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Measurement-induced steering of quantum systems
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We set out a general protocol for steering the state of a quantum system from an arbitrary initial state toward
a chosen target state by coupling it to auxiliary quantum degrees of freedom. The protocol requires multiple
repetitions of an elementary step: During each step, the system evolves for a fixed time while coupled to
auxiliary degrees of freedom (which we term “detector qubits”) that have been prepared in a specified initial
state. The detectors are discarded at the end of the step, or equivalently, their state is determined by a projective
measurement with an unbiased average over all outcomes. The steering harnesses backaction of the detector
qubits on the system, arising from entanglement generated during the coupled evolution. We establish principles
for the design of the system-detector coupling that ensure steering of a desired form. We illustrate our general
ideas using both few-body examples (including a pair of spins-1/2 steered to the singlet state) and a many-body
example (a spin-1 chain steered to the Affleck-Kennedy-Lieb-Tasaki state). We study the continuous time limit in
our approach and discuss similarities to (and differences from) drive-and-dissipation protocols for quantum state
engineering. Our protocols are amenable to implementations using present-day technology. Obvious extensions
of our analysis include engineering of other many-body phases in one and higher spatial dimensions, adiabatic
manipulations of the target states, and the incorporation of active error correction steps.
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I. INTRODUCTION

There are many circumstances in which one would like to
initialize a many-body quantum system in a specified state:
Examples of current interest range from quantum information
processing to studies of nonequilibrium dynamics. Two stan-
dard approaches for preparing quantum states are suggested
by the laws of quantum mechanics and statistical mechanics.
One of these is to make projective measurements of a set of
observables represented by commuting operators that fully
specify the target state. Alternatively, if the target state is
the ground state of the Hamiltonian for the system, it can
be reached by putting the system in thermal contact with
a heat bath that is at a sufficiently low temperature. Both
approaches have disadvantages, especially for a system with
a large number of degrees of freedom: In the first approach,
a general initial state is not an eigenstate of the measurement
operator and hence the measurement outcome is probabilistic.
The probability that the target state is reached decreases
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rapidly toward zero with increasing system size. With the
second approach, the temperature scale required to completely
eliminate thermal excitations from a system also decreases
toward zero with size. In principle, if the initial state of the
system is precisely known, a further possibility is to act on the
state with an appropriately chosen perturbation for a precise
interval of time, so that it evolves into the target state; this,
however, requires extreme fine-tuning in a large system.

Our aim in the following is to establish a class of protocols
for quantum state preparation that improve on both projective
measurement and thermal contact with a heat bath. A protocol
of the type we describe will, in an ideal implementation,
steer a system from an arbitrary initial state to the target
state, with guaranteed success. It does so by coupling the
quantum system of interest to external detector qubits (auxil-
iary quantum degrees of freedom) that have been prepared in
specified initial states, then evolving the coupled system under
standard unitary quantum dynamics for a fixed time interval,
and finally decoupling and discarding the detector qubits.
Multiple repetitions of this process using freshly prepared
detector qubits on each occasion, coupled to the system with
a suitable interaction Hamiltonian, produce the outcome we
require. In this paper, we illustrate our general approach both
for small systems consisting of one or two spin-1/2 degrees
of freedom and for a macroscopic many-body system.

This protocol and possible generalizations have the fun-
damental concepts of quantum entanglement and quantum
measurements as essential ingredients and possess conceptual
links to the theory of open quantum systems. First, the effect
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of a coupling between the system and detector qubits is to
generate entanglement between their states. Second, focusing
on the behavior of the system after discarding the detector
qubits, this entanglement induces steering of its quantum
state, of a kind first discussed by Schrödinger in the context of
the Einstein-Podolsky-Rosen (EPR) paradox [1,2]. A physical
setting for the decoupling and discarding of the detectors is
that of performing strong measurements on these qubits and
then taking an unbiased average over the outcomes. Indeed,
Schrödinger’s original formulation of steering [3] was in
terms of a sophisticated experimenter performing suitable
measurements on one of the parts of a bipartite system to
drive the other part to a state, chosen by the experimenter,
with nonzero probability. More recently, the scope of the term
quantum steering has been narrowed to the impossibility of
local hidden-state models describing the ensemble of states
that a system can take upon measurement of another system
entangled with it [4–6]. We, however, continue to use the term
in its broader sense.

To set out in more detail the links between our protocol
for preparing or steering a quantum state and discussions of
quantum measurement, it is useful to recall the distinction
between strong or projective measurements and the notion of
weak quantum measurements [7–13]. The former destroy the
coherent quantum dynamics of the system. By contrast, under
the latter, auxiliary degrees of freedom are coupled weakly
to the system and projective measurements are performed on
these detector qubits after decoupling them from the system.
No matter how weak the coupling, a measurement of this
kind unavoidably impacts the system through its backaction,
even after the detector qubits are decoupled from the system.
Instead of viewing the measurement-induced disturbance on
the system’s state as a handicap, it may be considered a re-
source for quantum control and manipulation. The backaction
of measuring the state of detectors entangled with the system
can be harnessed to control the system’s evolution and steer
its state toward a desired target state: This constitutes the
central message of our work. In principle, one could make
use of the measurement outcomes to determine whether the
state of the system has been successfully steered in a realiza-
tion of the experiment and discard it if this is not the case. In
the simplest version of such postselected protocols, the proba-
bility of success then goes down exponentially with the length
of the outcome sequence or the number of detectors. This
suppression is also likely to be exponentially strong in system
size for a many-body system. To avoid such suppression,
our aim is to establish protocols within a setting where the
outcomes are averaged over in an unbiased fashion, and hence
there is no loss of probability. We refer to processes of this
type as blind measurements or nonselective measurements.

The concept of weak measurements allows for the no-
tion of continuous measurements [14–16]. The latter can be
viewed as a discrete sequence of weak measurements in the
limit of vanishing time interval for each weak measurement.
This results in a sequence of measurement outcomes defining
a quantum trajectory. The equation for the density matrix of
the system averaged over the trajectories is governed by a
Lindblad equation. In our case, the steering protocol consists
of a discrete sequence of measurements on detector qubits not
necessarily coupled weakly to the system. A suitably defined

time-continuum limit maps the dynamics of the density matrix
of the system to a Lindblad equation. For part of the analysis
in our work, we exploit this formal connection between our
steering protocol and Lindblad dynamics to gain insight into
the steady state and the rate of approach to it.

The emergence of Lindblad dynamics suggests a compar-
ison of our protocol with proposals for preparing nontriv-
ial many-body states in open quantum systems, where the
dissipative environment is posited to be Markovian and is
treated within the framework of Lindblad dynamics [17–26].
The challenge in that context is to find suitable Lindblad
jump operators that can be cast in terms of physical systems
participating in the dynamical process. Our measurement-
induced steering protocol has some technical similarities with
this framework, as well as conceptual distinctions from it.
With regard to the former, if the detector qubits we discuss
are viewed as an environment, this environment is Markovian
by construction, since the detector qubits are prepared afresh
at the start of every cycle. Hence, the map governing the
evolution of the density matrix of the system has a rep-
resentation in terms of Kraus operators, which ultimately
leads to a Lindblad equation in the time-continuum limit
[27,28].

