges). This is due to
a growing number of interdependent combinations of investment decisions that
would each demand conditional KVL constraints. Example D.2 creates a similar
situation as in the OTS problem [134], where it becomes necessary to consider
all simple cycles of the subnetwork graph  (plus the corresponding shortest
paths within the synchronous zones) a candidate cycle. Nonetheless, the network
graph’s initial cycle basis  still remains intact.

Big-𝑀 Parameters for KVL Constraints

Having built the incidence matrix of the candidate cycles 𝐶1
𝓁𝑐 , the subsequent step

is to derive an appropriate big-𝑀 parameter 𝑀KVL
𝑐 for each candidate cycle.
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Theorem 2 The value of the disjunctive constant 𝑀KVL
𝑐 for a candidate cycle 𝑐 can

be chosen following
𝑀KVL

𝑐 ≥ ∑
𝓁∈0 ∪ 1

𝐶1
𝓁𝑐𝑥𝓁𝑃𝓁 (4.28)

Proof 2 Let 𝑐 be a candidate cycle. If not all candidate lines of the candidate cycle
are build, the corresponding cycle constraint must be inactive in all circumstances. In
the case where 𝑛 lines are not built Equation (4.27) becomes

−𝑛𝑀KVL
𝑐 ≤ ∑

𝓁∈0 ∪ 1

𝐶1
𝓁𝑐𝑥𝓁𝑝𝓁 ≤ 𝑛𝑀

KVL
𝑐 . (4.29)

Moreover, through Equation (4.1) the flow 𝑝𝓁 in lines 𝓁 ∈ 0 ∪ 1 is symmetrically
limited by their nominal capacity 𝑃𝓁 . Hence,

∑
𝓁∈0 ∪ 1

𝐶1
𝓁𝑐𝑥𝓁𝑝𝓁 ≤ ∑

𝓁∈0 ∪ 1

𝐶1
𝓁𝑐𝑥𝓁𝑃𝓁 . (4.30)

Constraint Equation (4.29) must be inactive even if an investment decision for only
one candidate line is missing to close the candidate cycle. Therefore with 𝑛 = 1 and
the upper limit given in Equation (4.30), one obtains Equation (4.28).

Since there are no voltage angle variables and therefore no slack constraints in the
cycle-based formulation, there is no need to calculate such big-𝑀 parameters. For
calculating the voltage angles as outlined in Section 4.2.3, the slack buses can be
chosen based on the resulting synchronous zones after the optimal investment deci-
sions are known. This has the advantage over the angle-based formulation that mat-
ters of synchronisation do not have to be encoded into the optimisation problem.

4.4 Simulation Setup

We benchmark the presented transmission expansion planning formulations on
multiple networks by again using the open European power transmission system
model PyPSA-Eur [13] from Section 2.3 as a basis. The evaluation criteria are
computational speed and peak memory consumption. The benchmark problems
consider simultaneous generation and transmission capacity expansion each given
a carbon budget of 40 MtCO2 , following the description of the long-term investment
planning problem outlined in Section 2.1. Considered generation technologies
include solar photovoltaics, onshore and offshore wind generators as well as open
cycle gas turbines (OCGTs) and run-of-river power plants, but no storage units
to maintain the independence of hourly snapshots and focus on transmission
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expansion as balancing option for variable renewables. The necessary regionally
resolved time series for electricity demand and renewable generator availability
are included in the dataset. For candidate lines, we assume a standard line type for
transmission lines at 380 kV with a capacity of approximately 1.7 GW [12].

To obtain a comprehensive sample of network topologies and operating con-
ditions, we vary the number of clustered nodes in Europe {1000, 750, 500, 250},
the number of selected hours from a whole year {1, 5, 25, 50, 75}, the regional
extract (see coloured areas in Figure 4.7), the tolerated MIP optimality gap
{0.5%, 1%}, and the number of candidate lines per existing HVAC and HVDC
corridor {1, 2}. In total, we evaluated 672 test problems. Synchronisation
options are not considered in the benchmarks.

All formulations have been implemented for the power system analysis toolbox
PyPSA [12]. Moreover, the optimisation problems are solved using the commercial
solver Gurobi (version 9.0), given a time limit of 6 hours each. The code to reproduce
the benchmarks is published at github.com/fneum/benchmark-teplopf.

4.5 Results and Discussion

First, Figure 4.8 provides an initial insight into the problem sizes of the benchmark
cases. The benchmark set covers a wide range of many smaller and some more
complex problems. The largest involve up to 150,000 variables and 300,000 con-
straints and are the main target of speed improvements. The number of binary
investment variables ranges from 34 to 612 candidate lines.

On average, using the cycle-based formulation reduces the total number of con-
straints to 95.3% compared to the angle-based formulation. Likewise, the av-
erage number of variables is reduced to 90.5%. As previously noted, this is
due to the absence of the auxiliary voltage angle variables and fewer KVL con-
straints in the cycle-based formulation.

A share of 92% of all cycle-based problems and 82% of all angle-based problems
were solved fastest using interior-point algorithms. Otherwise, dual simplex was
quickest. To verify the formulations’ objective values, while accounting for the
fact that the MILPs only solve up to a predefined tolerance, we assert that the upper
bound of one formulation is always larger than the other’s lower bound. Across all
instances, the total volume of transmission expansion ranges between 0% and 60%
of the existing transmission network with up to 24 TWkm of additional network
capacity. Due to the tolerances regarding the MIP gaps, both formulations can
still yield slightly different transmission expansion plans.
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(a) Europe: 1000 nodes (b) Europe: 750 nodes

(c) Europe: 500 nodes (d) Europe: 250 nodes

Figure 4.7: Clustered European transmission network models from which regional bench-
mark cases are formed. Each colour denotes a region for which an individual capacity
planning problem is built. Coloured lines represent AC transmission lines at 380 kV, gray
lines represent HVDC links.
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Figure 4.8: Histograms of the distribution of the number of variables, constraints and
binary variables across the benchmark cases for angle-based planning problem.
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Table 4.1: Numerical re-
sults of novel cycle-based
and standard angle-based
formulation. The speed-up
factor is calculated by di-
viding the solving time of
the angle-based formulation
by the solving times of the
cycle-based formulation.

both at least one > 2 min, one unsolved
≤ 2 min excluding unsolved in walltime

instances 400 186 26
share faster 63.8% 87.6% 100%

speed-up factor (angle-based / cycle-based):

– mean 1.28 3.94 3.12
– median 1.09 2.20 2.11
– maximum 9.40 31.25 14.70
– minimum 0.67 0.38 1.06

In terms of computation times, the competing formulations are contrasted in
Figure 4.9 and Table 4.1. For individual benchmark cases, the relation between
solving times is visible in Figure 4.9. If a point is located on the identity line,
both angle-based and cycle-based formulation took the same period of time
to solve. If a point lies in the upper-left triangle, the cycle-based formulation
solved faster, while a point in the lower-right triangle indicates that the angle-
based formulation was quicker. Some instances have slightly exceeded the wall
time of 6 hours due to system latency.

From Figure 4.9 it becomes clear that the cycle-based formulation has a distinct
advantage over the angle-based formulation in terms of computation times. In 60
out of the 672 instances both formulations did not satisfy the required MIP gap
within the time limit. For the remaining instances, we distinguish the cases (i)
both formulations solved in less than two minutes, (ii) at least one formulation
took more than two minutes, but neither ran into the wall time, and (iii) exactly
one formulation did not solve within the time limit. These categories are reflected
in the summary of computational performance in Table 4.1.

Instances of the most relevant group (ii), solve up to 31.25 times faster for particular
cases, while averaging at a speed-up of factor 3.94 when using the cycle-based
formulation instead of the angle-based variant. The median speed-up is 2.20.
The angle-based formulation is outperformed in most (but not all) cases. Only
in 12.4% of all cases, the angle based formulation was faster. For 26 instances,
one formulation could not satisfy optimality tolerances within the time limit of
6 hours. In all such cases, the cycle-based formulation was solved, taking on
average just 2 hours. The reduced computational advantage for small problems
can partially be explained by the overhead that originates from determining the
cycle basis and candidate cycles when building the problem.

The boxplots in Figure 4.10 afford another interesting view on the solving times.
They show the sensitivities of speed-up factors towards the spatial and tempo-
ral resolution of the network models. Besides many outliers, a trend towards a
higher acceleration with larger networks is visible. Although acceleration tends
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Figure 4.9: Solving times and memory consumption of cycle-based formulation versus
solving times of angle-based formulation.
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Figure 4.10: Sensitivities of speed-up distribution towards number of nodes and snapshots
depicted as boxplots.
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Figure 4.11: Sensitivities of speed-up factor distribution.
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to decrease with a higher temporal resolution, the cycle-based formulation still
outperforms the angle-based formulation considerably in most cases. Figure 4.11
exhibits two further sensitivities. We found that a tighter MIP optimality gap
further develops the advantage of the cycle-based formulation while considering
slightly more candidate lines for each existing corridor tends to reduce its ben-
efit. Contrary to computation times, as is shown in Figure 4.9, there is no clear
preference for either formulation in terms of peak memory consumption.

The fact that considerable speed-ups could be achieved already for problems with
few snapshots makes the cycle-based reformulation suitable for combining it
with Benders decomposition or related decomposition schemes. We did not apply
any decomposition in this chapter because Benders decomposition’s merits may
be restricted to TEP problems where there are no complicating time-dependent
constraints, e.g. from storage consistency equations or carbon budgets. Such
intertemporal coupling would prohibit other essential acceleration techniques
[133] but is pivotal to factor in the multitude of trade-offs in designing highly
integrated renewable energy systems by co-optimisation.

4.6 Conclusion

The present chapter developed a novel cycle-based reformulation for the TEP
problem with LOPF and compared it to the standard angle-based formulation.
Instead of introducing many auxiliary voltage angle variables, the cycle-based
formulation expresses Kirchhoff’s voltage law directly in terms of the power
flows, based on a cycle decomposition of the network graph. This results in
fewer variables and sparser constraints. Moreover, the angle-based formulation
has the disadvantage that it is not well-suited to considering the connection of
multiple disconnected networks. The cycle-based formulation is shown to ac-
commodate such synchronisation options conveniently. Since both formulations
use the big-𝑀 disjunctive relaxation, helpful derivations for suitable big-𝑀 val-
ues were provided to avert numerical problems.

The competing formulations were benchmarked on 672 realistic generation and
transmission expansion problems built from an open model of the European
transmission system. For computationally challenging problems, the cycle-based
formulation was shown to solve up to 31 times faster for particular cases, while
averaging at a speed-up of factor 4. Hence, the cycle-based formulation is con-
vincing not only because it can efficiently address synchronisation options, but
also for its computational performance.
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Transmission Expansion

Planning Using Heuristics

5

Contents of this chapter based on

Neumann, F. & Brown, T. Heuristics for Transmission Expansion Planning in
Low-Carbon Energy System Models in 16th International Conference on the
European Energy Market (2019), 1–8. doi:10/d295. arXiv: 1907.10548. ©2019
IEEE. Reprinted, with permission.

5.1 Introduction

In Chapter 4 we applied a big-𝑀 disjunctive relaxation to define the transmission
expansion planning (TEP) problem as a mixed-integer linear problem (MILP) and
demonstrated how one can nimbly reformulate this problem using insights from
graph theory. And yet, with an increasing size of power networks, temporal reso-
lution, and number of line expansion options, even solving this reformulation with
state-of-the-art optimisation algorithms becomes prohibitively time-consuming.

In the present chapter, we therefore develop heuristics to incorporate integer trans-
mission expansion and responsive line impedances into capacity expansion models,
while retaining the lower computational effort of continuous linear problems (LPs)
by applying sequential linear programming (SLP) techniques, relaxation, and post-
facto discretisation. An LP, that jointly optimises generation and transmission
capacities, is solved iteratively. In each iteration, the line impedances are adjusted
to continuously expanded line capacities. Subsequently, the line extensions are
fixed to their closest integral values followed by a final iteration of generation
expansion. Such heuristics are of large avail when, for example, in a model with
storage expansion the merits of frequently applied Benders decomposition cannot
be leveraged because individual snapshots can no longer be decoupled [133].

SLP for joint optimisation of transmission and generation was introduced by
Hagspiel et al. [93] but it was only tested against the exact solution for a 3-node
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showcase example and did not feature benchmarks of different variants of the
discretisation against the exact solution for realistic case studies.

In the present chapter, we remedy these gaps in the literature by evaluating the
performance of different heuristic versions of SLP for a policy-relevant case study
of the German transmission system. We compare the heuristics in terms of their
speed-up in computation time, deviation from optimal total system cost, and
similarity of line expansion. Furthermore, we show the error made by disregarding
integrality constraints and responsive line impedances.

The remainder of the chapter is organised as follows: Section 5.2 guides through the
mathematical formulation of the generation and transmission expansion planning
problem and describes its standard solving algorithms, while Section 5.3 elaborates
on heuristic algorithms for the problem at hand. In Section 5.4 we describe the
case-study, the results of which are discussed in Section 5.5. The limitations are
critically appraised in Section 5.6 before the chapter is concluded in Section 5.7.

5.2 Problem Description

Just as the previous thesis parts, the present chapter concerns a particular aspect
of the long-term investment planning problem we first introduced in Section 2.1.
One central component of the underlying linear optimal power flow (LOPF) con-
straints is Kirchhoff’s voltage law (KVL) 1

𝑝𝓁 = 𝑏𝓁𝜗𝓁 , (5.1)

which determines how power flows 𝑝𝓁 are distributed across the network’s
transmission lines given the line susceptance 𝑏𝓁 and the voltage angle dif-
ference 𝜗𝓁 between the terminal buses of 𝓁 .2

It is a common assumption in capacity expansion models (CEMs) that line suscep-
tances are invariant to line investments (𝑏𝓁 = �̃�𝓁 ) and in some models line capacity
is expanded continuously. On the other hand, in addition to acknowledging that
the susceptance changes proportional to the capacity of a line (𝑥−1𝓁 = 𝑏𝓁 ∝ 𝑃𝓁 ), TEP
studies address the limited choice of circuit types. Instead of allowing the transmis-
sion capacities to expand continuously, they consider the number of added circuits

1We illustrate the benefits of using heuristics for TEPwith the angle-based KVL formulation known
from Chapter 4. This choice is arbitrary and all considerations can straightforwardly be applied
to the alternative cycle-based KVL formulation.

2For notational brevity we will omit the time index 𝑡 in the following.
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Φ𝓁 ∈ N to be within a set of candidate circuits 𝓁 ⊂ N≥0 for every extendable line
𝓁 ∈ ext.3 Then, the line capacity 𝑃𝓁 is linked to the choice of Φ𝓁 via

𝑃𝓁 = (1 +
Φ𝓁

�̃�𝓁 )
𝑃𝓁 , (5.2)

where �̃�𝓁 ∈ N denotes the initial number of circuits and 𝑃𝓁 is the initial line capacity.
Amending Equation (5.1) with adaptive impedances and lumpy investment entails
a set of nonlinear and non-convex constraints

𝑝𝓁 =

𝑏𝓁⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

(1 +
Φ𝓁

�̃�𝓁 )
�̃�𝓁 𝜗𝓁 , (5.3)

Φ𝓁 ∈ 𝓁 ⊂ N≥0, (5.4)

where �̃�𝓁 is the initial line susceptance.

With equations Equations (5.3) to (5.4) the optimisation problem classifies as a
hard-to-solve mixed-integer nonlinear problem (MINLP) for which the present
chapter seeks to find heuristic solutions.

5.2.1 Big-𝑀 Disjunctive Relaxation

However, as discussed in Chapter 4, Equations (5.3) to (5.4) can be reformulated as
a MILP using the big-𝑀 disjunctive relaxation technique at the cost of numerous
extra variables and constraints [24]. In shoret, the big-𝑀 reformulation uses one
or multiple large constants in combination with binary variables to formulate
disjunctive linear inequalities that redefine originally nonlinear constraints.

For the given TEP problem formulation, the integer variables Φ𝓁 ∈ 𝓁 ⊂ N≥0 are
substituted with a binary variable Φ𝓁 ,𝑜 ∈ B for each possible number of addi-
tional circuits 𝑜 ∈ 𝓁 and the constraint

∑
𝑜 ∈ 𝓁

Φ𝓁 ,𝑜 = 1 (5.5)

3Note that this notation differs from the notation of Chapter 4. Here, the integer decision variable
denotes the number of new circuits of identical type to be added to an existing line, whereas the
previous chapter defined a binary decision variable for a specific line from a set of candidates.
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is added to allow only one choice per line. We suppose that for all lines no capacity
expansion is also a valid choice, i.e. ∀𝓁 ∈ ext ∶ 0 ∈ 𝓁 . The resulting disjunctive
inequalities for all line investment options 𝑜 ∈ 𝓁

𝑝𝓁 −(1 +
𝑜
�̃�𝓁 )

�̃�𝓁𝜗𝓁 ≥ −𝑀KVL
𝓁 (Φ𝓁 ,𝑜 − 1) (5.6)

≤ +𝑀KVL
𝓁 (Φ𝓁 ,𝑜 − 1) (5.7)

are in effect equivalent to the equality constraint of Equation (5.3) if the big-𝑀
parameters 𝑀KVL

𝓁 are suitably chosen. If Φ𝓁 ,𝑜 is 0, the inequalities formulated
by Equations (5.6) to (5.7) are inactive, but if Φ𝓁 ,𝑜 is 1, the right-hand side is 0
and both merge to an equality constraint.

The choice of 𝑀KVL
𝓁 , however, is non-trivial. While the values must be chosen as

large as necessary to guarantee that for a certain investment decision all other
constraints linked to a different investment decision are inactive, they should
also be as small as possible to avoid numerical instabilities. One approach for
determining minimal values for 𝑀KVL

𝓁 in the present formulation using shortest-
path optimisation was outlined in the previous Chapter 4.

Adjusting Equation (5.2) to the binary nature of the line investment vari-
ables completes the reformulation:

𝑃𝓁 = (1 +
∑𝑜 ∈ 𝓁

𝑜 ⋅ Φ𝓁 ,𝑜

�̃�𝓁 ) 𝑃𝓁 . (5.8)

While applying the big-𝑀 formulation resolves the nonlinearities of Equation (5.3),
the reformulation retains the integrality of line investment and therefore is still
hard solve in reasonable time for large problem instances. More precisely, the
reformulation considerably adds to the problem size in terms of the number of
additional variables and constraints, where the cardinality of a set is denoted by | ⋅ |:

variables: ∑
𝓁 ∈ ext

|𝓁 | − |ext| (5.9)

constraints: |ext| + | | ⋅
(

∑
𝓁 ∈ ext

|𝓁 | − |ext|)
(5.10)

In this regard, the combinatorial difficulty of TEP has led researchers to focus
only on promising line investments options. For instance, an automatic can-
didate selection scheme is discussed in [146].
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Table 5.1: Solver settings for
solving MILP in Gurobi.

Parameter Value(s)

MIPGap {0.015, 0.01, 0.005}
MIPFocus 2
Heuristics 0.5
Cuts 1
NumericFocus 3
TimeLimit 72 hours

5.2.2 Comments on Benders Decomposition

The computational challenges have led many researchers to apply decomposition
techniques such as Benders decomposition (BD) to TEP [30, 131]. It is therefore
worth briefly discussing its suitability for the problem at hand. BD divides the
optimisation problem into an investment master problem with integer variables
and an optimal power flow subproblem with exclusively continuous variables.
By iteratively adding cuts (inequality constraints) to the master problem, derived
from the duals of the subproblem given a specific set of investments, the op-
erational expenses are approximated [131].

Despite its prevalence in the literature, there are concerns about the scalability of
a straightforwardly applied BD algorithm for large-scale TEP problems that lead to
investigations on acceleration techniques [147, 148]. Ramos & Lumbreras [133]
attained a speedup by around factor two by generating cuts based on relaxations
and suboptimal solutions, removing inactive cuts, and, most significantly, by ap-
plying multicuts. The subproblem is split into individual snapshots and each of the
resulting subproblems adds its own cut to the master problem. However, the merits
of multicuts can only be leveraged if snapshots are independent of each other.

However, in the presence of storage consistency equations and renewable en-
ergy targets, there is a significant degree of intertemporal coupling. Additionally,
capacity expansion planning that coordinate between generation, transmission
and storage infrastructure investments, involve many more decision variables
and, thereby, many more trade-offs than pure TEP studies. Hence, while the value
of BD for detailed TEP studies remains unquestioned, for more general capacity
expansion planning models working with heuristics and avoiding the NP-hardness
of integer problems could prove more suitable.

In the present chapter, we therefore solve the big-𝑀 formulation without
decomposition using a tuned parameter set (Table 5.1) for the Gurobi solver.
In particular, the optimality gap (MIPGap) is a parameter which relates the
lower and upper bounds of the objective value throughout the optimisation
process and serves as termination condition.
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Table 5.2: Experi-
ment code glossary.

Code Explanation

heur Heuristic approach to solve MINLP
int Integer line investment
iter Iterating impedance updates until convergence
seqdisc Sequential discretisation of impedances
postdisc Post-facto discretisation with single threshold
postdisc-mult Post-facto discretisation with multiple thresholds

5.3 Heuristic Approaches

In this section, we present the heuristics we propose to tackle the complexity of
TEP problems, which comprise three central elements: relaxation of integer line
investment (Section 5.3.1), iterative updates of line impedances (Section 5.3.2), and
post-facto discretisation of line investment (Section 5.3.3). We label the different
heuristic approaches presented above with abbreviations listed in Table 5.2.

5.3.1 Relaxation of Line Investment Variables

To avail of the computational merits of continuous LP, the integer investment
decisions Φ𝓁 ∈ 𝓁 ⊂ N≥0 (tagged heur-int) may be relaxed to allow each line to
be expanded continuously, i.e. Φ𝓁 ∈ R[0,max{𝓁 }] (tagged heur).

5.3.2 Iterative Update of Line Impedances

To resolve the problem’s nonlinearities, we draw on the concept of SLP. In SLP,
constraints are iteratively linearised by a first-order Taylor series expansion around
an operating point (e.g. the currently optimal line capacity) [149]. This way, instead
of one complex nonlinear problem, multiple simpler LPs are solved consecutively. It
can be shown that when SLP converges, the Karush-Kuhn-Tucker (KKT) conditions,
the first-order necessary optimality conditions, are satisfied [150]. Additionally,
move limits, which constrain the variable variation between two subsequent
iterations to a linear trust region, are frequently supplemented but can be omitted
if convergence is obtained without them [150].

For the given problem, Equation (5.3) is modified to

𝑝𝓁 = 𝑏(𝑘)𝓁 𝜗𝓁 , (5.11)
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where in the first iteration the initial susceptances are used

𝑏(1)𝓁 = �̃�𝓁 , (5.12)

while for subsequent iterations 𝑘+1 the optimal line investment Φ̂(𝑘)
𝓁 of the previous

iteration 𝑘 determines the physical line characteristics

𝑏(𝑘+1)𝓁 =
(
1 +

Φ̂(𝑘)
𝓁

�̃�𝓁 )
�̃�𝓁 ∀𝑘 > 1. (5.13)

Instead of adjusting the susceptances to values corresponding to fractional line
capacities (tagged iter), another variant is to round any Φ̂(𝑘)

𝓁 ∈ R to their nearest in-
teger value, referred to as sequential impedance discretisation (tagged iter-seqdisc).

The iteration loop terminates either if a pre-defined iteration limit is reached or
if there is convergence; i.e. in two consecutive iterations there is no change in
line investment or objective value and, therefore, also 𝑏(𝑘+1)𝓁 = 𝑏(𝑘)𝓁 . While Hagspiel
et al. [93] only set a loose convergence tolerance for the objective function of
500,000 e/a was required, we tighten it to 1,000 e/a.

5.3.3 Post-facto Discretisation of Line Investment Variables

Since optimal line capacities are likely to be fractional when the continuous re-
laxation is applied, they do not represent a valid investment choice according
to the original set of options 𝓁 . Post-facto discretisation follows the iteration
loop to produce a valid set of investment decisions.

The optimal capacities of continuously expanded lines are directly rounded
to an integer value using a discretisation threshold (𝑧 = 0.3) on the fractional
investment (tagged postdisc) [151]. The discretised line capacities are then
fixed and line impedances are adapted accordingly for a final round of gen-
eration expansion only, to find the optimal mix of generator and HVDC link
capacities given the discretised line capacities.

Amore extensive post-facto discretisation procedure (tagged postdisc_mult) repeats
the steps above for multiple discretisation thresholds (𝑧 ∈ {0.1, 0.2, 0.3, 0.4, 0.5})
and chooses the configuration entailing the lowest total system costs. While
this approach bears the chance of outcomes closer to the global optimum, it will
naturally take longer to solve if thresholds are serially evaluated. However, this
step lends itself to parallelisation to reduce computation times.

The post-facto discretisation step ensures that, ultimately, a feasible solution
of the original problem (Section 5.2) is obtained.
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5.4 Case Study of German Transmission System

The presented transmission expansion heuristics are evaluated on simplified mod-
els of the German transmission system. We choose Germany as our case study be-
cause it exhibits a distinct spatial mismatch of abundantwind resources in theNorth
and high loads in the South, suggesting high future strains on the transmission net-
work. Already in 2017, grid congestion causes curtailment of 5.52 TWh correspond-
ing to 2.9% of renewable energy produced, and has been growing rapidly [152].

5.4.1 Model Inputs

Like in the previous chapter, weobtain the case study from the PyPSA-Eur model
[13] of the European ENTSO-E transmission system we introduced in Section 2.3
and outline complementary considerations below. We allow simultaneous capacity
expansion of transmission lines, HVDC links, and various types of generators:
photovoltaic, onshore wind, and offshore wind generators with AC and DC grid
connections, as well as open- and combined-cycle gas turbines. Existing run-
of-river and biomass capacities are not extendable.

All transmission lines are assumed to be of the same type ‘Al/St 240/40 4-bundle
380.0’ with an Aluminium/Steel cross-section of 240/40 and a 4-bundle of wires
per phase at 380 kV and allow for two additional parallel circuits fitted to the
existing towers [153]. To avoid issues with social acceptance, a limit on the
total additional volume of transmission capacities of 25% measured in TWkm is
imposed. The corridors for HVDC links from the 2018 TYNDP may be expanded
continuously with a capacity restriction of 8 GW each.

We neglect storage options (e.g. pumped-hydro, hydro dams, batteries, and power-
to-hydrogen) to further simplify the case study and direct the focus to transmission
expansion. Since balancing renewables in time through storage is an imperfect sub-
stitute for balancing renewables in space through transmission networks, ignoring
storage options rather overestimates the cost-optimal grid reinforcements. A target
share of renewable electricity of 70% is chosen since it is high enough to require
transmission expansion and low enough to be viable without storage options.

To assess the scaling of the heuristic algorithms both in terms of spatial and tempo-
ral resolution, models with different levels of regional and time series aggregation
are analyzed. The German power network is reduced to 𝑛 ∈ {20, 40, 60, 80, 100}
nodes using the network clustering functionality of the power system analy-
sis toolbox PyPSA [12], while the number of hourly snapshots is reduced to 𝑡 ∈
{100, 200, 300, 400} using the time series aggregation module tsam [26]. The cluster
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weights represent the snapshot weightings and add up to 8760 hours to match
the annuities of capital expenditures. Both reduced network size and temporal
resolution are necessary limitations in accuracy to be able to solve the exact TEP
formulations of Section 5.2 for up to 200 snapshots against which the heuristics of
Section 5.3 are evaluated and may not accurately represent the necessary range
of operating conditions to make qualified investment decisions.

5.4.2 Simulation Setup

The simulation setup comprises solving the case study with the ensemble of
network sizes and snapshots outlined in Section 5.4.1 for the exact benchmark for-
mulation that uses the big-𝑀 formulation described in Section 5.2 and the different
variants of the proposed heuristic transmission expansion planning approaches
named by combinations of the codes listed in Table 5.2 and described in Section 5.3.
Note, that the approaches heur and heur-iter do not involve any discretisation and
the former neither considers changing impedances. Therefore, they do not provide
feasible solutions, but represent current practices in some CEMs. The solution to the
big-𝑀 formulation comprises the lower and upper bounds that could be obtained
for the lowest of the optimality gap tolerances of Table 5.1 within a walltime of 72
hours. It is further worth noting that the upper bound of the big-𝑀 formulation is
the first feasible solution the solver could find that satisfies this tolerance.

5.5 Results and Discussion

We assess the heuristics in terms of (i) their deviation from optimal total annual
system costs, (ii) the solving time, and (iii) the similarity of line expansion in
relation to the solutions of the exact big-𝑀 reformulation. Figure 5.1 depicts
these evaluation criteria for the network sizes outlined in Section 5.4.1 with 200
snapshots. The coloured markers represent feasible solutions to the exact MINLP,
whereas blackmarkers depict solutions of continuous relaxations of line investment
and are generally not feasible MINLP solutions. The shaded area between the two
vertical lines represents the range within which the optimal solution of the big-𝑀
formulation is contained, given the attained optimality gaps.

In terms of total system costs, all heuristics across all tested models are contained
within a 1.5% relative cost increase compared to the lower bound of the big-𝑀
formulation obtained with the specified optimality gap tolerances. Since the op-
timal solution must be within the lower and upper bounds, the heuristics are
therefore at most 1.5% more expensive than the optimal solution. Depending on
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Figure 5.1: Comparison of (i) relative total system cost deviation from the lower objective
bound of the big-𝑀 formulation, (ii) solving times, and (iii) relative volume of added
transmission lines over the volume of original transmission lines (TWkm) across all
presented heuristic approaches (as labelled in Table 5.2) and the upper objective bound of
the big-𝑀 formulation (a feasible solution).

Table 5.3: Average
number of itera-
tions for heuristic
approaches.

Algorithm Average number of iterations

heur-int-iter 5.1
heur-iter-postdisc 10.0
heur-iter-postdisc-mult 10.0
heur-iter-seqdisc-postdisc(-mult) 4.4

the model, the spread among the heuristics lies between 0.1% and 0.5%. Another
consistent observation is that the heuristics are close to the upper bound of the
big-𝑀 formulation. In abolute numbers, total system costs roughly add up to
around 32 billion e/a, of which around 2.5 billion e/a are attributed to trans-
mission infrastructure. Thus, a relative cost deviation of around 1% corresponds
to an abolute deviation of about 320 million e/a.