An obvious advantage of our protocol is that the jump
operators in the emergent Lindblad equation are uniquely and
automatically fixed by the details of the system-detector cou-
pling Hamiltonian, thus facilitating “on-demand” engineering
of Lindbladians. On the other hand, since our protocol is
fundamentally a microscopic measurement protocol, certain
requirements can easily be relaxed to go far beyond what is
describable within the standard Lindblad framework. We note
earlier works in the context of quantum control, discussing
manipulation of quantum states via repeated interactions with
designed environments [23,29,30]; much of this, however, has
focused on the formal aspects of the theory or on applications
restricted to few-body systems.

Another advantage of a measurement-based protocol over
coupling with an environment is that, whereas the latter sim-
ply gets entangled with the system, a detector qubit can be
read out, yielding information on the system state which could
be further used to accelerate convergence to the desired state.
Obvious examples include the use of postselected protocols
or using the measurement outcomes to implement active
error correction and enhance the blind measurement protocols
[31,32].

To summarize, our measurement-based steering protocol
differs fundamentally from and has various advantages over
related protocols for manipulating and stabilizing nontrivial
quantum states. First, the measurements in our case need not
be weak: The detectors may be strongly coupled to the system.
Second, in an appropriate time-continuum limit, the dynamics
is described by a Lindblad equation, but rather than introduc-
ing a Markovian reservoir or jump operators “by hand,” bath
coupling is engineered by the measurement operators, which
fix the jump operators uniquely. Third, unlike unstructured en-
vironments or baths, the detector qubits can be read out, with
the outcomes exploited to further the efficiency and scope of
our steering on platforms employing postselected protocols or
using active decision-making protocols based on the readout
sequence. Finally, we note the nontriviality of applying our

033347-2



MEASUREMENT-INDUCED STEERING OF QUANTUM … PHYSICAL REVIEW RESEARCH 2, 033347 (2020)

measurement-based steering to many-body systems using an
extensive number of auxiliary degrees of freedom.

Structure of the paper

The rest of the paper is structured as follows. We start
with an overview in Sec. II, where we introduce the basic
ingredients of the steering protocol and state the main results
of the work. Section III presents the details of the steering
protocol. The guiding principle for designing the protocol
is introduced and derived in Sec. III A, followed by the
derivation of the effective Lindblad dynamics in Sec. III B.
The workings and advantage of the approach is exemplified
via the simple case of a spin-1/2 pair steered toward their
singlet state in Sec. III C. We then turn to a many-body
quantum system, a spin-1 chain, which we steer to the Affleck-
Kennedy-Lieb-Tasaki (AKLT) ground state [33,34] in Sec. IV.
As a building block of the protocol, the steering of a spin-1
pair is discussed in Sec. IV A, followed by the numerical
treatment of the spin-1 chain in Sec. IV B. We close with
discussions of possible experimental implementations of the
protocol and future directions in Sec. V.

II. OVERVIEW

The central result of this work is a general formalism
for measurement-induced steering of a many-body quantum
system toward a nontrivial target state, by repeatedly coupling
and decoupling a set of auxiliary degrees of freedom inter-
spersed with unitary dynamics of the composite system. The
protocol makes use of the entanglement generated between
the system and the auxiliary degrees of freedom to steer the
state. The auxiliary degrees of freedom are simple quantum
systems with small Hilbert-space dimensions such that they
are easy to prepare in a desired initial state; in this work,
we consider a set of decoupled detector qubits (spins-1/2)
initially polarized along a given direction.

A. Steering protocol

The steering protocol can be described as a sequence of
discrete steering events each of which consists of the follow-
ing steps:

(i) The detector qubits are prepared in a initial given state,
which does not depend on the state of the system. We denote
the initial state of the detector qubits as |�d〉 and the density
matrix corresponding to this initial state as ρd.

(ii) The system is then coupled to the detector qubits and
the composite system evolves unitarily under a Hamiltonian
for some time. Denoting the density matrix of the system at
time t as ρs(t ) and the system-detector Hamiltonian as Hs-d,
the state of the system-detector composite after evolution for
an interval δt is given by

ρs-d(t + δt ) = e−iHs-dδtρd ⊗ ρs(t )eiHs-dδt . (1)

(iii) The detector qubits are then decoupled from the
system. Formally, we may trace out the detector degrees of
freedom to obtain the density matrix of the system at time
t + δt ,

ρs(t + δt ) = Trdρs-d(t + δt ). (2)

Equations (1) and (2) describe the discrete time-evolution
map for the density matrix of the system under the steering
dynamics.

(iv) The detector qubits are reprepared in their initial states
and the above steps are repeated.

B. Steering inequalities

As we would like the system to get steered toward the
target state, denoted by |�s⊕〉 (with corresponding density
matrix ρs⊕ ), the dynamics induced by Hs-d should satisfy the
steering inequality

〈�s⊕|ρs(t + δt )|�s⊕〉 � 〈�s⊕|ρs(t )|�s⊕〉 , ∀ t, (3)

with the inequality ideally becoming an equality only if
ρs(t ) = ρs⊕ .

Note that this inequality is very strong. When combined
with the condition on equality, they ensure that the system
is steered to the target state irrespective of its initial state.
In principle, one could envisage weaker steering inequalities.
One example is

lim
t→∞ 〈�s⊕|ρs(t )|�s⊕〉 = 1 (4)

and a still weaker one is

lim
t→∞ 〈�s⊕|ρs(t )|�s⊕〉 > 〈�s⊕|ρs(0)|�s⊕〉 . (5)

We present in Sec. III A a general strategy for designing
system-detector couplings so that the strongest of these forms,
(3), holds.

C. Guiding principle for choice of system-detector
coupling Hamiltonian

With the protocol fixed, it remains to find a guiding
principle for the choice of the Hamiltonian that governs the
evolution of the system-detector composite. As a first step,
consider summing both side of (3) over ρs(t ) representing all
possible pure states. If (3) is obeyed, then W ≡ e−iHs-dδt must
satisfy

Trs,d[W (ρd ⊗ 1s)W †(1d ⊗ ρs⊕ )] � Trs,d[ρd ⊗ ρs⊕] . (6)

In the special case where the Hilbert spaces of the system
(Hs) and the detector (Hd) have the same dimension, we see
from this that for the inequality to be as strong as possible, W
should be the swap operator between these two spaces and ρd

should be the image of ρs⊕ under this swap. More generally,
a Hamiltonian which contains direct products of operators
O(n)

d in the detectors’ subspace Hd that rotate the detectors
from their initial state to an orthogonal subspace and operators
U (n)

s in the system’s subspace Hs that rotate the system to the
target state manifold from an orthogonal subspace will steer
the system toward the target state. Such a Hamiltonian has the
form

Hs-d =
∑

n

(
O(n)

d |�d〉 〈�d|
)⊗ U (n)

s + H.c., (7)

where n labels the detector qubit. Since O(n)
d connects the state

|�d〉 to its orthogonal subspace, it satisfies 〈�d|O(n)
d |�d〉 = 0.