In terms of solving time, not iterating to update line impedances (heur) is naturally
a fast but not MINLP-feasible approach. On the other hand, finding a solution to
the big-𝑀 formulation consumes the most time. On average, the slowest heuristic
is already faster by a factor of 2.2, but the approach heur-iter-seqdisc-postdisc
is invariably the fastest among the MINLP-feasible heuristics with an average
speed-up by factor 5.4. This is due to the sequential impedance discretisation
(iter-seqdisc) which causes the iteration process to converge on average already
after 4.4 iterations, while heuristics without sequential impedance discretisation
consistently required at least the maximum number of 10 iterations (Table 5.3).
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Figure 5.2: Map with transmission line expansion, HVDC link expansion and regional
energy production for a model with 80 nodes and 200 snapshots obtained from (a) the
exact big-𝑀 formulation with a 1% optimality gap, (b) an iterative heuristic approach with
sequential impedance discretisation and post-facto line capacity discretisation, and (c) an
iterative heuristic approach with continuous line expansion.

A wide spread among the approaches can be observed in terms of the total
volume of transmission expansion, which we measure with a product of line
capacity (MW) and length (km) and relate it to the original transmission net-
work. The differences range between 5% and 7%. While heur-int-iter leads to
the most line expansion for all models, it does not incur the highest total sys-
tem costs. Approaches without discretisation (heur and heur-iter) can tailor line
expansion more accurately to needs and, thus, entail less transmission expan-
sion, but do not produce MINLP-feasible solutions.

Figure 5.2 offers a more visual approach to comparing the difference in trans-
mission network expansion and power generation between the solutions of the
big-𝑀 formulation, an iterative heuristic approach with sequential impedance
discretisation and post-facto line capacity discretisation, and an iterative heuris-
tic approach with continuous line expansion.

Across the three approaches, electricity production from renewables differs only
marginally. Likewise, although the capacities and production from OCGT and CCGT
power plants may interchange between neighbouring nodes, total volumes of
gas-fired power plant capacities and production are very similar (Table 5.4). Thus,
the regional generation mix is mostly insensitive to the applied heuristic.

Differences are more prevalent when looking at the expansion of HVDC links and
HVAC transmission lines. While the common theme is a focus of line expansion
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Table 5.4: Capacities and
production of gas-fired pow-
erplants for model and ap-
proaches of Figure 5.2.

(i) big-𝑀 (ii) integer (iii) continuous

GW CCGT 21.6 22.2 21.4
OCGT 32.6 32.9 32.7

TWh CCGT 96.9 96.1 96.8
OCGT 42.1 42.9 42.2

(a) total system cost
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(b) solving time
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Figure 5.3: Comparison among heuristics in terms of relative total system cost and solving
times. For each model, the objective values are related to the one heuristic approach
with the lowest objective value or solving time respectively. The distribution of relative
deviations from the best heuristic is depicted here.

in Northern Germany, the heuristics lead to an expansion of individual lines in
Rhineland-Palatinate, Hesse and Saxony-Anhalt rather than building 2.5 GW on
the route of the SuedOstLink (connecting the North-East of Germany with the
South-East), which is the preferred choice of the big-𝑀 formulation. Both, big-𝑀
formulation and heuristics agree in utilising 8 GW HVDC links on the routes of
SuedLink and A-North (connecting the North-South axis in the West of Germany).

Since the big-𝑀 formulation was only solved for up to 200 snapshots, Figure 5.3a
and Figure 5.3b extend the comparison between heuristics to up to 400 snapshots
and address the quality of approaches as well as their solving times. On average all
heuristics perform similarly well and, neglecting rare outliers, differ only within
a range of 0.3% in objective value. A glance at the solving times reiterates that
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Figure 5.4: Scaling of solving time of heuristic approaches with with the number of nodes
for models with 100, 200, and 300 snapshots and the number of snapshots for models with
20, 60, 100 nodes on a logarithmic scale.

sequential discretisation is an effective way of reducing the required number
of iterations without a loss in solution quality. In contrast, evaluating multiple
discretisation thresholds consumes additional time which does not benefit solution
quality by much. Although the integer heuristic heur-int-iter produces good
quality results in comparably little time, it is unlikely to scale well for much larger
problems due to its integer, non-convex nature. Moreover, it is very sensitive
to the choice of the optimality gap tolerance, which in this case was set to 0.5%.
Additionally, solving times of integer problems can be very volatile. Such variance
stems from randomness in the heuristics of most solvers (e.g. Gurobi). Instead,
the heuristic heur-iter-seqdisc-postdisc seems to offer a sensible and well-scaling
trade-off between solving time and finding low-cost solutions.
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Figure 5.5: Progression of optimality gaps among all model optimisation runs which use
the big-𝑀 reformulation. Lines start when the first feasible solution is found and end when
either the optimality gap tolerance is satisfied or the walltime of the solver is reached.

To further investigate scaling, Figure 5.4a and Figure 5.4b depict how much longer
the heuristic approaches take when the number of nodes or the number of snap-
shots is increased from two different perspectives. Both graphs show, that the
sensitivity of solving times to model size is large and exponential, and that the
heuristics seem to deal better with an increasing number of operating scenar-
ios than with an increasing network size.

As previously noted, when solving the big-𝑀 formulation MILP, the upper bound
is the best currently found feasible integer solution. Figure 5.5 shows, that a
feasible solution which lies within a 1.5% tolerance band can be found relatively
quickly, but the progression from there becomes rapidly slower and may ultimately
be terminated by the specified walltime. In consequence, the benefit of large
runtimes is questionable. However, it is unclear whether feasible solutions with
similarly low initial optimality gaps can also be found for a full European model
and hourly time resolution for a full year. We could however observe, that the
extent of allowed line expansion significantly influences solving time for the
big-𝑀 formulation, and that the more ambitious the renewable target is chosen,
the longer it takes to obtain an optimal solution.

5.6 Critical Appraisal

In the present chapter, the proximity of the objective functions for the heuristics
are evaluated on relatively small networks and few snapshots, which in gen-
eral would not provide a sufficient basis for reliable investment decisions. But,
it allows a reasonable performance comparison of the heuristic approaches to
exact formulations. Moreover, we disregarded storage options to avoid strong
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temporal-coupling and furthermore ignored the currently existing fleet of fossil-
fueled power plants, but limited those to gas-fired options. Neither do we consider
sector-coupling, nor the transmission losses, unit commitment, or the provision
of ancillary services. The case study also exclusively covers Germany, while
questions of transmission expansion are in reality closely intertwined with con-
siderations of other European countries.

Besides remedying these issues, another arising area of research regards the flat-
ness of the solution space. The fact that the different heuristics provide solu-
tions very close to the global optimum but differ in their individual investment
decisions, indicates that many near-optimal solutions may exist which may be
less susceptible to public or regulatory opposition. This constitutes the main
research question of the following Part II.

5.7 Conclusion

But first, a brief summary of the present chapter. Assuming a linear approximation
of the power flow equations, we compared several heuristics for approximating
the exact solution of joint transmission and generation expansion planning.

Particularly in light of the complexity already a limited choice of reinforcements
entails, we conclude for models with high temporal and spatial resolution that
using a continuous relaxation of line investment together with subsequent post-
facto discretisation and applying sequential discretisation of line impedances
to accelerate convergence is beneficial. This particular heuristic could reduce
computation times of the joint optimisation by 82% with a maximal total system
cost deviation of 1.5% for the models considered here.

Altogether, it was shown that the presented heuristics closely mirror optimal
integer line investment of the more rigorous MINLP with considerable savings in
solving time for policy-relevant low-carbon energy system optimisation models.
With larger models that include storage and sector coupling it can be expected that
only the heuristic methods will solve within reasonable time, and this contribution
provides a reference to justify the application of such.
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Summary Part I

In Chapter 3, we demonstrated that, although the commonly used transport model
can already identify key features of a cost-efficient renewable European elec-
tricity system while being computationally performant, deficiencies under high
loading conditions arise due to the lack of a physical grid representation. More-
over, we showed that the disregard of transmission losses involves the danger
of overestimating cost-optimal grid expansion by up to 20%.

Furthermore, we illustrated in the same Chapter 3 that adding a convex relaxation
of quadratic losses with no more than three tangents to the linearised power flow
formulation while simultaneously accounting for changing line impedances as the
network is reinforced suffices to represent power flows and losses adequately in
design studies. We showed that the obtained investment and dispatch decisions
are then sufficiently physical to be used in more detailed nonlinear simulations
of AC power flow for evaluating their specific technical feasibility.

In the context of discrete transmission expansion planning (TEP), we showed
in Chapter 4 that a cycle-based reformulation could conveniently accommodate
synchronisation options. Since both presented TEP formulations apply a big-𝑀
disjunctive relaxation, we moreover provided practical derivations for suitable
big-𝑀 values to stabilise the numerics. Both competing formulations were also
benchmarked on realistic generation and transmission expansion models derived
from the European transmission system clustered to varying spatial and tempo-
ral resolutions, revealing that the proposed equivalent cycle-based formulation
solved up to 31 times faster for particular cases than the typical angle-based
formulation, while averaging at a speed-up of factor 4.

Finally, Chapter 5 conveyed how using LP-based heuristics can reduce the com-
putation times of joint generation and transmission capacity expansion by more
than 80% while deviating at most by 1.5% from the original MILP formulation in
terms of system costs. While the speed-up appears to be in the same order of
magnitude as the cycle-based formulation of the MILP, aspiring to amplify model
resolution and scope beyond the more constrained benchmark cases strongly
shifts the preference towards the heuristic approaches because, with these, we
can leverage weakly polynomial time algorithms. Overall, we found that the
heuristics already closely mirror optimal integer line investment while exhibiting
considerable time savings for studying policy-relevant scenarios of electricity
systems with high shares of renewables.

Recomposed from abstracts of papers forming this part’s chapters [1, 2, 5].
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Frequently, energy system models studying the integration of renewables present
just a single least-cost solution for a single set of cost assumptions. This constitutes
a major weakness not only because it neglects uncertainties inherent to technology
cost projections which capacity expansion models (CEMs) are susceptible to [154–
156], but also because it hides a wide array of alternative solutions that are equally
feasible and only marginally more expensive [3, 31, 157].

However, such trade-offs revealed by deviating from least-cost solutions would
be extremely attractive for policymakers because they allow them to accommo-
date political and social dimensions that are otherwise hard to quantify without
affecting the overall cost-effectiveness of the system [158]. This is particularly rel-
evant considering rising public opposition towards the reinforcement of overhead
transmission lines and the installation of onshore wind turbines in Europe.

Therefore, Chapter 6 systematically explores a selection of technology-oriented
flat directions near the cost-optimum using a variant of modelling-to-generate-
alternatives (MGA). The insights of this study are further strengthened in Chapter 7
by additionally taking account of uncertain technology cost projections. This anal-
ysis of near-optimal solutions for various cost scenarios is enabled by multi-fidelity
surrogate modelling techniques with sparse polynomial chaos expansions (PCEs),
low-discrepancy sampling, and heavy parallelisation on high-performance clusters.

Moreover, the spatial distribution of infrastructure plays a key role in shaping
the levels of social acceptance, and concepts for nationally self-sufficient or even
regionally autarkic distributed systems are recurrently debated. On the contrary,
we observe that optimising for the least-cost renewable European electricity system
leads to a very heterogeneous regional distribution of capacities. Chapter 8 is about
investigating the cost sensitivity towards distributing capacities more evenly.

Recomposed from abstracts and introductions of papers forming this part’s chapters [3, 4, 6].
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Near-Optimal Solutions

6

Contents of this chapter based on

Neumann, F. & Brown, T. The Near-Optimal Feasible Space of a Renew-
able Power System Model. Electric Power Systems Research 190, 106690.
doi:10/ghcpr2. arXiv: 1910.01891 (2021). Presented at 21st Power Systems
Computation Conference 2020 (PSCC). cb

6.1 Introduction

When planning cost-efficient future energy systems, providing just a singular opti-
mal solution underplays an immense degree of freedom. It may well be that feasible
but sub-optimal solutions are preferable for reasons not captured bymodel formula-
tions [159], for instance because they rely less on building new overhead transmis-
sion lines or onshore wind turbines; two factors known to cause public opposition.
Bypassing such issues to enable a swift decarbonisation of the energy system may
justify a limited cost increase. Hence, presenting multiple alternative solutions and
pointing out features that persist across many near-optimal solutions can remedy
the lack of certainty in energy systemmodels [55, 61]. Communicating these model
results as a set of alternatives helps to identify must-haves (investment decisions
common to all near-optimal solutions) and must-avoids (investment decisions not
part of any near-optimal solution) [160]. In consequence, the resulting boundary
conditions can then inform political debate and support consensus building.

A common technique for determining multiple near-optimal solutions is called
modelling-to-generate-alternatives (MGA) which uses the optimal solution as an
anchor point to explore the surrounding decision space for maximally different so-
lutions [159]. Other methods, such as scenario analysis, global sensitivity analysis,
Monte Carlo analysis and stochastic programing, that likewise address uncertainty
in energy system modelling, concern parametric uncertainty, i.e. how investment
choices change as cost assumptions are varied [61, 155, 161, 162]. Conversely,
MGA explores investment flexibility for a single set of input parameters, by which
it accounts for structural uncertainty. This can be simplifications of the model
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equations, like linearising power flow and considering continuous transmission
line expansion we previously examined in chapters Chapter 3 and Chapter 5, or
degrees of freedom near the cost-optimum. In consequence, MGA is a comple-
ment rather than a substitute for methods sweeping across the parameter space,
and we will engage in this aspect later in Chapter 7.

Evidence from previous work suggests many technologically diverse solutions
exist that result in similar total system costs for a sustainable European power
system [37, 170]. These two studies research the sensitivity of cost input param-
eters or the relevance of transmission network expansion for low-cost power
system layouts considering 30 regions.

Previous studies that applied MGA to long-term energy system planning problems
or retrospective analyses are reviewed in Table 6.1. The investigation presented in
this chapter is the first to apply a variant ofMGA to a European pan-continental elec-
tricity system model which includes an adequate number of regions and operating
conditions to reflect the complex spatio-temporal patterns shaping cost-efficient in-
vestment strategies in a fully renewable system. Furthermore, the co-optimisation
of generation, storage and transmission infrastructure subject to linear optimal
power flow (LOPF) constraints is unique for MGA applications.

The goal of this chapter is to systematically explore the wide array of similarly
costly but diverse technology mixes for the European power system, and derive
a set of rules that must be satisfied to keep costs within pre-defined ranges. Ad-
ditionally, we investigate how the extent of investment flexibility changes as we
apply more ambitious greenhouse gas (GHG) emission reduction targets up to a
complete decarbonisation and allow varying levels of relative cost increases.

The remainder of the chapter is structured as follows: Section 6.2 guides through
the problem formulation, the employed variant of MGA, sources of model in-
put data, and the simulation setup. The results are presented and discussed
from different perspectives in Section 6.3 and critically appraised in Section 6.4.
The chapter is concluded in Section 6.5.

6.2 Methods

6.2.1 Modelling-to-Generate-Alternatives (MGA)

Solving the long-term power system planning problem from Section 2.1 provides
the anchor around which near-optimal alternatives are traversed. The optimi-
sation seeks to minimise the total annual system costs comprising generation,
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Table 6.1: Literature review of studies applying MGA to energy system models.*
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* New works by Pedersen et al. [169], Sasse & Trutnevyte [31], Lombardi et al. [157] were amended
retroactively.
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Figure 6.1: Il-
lustration of the
near-optimal fea-
sible space and
the applied MGA
method for a two-
dimensional prob-
lem for the search-
directions relating
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transmission and storage infrastructure in a fully renewable system subject to
multi-period LOPF constraints, resulting in a linear problem (LP).

As illustrated in Figure 6.1, following a run of the original model, the objec-
tive function 𝑓 (𝐺,𝐻 , 𝐹 , 𝑔) is encoded as a constraint such that the original
feasible space is limited by the optimal objective value 𝑓 (𝐺∗, 𝐻 ∗, 𝐹 ∗, 𝑔∗) plus
some acceptable relative cost increase 𝜖,

𝑓 (𝐺,𝐻 , 𝐹 , 𝑔) ≤ (1 + 𝜖) ⋅ 𝑓 (𝐺∗, 𝐻 ∗, 𝐹 ∗, 𝑔∗). (6.1)

Other than preceding studies, the present chapter pursues a more structured
approach to MGA to span the near-optimal feasible space, which resembles the 𝜖-
constraint method from multi-objective optimisation (MOO). The search directions
are not determined by the hop-skip-jump (HSJ) algorithm that seeks to minimise
the weighted sum of variables of previous solutions [155], but by pre-defined
groups of investment variables. Consequently, the new objective function becomes
to variously minimise and maximise sums of subsets of generation, storage and
transmission capacity expansion variables given the 𝜖-cost constraint. The groups
can be formed by region and by technology. Examples for thought-provoking
search directions are to minimise the sum of onshore wind capacity in Germany
or the total volume of transmission expansion (see Section 6.2.3).

This process yields boundaries within which all near-optimal solutions are con-
tained and can be interpreted as a set of rules that must be followed to become
nearly cost-optimal. In fact, by arguments of convexity, it can be shown that
near-optimal solutions exist for all values of a group’s total capacity between their
corresponding minima and maxima. The original problem is convex as it classifies
as a linear program. Neither adding the linear 𝜖-cost constraint nor introducing
an auxiliary variable 𝑧 that represents the sum of the group of variables alter this
characteristic. Hence, for any total 𝑧 ∈ [𝑧min, 𝑧max] a near-optimal solution exists,
however not for any combination of its composites leading to this total.
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6.2.2 Model Inputs

As has frequently been the case in previous parts of the thesis, the exploration of
the near-optimal feasible space is executed for the open model dataset PyPSA-Eur
[13] of the European power system which was introduced in Section 2.3. Here,
we consider a spatial resolution of 100 nodes and a temporal resolution of 4380
snapshots (two-hourly for a full year) [13]. The chosen levels of geographical
and temporal aggregation reflect, at the upper end, the computational limits to
calculate a large ensemble of near-optimal solutions and, at the lower end, the
minimal requirements to expose transmission bottlenecks and account for spatially
and temporally varying renewable potentials with passable detail [28, 29, 171].

Following a greenfield approach (with the exception of the transmission grid
and hydro-electric installations), we allow simultaneous capacity expansion of
transmission lines, HVDC links and multiple kinds of storage units and genera-
tors: solar photovoltaics, onshore wind turbines, offshore wind turbines with
AC or DC grid connections, battery storage, hydrogen storage and, ultimately,
open- and combined cycle gas turbines (OCGT/CCGT) as sole fossil-fueled plants.
As in previous chapters, run-of-river and pumped-hydro capacities are not ex-
tendable due to assumed geographical constraints.

The corridors for new HVDC links from the 2018 TYNDP are limited to 30 GW [85].
Individual AC transmission line capacities may be expanded continuously up to
four times their current capacity, but not reduced. Given the densely meshed and
spatially aggregated transmission system, we do not add new expansion corridors
but constrain options to reinforcement via parallel AC lines. The dependence of
line capacity expansion on line impedance is addressed by the sequential linear
programming (SLP) approach presented in Chapter 5 [2].

6.2.3 Simulation Setup

The near-optimal analysis is run within a parallelised workflow for different
deviations 𝜖 ∈ {0.5%, 1%, 2%, 3%, 4%, 5%, 7.5%, 10%} from the cost-optimal solution
and for system-wide greenhouse-gas emission reduction targets of 80%, 95% and
100% compared to emission levels in 1990. This allows to follow the propagation
of investment flexibility for increasing optimality tolerances and more ambitious
climate protection plans. The alternative objectives are to variously minimise and
maximise the generation capacity of all (i) wind turbines, (ii) onshore wind turbines,
(iii) offshore wind turbines, (iv) solar panels, and (v) natural gas turbines. Moreover,
we search for the minimal and maximal deployment of (vi) hydrogen storage, (vii)
battery storage, and (viii) power transmission infrastructure. This setup yields
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(a) optimal network expansion: 𝜖 = 0% / GHG -100%
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Figure 6.2: Maps of transmission line expansion and regional generator and storage
capacities for a 100% renewable power system for the optimal solution and minimal
transmission volume within a 10% cost increase.
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Table 6.2: Statistics on
optimal solutions for
different GHG emission
reduction levels.

GHG Emissions -100% -95% -80%

Generation [TWh]
– Onshore Wind 750 (24%) 421 (14%) 423 (15%)
– Offshore Wind (AC) 886 (28%) 568 (19%) 297 (10%)
– Offshore Wind (DC) 873 (27%) 1032 (34%) 769 (27%)
– Solar 502 (16%) 605 (20%) 381 (13%)
– Run of River 150 (5%) 153 (6%) 154 (5%)
– CCGT (gas) 0 (0%) 171 (6%) 761 (26%)
– OCGT (gas) 0 (0%) 41 (1%) 105 (4%)
Transmission [TWkm] 504 (+71%) 458 (+55%) 368 (+25%)
Load [TWh] 3,138 3,138 3,138
Total Cost [bn e/a] 246 207 165
Total Cost [e/MWh] 78.4 66.1 52.6

384 near-optimal solutions. The solutions delineate so-called Pareto frontiers
where no criterion, neither reducing system cost nor extremising the capacity of
a technology, can be improved without depressing the other. On average, each
problem required 6.5 hours and 31 GB of memory to solve with the Gurobi solver.

For slacks 𝜖 ∈ {1%, 5%, 10%} and a 95% emission reduction target a 3-hourly
resolved model is run for country-wise minima and maxima of the investment
groups above, resulting in additional 1584 near-optimal solutions. On average,
each problem required 3.5 hours and 22 GB of memory to solve. The code used
for the experiments is available at github.com/pypsa/pypsa-eur-mga.

6.3 Results and Discussion

6.3.1 Cost-Optimal Solutions

Before delving into near-optimal solutions, we first outline the characteristics of
the optimal solutions for different emission reduction levels (see Table 6.2). A
system optimised for a 100% emission reduction is strongly dominated by wind
energy. More than half of the electricity is supplied by offshore wind installa-
tions. Onshore wind turbines provide another quarter. In contrast, photovoltaics
account for only 16% of electricity generation. Strikingly, a system targeting a
95% reduction in greenhouse gases uses significantly less onshore wind genera-
tors but more solar energy in comparison to a completely decarbonised system,
while keeping the share of offshore wind generation constant. Thus, for the last
mile from 95% to 100% more onshore wind generation is preferred to phase out
the last remaining natural-gas-fired power plants. The total system costs scale
nonlinearly with more tight emission caps. Achieving an emission reduction
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of 95% is roughly a quarter more expensive than a reduction by 80%, while a
zero-emission system is almost 50% more expensive.

Also, the map in Figure 6.2a shows the optimal regional distribution of the capaci-
ties of power system components for a fully renewable European power system.
Generation hubs tend to form along the coasts of North, Baltic and Mediter-
ranean Sea, whereas inland regions produce little electricity. Expectedly, solar
energy is the dominant carrier in the South, while wind energy prevails close
to the coasts of the North Sea and the Baltic Sea. Most grid expansion can be
found in Germany, France and the United Kingdom and individual HVDC links
are built with capacities of up to 30 GW. The routes and capacities of HVDC links
are well correlated with the placement of wind farms.

6.3.2 Nearly Cost-Optimal Solutions

In this section we extremise different groups of investments in generation, storage
and transmission infrastructure. As an example, Figure 6.2b depicts a system that
seeks to deviate from the optimum by minimising the volume of transmission
network expansion up to a total cost increase of 10%, for instance as a conces-
sion to better social acceptance. With the results particularly the NordSued link
connecting Northern and Southern Germany manifests as a no-regret investment
decision up to a capacity of 15 GW in the context of full decarbonisation. It is
one of the few persistent expansion routes. All other transmission expansion
corridors are to a significant extent not compulsory. Missing transmission ca-
pacities can be compensated by adding storage capacity and more regionally
dispersed power generation. Nevertheless, some transmission network reinforce-
ment is indispensable to remain within the given cost bounds. These results
are also broadly aligned with findings in [28, 37].

Beyond this example, the results offer insights about the structure of the near-
optimal space. The intent is to portray a set of technology-specific rules that must
be satisfied to keep costs within pre-defined ranges 𝜖. Note, that the discontinuity
created by 𝜖 restricts the accuracy of the solution space.

Figure 6.3 reveals that wind generation, either onshore or offshore, is essential
to set up a cost-efficient European power system for all three evaluated emission
reduction levels. Whilst already a small cost increase of 0.5% yields investment
flexibilities in the range of ±100 GW, even a 10% more costly solution would still
requiremore than 500 GWofwind generation capacity for a fully renewable system:
two-thirds of the optimal system layout. However, even for a zero-emission system
a cost increase of just 4% enables abstaining from onshore wind power, and a 7.5%
more expensive alternative can function without offshore wind farms.
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Figure 6.3: Solution space of renewable generation infrastructure by technology for
different levels of slack 𝜖 and emission reduction targets.
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The investment flexibility develops nonlinearly with increasing slack levels 𝜖. Even
a minor deviation from the cost optimum by 0.5% creates room for maneuver in
the range of ±200 GW for onshore and ±150 GW offshore wind installations, which
indicates a weak trade-off between onshore and offshore wind capacities very close
to the optimum. Nonetheless, dispensing with both is not viable. Furthermore,
10% of total system costs must be spent to rule out solar panels, but already a
slack of 1% allows to reduce the solar capacity by a third.

Price & Keppo [163] observed in their model that investment flexibility in genera-
tion infrastructure decreased as more tight caps on carbon-dioxide emissions were
imposed. While it is true that more ambitions climate protection plans incur more
must-haves (i.e. minimum requirements of capacity), for the case-study at hand the
viable ranges of marginally inferior solutions increase as more total capacity is built.

As Figure 6.4 exhibits, even for a complete decarbonisation of the European power
system building battery storage is not essential, although they are deployed in
response to e.g. minimising network reinforcement. Conversely, once weather-
independent dispatch flexibility from natural-gas-fired power plants is unavailable,
it becomes imperative to counter-balance with hydrogen storage. The cutback
of hydrogen infrastructure under these circumstances goes along with building
excess generation capacities and multiplied amounts of curtailment.

The reinforcement of the transmission network becomes more pivotal the more
the power system is based on renewables. Aiming for an emission reduction
by 80% a 2% more expensive variant can get by without any grid reinforcement.
Reducing emissions by 100% still requires some additional power transmission
capacity at a 10% cost deviation. However, within this range, the transmission vol-
ume can deviate from almost double of today’s network capacities to merely
a marginal reinforcement (see Figure 6.2).

6.3.3 Correlations and Interactions

So far, the study of the near-optimal feasible space did not capture the interde-
pendence between different system components apart from the envelopes the
analysis provided for each technology. Shifting to the extremes of one technology
will diminish the investment flexibility of other carriers. Figure 6.5 demonstrates
how diversity in capacity mixes rises if more leeway is given in terms of system
costs. The striking variety in capacity totals is largely attributable to the lower
capacity factors of solar compared to wind energy.

Hennen et al. [160] suggested to present the intertwining of technologies through
Pearson’s correlation coefficient across all near-optimal solutions. Figure 6.6 con-
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Figure 6.4: Solution space of storage, transmission and backup infrastructure by technol-
ogy for different levels of slack 𝜖 and emission reduction targets.
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Figure 6.5: Com-
position of gener-
ation and storage
capacities for var-
ious near-optimal
solutions with 100%
renewables. Each sub-
plot corresponds to a
slack level 𝜖 and an
optimisation sense.
The labels of the bar
charts indicate which
group of investment
variables is included
in the objective.
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Figure 6.7: Near-optimal feasible space for specific regions of the European transmission
system. It shows the three pairs of regions and technologies which have a minimum
requirement beyond 1% of the cost-optimum. While the coloured areas depict the near-
optimal space of the marked region, the grey shaded area portrays the system-wide
near-optimal space.

firms many of the previously noted connections. Hydrogen storage substitutes
natural gas turbines and is positively correlated with onshore and offshore wind
capacity, while battery deployment rather matches with solar installations. Like-
wise, transmission expansion occurs in unison with onshore and offshore wind
deployment. Thereby, hydrogen storage and transmission become complements
for high renewable energy scenarios. With caution should be noted that CCGT
and OCGT as well as AC-connected and DC-connected offshore wind installations
have high correlations because they are grouped in the MGA iterations.

6.3.4 Regional Must-Have Technologies

We also applied a near-optimal space analysis from a country-level perspective.
Remarkably, we found that any one country could completely forego any one
generation or storage technology and remain within 5% of the cost optimum when
targeting a 95% reduction in greenhouse gas emissions. In this case, neighbouring
countries must offset the absence of this technology.

Therefore, we aggregated the regional view even further in Figure 6.7, where
we consider three regions for a fully renewable European system, to investigate
whether there are any substantial constraints on the regional allocation of capaci-
ties. We find that even in this setting, only three pairs of regions and technologies
featured must-haves, two of which regard offshore wind in Western and East-
ern Europe. As one would intuitively expect, it moreover appears essential to
build most solar capacities in Southern Europe.
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6.4 Critical Appraisal

The present chapter covers the electricity sector only. Brown et al. [25] suggested
that with an increasing coupling of energy sectors the benefit of the transmission
system decreases. It is not far-fetched, that the near-optimal feasible space, in
general, might look very different with a tightened sectoral integration. Within
the computational constraints, it is moreover desirable to further enhance the
spatial and temporal resolution to better reflect curtailment caused by transmission
bottlenecks and factor in extreme weather events by taking account of multiple
weather years [28, 29]. The present chapter further neglects parametric uncertainty,
which we will address in the following Chapter 7.

6.5 Conclusion

The present chapter shed light on the flatness of the near-optimal feasi-
ble decision space of a power system model with European scope for am-
bitious climate protection targets.