Additionally, we assert the following properties for the system
operators:
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(i) U (n)
s annihilates the target state, U (n)

s |�s⊕〉 = 0.
(ii) U (n)

s is normalized such that U (n)
s U (n)†

s |�s⊕〉 = |�s⊕〉.
(iii) For different n and m, if U (n)

s and U (m)
s share spatial

support then U (m)
s U (n)†

s = 0. If they do not share a spatial
support, they automatically commute.

To ensure that equality in Eq. (3) always implies ρs(t ) =
ρs⊕ it is necessary that |�s⊕〉 is coupled to every state in its
complement by at least one operator U (n)†

s . In our study of
steering to the AKLT state, we observe guaranteed conver-
gence to the target state despite the set of operators {U (n)†

s }
not connecting the AKLT state to all the other states in the
Hilbert space. However, monotonicity is not ensured and, in
principle, can depend on the particular measure of distance
from the target state. We discuss this issue in detail in Secs.
III A and IV B and Appendix D.

D. Toy example with a spin-1/2

As a simple example, consider a single spin-1/2 which we
wish to steer to the fully polarized state along the z direction,
so that |�s⊕〉 = |↑s〉. The subspace orthogonal to |�s⊕〉 has
only a single state: U †

s |�s⊕〉 = |↓s〉. Hence, a single detector
qubit is sufficient to steer the state. Without loss of generality,
let us choose it to be initialized as |�d〉 = |↑d〉. Naturally,
we also have Od |�d〉 = |↓d〉. Following Eq. (7), the system-
detector coupling Hamiltonian can then be written as

Hs-d = J (|↓d〉 〈↑d|) ⊗ (|↑s〉 〈↓s|) + H.c.

= J (σ−
d σ+

s + σ+
d σ−

s ),
(8)

where σ±
s(d) denote the Pauli raising and lowering operators for

the system and detector qubits.
At time t , the state of the system can be generally written

as ρs(t ) = [I2 + s(t ) · σs]/2, where s(t ) is a classical three-
component vector. The state of the system spin-1/2 at time
t + δt can then be obtained by evolving the combined state
of the system and the detector, (I2 + σ z

d ) ⊗ ρs(t )/2, with the
unitary operator W , and tracing over the detector. This yields
the relation for s(t + δt )

sx(t + δt ) = cos(Jδt )sx(t ) = cos
t
δt (Jδt )sx(0),

sy(t + δt ) = cos(Jδt )sy(t ) = cos
t
δt (Jδt )sy(0),

sz(t + δt ) = 1 − cos2(Jδt ) + cos2(Jδt )sz(t )

= 1 − cos
2t
δt (Jδt ) + cos

2t
δt (Jδt )sz(0). (9)

The above equation explicitly shows that

lim
t→∞ s(t ) = (0, 0, 1), (10)

irrespective of the initial conditions and that the limit is
approached exponentially in time.

This example illustrates how a system-detector coupling
Hamiltonian of the form in Eq. (7) leads to the satisfaction
of the desired steering inequality, Eq. (3), for generic initial
states of the system. This guarantees successful steering to the
target state from arbitrary initial states. In turn, the example
shows how weak measurements can produce control and
manipulation that projective measurements cannot [35].

We remark that although in the above example the target
state of the system qubit is the same as the initial state of the

detector qubit, there is nothing special about this choice; see
Appendix A.

E. Many-body states and multiple detectors

In the context of many-body systems, the subspace orthog-
onal to the target is exponentially large in the system size.
Hence it may appear that the system-detector coupling Hamil-
tonian of the form in Eq. (7) entails an exponentially large
number of detectors, or nonlocal system-detector coupling
Hamiltonians, or both. For implementation of the protocol
to be feasible, we would like to have at most an extensive
number of detectors, with couplings that are local. Although
these constraints appear rather restrictive, they can be satisfied
for versions of our protocol that allow steering to a large class
of strongly correlated quantum states which are eigenstates
of unfrustrated local projector Hamiltonians. One can steer to
such states by locally steering different parts of the system to
the appropriate eigenstate of the corresponding local projector
part of the Hamiltonian. Since the effective Hilbert dimension
of a local part of the system is finite, one can steer locally
with a finite number of detectors, and hence the total number
of detectors required scales linearly with system size, and
not exponentially. Moreover, the couplings are manifestly
local.

The particular example we consider in detail is the Affleck-
Kennedy-Lieb-Tasaki (AKLT) state of a one-dimensional
spin-1 chain [33,34]. The AKLT state is a valence bond state
such that on each bond between two neighboring spins-1,
there is no projection on the total spin-2 sector. Thus, one
can steer the spin-1 chain by locally steering each bond out
of the total spin-2 sector, and the uniqueness of the ground
state of the AKLT chain (with periodic boundary conditions)
guarantees steering to the AKLT state. Steering each bond
requires only a finite number of detectors due to the finite
dimension of the total spin-2 subspace for a pair of spins-1
and hence the total number of detectors needed to steer a chain
is only extensive in system size.

Further examples of states which satisfy the above criteria
include matrix product states, projected pair entangled states,
the Laughlin state of a fractional quantum Hall system [36],
the ground state of Kitaev’s toric code [37], and of recent
interest, fermionic symmetry-protected topologically ordered
eigenstates of full commuting projector Hamiltonians [38,39].

An obvious potential concern arises when our protocol
is used to steer many-body systems to eigenstates of local
projector Hamiltonians, because in the cases of interest a
given quantum degree of freedom appears in more than one
projector. In particular, in such a scenario it is not guaranteed
that two system operators U (n)

s and U (m)
s acting on such a

shared degree of freedom, while steering their corresponding
parts of the system locally, satisfy the conditions listed at
the end of Sec. II C. Steering toward the target space of one
projector may therefore undo, at least partially, the effect
of steering to the target space of a different projector with
which the degree of freedom in question is shared. Despite
these complications, we show that our approach enables us to
select zero-energy eigenstates of local projector Hamiltonians
as target states and unique stationary states of our dynamics.
We illustrate this numerically for the AKLT chain, showing
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steering to the ground state with guaranteed success from
arbitrary initial states.

F. Steady states and rate of approach

Equations (1) and (2) show that the time evolution of the
density matrix of the system is governed by a linear map.
On general grounds, the largest eigenvalue magnitude for this
map is unity. If the associated eigenvector is unique, this
ensures that there exists a unique steady state. The logarithm
of the next eigenvalue then encodes the rate of approach in
time to this steady state. Ideally, we would like the rate to
be finite in the thermodynamic limit so that the timescale
required to steer the many-body state arbitrarily close to the
target state does not diverge with system size.