An understanding of alternatives beyond the least-cost solutions is indispensable
to develop discussible policy guidelines. Therefore, we derived a set of technology-
specific boundary conditions that must be satisfied to keep costs within pre-defined
ranges using the MGA methodology. These rules permit well-informed discussions
around social constraints to the exploitation of renewable resources or the extent
to which the power transmission network can be reinforced in discussions.

Indeed, we observed high variance in the deployment of individual system com-
ponents, even for a fully renewable system. Already a minor cost deviation of
0.5% offers a multitude of technologically diverse alternatives. It appears to be
possible to dispense with onshore wind for a cost increase of 4%, and to forego
solar for 10%. Nevertheless, either offshore or onshore wind energy plus at
least some hydrogen storage and grid reinforcement seem to be essential to
keep costs within 10% of the optimum.
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Robust Near-Optimal

Solutions

7

Contents of this chapter based on

Neumann, F. & Brown, T. Broad Ranges of Investment Configurations for
Renewable Power Systems, Robust to Cost Uncertainty and Near-Optimality.
eprint: https://bit.ly/3fxGEAb (2021). cb

7.1 Introduction

Thus far, one of the majors criticisms to be levelled against the analysis in Chap-
ter 6, just like most of the other studies that apply MGA-like methods, consists
in the fact that it only uses a central cost projection for each considered tech-
nology. But recent decades have shown that many of these projections contain
a high level of uncertainty, particularly for fast-moving technologies like solar,
batteries and hydrogen storage [50–52]. This uncertainty propagates through
the model to strongly affect the optimal and near-optimal system compositions,
thus undermining any analysis of the trade-offs. Hence, it is crucial that apparent
compromises are rigorously tested for robustness to technology cost uncertainty to
raise confidence in conclusions about viable, cost-effective power system designs.

To thoroughly sweep the uncertainty space, we can fortunately avail of pre-
vious works on multi-dimensional global sensitivity analysis techniques in
the context of least-cost optimisation [154, 172–175]. We expand their ap-
plication to strengthening insights on the scope of near-optimal trade-offs,
wherein the novelty of this contribution lies.

Here, we systematically explore robust trade-offs near the cost-optimum of a
fully renewable European electricity system model, and investigate how they are
affected by uncertain technology cost projections. Thereby, we evaluate both com-
promises between system cost and technology choices, as well as between pairs of
technologies. We do so by solving numerous spatially and temporally explicit long-
term investment planning problems that coordinate generation, transmission and
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storage investments subject to multi-period linear optimal power flow constraints,
while employing methods from global sensitivity analysis to account for a wide
range of cost projections for wind, solar, battery and hydrogen storage technologies.

To handle the immense computational burden incurred by searching for near-
optimal alternatives alongside evaluating many different cost parameter sets,
we employ multi-fidelity surrogate modelling techniques, based on sparse
polynomial chaos expansion (PCE) that allow us to merge results from one
simpler and another more detailed model. This approach has been proven very
effective in Tröndle et al. [154]. Heavy parallelisation with high-performance
computing infrastructure allowed us to solve more than 50,000 resource-
intensive optimisation problems which, in combination with surrogate modelling,
admit spanning a probabilistic space of near-optimal solutions rather than
putting single scenarios into the foreground.

Thereby, we are able to present alternative solutions beyond least-cost that have a
high chance of involving a limited cost increase, just as we identify regions that
are unlikely to be cost-efficient. We derive both ranges of options and technology-
specific boundary conditions, that are not affected by cost uncertainty and must be
met to keep the total system cost within a specified range. Our results show that
indeedmany such similarly costly but technologically diverse solutions exist regard-
less of how technology cost developments will unfold within the considered ranges.

7.2 Methods

In this section, we first outline how we obtain near-optimal solutions by deviating
from the least-cost solution for a given cost parameter set. We then describe the
model of the European power system and define the cost uncertainties. Finally, we
explain how we make use of multi-fidelity surrogate modelling techniques based
on PCEs and find an experimental design that efficiently covers the parameter space.

7.2.1 Finding Near-Optimal Alternatives

Using the least-cost solution of the thesis’ common capacity expansion problem
(Section 2.1) as an anchor, we use the 𝜖-constraint method from multi-objective
optimisation (MOO) to find near-optimal feasible solutions analogous to Chapter 6
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[3, 176]. For notational brevity, let 𝑐⊤𝑥 denote the linear objective function Equa-
tion (2.1) and 𝐴𝑥 ≤ 𝑏 the set of linear constraints Equations (2.2) to (2.13) in a space
of continuous variables, such that the minimised system cost can be represented by

𝐶 = min
𝑥

{
𝑐⊤𝑥 ∣ 𝐴𝑥 ≤ 𝑏

}
. (7.1)

We then encode the original objective as a constraint such that the cost in-
crease is limited to a given 𝜖. Given this slack, we formulate alternative
search directions in the objective. For instance, we can seek to minimise
the sum of solar installations 𝑥𝑠 ⊆ 𝑥 with

𝑥𝑠 = min
𝑥𝑠

{
1⊤𝑥𝑠 ∣ 𝐴𝑥 ≤ 𝑏, 𝑐⊤𝑥 ≤ (1 + 𝜖) ⋅ 𝐶

}
. (7.2)

To draw a full picture of the boundaries of the near-optimal feasible space, we
systematically explore the extremes of various technologies: we both minimise
and maximise the system-wide investments in solar, onshore wind, offshore wind,
any wind, hydrogen storage, and battery storage capacities, as well as the total
volume of transmission network expansion. Evaluating each of these technology
groups for different cost deviations 𝜖 ∈ {1%, 2%, 4%, 6%, 8%} allows us to observe
how the degree of freedom regarding investment decisions rises as the optimality
tolerance is increased, both at lower and upper ends. These boundaries yield
Pareto frontiers where neither reducing system cost nor extremising the use of
a particula technology, can be improved without diminishing the other.

The near-optimal analysis above only explores the extremes of one technology at
a time, i.e. one direction in the feasible space. But actually the space of attainable
solutions within 𝜖 of the cost-optimum is multi-dimensional. To further investigate
trade-offs between multiple technologies, in addition to the 𝜖-constraint and the ob-
jective to extremise capacities of a particular technology, we formulate a constraint
that fixes the capacity of another technology. For instance, we search for the mini-
mum amount of wind capacity 𝑥𝑤 ⊆ 𝑥 given that a certain amount of solar is built

𝑥𝑤 = min
𝑥𝑤

{
1⊤𝑥𝑤 ∣ 𝐴𝑥 ≤ 𝑏, 𝑐⊤𝑥 ≤ (1 + 𝜖) ⋅ 𝐶, 1⊤𝑥𝑠 = 𝑥𝑠 + 𝛼 ⋅ (𝑥𝑠 − 𝑥𝑠)

}
. (7.3)

The 𝛼 denotes the relative position within the near-optimal range of solar capacities
at given 𝜖. For example, at 𝛼 = 0% we look for the least wind capacity given that
minimal solar capacities are built. An alternative but more complex approach to
spanning the space of near-optimal solutions in multiple dimensions at a time
using a quick hull algorithm was presented by Pedersen et al. [169].

Due to computational constraints, we focus on technologies which are assumed to
lend themselves to substitution and limit the corresponding analysis to a single cost
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Figure 7.1: Spatial
and temporal res-
olution of the low
and high fidelity
model. Green lines
represent control-
lable HVDC lines.
Red lines repre-
sent HVAC lines.
The exemplary
capacity factors
for wind and solar
are shown for four
days in March at
the northernmost
node in Germany,
alongside the nor-
malised load pro-
file.
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increase level of 𝜖 = 6%. We consider the three pairs, (i) wind and solar, (ii) offshore
and onshore wind, (iii) hydrogen and battery storage, by minimising and maximis-
ing the former while fixing the latter at positions 𝛼 ∈ {0%, 25%, 50%, 75%, 100%}
within the respective near-optimal range.

7.2.2 Model Inputs

The instances of the coordinated capacity expansion problem (Section 2.1) are
based on PyPSA-Eur, the open model of the European power transmission system
introduced in Section 2.3 [13]. We target a fully renewable electricity system
based on variable resources such as solar photovoltaics, onshore wind and off-
shore wind, that has not carbon emissions. We pursue a greenfield approach
subject to a few notable exceptions. The existing hydro-electric infrastructure
(run-of-river, hydro dams, pumped-storage) is included but not considered to be
extendable due to assumed geographical constraints. Furthermore, the existing
transmission infrastructure can only be reinforced continuously but may not be
removed. In addition to balancing renewables in space with transmission networks,
the model includes storage options at each node to balance renewables in time.
We consider two extendable storage technologies: battery storage representing

118 Chapter 7 Robust Near-Optimal Solutions



Table 7.1: Technol-
ogy cost uncertainty
using optimistic and
pessimistic assumptions
from the Danish Energy
Agency [177].

Technology Lower Annuity Upper Annuity Unit

Onshore Wind 73 109 e/kW/a
Offshore Wind 178 245 e/kW/a

Solar 36 53 e/kW/a
Battery 30 125 e/kW/a

Hydrogen 111 259 e/kW/a

short-term storage suited to balancing daily fluctuations and hydrogen storage
which exemplifies long-term synoptic and seasonal.

Since the spatial and temporal resolution strongly affects the size of the opti-
misation problem, running the model at full resolution is computationally in-
feasible. Throughout the chapter, we will therefore make use of two levels of
aggregation, reflecting a compromise between the computational burden incurred
by high-resolution models and the growing inaccuracies regarding transmission
bottlenecks and resource distribution in low-resolution models. We consider a
low-fidelity model with 37 nodes at a 4-hourly resolution for a full year that
models power flow via a transport model (i.e. excluding KVL of Equation (2.13))
and a high-fidelity model with 128 nodes at a 2-hourly resolution that is subject
to linearised load flow constraints (Figure 7.1).

7.2.3 Technology Cost Uncertainty

Uncertainty of technology cost projections is driven by two main factors: unknown
learning rates (i.e. how quickly costs fall as more capacity is built) and unclear
deployment rates (i.e. how much capacity will be built in the future) [178, 179]. As
modelling technological learning endogeneously is computationally challenging
due to the non-convexity it entails [180, 181], technology cost uncertainty is
typically defined exogenously by an interval within which costs may vary and
a distribution that specifies which segments are more probable.

Ranges of cost projections are best chosen as wide as possible to avoid excluding
any plausible scenarios [63, 161]. When uncertainty has been considered in the
literature, cost assumptions have commonly been modelled to vary between ±20%
and ±65% depending on the technology’s maturity [154, 161, 162, 173, 182]. In this
study, we consider uncertainty regarding the annuities of onshore wind, offshore
wind, solar PV, battery and hydrogen storage systems. The latter comprises the
cost of electrolysis, cavern storage, and fuel cells. For solar PV we assume an even
split between utility-scale PV and residential rooftop PV. Evaluating uncertainties
based on annuities has a distinct advantage. They can be seen to simultaneously
incorporate uncertainties about the overnight investments, fixed operation and
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maintenance costs, their lifetime, and the discount rate, since multiple combi-
nations lead to the same annuity. We built the uncertainty ranges presented in
Table 7.1 from the optimistic and pessimistic technology cost and lifetime pro-
jections for the year 2050 from the Danish Energy Agency, which correspond
to 90% confidence intervals [177]. In cases where no uncertainty ranges were
provided for the year 2050, such as for rooftop PV, projections for the year 2030
define the upper end of the uncertainty interval.

Distributions of cost projections have been assumed to follow normal [172] or
triangular distributions [182]. But independent uniform distributions are the most
prevalent assumption [154, 161, 162, 165, 183–186]. This approach is backed by the
maximum entropy approach [154], which states that given the persistent lack of
knowledge about the distribution the independent uniform distribution, that makes
fewest assumptions, is most appropriate. Although the assumed independence may
neglect synergies between technologies, for example, between offshore and on-
shore wind turbine development, we follow the literature by assuming that the cost
are independent and uniformly distributed within the ranges specified in Table 7.1.

7.2.4 Surrogate Modelling with Polynomial Chaos Expansion

Searching for least-cost solutions and many associated near-optimal alternatives
of a highly resolved power system model on its own is already labour-intensive
from a computational perspective. Repeating this search for a large variety of
cost assumptions (Section 7.2.3), to be able to make statements about the ro-
bustness of investment flexibility near the optimum under uncertainty, adds
another layer to the computational burden.

Surrogate models1 offer a solution for such cases, where the outcome of the original
model cannot be obtained easily. In contrast to the full model, they only imitate the
input/output behaviour for a selection of aggregated outputs, but take much less
time to compute [187]. Like other machine learning techniques, they generalise
from a training dataset that comprises only a limited number of samples. As surro-
gate models interpolate gaps in the parameter space that are not contained in the
sample set, which would otherwise be computationally expensive to fill, they are
well suited to use cases such as parameter space exploration and sensitivity analysis.

Consequently, in this chapter we will make use of surrogate models that map the
cost of onshore wind, offshore wind, solar, hydrogen, and battery storage (Ta-
ble 7.1) onto a selection of eight system-level outputs. These are the total system
cost and the installed onshore wind, offshore wind, solar, hydrogen, battery, and
1Surrogate names are also known by names such as approximation models, response surface
methods, metamodels and emulators.
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transmission network capacities. We construct surrogate models for least-cost
and near-optimal solutions separately for each system cost slack, search direc-
tion, fixed total capacity, and output variable. This results in a collection of 808
individual surrogate models based on 101 solved optimisation problems per set of
cost assumptions. The method we choose from an abundance of alternatives is
based on PCE [188–190]. We select this approach because the resulting approxima-
tions allow efficient analytical statistical evaluation [188] and can conveniently
combine training data from variously detailed models [187].

The general idea of surrogate models based on PCE is to represent uncertain model
outputs as a linear combination of orthogonal basis functions of the random
input variables weighted by deterministic coefficients [191]. It is a Hilbert space
technique that works in principle analogously to decomposing a periodic signal
into its Fourier components [191]. Building the surrogate model consists of the
following steps: (i) sampling a set of cost projections from the parameter space, (ii)
solving the least-cost or near-optimal investment planning problem for each sample,
(iii) selecting an expansion of orthogonal polynomials within the parameter space,
(iv) performing a regression to calculate the polynomial coefficients, and ultimately
(v) using the model approximation for statistical analysis. In the following, we
will formalise this approach mathematically, which we implemented using the
chaospy toolbox [192], and elaborate on individual aspects in more detail.

We start by defining the vector of random input variables as

x = {x1,… , x𝑚} (7.4)

that represents the 𝑚 uncertain cost projections. Further, we let

y = 𝑓 (x) (7.5)

describe how the uncertainty of inputs x propagates through the computationally
intensive model 𝑓 (i.e. the solving a large optimisation problem) to the outputs y ∈
R.

We can represent the computational model 𝑓 with its PCE

y = 𝑓 (x) = ∑
𝜶 ∈N𝑚

𝑟𝜶𝜓𝜶 (x), (7.6)

where 𝜓𝜶 denotes multivariate orthogonal polynomials that form a Hilbertian
basis and 𝑟𝜶 ∈ R are the corresponding polynomial coefficients [188]. The mul-
tiindex 𝜶 = {𝛼1,… , 𝛼𝑚} denotes the degree of the polynomial 𝜓𝜶 in each of the
𝑚 random input variables x𝑖 . As Equation (7.6) features an infinite number of
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unknown coefficients, it is common practice to approximate by truncating the
expansion to get a finite number of coefficients

𝑓 (x) ≈ 𝑓 ′(x) = ∑
𝜶 ∈𝑚,𝑝

𝑟𝜶𝜓𝜶 (x). (7.7)

In the standard truncation scheme [188, 190], all polynomials in 𝑚 input variables
where the total degree is less than 𝑝 are selected. We canwrite this as a set of indices

𝑚,𝑝 = {𝜶 ∈ N𝑚 ∶ |𝜶 | ≤ 𝑝} , (7.8)

where |𝜶 | = ∑𝑚
𝑖=1 𝛼𝑖 . Given the joint distribution of x and a maximum degree, a

suitable collection of orthogonal polynomials can be constructed using a three
terms recurrence algorithm [192]. The cardinality of the truncated PCE,

𝑞 = card𝑚,𝑝 = (
𝑚 + 𝑝
𝑝 ) =

(𝑚 + 𝑝)!
𝑚!𝑝!

, (7.9)

indicates the number of unknown polynomial coefficients.

We determine these coefficicients by a regression based on a set of cost param-
eter samples and the corresponding outputs,

 =
{
𝒙 (1),… , 𝒙 (𝑛)} and  =

{
𝑓 (𝒙 (1)) ,… , 𝑓 (𝒙 (𝑛))

}
. (7.10)

Using this training dataset, we minimise the least-square residual of the polynomial
approximation across all observations. We add an extra 𝐿1 regularisation term,
that induces a preference for fewer non-zero coefficients, and solve

�̂� = argmin
𝒓 ∈R𝑞 [

1
𝑛

𝑛

∑
𝑖=1 (

𝑓 (𝒙 (𝑖)) − ∑
𝜶 ∈𝑚,𝑝

𝑟𝜶𝜓𝜶 (𝒙 (𝑖)))

2

+ 𝜆 ‖𝒓‖1]
, (7.11)

where we set the regularisation penalty to 𝜆 = 0.005. This results in a sparse
PCE that has proven to improve approximations in high-dimensional uncertainty
spaces and to reduce the required number of samples for comparable approx-
imation errors [190]. Knowing the optimised regression coefficients, we can
now assemble the complete surrogate model

y = 𝑓 (x) ≈ 𝑓 ′(x) = ∑
𝜶 ∈𝑚,𝑝

𝑟𝜶𝜓𝜶 (x). (7.12)
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7.2.5 Multifidelity Approach

To construct a sufficiently precise PCE-based surrogate model, it is desirable to base
it on many samples from a high-fidelity model. However, this is likely prohibitively
time-consuming. On the other hand, relying only on samples from a low-fidelity
model may be too inaccurate [193]. For example, an investment model that features
only a single node per country will underestimate transmission bottlenecks and
regionally uneven resource or demand distribution. In Section 7.2.2 we already
alluded to using two models with varying spatial and temporal resolution in the
present chapter. We integrate both in a multi-fidelity approach [187, 193], and
demonstrate how we can simultaneously avail of high coverage of the parameter
space by sampling the simpler model many times, and the high spatio-temporal
detail yielded by fewer more complex model runs.

The idea of the multi-fidelity approach is to build a corrective surrogate model Δ′(x)
for the error of the low-fidelity model 𝑓𝓁 compared to the high-fidelity model 𝑓ℎ

Δ(x) = 𝑓ℎ(x) − 𝑓𝓁 (x), (7.13)

and add it to a surrogate model of the low-fidelity model to approximate
the behaviour of the high-fidelity model

𝑓 ′ℎ(x) = 𝑓
′
𝓁 (x) + Δ′(x). (7.14)

Typically, the corrective PCE rectifies only the lower order effects of the low-
fidelity surrogate model [187]. The advantage is that this way the correction
function can be determined based on fewer samples analogous to Section 7.2.4.
To sample the errors, it is only required that the high-fidelity samples are a
subset of the low-fidelity samples, e.g.

ℎ =
{
𝒙 (1),… , 𝒙 (𝑛ℎ)

}
and 𝓁 =

{
𝒙 (1),… , 𝒙 (𝑛ℎ),… , 𝒙 (𝑛𝓁 )

}
, (7.15)

which we can easily guarantee by using deterministic low-discrepancy series in
the experimental design (Section 7.2.6). With 𝑝𝑐 < 𝑝𝓁 and consequently 𝑐 ⊂
𝓁 , the multi-fidelity surrogate model can be written as a combination of low-
fidelity and corrective polynomial coefficients

𝑓 ′ℎ(x) = ∑
𝜶 ∈𝑚,𝑝𝓁

𝓁 ∩𝑚,𝑝𝑐
𝑐

(𝑟𝓁 ,𝜶 + 𝑟𝑐,𝜶 )𝜓𝜶 (x) + ∑
𝜶 ∈𝑚,𝑝𝓁

𝓁 ⧵𝑚,𝑝𝑐
𝑐

𝑟𝓁 ,𝜶𝜓𝜶 (x). (7.16)

In the present chapter, we apply a multi-fidelity surrogate model that consid-
ers effects up to order three observed in the low-fidelity model. These are then
corrected with linear terms derived from insights from the high-fidelity model.
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We justify this choice by experimentation in Section 7.2.7, by testing against
other typical choices between orders one to five [190]. Given the polynomial
expansion order, the remaining question is how many samples are necessary
to attain an acceptable approximation.

7.2.6 Experimental Design

The experimental design covers strategies to find sufficiently high coverage of the
parameter space at low computational cost [175, 189]. It deals with how many
samples are drawn and what sampling method is used.

Traditional Monte-Carlo sampling with pseudo-random numbers is known to
possess slow convergence properties, especially in high-dimensional parameter
spaces. So-called low-discrepancy series can greatly improve on random sampling.
Because they are designed to avoid forming large gaps and clusters, these deter-
ministic sequences efficiently sample from the parameter space [189]. Thus, we
choose to draw our samples from a low-discrepancy Halton sequence.

For the question about how many samples should be drawn, we resort to the
oversampling ratio (OSR) as a guideline. The OSR is defined as the ratio between
the number of samples and the number of unknown coefficients [187]. The lit-
erature recommends values between two and three [187, 189, 190, 194]. In other
words, for a sufficiently accurate approximation, there should be significantly
more samples than unknown coefficients. If the OSR is lower, the regression
is prone to the risk of overfitting. On the other hand, a high OSR may lead
to a very coarse approximation [187].

According to Equation (7.9), targeting an OSR of two and considering the five
uncertain technology cost parameters (Table 7.1), approximating linear effects
would require at least 12 samples, whereas cubic relations would already need 112
samples. Even 504 samples would be necessary to model the dynamics of order 5.
To investigate the quality of different PCE orders and retain a validation dataset,
we draw 500 samples for the low-fidelity model. Due to the computational burden
carried by the high-fidelity models, we settle on a linear correction in advance, such
that 15 samples for the high-fidelity model are acceptable. In combination with 101
least-cost and near-optimal optimisation runs for each sample, this setup results in
a total number of 50,500 runs of the low-fidelity model and 1,515 runs of the high-
fidelity model. On average a single high-fidelity model run took 20 GB of memory
and 5 hours to solve. Each low-fidelity model run on average consumed 3 GB of
memory and completed within 5 minutes. This setup profits tremendously from
parallelisation as it involves numerous independent optimisation runs. Moreover,
it would have been infeasible to carry out without high-performance computing.
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Figure 7.2: Cross-validation errors by output for varying sample sizes and polynomial
orders of least-cost low-fidelity surrogate models.

7.2.7 Model Validation

We justify the use of surrogate modelling by cross-validation. Out of the 500
low-fidelity samples, 100 samples are not used in the regression. This valida-
tion dataset is unknown to the surrogate model and is consulted to assess the
approximation’s quality. Because the high-fidelity sample size is limited and ap-
proximating near-optimal solutions is not assumed to fundamentally differ, we
base the validation on low-fidelity least-cost solutions only. We experimentally
evaluate the approximation errors between predicted and observed data for dif-
ferent combinations of polynomial order and sample size to decide on a suitable
parameterisation. We present the coefficient of determination (R2) for the vari-
ance captured, the mean absolute (percentage) errors (MAE/MAPE) for absolute
and relative deviations, and the root mean squared error (RMSE).

Regarding the number of samples required, Figure 7.2a foremost illustrates that,
given enough samples, we achieve average relative errors of less than 4% for
most output variables. This is comparable to the cross-validation errors from
Tröndle et al. [154] at rates below 5%. Only for offshore wind and battery stor-
age, we observe larger errors. However, this can be explained by a distortion
of the relative measure when these technologies are hardly built for some cost
projections. On the contrary, the prediction of total system costs is remarkably
accurate. Figure 7.2a also demonstrates that for a polynomial order of 3, we gain
no significant improvement with more than 200 samples. In fact, thanks to the
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regularisation term used in the regression, we already attain acceptable levels of
accuracy with as few as 50 samples. Moreover, the high R2 values underline that
the surrogate model can explain most of the output variance.

Regarding the polynomial order, Figure 7.2b shows that an order of 2 and be-
low may be too simple to capture the interaction between different parameters.
On the other hand, an order of 4 and above yields no improvement and, were
it not for the moderating regularisation term, would even result in a loss of
generalisation properties due to overfitting. As higher-order approximations
require significantly more samples, an order of 3 appears to be a suitable com-
promise to limit the computational burden.

7.3 Results and Discussion

In this section, we approach the uncertainty analysis to near-optimal solutions
by reviewing the propagation of input uncertainties into least-cost solutions first
and expanding gradually from there. This includes inspecting cost and capacity
distributions induced by unknown future technology cost and conducting a global
sensitivity analysis that identifies the most influential cost parameters for least-
cost solutions. We then expand the uncertainty analysis to the space of nearly
cost-optimal solutions, which yields us insights about the consistency of near-
optimal alternatives across a variety of cost parameters.

7.3.1 Cost and Capacity Distribution of Least-Cost Solutions

Based on the uncertainty of cost inputs, the total annual system costs vary between
160 and 220 billion Euro per year, as displayed in Figure 7.3. This means the most
pessimistic cost projections entail about 40% higher cost than the most optimistic
projections. All least-cost solutions build at least 350 GW solar and 600 GW wind,
but no more than 1100 GW. While wind capacities tend towards higher values,
solar capacities tend towards lower values. We observe that least-cost solutions
clearly prefer onshore over offshore wind, yet onshore wind features the highest
uncertainty range alongside battery storage. The cost optimum gravitates towards
hydrogen storage rather than battery storage unless battery storage becomes very
cheap. There are no least-cost solutions without hydrogen, only some without bat-
tery storage. Transmission network expansion is least affected by cost uncertainty
and consistently doubled compared to today’s capacities. The question arises,
what we can conclude from these insights. The interpretation of the observed
ranges may be limited because they are not robust when we look beyond the
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Figure 7.3: Distribution of total system cost, generation, storage, and transmission capac-
ities for least-cost solutions.

least-cost solutions and acknowledge structural modelling uncertainties, such as
social constraints. Moreover, the pure distribution of outputs does not yet convey
information about how sensitive results are to particular cost assumptions. But
knowing the technologies for which lowering overnight costs has a significant
impact is important to promote technological learning in that direction.

7.3.2 Parameter Sweeps and Global Sensitivity Indices

Figure 7.4 addresses a selection of local self-sensitivities, i.e. how the cost of a
technology influences its deployment while displaying the remaining uncertainty
induced by other cost parameters. The overall tendency is easily explained: the
cheaper a technology becomes, the more it is built. However, changes of slope
and effects on the uncertainty range as one cost parameter is swept are insightful
nonetheless. For instance, Figure 7.4 reveals that battery storage becomes sig-
nificantly more attractive economically once its annuity falls below 75 e/kW/a
(including 6h energy capacity at full power output) hydrogen storage features a
steady slope. A low cost of onshore wind makes building much onshore wind
capacity attractive with low uncertainty, whereas if onshore wind costs are high
how much is built greatly depends on other cost parameters. The opposite be-
haviour is observed for offshore wind and solar. The cost of hydrogen storage
mostly causes the limited uncertainty about cost-optimal levels of grid expansion.
As the cost of hydrogen storage falls, less grid reinforcement is chosen. But since
the presented self-sensitivities only exhibit a fraction of all sensitivities, in the
next step we formalise how input uncertainties affect each outcome systematically
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Figure 7.4: Sensitivity of capacities towards their own technology cost. The median (Q50)
alongside the 5%, 25%, 75%, and 95% quantiles (Q5–Q95) display the sensitivity subject to
the uncertainty induced by other cost parameters.
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Figure 7.5: Sobol indices. These sensitivity indices attribute output variance to random
input variables and reveal which inputs the outputs are most sensitive to. The first-order
Sobol indices quantify the share of output variance due to variations in one input parameter
alone. The total Sobol indices further include interactions with other input variables. Total
Sobol indices can be greater than 100% if the contributions are not purely additive.

by applying variance-based global sensitivity analysis techniques, which have
been applied in the context of energy systems, e.g. in [154, 172].

Sensitivity indices, or Sobol indices, attribute the observed output variance to
each input and can be computed analytically from the PCE [188]. For our appli-
cation, the Sobol indices can, for instance, tell us which technology cost con-
tributes the most to total system cost or how much of a specific technology will
be built. The first-order Sobol indices describe the share of output variance due
to variations in one input alone averaged over variations in the other inputs.
Total Sobol indices also consider higher-order interactions, which are greater
than 100% if the relations are not purely additive.

The first-order and total Sobol indices for least-cost solutions in Figure 7.5 show
that the total system cost is largely determined by how expensive it is to build
onshore wind capacity, followed by the cost of hydrogen storage. The amount
of wind in the system is almost exclusively governed by the cost of onshore
and offshore wind parks. Other carriers yield a more varied picture. The cost-
optimal solar capacities additionally depend on onshore wind and battery costs.
The amount of hydrogen storage is influenced by battery and hydrogen storage
cost alike. Although there are noticeable higher-order effects, which are most
extensive for transmission, the first-order effects dominate. Strikingly, the volume
of transmission network expansion strongly depends on the cost of hydrogen
storage, which can be explained by the synoptic spatio-temporal scale of wind
power variability across the European continent which both hydrogen storage
and transmission networks seek to balance from different angles. While hydro-
gen storage typically balances multi-week variations in time, continent-spanning

7.3 Results and Discussion 129



transmission networks exploit the circumstance that as weather systems traverse
the continent, it is likely always to be windy somewhere in Europe.

7.3.3 Fuzzy Near-Optimal Corridors with Rising Cost Slack

So far, we quantified the output uncertainty and analysed the sensitivity towards
inputs at least-cost solutions only. Yet, it has been previously shown that even for
a single cost parameter set a wide array of technologically diverse but similarly
costly solutions exists [3]. In the next step, we examine how technology cost
uncertainty affects the shape of the space of near-optimal solutions.