In the context of the AKLT state, we find that the magni-
tude of these eigenvalues is most conveniently studied in the
time-continuum limit (δt → 0) of the map in Eq. (2) where
an effective Lindblad equation emerges for the equation of
motion of ρs with the jump operators being fixed by the
system-detectors coupling Hamiltonian Hs-d. Unit eigenvalue
for the discrete map corresponds to zero eigenvalue for the
Lindbladian operator. If the corresponding Lindbladian eigen-
vector is unique, it is the stationary state of the steering
protocol. Successful steering implies that the steady state of
the Lindbladian is the target state. Moreover, the gap in the
spectrum of the Lindbladian between the zero eigenvalue
and the rest of the eigenvalues determines the rate of the of
approach of the system to the target state. In the case of the
AKLT state, analysis of the size dependence of the numer-
ically obtained gap in the effective Lindbladian’s spectrum
indicates that it stays finite in the thermodynamic limit.

III. FORMALISM OF QUANTUM STATE STEERING

In this section, we describe the quantum steering protocol
in detail. We show explicitly that a system-detector coupling
Hamiltonian of the form given in Eq. (7) leads to dynamics
that satisfy the steering inequality, Eq. (3), on rather general
grounds. Additionally, we make the connection to an effective
Lindblad equation that describes the time-continuum limit of
the steering map, Eq. (2).

A. General derivation of steering inequality
from discrete time map

Let us discuss in some generality the map governing the
discrete time evolution of the system density matrix, Eq. (2),
with the system-detector coupling Hamiltonian Hs-d of Eq. (7).
We will first show that ρs = ρs⊕ = |�s⊕〉 〈�s⊕| is indeed a
stationary state of the map and then show that the system is
progressively steered toward the ρs⊕ after each steering event.

That ρs⊕ is a stationary state of the map is easily shown by
noting that with Hs-d from Eq. (7), Hs-d(ρd ⊗ ρs⊕ ) = 0, which
naturally implies

e−iHs-dδtρd ⊗ ρs⊕eiHs-dδt = ρd ⊗ ρs⊕ . (11)

Upon taking the trace over the detectors, one recovers that
Trd[e−iHs-dδtρd ⊗ ρs⊕eiHs-dδt ] = ρs⊕ and hence ρs⊕ is a station-
ary state of the map.

We next show that the system is steered toward the target
state at every discrete steering event. For brevity, we show
here the derivation with a single detector qubit and state the
results for multiple detector qubits. Details of the derivation
for the latter are presented in Appendix B.

To proceed, we find it most convenient to partition the
composite Hilbert space of the detectors and the system Hd ⊗
Hs into two subspaces, which we denote as Dd ⊗ Hs and
Dd ⊗ Hs, where Dd is the one-dimensional subspace spanned
by |�d〉 and Dd ⊕ Dd = Hd. In this convention, the density
matrix ρd ⊗ ρs(t ) can be represented as

ρd ⊗ ρs(t )=
[ Dd︷ ︸︸ ︷

ρs(t )

Dd︷︸︸︷
0

0 0

]}Dd

}Dd

. (12)

Additionally, the system-detector coupling Hamiltonian,
Eq. (7), takes the form

Hs-d =
[ Dd︷︸︸︷

0

Dd︷︸︸︷
U †

U 0

]}Dd

}Dd

. (13)

The unitary time-evolution operator generated by the system-
detector coupling Hamiltonian is

e−iHs-dδt =
∞∑

k=0

(−iδt )2k

(2k)!

×
[

(U †U )k
( −iδt

2k+1

)
U †(UU †)k( −iδt

2k+1

)
U (U †U )k (UU †)k

]
. (14)

Following the steering map of Eq. (2), applying the above
unitary matrix to the density matrix of Eq. (12), and taking
the trace of the detector, one obtains the time-evolved density
matrix of the system as

ρs(t + δt ) =
∑
k,l

(−iδt )2k (iδt )2l

(2k)!(2l )!
[(U †U )kρs(t )(U †U )l ]

+
∑
k,l

(−iδt )2k+1(iδt )2l+1

(2k + 1)!(2l + 1)!

× [U (U †U )kρs(t )U †(UU †)l ]. (15)

Using Us |�s⊕〉=0 and UsU †
s |�s⊕〉 = |�s⊕〉, the diagonal ma-

trix element of the time-evolved density matrix corresponding
to the target state can be obtained from Eq. (15) as

〈�s⊕|ρs(t + δt )|�s⊕〉
= 〈�s⊕|ρs(t )|�s⊕〉 + 〈�s⊕|Usρs(t )U †

s |�s⊕〉︸ ︷︷ ︸
Q

sin2(δt ).

(16)

Note Q is a diagonal matrix element of a valid density matrix
ρs(t ) which ensures that it is non-negative. The change in the
diagonal element of the density matrix corresponding to the
target state is proportional to the support of the density matrix
on the subspace orthogonal to |�s⊕〉. Hence, the inequality
in Eq. (3) becomes an equality when ρs(t ) has no remaining
support on the subspace orthogonal to |�s⊕〉—in other words,
ρs(t ) has reached its target form. This concludes the derivation
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of the steering inequality, Eq. (3), which in turn shows that the
system is steered toward the target state progressively at each
steering event.

In the case of multiple detectors, the equation for the time-
evolved density matrix has the form as in Eq. (16) but Q is
given by (see Appendix B for derivation)

Q =
∑

n

〈�s⊕|U (n)
s ρs(t )U (n)†

s |�s⊕〉 , (17)

which is again a sum of diagonal elements of a density matrix
and hence is non-negative. Also, it is the total support of the
density matrix on the subspace orthogonal to |�s⊕〉 spanned
by the set of states {U (n)†

s |�s⊕〉}. Provided |�s⊕〉 is connected
to every state in its complement by an operator U (n)†

s , then
Q = 0 implies ρs(t ) = ρs⊕ .

For a many-body system, if a sufficiently large number
of operators is employed that the target state is connected to
all others by the operators U (n)†

s , monotonic convergence to
the target state is straightforwardly guaranteed. The required
number of operators may, however, be exponentially large in
system size. By contrast, we are interested in steering a many-
body system using only an extensive number of operators,
each coupled locally to the system. It can then happen that
Q = 0 for some ρs(t ) at a given step, but that further steps
successfully steer the system to the target. In Sec. IV B, we
show how in a such a setting with extensive, local steering
operators a spin-1 chain is steered uniquely to the AKLT
state. In this case, we also examine whether or not steering
is monotonic. We show that this may depend on the choices
of initial state and of the measure of the distance between the
time-evolving state and the target state; see Appendix D for
details. We will quantify the distance of ρs(t ) from the target
state, ρs⊕ , via the Frobenius and trace norms, denoted as DF

and D1 respectively. The are defined as

DF (t ) =
√

Tr[ρs(t ) − ρs⊕]2, (18a)

D1(t ) = Tr[
√

(ρs(t ) − ρs⊕ )2]/2. (18b)

Additionally, since the AKLT ground state is an unique
zero-energy ground state of the AKLT Hamiltonian (with
periodic boundary conditions), another good measure for the
distance is the energy of the state measured with respect to the
AKLT Hamiltonian

EAKLT(t ) = Tr[HAKLTρs(t )]. (19)

B. Effective Lindblad dynamics

We now show that the time-continuum limit of the map in
Eq. (2) leads to a Lindblad equation for the dynamics of the
density matrix of the system. The exposition of the conceptual
connection between measurement-induced quantum steering
and the dynamics being described by the Lindblad equation,
often associated with dissipative dynamics, is an important
result of this work. The Lindblad equation is a master equation

for the density matrix of the form

∂tρs = L[ρs]

= −i[Hs, ρs] +
∑

i

[
LiρsL

†
i − 1

2
{L†

i Li, ρs}
]
, (20)

where Hs is the intrinsic Hamiltonian of the system and
the Lis are the quantum jump operators. They are fixed in
our derivation by the form of the system-detector coupling
Hamiltonian.