By identifying feasible alternatives common to all, few or no cost samples, we
outline low-cost solutions common to most parameter sets (e.g. above 90% con-
tour) as well as system layouts that do not meet low-cost criteria in any cir-
cumstances for varying 𝜖 in Figure 7.6. The wider the displayed contour lines
are apart, the more uncertainty exists about the boundaries. The closer contour
lines are together, the more specific the limits are. The height of the quantiles
quantifies flexibility for a given level of certainty and slack; the angle presents
information about the sensitivity towards cost slack.

From the fuzzy upper and lower Pareto fronts in Figure 7.6 we can see that it
is highly likely that building 900 GW of wind capacity is possible within 3% of
the optimum, and that conversely building less than 600 GW has a low chance
of being near the cost optimum. Only a few solutions can forego onshore wind
entirely and remain within 8% of the cost-optimum, whereas it is very likely pos-
sible to build a system without offshore wind at a cost penalty of 4% at most.
On the other hand, more offshore wind generation is equally possible. Unlike
for onshore wind, where it is more uncertain how little can be built, uncertainty
regarding offshore wind deployment exists about how much can be built so that
costs remain within a pre-specified range. For solar, the range of options within
8% of the cost optimum at 90% certainty is very wide. Anything between 100
GW and 1000 GW appears feasible. In comparison to onshore wind, the uncer-
tainty about minimal solar requirements is smaller.

The level of required transmission expansion is least affected by the cost uncer-
tainty. To remain within 𝜖 = 8% it is just as likely possible to plan for moderate
grid reinforcement by 30% as is initiating extensive remodelling of the grid by
tripling the transmission volume compared to what is currently in operation.
These results indicate that in any case some transmission reinforcement to bal-
ance renewable variations across the continent appears to be essential. Hydrogen
storage, symbolising long-term storage, also gives the impression of a vital tech-
nology in many cases. Building 100 GW of hydrogen storage capacity is likely
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Figure 7.6: Space of near-optimal solutions by technology under cost uncertainty. For
each technology and cost sample, the minimum and maximum capacities obtained for
increasing cost penalties 𝜖 form a cone, starting from a common least-cost solution. By
arguments of convexity, the capacity ranges contained by the cone can be near-optimal
and feasible, given a degree of freedom in the other technologies. From optimisation
theory, we know that the cones widen up for increased slacks. As we consider technology
cost uncertainty, the cone will look slightly different for each sample. The contour lines
represent the frequency a solution is inside the near-optimal cone over the whole parameter
space. This is calculated from the overlap of many cones, each representing a set of cost
assumptions. Due to discrete sampling points in the 𝜖-dimension, the plots further apply
quadratic interpolation and a Gaussian filter for smoothing.

7.3 Results and Discussion 131



(a) wind and solar

0 200 400 600 800
1000

1200
1400

1600
1800

Solar Capacity [GW]

0

200

400

600

800

1000

1200

1400

1600

1800

A
ny

 W
in

d
 C

ap
ac

it
y 

[G
W

]

10
25

50

75

90
99

ε = 6%

10 25 50 75 90 99
quantiles [%]

(b) offshore and onshore wind
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(c) hydrogen and battery storage
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Figure 7.7: Space of near-optimal solutions by selected pairs of technologies under cost
uncertainty. Just like in Figure 7.6, the contour lines depict the overlap of the space of
near-optimal alternatives across the parameter space. It can be thought of as the cross-
section of the probabilistic near-optimal feasible space for a given 𝜖 in two technology
dimensions and highlights that the extremes of two technologies from Figure 7.6 cannot
be achieved simultaneously.

viable within 2% of the cost optimum and, even at 𝜖 = 8%, only 25% of cost
samples require no long-term storage; when battery costs are exceptionally low.
Overall, 90% of cases appear to function without any short-term battery storage
while the system cost rises by 4% at most. However, especially battery storage
exhibits a large degree of freedom to build more.

7.3.4 Probabilistic Trade-Offs Between Two Technologies

The fuzzy cones from Figure 7.6 look at trade-offs between system cost and
single techologies, assuming that the other technologies can be heavily opti-
mised. But as there are dependencies between the technologies, in Figure 7.7
we furthermore evaluate trade-offs between technologies for three selected
pairs at fixed system cost increase of 𝜖 = 6%, addressing which combinations
of wind and solar capacity, offshore and onshore turbines, and hydrogen and
battery storage are likely to be cost-efficient.

First, Figure 7.7a addresses constraints between wind and solar. The upper right
boundary exists because building much of both wind and solar would be too ex-
pensive. The absence of solutions in the bottom left corner means that building
too little of any wind or solar does not suffice to generate enough electricity. From
the shape and contours, we see a high chance that building 1000 GW of wind and
400 GW of solar is within 6% of the cost-optimum. On the other hand, building
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less than 200 GW of solar and 600 GW of wind is unlikely to yield a low-cost solu-
tion. In general, minimising the capacity of both primal energy sources will shift
capacity installations to high-yield locations even if additional network expansion
is necessary and boost the preference for highly efficient storage technologies.
Overall, we can take away from this that, even considering combinations of wind
and solar, a wide space of low-cost options exists with moderate to high likelihood,
although the range of alternatives is shown to be more constrained.

The trade-off between onshore wind and offshore wind is illustrated in Figure 7.7b.
Here, the most certain area is characterised by building more than 600 GW on-
shore wind, and less than 250 GW offshore wind capacity. However, there are
some solutions with high substitutability between onshore and offshore wind,
shown in the upper left bulge of the contour plot. Compared to wind and solar,
the range of near-optimal solutions is even more constrained. The key role of
energy storage in a fully renewable system is underlined in Figure 7.7c. Around
50 GW of each is at least needed in any case, while highest likelihoods are at-
tained when building 150 GW of each.

7.3.5 Selected Near-Optimal Capacity Distributions

The aforementioned contour plots Figures 7.6 to 7.7 outline what is likely possi-
ble within specified cost ranges and subject to technology cost uncertainty, but
do not expose the changes the overall system layout experiences when reach-
ing for the extremes in one technology. Therefore, we show in Figure 7.8 how
the system-wide capacity distributions vary compared to the least-cost solutions
(Figure 7.3) for two exemplary alternative objectives. For that, we chose min-
imising onshore wind capacity and transmission expansion because they are
often linked to social acceptance issues.

Figure 7.8a illustrates that reducing onshore wind capacity is predominantly com-
pensated by increased offshore wind generation but also added solar capacities.
The increased focus on offshore wind also leads to a tendency towards more hy-
drogen storage, while transmission expansion levels are similarly distributed as
for the least-cost solutions. From Figure 7.8b we can further extract that avoiding
transmission expansion entails more hydrogen storage that compensates bal-
ancing in space with balancing in time, and more generation capacity overall,
where resources are distributed to locations with high demand but weaker ca-
pacity factors and more heavily curtailed.
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(a) minimal onshore wind with 8% system cost slack

Solar
Onshore

Wind Offshore

Wind
Any

Wind

0

200

400

600

800

1000

1200

1400

G
W

10000 samples

Hydrogen

Storage Battery

Storage

0

50

100

150

200

250

300

G
W

Transmission
0

200

400

600

800

TW
km

Total System

Cost

0

50

100

150

200

250

b
n 

EU
R

 p
.a

.

(b) minimal transmission expansion with 8% system cost slack
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Figure 7.8: Distribution of total system cost, generation, storage, and transmission capac-
ities for two near-optimal search directions with 𝜖 = 8% system cost slack.
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7.4 Critical Appraisal

The need to solve models for many cost projections and near-optimal search di-
rections in reasonable time means that compromises had to be made in other
modelling dimensions. For instance, the analysis would profit from a richer set
of technologies and further uncertain input parameters, including efficiencies
of fuel cells and electrolysis or the consideration of concentrating solar power,
geothermal energy, biomass, and nuclear to name just a few. But as the number
of considered technologies and parameters rises, so does the computational bur-
den. Given the already considerable computational efforts involved in procuring
our results, considering the full breadth of technologies and uncertainties would
not have been feasible with the computational resources available. Moreover,
limitations apply to the scope of the analysis which is limited to the electricity
sector does not consider coupling to other energy sectors. However, accounting
for interactions across sectors at high resolution in similarly set future studies
is desirable and in development. Additionally, we assess no path dependencies
via multi-period investments and endogenous learning, but optimise for an emis-
sion reduction in a particular target year based on annualised costs. We further
disregard interannual variations of weather data by basing the analysis just on a
single weather year for computational reasons. Lastly, aspects such as reserves,
system adequacy and inertia have not been considered.

7.5 Conclusion

In the present chapter, we systematically explore a space of alternatives beyond
least-cost solutions for society and politics to work with. We show how nar-
rowly following cost-optimal results underplays an immense degree of freedom
in designing future renewable power systems. To back our finding that there
is no unique path to cost-efficiency, we account for the inherent uncertainties
regarding technology cost projections, and draw robust conclusions about the
range of options, boundary conditions and cost sensitivities:

Wide Range of Trade-Offs We find that there is a substantial range of op-
tions within 8% of the least-cost solution regardless of how cost developments
will unfold. This holds across all technologies individually and even when
considering dependencies between wind and solar, offshore and onshore
wind, as well as hydrogen and battery storage.
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Must-Avoid Boundary Conditions We also carve out a few boundary conditions
which must be met to keep costs low and are not affected by the prevailing cost
uncertainty. For a fully renewable power system, either offshore or onshore wind
capacities in the order of 600 GW along with some long-term storage technology
and transmission network reinforcement by more than 30% appears essential.

Technology Cost Sensitivities We identify onshore wind cost as the apparent
main determinant of system cost, though it can often be substituted with offshore
wind for a small additional cost. Moreover, the deployment of batteries is the most
sensitive to its cost, whereas required levels of transmission expansion are least
affected by cost uncertainty.

The robust investment flexibility in shaping a fully renewable power system we
reveal opens the floor to discussions about social trade-offs and navigating around
issues, such as public opposition towards wind turbines or transmission lines.
Rather than modellers making normative choices about how the energy system
should be optimised, we offer computational methods that present a wide spectrum
of options and trade-offs that are feasible and within a reasonable cost range, to
help society decide how to shape the future of the energy system.
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Regional Equity and

Autarky

8

Contents of this chapter based on

Neumann, F. Costs of Regional Equity and Autarky in a Renewable European
Power System. Energy Strategy Reviews 35, 100652. doi:10/gjr2fb. arXiv:
2007.08379 (2021). cb

8.1 Introduction

Optimising for an unmitigated least-cost renewable power system entails very
heterogeneous distributions of electricity generation in relation to demand when
compared to national imbalances reported by ENTSO-E for 2018 (Figure 8.1) [195].
The system is dominated by many distinct net importers and exporters, whereas
few supply just their own demand. This raises concerns about distributional
equity, which in this chapter describes how evenly generation capacities are
distributed relative to the regional demands.

Narrowly following the cost optimum risks inequitable outcomes and public head-
wind, bearing the potential of decelerating the energy transition. Particularly
wind farms and transmission lines spark local opposition, which was found to be
best counteracted by including the public in the planning process and by sharing
profits [196]. Vice versa, also the absence of investments may have a detrimental
impact on the economic prosperity of local communities.

Beyond the spatial distribution of generation capacities, numerous other equity
principles exist [166]. Equity metrics can also relate to temporal, income, racial, la-
bor and environmental aspects [197–199], and perceptions of fairness vary among
stakeholders [200, 201]. Recent developments of pan-continental models with grow-
ing sub-national detail raise the need for recognising their regional implications
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(a) Imbalances in 2018 according to ENTSO-E [195]
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(b) Imbalances in cost-optimised fully renewable system
(GR=308%, NL=360%, DK=874%)
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Figure 8.1: Imbalances observed in 2018 and in cost-optimised renewable system.

[199, 202]. However, such aspects are challenging to assess in endogenous mod-
elling, and analyses have been limited to ex-post analysis [199]. Enhanced collabo-
ration between social scientists and energy modellers has been encouraged [203].

Moreover, there is a trend towards discussing energy autarky, i.e. the ability to oper-
ate regions partially or completely independently [204, 205]. Positive associations
with autonomy, control and independence drive aspirations for self-sufficiency
for individuals and municipalities alike, and result in a higher willingness to pay
and greater support for projects [205–208]. The debate also evolves around the
resilience of more decentralised systems [209]. The primary resource-based feasi-
bility of autarkic systems on different spatial levels was evaluated in Tröndle et al.
[210]. High population density was found to sometimes be a limiting factor for
small autarkic systems. Weinand et al. [211] found that about half of the 11,300 mu-
nicipalities in Germany have sufficient potentials to become off-grid municipalities.

Further related work has assessed the benefit of transmission capacities between
countries [37] and more heterogeneous distributions of generation assets [21]. It
has moreover been evaluated what costs are incurred by reducing eligible poten-
tials [212]. Previous work on distributional equity regarding power generation has
however covered only a single country and neglected the variability of renewable
generation and demand, as well as the interaction between storage and transmis-

138 Chapter 8 Regional Equity and Autarky



sion infrastructure [166, 213]. A cost assessment of regional autarkic systems in
Europe compared to the least-cost system does not appear to exist yet1.

In the present chapter, we remedy the concerns about spatial scope and temporal
resolution and explore at what cost more evenly distributed, or even autarkic,
power supply could be achieved in Europe, regarding both countries and smaller re-
gions.

8.2 Model Inputs and Simulation Setup

As previously, we use the open European transmission system model PyPSA-Eur
presented in Section 2.3 with 200 nodes and 4380 snapshots, one for every two
hours in a year [13]. We solve the long-term power system planning problem
from Section 2.1 which seeks to minimise the total annual system costs comprising
generation, transmission and storage infrastructure in a fully renewable system,
subject to multi-period linear optimal power flow (LOPF) constraints.

We add constraints for each country or node to produce on average at least a given
share of their annual consumption; i.e. we explore the sensitivity of increasing
production equity requirements. The extreme cases are (i) every country or node
produces asmuch as required for the cost-optimal system using themost productive
locations (0%) and (ii) every country or node produces as much as they consume
(100%). The experiments interpolate between the extremes in steps of 10%.

We further extend this setup by two experiments regarding absolute autarky: (i) one
where there is no cross-border transmission of power between countries but which
includes the intranational transmission grid, and (ii) one where each node fully
supplies its own power demand at any time in isolation. The code and assumptions
to reproduce all results is available at github.com/fneum/equity-and-autarky.

8.3 Results and Discussion

The discussion of results employs system costs, the technology mix, as well as
the distribution of power system infrastructure capacity expansion as evaluation
criteria, both regarding distributional equity and autarky considerations.

1Meanwhile, two relevant studies, published after the preprint of this chapter’s article, have
looked at cost impacts of regionally autarkic supply and balancing [154] and regional impacts
in the context of a European power system model with high spatio-temporal detail [31].
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Figure 8.2: Sensitivity of system cost and composition to nodal and country-wide equity
requirements.