As in Sec. III A, we sketch the derivation with a single
detector and state the result for multiple detectors. To proceed
with the derivation, we again partition the composite Hilbert
space and represent ρd ⊗ ρs(t ) as in (12). The general system-
detector coupling Hamiltonian can be represented by a matrix
of the form

Hs-d =
[ Dd︷︸︸︷

V

Dd︷︸︸︷
U †

U V ′

]}Dd

}Dd

. (21)

Expanding the map in Eq. (2) to second order in δt one obtains

ρs(t + δt ) − ρs(t )

δt
= i[V, ρs(t )] − 1

2
[V, [V, ρs(t )]]δt

+
(

Uρs(t )U † − 1

2
{U †U, ρs(t )}

)
δt .

(22)

Taking the limit δt → 0 with Ũ = U
√

δt while requiring
||V || ∼ O(1) and ||Ũ || ∼ O(1) [40], one obtains a time-
continuum equation of motion

∂tρs(t ) = −i[V, ρs(t )] + [
Ũρs(t )Ũ † − 1

2 {Ũ †Ũ , ρs(t )}].
(23)

Comparing with Eq. (20), it is trivial to see that the equation
of motion for ρs is indeed of the Lindblad form with the jump
operator given by Ũ . The general Hamiltonian in Eq. (21)
reduces to the specific one in Eq. (7) with the choice of
operators V = V ′ = 0. Hence, the effective Lindblad equation
which describes the dynamics of the steering protocol in the
time-continuum limit consists only of the jump operators. In
the case of multiple detectors, the Lindblad equation obtained
has multiple jump operators

∂tρs = −i[V, ρs(t )] +
∑

n

[
Ũnρs(t )Ũ †

n − 1

2
{Ũ †

n Ũn, ρs(t )}
]
.

(24)

A few comments regarding the Lindblad equation are in
order which will eventually prove useful in the analysis of
the concrete examples we discuss. Note that the Lindblad
equation is linear in ρs. Hence, if the DHs -dimensional density
matrix ρs(t ) is unravelled as a supervector, �ρs(t ), of dimension
D2

Hs
, the time evolution is simply generated by the superoper-

ator corresponding to the Lindbladian

�ρs(t ) = exp(
←→L t ) · �ρs(0). (25)

The steady-state manifold of the dynamics is then given by
the manifold of states corresponding to zero eigenvalues of
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←→L . Hence, the uniqueness of the steady state can be deter-
mined by studying the degeneracy of the zero eigenvalues.

Moreover, the gap in the spectrum of
←→L between the zero

eigenvalue and the rest of the eigenvalues, {v}, defined as
� = minv �=0{|Re[v]|} determines the nature of the approach
to the steady state. For a finite � in the thermodynamic limit,
the system approaches the steady state exponentially fast in
time with a rate �.

In some of the examples we study, the Lindblad equation
that arises has a special form. Specifically, if there exists a
choice of basis {|α〉} such that all the jump operators are of
the form

√
γαβ |α〉 〈β|, then the matrix elements of the density

matrix in the same basis follow a master equation given by

∂tρs,αβ = δαβ

∑
ν

γανρs,νν − 1

2
ρs,αβ

∑
ν

(γνα + γνβ ), (26)

which directly implies that the off-diagonal elements of
the density matrix decay exponentially in time. Moreover,
the equations for the diagonal elements do not involve the
off-diagonal elements and hence follow a classical master
equation.

C. Steering a pair of spins-1/2

We next illustrate these ideas using a two-spin problem.
Consider a pair of spins-1/2, acted on by the set of Pauli
matrices, {σμ

1 } and {σμ
2 }, which we would like to steer to

the singlet state |S0〉 = (|↑↓〉 − |↓↑〉)/
√

2. The Hilbert space
of two spins-1/2 is four-dimensional with the subspace or-
thogonal to |S0〉 spanned by the three triplet states, |T+〉 =
|↑↑〉, |T−〉 = |↓↓〉, and |T0〉 = (|↑↓〉 + |↓↑〉)/

√
2. Hence, the

simplest steering protocol uses three detector qubits, each for
steering the state out of one of the triplet states onto the singlet
state. At the start of every steering event, each of the detector
qubits is prepared in a pure state fully polarized along the
positive z axis such that

ρd = I2 + σ z
d1

2
⊗ I2 + σ z

d2

2
⊗ I2 + σ z

d3

2
, (27)

where {σμ
di
} denotes the set of Pauli matrices for the ith

detector. For this choice of ρd, the system-detector coupling
Hamiltonian motivated from the form in Eq. (7) can be written
as

Hs-d = J
3∑

i=1

(σ−
di

ρd ⊗ Ui + H.c.), (28)

with

U1 = |S0〉 〈T+| = 1

2
3
2

[(
1 + σ z

1

)
σ−

2 − σ−
1

(
1 + σ z

2

)]
, (29a)

U2 = |S0〉 〈T−| = 1

2
3
2

[(
1 − σ z

1

)
σ+

2 − σ+
1

(
1 − σ z

2

)]
, (29b)

U3 = |S0〉 〈T0| = 1

2

[
σ+

1 σ−
2 − σ−

1 σ+
2 + σ z

1 + σ z
2

2

]
. (29c)

Note from the above equations that UiU
†
j = 0 for i �= j

as each of the triplet states are orthogonal to each other
and also to the target singlet state, and hence the conditions
asserted for the system operators in Sec. II C are satisfied.
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S0 T+ T0 T−

(a2)
Jt = 0.1

S0 T+ T0 T−
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FIG. 1. Steering of a pair of spins-1/2 to the singlet state using
three detector qubits coupled via the Hamiltonian in Eq. (28). (a) The
density matrix of the system, ρs, in the basis spanned by the singlet
and the three triplets as a color map (for the absolute values of the
matrix elements) at different times t . It shows the decaying support
on the Stot = 2 diagonal elements. (b) The evolution of the diagonal
elements of ρs(t ) shows the steering to the singlet. (c) The spectrum
of the corresponding Lindbladian with a unique zero eigenvalue
(steady state) and a finite gap �. (d) The distance of ρs(t ) from the
singlet state |S0〉 〈S0| as measured via the matrix norms in Eq. (18)
decays exponentially in time at a rate is correctly given by �. For the
plots, J = 1 and δt = 0.1.

Results for the evolution of the two-spin system with the
above steering protocol are shown in Fig. 1. All the elements
of density matrix in the basis spanned by the singlet and the
three triplet states decay to zero exponentially in time except
for the diagonal element corresponding to the singlet, which
approaches unity. This shows that the system is indeed steered
to the singlet state exponentially in time.

Turning to the effective Lindblad dynamics corresponding
to the protocol, the three jump operators of the Lindblad
equation can be read off from Eq. (28) as Li = JUi

√
δt . The

spectrum of the so-obtained Lindbladian superoperator,
←→L ,

is shown in Fig. 1(c). The zero eigenvalue is nondegenerate,
implying that the singlet state is the unique steady state of
the dynamics. Moreover, the distance of ρs(t ) from the singlet
state obtained from the exact dynamics and measured via the
Frobenius or the trace norm [Eq. (18)] decays exponentially
in time with a rate given by � × δt , which is in excellent
agreement to the numerically obtained gap in the spectrum
of the Lindbladian between the zero eigenvalue and the rest
of the eigenvalues. This shows that the effective Lindblad
equation is a valid description of the dynamics.

Note further that the form of the jump operators in Eq. (29)
leads the equation of the density matrix elements in the
basis spanned by the singlet and the triplets to be of the
form in Eq. (26). This explains the exponential decay of
the off-diagonal elements. Additionally, the master equation
for the diagonal elements possesses only the loss term for the
triplet states and only the gain terms for the singlet, resulting
the exponential decay and growth of the former and latter
respectively.
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Before concluding the section, it is worth mentioning that
a protocol for steering a pair of spins-1/2 to the singlet using
only a single detector qubit can also be envisaged. Such a
protocol involves steering the system out of any one of the
triplet states onto the singlet state while also acting on it with
an intrinsic Hamiltonian which has matrix elements connect-
ing the other two triplet states to the first one. Consequently,
the Hamiltonian unitarily rotates the states within the triplet
sector and weight from the triplet sector keeps leaking into
the singlet, eventually leading to the pure singlet state as the
steady state. For details, see Appendix C.

IV. SPIN-1 CHAIN

Let us now discuss the steering of a quantum many-body
system, namely that of the spin-1 chain to the AKLT ground
state. The AKLT Hamiltonian is

HAKLT =
N∑


=1

[
1

3
+ 1

2
Ŝ
 · Ŝ
+1 + 1

6
(Ŝ
 · Ŝ
+1)2

]
, (30)

where Ŝ
 denotes spin-1 operators at site 
 and the site 
 =
N + 1 is identified with 
 = 1 to impose periodic boundary
conditions.

It is useful to set up the notation for the rest of the section
here. The projectors onto the three eigenstates of Ŝz


 (with
eigenvalues ±1 and 0 respectively), P±


 and P0

 , are given by

P±

 = [(

Sz



)2 ± Sz



]
/2; P0


 = I3 − P+

 − P−


 . (31)

The total spin on a bond between the sites 
 and 
 + 1 will
be denoted by Stot

(
,
+1) = S
 + S
+1. In what follows, it will
be often convenient to use the simultaneous eigenstates of

(Ŝtot
(
,
+1))

2
and (Ŝtot,z

(
,
+1)), denoted as |Stot, Stot,z〉(
,
+1), where
Stot takes values 0, 1, and 2, and Stot,z takes all integer values
in the range −Stot � Stot,z � Stot. Additionally, we denote the
AKLT ground state as |�AKLT〉 and the corresponding density
matrix as ρAKLT = |�AKLT〉 〈�AKLT|.

The AKLT Hamiltonian with periodic boundaries has a
unique valence-bond ground state which is most easily un-
derstood by noting that HAKLT can be expressed as a sum of
local projectors

HAKLT =
N∑


=1

P (
,
+1)
Stot=2 , (32)

where P (
,
+1)
Stot=2 is a projector onto the five-dimensional Stot =

2 subspace for the pair of spins-1 at sites 
 and 
 + 1. The
form of HAKLT in Eq. (32) implies that the ground state has the
special property that each bond has zero weight in the Stot = 2
sector. Hence, it is natural to imagine that a spin-1 chain can
be steered to the AKLT ground state by locally steering each
bond out of the Stot = 2 sector. Moreover, since the Stot = 2
sector of each bond is finite dimensional, such a steering
protocol would satisfy our physically motivated constraints:
locality and only an extensive number of detectors.

In Sec. IV A, we discuss the basic building block of the
steering protocol, namely steering a pair of spins-1 out of the
Stot = 2 sector. In Sec. IV B, we use this building block to
steer a spin-1 chain to the AKLT state.

A. Pair of spins-1

Consider steering on the bond between a pair of spins-1
labeled as 
 and 
 + 1. The Stot

(
,
+1) = 2 subspace is five
dimensional and hence the simplest protocol involves five
detector qubits, one to steer out of each of the Stot

(
,
+1) = 2
states. Note that we only wish to steer out of the Stot

(
,
+1) = 2
subspace and there are no restrictions on what precise state(s)
in the Stot

(
,
+1) = 1 and Stot
(
,
+1) = 0 subspaces we steer onto.

This offers a lot of freedom in choosing the steering protocol.
This could be exploited to construct the simplest system-
detector coupling Hamiltonian, or from a practical point of
view, the one that it is easiest to implement. In the following,
we choose a particular protocol which steers the state onto the
Stot

(
,
+1) = 1 subspace, keeping the sign of Stot,z
(
,
+1) the same.

At the start of each steering event, the detector qubits [41]
are prepared in a polarized pure state

ρ
(
,
+1)
d = ⊗

5∏
i=1

I2 + σ z
d(
,
+1)

i

2
, (33)

and the system-detector coupling Hamiltonian is of the form

H (
,
+1)
s-d = J

5∑
i=1

σ−
d(
,
+1)

i

ρ
(
,
+1)
d ⊗ U (
,
+1)

i + H.c., (34)

where

U (
,
+1)
1 = (|1, 1〉 〈2, 2|)(
,
+1) = 1

2
[(S−


 − S−

+1)P+


 P+

+1], (35a)

U (
,
+1)
2 = (|1, 1〉 〈2, 1|)(
,
+1) = 1

2

[(
I9 − S−


 S+

+1

2

)
P+


 P0

+1 −

(
I9 − S+


 S−

+1

2

)
P0


 P+

+1

]
, (35b)

U (
,
+1)
3 = (|1, 0〉 〈2, 0|)(
,
+1) =

1

2
√

3

[(
I9−

(S−

 S+


+1)2

4

)
P+


 P−

+1 −

(
I9 − (S+


 S−

+1)2

4

)
P−


 P+

+1+(S+


 S−

+1 − S−


 S+

+1)P0


 P0

+1

]
,

(35c)

U (
,
+1)
4 = (|1,−1〉 〈2,−1|)(
,
+1) = 1

2

[(
I9 − S+


 S−

+1

2

)
P−


 P0

+1 −

(
I9 − S−


 S+

+1

2

)
P0


 P−

+1

]
, (35d)

U (
,
+1)
5 = (|1,−1〉 〈2,−2|)(
,
+1) = 1

2
[(S+


 − S+

+1)P−


 P−

+1]. (35e)
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FIG. 2. Steering of a pair of spins-1 out of the Stot = 2 subspace
using the system-detector coupling Hamiltonian of Eq. (34). (a) The
density matrix of the system, ρs in the |Stot, Stot,z〉 basis as a color map
(for the absolute values of the matrix elements) at different times t :
It shows the decaying and growing support on the Stot = 2 and the
Stot = 0 and 1 subspaces respectively. The blocks demarcated by the
blue, red, and gray dashed lines respectively denote the Stot = 2, 1,
and 0 sectors. (b) The evolution of the diagonal elements of ρs(t )
shows the steering out of the Stot = 2 subspace, all the five diagonal
elements of which decay to zero. For the plots, J = 1 and δt = 0.1.