Foremost, Figure 8.2 displays the sensitivity of system costs towards nodal and
country-wide equity requirements. Similar graphics were produced regarding
the amount of cross-border transmission capacities by Schlachtberger et al. [37].
National equity constraints cause a limited rise in the total system cost. The
cost increase by less than 4% when every country produces as much as they
consume; and by less than 2% when each produces at least 80%. They entail
less grid reinforcement and some more solar installations. Conversely, the cost
sensitivity is considerably higher for nodal equity constraints. When every node
on average produces all they consume, costs inflate by 18%; and already at equity
levels of 50% costs increase by 5%. Note, that the sensitivity is nonlinear. Nodal
requirements shift expansion plans towards onshore wind, solar and hydrogen
storage, while reducing network expansion and offshore wind capacities. This
confirms but also extends on a finding by Sasse & Trutnevyte [166]: indeed solar
contributes to regional equity, but also onshore wind does. This is ambivalent
since onshore wind is susceptible to local opposition.

The maps of the optimised system capacities in Figure 8.3 show less but still sub-
stantial amounts of transmission expansion in the case of nodal equity. Compared
to the unrestricted least-cost solution, the deployment of solar panels progresses
northbound and onshore wind capacities spread in Northern and Eastern Europe.
Moreover, the storage infrastructure distributes more evenly.

Figure 8.4 depicts Lorenz curves as equity measures for different equity constraints
(see [166]). They relate the cumulative share of electricity generation to the cumu-
lative share of demand in the 200 regions of the model. Like a load duration curve
describes the share of time a particular level of electricity demand is exceeded, the
Lorenz curve outlines the share of nodes where the ratio between total electricity
generation and consumption exceeds a certain value. The Lorenz curve is on the
identity line if annual sums of generation and load are equal at each node. While
nodal equity requirements by definition lift the Lorenz curve, national require-
ments maintain an unequal distribution of infrastructure within each country.
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Figure 8.3: Maps of optimal system capacities for different equity requirements.
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Figure 8.4: Lorenz curves for different equity requirements relating the cumulative share
of electricity generation to the cumulative share of demand in the 200 regions of the
European power system model.
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Results further show that, when every country balances generation and load
on average, the national cost for capacity expansion relative to demand is more
evenly distributed, ranging between 40 and 100 e/MWh (Figure 8.5). Generation
infrastructure is the dominant component, followed by storage and transmission.
Following conclusions from Li et al. [202], the shared burden of infrastructure build-
out can be considered favourable for balanced regional economic development.

While even nodal production equity raises costs only to a limited extent below 20%,
absolute autarky is significantly more costly already on a national level. Figure 8.6
shows that eliminating cross-border transmission capacities (i.e. no trade of power
between countries) adds costs beyond 40%. Costs rise even more when each of
the 200 regions is fully self-sufficient. With an additional 110%, costs more than
doubled compared to minimising costs without equity requirements.

Figure 8.6 further shows that autarkic solutions compensate for the lack of power
transmission options with extended deployment of hydrogen and also battery
storage alongside additional onshore wind and solar capacities at locations with
lower annual yields. Moreover, particularly for the nodal autarky scenario, the
question arises whether there is sufficient renewable energy potential to cover
demand. However, at least for the considered level os spatial aggregation, this
concern can be dismissed as, assuming an even split between utility and rooftop PV,
results reveal that no region uses more than 3% of its area for utility PV and only
one in ten regions uses more than 1%. Nonetheless, landuse issues may become
more critical if even smaller regions were modelled [210]. It further needs to be
noted that hydrogen storage in salt caverns, as the cheaper alternative to steel
tanks if the geological conditions admit it, was disregarded.

8.4 Critical Appraisal

In this chapter’s evaluation, we focus on the mere cost perspective and do not
assess whether these solutions would actually lead to higher social acceptance
or whether they are preferable for any other reasons besides costs. One notable
weakness of the simulation, stemming from computational constraints, is that they
neglect the inherent uncertainty of technology cost projections, but for instance
cheap battery storage and solar panels–technologies that are well suited to local
use–may alleviate some of the cost penalty of self-sufficient solutions. In future
work, the autarky analysis should be further expanded to a fully sector-coupled
energy system which could include transport options for chemical energy carriers
and opens the field to further flexibilities to locally balance supply and demand,
possibly altering the cost impact of fully autarkic solutions.
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8.5 Conclusion

Overall, it appears to be possible to strike a balance between cost-efficiency and
balanced distribution of infrastructure at little additional expense. The analysis
showed that aligning annual generation and consumption per country costs less
than 4%more; per node, the costs increase by nomore than 20%. National balancing,
however, retains inhomogenous distributions within the countries, and even when
each node produces as much as they consume, power is still extensively transmitted
and regions are not self-sufficient. True autarky solutions without power transmis-
sion are substantially more expensive, nationally and even more so regionally, such
that balancing via integrated power systems across regions and countries appears
to remain vital component of low-cost future European power system designs.
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Summary Part II

In Chapter 6, we established that there exist many alternative solutions near
the cost-optimum, where already a minor cost deviation below 1% opens a
large range of possible technologically diverse investments to accommodate
issues of social acceptance. However, wind energy, along with some hydrogen
storage and transmission network reinforcement, appeared to be essential
to keep costs within 10% of the optimum.

With Chapter 7, we pursued the matter further by additionally taking account of
uncertain technology cost assumptions and, thereby, ascertained that within the
considered range of cost projections, the above-mentioned boundary conditions
are robust. As the cost uncertainty propagates through the model to increase
the vagueness of trade-offs between system cost and technology use, we could
also quantify how they are affected by technology costs.

For instance, there is very little uncertainty about how much transmission expan-
sion we can spare, whereas there is more ambiguity about how much onshore
wind could be exchanged with offshore wind without significantly affecting the
system’s cost-effectiveness. Further insights regarded dependencies between tech-
nologies, i.a. between wind and solar generation, and how particularly battery
storage comes into play once their cost falls below a certain threshold.

Finally, in Chapter 8, we demonstrated that while purely cost-optimal solu-
tions lead to very inhomogeneous distributions of capacities, more uniform
expansion plans can be achieved nationally at little additional expense below
4%. However, completely autarkic solutions, without the use of electricity
transmission, appear much more costly.

Recomposed from abstracts of papers forming this part’s chapters [3, 4, 6].
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Conclusions and Outlook

9

With rising shares of renewables and the need to properly assess trade-offs between
transmission, storage and sectoral integration as balancing options, building a
bridge between energy system models and detailed power flow studies becomes
increasingly important, but is computationally challenging.

Trade-Offs Between Model Detail and Computational Speed

In the present thesis, we have investigated methods that allow us to increase the
physical model detail of electricity transmission networks while remaining com-
putationally performant. Considering a range of different linear approximations of
power flow and transmission losses, we offered a decision aid for modellers who un-
dertake capacity expansion studies. Thereby, we substantiated that by neglecting
losses, cost-optimal levels of grid expansion are likely overestimated. We also em-
phasised that including linearised constraints for Kirchhoff’s voltage law (KVL) and
impedance changes is essential for capturing the basic physical conditions of trans-
mission grids in design studies. This holds especially under high loading conditions.

In another chapter, we demonstrated performance improvements obtained without
compromises in model detail but with a cycle decomposition of the network
graph to efficiently reformulate the discrete transmission expansion planning (TEP)
problem. This cycle-based formulation is also shown to integrate synchronisation
options conveniently. With regards to commonly applied integer investment
variables in TEP, we further established that continuous relaxation is justified as
it removes the excessive computational burden of integer programming while
yielding equally accurate solutions in light of typically tolerated optimality gaps
in discrete optimisation and other, more decisive model condensations.

Trade-Offs Between Cost-Optimality and Near-Optimal Alternatives

Moreover, we addressed criticisms pertaining to a common focus of energy system
design studies on single cost-optimal solutions. Along a number of different axes
besides just economic efficiency, we explored alternative system layouts to build
robust insights and intuitions about what actions are viable within given cost
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ranges without being prescriptive. While taking account of the inherent uncer-
tainties of technology cost projections, we identified a few boundary conditions
that must be met for cost-efficiency. For instance, that some grid reinforcement
and long-term storage alongside a significant amount of wind capacity is essen-
tial for building a fully renewable European electricity system. But, foremost,
we reveal that near the cost-optimum a broad range of regionally and techno-
logically diverse options exists, which provides policymakers with the building
blocks to accommodate public acceptance issues.

Informatics Role and Contribution

Because computational performance limits what can be investigated, informat-
ics becomes an increasingly important part of energy system modelling. It is
methods from computer science that enable the high modelling detail required
to improve our understanding of the drivers of cost-effective renewable energy
system designs. Although this thesis is certainly a work between the disciplines,
contributions to informatics manifest in several ways:

One part of the thesis had a modelling focus where we gauged various approx-
imation errors of power flow, transmission losses, and grid reinforcement. In
addition, we employed methods from graph theory, namely a cycle decomposi-
tion of the transmission network, in order to study how to formulate, more so
than solve, the models at hand more efficiently. Thereby, we also addressed the
combinatorics of connecting multiple synchronous zones.

The other part of the thesis followed a more applied direction, where the cen-
tral question from an informatics perspective regarded how to efficiently com-
pute many scenario runs. In combination with heavy parallelisation on high-
performance clusters, we employed multi-fidelity surrogate modelling techniques
with sparse polynomial chaos expansion (PCE) and efficient low-discrepancy sam-
pling to comprehensively sweep the parameter space.

Ultimately, with all of the above analyses, we practised open-source modelling
to provide accessible, transparent, and reproducible research results [61, 214],
whereby the workflow management software snakemake was of great avail [82].

Enhancements and Outlook

Some ideas for further research have already been touched upon in the discussion
of each chapter’s limitations. However, bringing the thesis to a close, we briefly
elaborate on the scope of future research in energy system modelling in a broader
context and give a preview of what is to come next.
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Computational Improvements with Heuristics and Decomposition

In light of the computational challenges of large-scale energy system planning and
abundant expert knowledge about problem structures, further research on problem-
specific heuristics, decomposition techniques, and algorithms should be undertaken
to speed up the process of solving energy system optimisation problems.

Future studies could investigate the benefits of heuristics applied to energy system
optimisation further, besides the heuristics for integer TEP in Chapter 5. For
instance, further research might explore heuristics that quickly find good initial
feasible solutions by leveraging problem-specific knowledge.

Also, more research could be conducted on decomposition techniques that exploit
the typical sparsity and near block-angular structures of the capacity expansion
model’s coefficient matrix [56, 59, 215]. This could allow for much higher degrees
of parallelisation and shorter computation times. Thereby, numerous closely re-
lated decomposition schemes, amongst others Benders decomposition (BD) and
Dantzig-Wolfe decomposition (DWD), could be examined [216, 217]. Particularly,
Lagrangean Decomposition (variable splitting) [218, 219] in combination with
use of the alternating direction method of multipliers (ADMM) [220, 221] could
be fruitful because capacity expansion models (CEMs) with high shares of re-
newables and storage feature intertemporal coupling both through investment
variables and storage consistency constraints.

Moreover, for pure dispatch problems without investment decisions (e.g. cou-
pled electricity markets based on net transfer capacities (NTCs) or subproblems
in decomposition applications), future research may examine network flow al-
gorithms as an alternative to interior-point and simplex methods; for instance,
extensions of the minimum cost flow algorithm [111].

Sector Coupling

Among the most frequently mentioned drawbacks mentioned above is that all
of the above analyses limited the scope to the European electricity sector and,
thereby, neglected global aspects of the energy transition just as they disregarded
the coupling with other energy sectors. However, to achieve ambitious sustain-
ability goals, it is inevitable to decarbonise the other energy-consuming sectors,
such as transportation, heating, industry, aviation and shipping, as well. Be-
cause many concepts for decarbonising those sectors involve electrification, an
integrated system perspective gains in importance.

Thereby, new challenges arise from a modelling perspective. Besides the need to
consider a much broader range of technologies, which further inflates the problem
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size beyond the dimensions of spatial and temporal resolution, there are manymore
interdependencies to be captured, which require careful tracking of conversion
paths between multiple energy carriers and carbon dioxide [25, 222]. Moreover,
in light of growing demand in renewable energy generation, the impetus may
grow to leverage international trade in zero-emission electricity or other fuels
like hydrogen, ammonia or synthetic hydrocarbons.

All this reiterates that, especially when expanding the sectoral and spatial scope,
we must continue to abstract from reality in numerous further domains to retain
control of the computational complexity while keeping a tab on the approximation
errors introduced. While the insights about simplifications and the way we for-
mulate constraints of electricity transmission will prevail with increased sectoral
integration, there is scope for transferring them to the modelling of other sectors.
For example, as both power flow and gas flow are nonlinear phenomena, gas
network modelling raises similar questions as electricity network modelling.

Pathway Optimisation

Moreover, while the thesis answered questions about what infrastructure could be
build where under given policy goals, it left out when to build it. Which path to
follow to achieve climate change mitigation targets across all energy sectors is a
question of particular relevance. In view of many pending renewals of long-lived
power plants and industrial production sites and the looming danger of lock-in
effects and stranded assets it is strongly advisable to take account of pathways,
i.e. considering the timing of investments across the upcoming decades.

Additionally, the opportunity to, thereby, also model the benefits gained
by induced technological learning, i.e. exploiting how costs of a technol-
ogy fall as its capacities are expanded, speaks in favour of adding this new
dimension to the optimisation problem [180].

Because it also exhibits promising block-like structures, pathway optimisation also
opens new windows for investigating the application of decomposition techniques
to counteract the added computational burden.

Reliability

Besides economically achieving sustainability goals, it is another requirement to
guarantee that energy services can be met whenever they are demanded. Modelling
of reliability can further improve in several ways. Among other things, basing the
optimisation on a single reference weather year may not result in an adequate
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system design that can sustain extreme weather events or even a changing cli-
mate. The availability of decades of historical weather data lends itself to further
strengthening the robustness towards interannual weather variations.

Another aspect of reliability where modelling can improve concerns the network
operation. Because the consideration of the 𝑁 − 1 security criterion (i.e. the
condition that the failure of any one circuit may not cause any secondary outages)
involves many what-if constraints, there is scope for further research on efficiently
formulating such preventive measures by using algorithms from graph theory,
heuristics, or some form of redundant constraint screening [223, 224].

Along these lines, it is also a worthwhile undertaking to evaluate the cost
of novel curative measures like grid boosters, that compensate outages for
brief transitional periods, compared to widespread preventative security
margins on the transmission line capacities.

In addition to network security constraints, one may also evaluate the impact
of generator failures more rigorously, e.g. due to the outage of a fossil plant or
forecast deviations of renewable generators. Here, future research could look at
reserve markets and the role of energy storage and demand-side management in it.

Further Trade-Offs

Finally, in Part II we focussed on trade-offs between system cost and the ca-
pacities of various technologies and their regional distribution. However, it
should not be overlooked that that there are many other trade-offs decision
makers may have an interest in. These may evolve around the employment
implications of expansion plans, the life cycle impact of different technologies,
effects on air pollution, the sustainable use of biomass and nuclear energy, the
ramifications on regional land-use, or even multiple such aspects at once and
across different energy sectors. Consequently, future research may investi-
gate further factors that resonate with the priorities of policymakers to inform
their decision making by presenting an even wider menu of options to choose from.

As evermore complicated trade-offs will need to be assessed, which all require
detailed modelling, computational aspects become a key success factor in energy
system modelling. This thesis has leveraged methods from informatics to manage
the computational challenges faced, with the ultimate goal to provide society with
useful information about the choices available as we transform the energy system.
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