As in Sec. III, the jump operators for the corresponding
Lindblad equation in the time-continuum limit can be identi-
fied straightforwardly as

L(
,
+1)
i = JU (
,
+1)

i

√
δt . (36)

In the rest of this subsection, we only discuss the pair of
spins-1 and hence drop the labels 
 and 
 + 1. We also refer
to the density matrix of the two spins as ρs(t ). The dynamics
of ρs(t ) under the steering protocol with the system-detector
coupling Hamiltonian in Eq. (34) starting from a random
mixed state is shown in Fig. 2. Expressed in the |Stot, Stot,z〉
basis, the matrix elements of ρs(t ) in the Stot = 2 block and
the off-diagonal blocks connected to it decay exponentially
in time. At long enough times, ρs(t ) is supported entirely
on the subspace spanned by the Stot = 1 and Stot = 0 states,
and thus is steered out of the Stot = 2 subspace. With regard
to the corresponding Lindblad equation, note that the jump
operators, Eq. (36), for the system-detector coupling Hamil-
tonian, Eq. (35), result in an equation of motion of the form
of Eq. (26) for the matrix elements of ρs(t ) in the |Stot, Stot,z〉
basis. Several features of the dynamics can be inferred from
this observation. For any state |α〉 in the Stot = 1 or Stot =
0 sector, γνα = 0 for ν �= α which renders the off-diagonal
matrix elements within the Stot = 1 and Stot = 0 subspace
invariant in time [see also Figs. 2(a1)–2(a4)]. This also implies
that the master equations for the diagonal elements within this
subspace have no loss terms and only gain terms, contrary to
those in the Stot = 2 subspace, which only have loss terms.
One can then immediately infer that the support of ρs(t ) on the
Stot = 2 subspace decays exponentially, whereas it grows on
the Stot = 1 and Stot = 0 subspace before saturating to unity.

An important point to notice is for a pair of spins-1, the
above dynamics does not have a unique steady state unlike
the case exemplified in Sec. III C. This is due to the fact
that in the case of the spins-1, the steering is not onto a
particular pure state but rather onto a subspace of states, and
the specific steady state of the dynamics depends on the initial
condition of the system. The nonuniqueness of the steady state
for the pair of spins-1 is also manifested in the corresponding
Lindbladian having a degenerate zero-eigenvalue manifold.
In the case of a spin-1 chain, as we will discuss in the next
subsection, the uniqueness of the AKLT ground state leads
to the uniqueness of the steady state reached under dynamics
obtained by extending the approach described above to all the
bonds of the chain.

B. Steering to the AKLT state

Let us now discuss in detail the many-body case of a chain
of spins-1. The protocol for steering the system to the AKLT
ground state is a scaled-up version of the protocol described
in the previous subsection where each bond is steered out of
the Stot = 2 subspace and as such there are 5N detector qubits
at play, N being the size of the spin-1 chain. Formally, the
initial state of the detectors at the start of each steering event
is expressed as

ρd = ⊗
N∏


=1

5∏
i=1

I2 + σ z
d(
,
+1)

i

2
, (37)

and the system-detector coupling Hamiltonian is of the form

Hs-d = J
N∑


=1

5∑
i=1

(
σ−

d(
,
+1)
i

ρd ⊗ U (
,
+1)
i

)+ H.c., (38)

where U (
,
+1)
i is the same as in Eq. (35).

Let us first argue that the protocol described by Eqs. (37)
and (38) does posses the AKLT ground state at least as
one of its steady states. Note that each term in the system-
detector coupling Hamiltonian in Eq. (38) is of the form
σ−

d ⊗ |1, s1〉 〈2, s2| + H.c.. Hence, a state of the form ρd ⊗
ρAKLT is annihilated by the Hamiltonian as σ+

d ρd = 0 =
|1, s1〉 〈2, s2| ρAKLT, implying that ρAKLT is indeed a steady
state of the dynamics. However, compared to the “ideal”
steering protocol described in Sec. III, a number of difficulties
arise for many-body systems. The difficulties arise because
the Hilbert space for a many-body system is exponentially
large in system size. The protocol of Sec. III uses a separate
term in Hs-d to steer to the target state from each other state.
Such an approach is not practical for a many-body system,
where one requires a limit of at most an extensive number
of terms in Hs-d. In the following, we discuss these issues,
and present numerical results for the AKLT chain which show
successful steering in this many-body setting.

In the derivation of the strong inequality for steering in the
presence of multiple detectors (see Sec. II C and Appendix B),
we had required that U (m)

s U (n)†
s = 0 if U (m)

s and U (n)
s have

overlapping spatial supports. For the system-detector cou-
plings with Eq. (35) for the AKLT chain, it can be shown
that U (
,
+1)

i U (r,r+1)†
j �= 0 if |
 − r| = 1. In other words, the

assumption made in the derivation is not satisfied by the
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system-detector couplings on adjacent bonds but it is satisfied
by all the other pairs of couplings. The noncommutativity
of the steering operators on adjacent bonds may also lead
to nonmonotonic time dependence for EAKLT(t ). Steering a
bond, say between sites 
 and 
 + 1, affects the state of three
bonds: the one that is steered and the two adjacent to it. While
the energy of the bond being steered necessarily goes down as
steering decreases Tr[P (
,
+1)

Stot=2 ρs(t )], the same need to be the

case for Tr[P (
′,
′+1)
Stot=2 ρs(t )] with 
′ = 
 ± 1. For this reason,

the total energy of the state need not decrease.
The difficulty associated with the noncommutativity of the

steering operators can be partially removed by considering a
protocol in which each steering step is divided into multiple
steps, in one of which only the system-detector couplings
on a particular bond acts. In this case, at any time only one
bond is steered. For the operators acting on the same bond,
U (
,
+1)

i U (
,
+1)†
j = 0 as the different Stot = 2 states on each

bond are orthogonal to each other. Hence, the inequality is
satisfied in each of the steps. The evolution of the diago-
nal element of the system’s density matrix corresponding to
|�s⊕〉 = |�AKLT〉 is then described by

〈�s⊕|ρs(t + (
 + 1)δt )|�s⊕〉
= 〈�s⊕|ρs(t + 
δt )|�s⊕〉

+
5∑

i=1

〈�s⊕|U (
,
+1)
i ρs(t + 
δt )U (
,
+1)†

i |�s⊕〉
︸ ︷︷ ︸

Q


sin2 δt,

(39)

where the equation corresponds to the specific case of steering
the bond between sites 
 and 
 + 1.The sum on the right-hand
side of Eq. (39) is over all the detector qubits, acting only on
the bond between sites 
 and 
 + 1. Since U (
,
+1)

i U (
,
+1)†
j �=

0, Eq. (39) follows from the derivation of Eq. (B5)
(Appendix B). Note that Q
 � 0 for all 
 as for Q in Eq. (16).
In the time-continuum limit δt → 0, the set of equations in
(39) for all 
 give

〈�s⊕|ρs(t + Nδt )|�s⊕〉 = 〈�s⊕|ρs(t )|�s⊕〉 + (δt )2Q, (40)

with Q = ∑

 Q
.

Since Q � 0, Eq. (40) ensures that the state is never steered
further away from the target AKLT state if Q is employed as
a measure of distance from the target state. At the same time,
Q = 0 does not necessarily ensure that the system is in the
target state. As an illustration, consider an initial pure state
that has excitations on multiple bonds. A single steering step
of the type we have described removes one excitation without
generating overlap with the target state, and so Q = 0 for this
step. So while the state changes, its overlap with the AKLT
state does not.

In fact, for our steering protocol it can be shown explicitly
that there can arise ρs(t ) for which the change in EAKLT(t )
[defined in Eq. (19)] is positive. Using EAKLT(t ) as a measure
of distance, one would then conclude that the state is steered
further away from the AKLT ground state. To show this, we
use the fact that steering a bond affects only three bonds or
equivalently the four sites involving them. Since HAKLT is a
sum of projectors for each bond, the change in energy can
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FIG. 3. Steering of a spin-1 chain to the AKLT ground state.
(a) The evolution of the reduced density matrix of two adjacent spins,
ρ (2)

s , shown as a color map (for the absolute values of the matrix
elements) in the |Stot, Stot,z〉 basis. The support on Stot = 2 sector
decays to zero and so do the off-diagonal elements in this basis.
(b) The evolution of the diagonal elements of ρ (2)

s . The horizontal
dashed lines denote the values 1/3 and 2/9, obtained from ρ

(2)
AKLT.

(c) The distance between ρs(t ) and ρAKLT as measured via the matrix
norms DF and D1 decays exponentially to zero with time. The dashed
line represents an exponential decay with a rate � obtained from the
spectral gap of the corresponding Lindbladian. For the plots, N = 5,
J = 1, and δt = 0.1.

be expressed to leading order in δt as (see Appendix D for
details)

�EAKLT(t ) = −(δt )2Tr[Ê
ρs(t )], (41)

where Ê
 is a four-site operator involving sites 
 − 1, . . . , 
 +
2. Since the spectrum of the operator Ê
 includes eigenvalues
of both signs, monotonic decay of EAKLT(t ) is not guaranteed.
On the other hand, we find that for a choice of ρs(t ) which
leads to an initial growth of Ê
, the distance from the target
measured via DF (t ) or D1(t ) nevertheless decays monoton-
ically. A detailed study of the monotonicity of steering, or
lack thereof, depending on the distance measure, is presented
in Appendix D. The upshot of this study is that one needs
to show that the target state is the unique steady state of the
dynamics. As any state of the spin-1 chain which is not the
AKLT state will have some overlap on the Stot = 2 sector
on one or more bond, the form of the operators in Eq. (35)
ensures that such a state is not a stationary state.

To demonstrate that the AKLT state is indeed the unique
state and also to show the validity of results away from the
time-continuum limit, we simulate numerically the dynamics
of a spin-1 chain starting from a random mixed state subjected
to the steering protocol with all the bonds steered simulta-
neously. We calculate two quantities: (i) the reduced density
matrix of a pair of adjacent spins-1 which we denote as ρ (2)

s ,
and (ii) the distance of ρs(t ) from ρAKLT as a function of time,
measured via D1 and DF .

The results are shown in Fig. 3. The evolution of ρ (2)
s (t )

shows that each bond is indeed steered out of the Stot =
2 subspace. However, a drastic difference between the
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dynamics of ρ (2)
s and that of a single pair of spins-1 is that

the former has a unique steady state which is diagonal in the
|Stot, Stot,z〉 basis with 〈1, s1|ρ (2)

s (t → ∞)|1, s1〉 = 2/9 and
〈0, 0|ρ (2)

s (t → ∞)|0, 0〉 = 1/3. This highlights the collective
effect of the many-body yet local steering protocol, as each
of the system-detector couplings are such that they keep the
off-diagonal elements within the Stot = 1 and 0 subspace
invariant. Moreover, note from the terms in Eq. (35) that they
do not change the diagonal element corresponding Stot = 0.
On the other hand, in the many-body case, the matrix element
of ρ (2)

s on a particular bond goes to its steady state value of 1/3
purely due to the interplay of the steering on the bond with that
on the other bonds, further highlighting the collective effects
of the many-body steering protocol.

The fact that ρ (2)
s approaches a diagonal form in the

|Stot, Stot,z〉 basis with the diagonal elements taking the above-
mentioned specific values is crucial because ρ

(2)
AKLT has exactly

this feature. For the reduced density matrix of a subsystem of
the spin-1 chain comprising the contiguous sites 
1 through

n, it can be easily argued that its eigenvectors corresponding
to nonzero eigenvalues are the four degenerate AKLT ground
states of the spin-1 chain of length n with open boundary con-
ditions described the Hamiltonian Hsubsys = ∑
n


=
1
P (
,
+1)

Stot=2 .

At the same time, Hsubsys commutes with (
∑
n


=
1
Ŝ
)2 and∑
n


=
1
Ŝz


. These eigenstates are simultaneous eigenstates of

Hsubsys, (
∑
n


=
1
Ŝ
)2, and

∑
n

=
1

Ŝz

. For n = 2, it directly

implies that ρ (2)
s is diagonal in the |Stot, Stot,z〉 basis. Moreover,

it has been shown that the four nonzero eigenvalues are (1 +
3(−3)−n)/4 and (1 − (−3)−n)/4 with a threefold degeneracy
[42], which for n = 2 are 1/3 and 2/9 respectively. Since
every bond of the spin-1 chain is steered to a state that
corresponds to the AKLT ground state of the entire chain,
it is natural that the many-body state ρs(t ) is also steered
to ρAKLT. This confirmed by the exponential decay of the
distances DF and D1 between ρs(t ) and ρAKLT with time as
shown in Fig. 3(c).

So far we have argued that ρAKLT is a steady state of the
steering protocol and have shown numerically that an arbitrary
initial state of a finite spin-1 chain evolved with the steering
protocol approaches the AKLT ground state exponentially fast
in time. The natural question to ask then is what happens
to the steering protocol in the N → ∞ limit, with regard to
both the uniqueness of the steady state and the timescale for
steering to it. We find it most convenient to answer these
questions in terms of the Lindbladian corresponding to the
steering protocol. Following the discussion in Sec. III B, the
jump operators, of which there are 5 × N , can be immediately
identified as L(
,
+1)

i = JU (
,
+1)
i

√
δt . For convenience, we

will set J
√

δt = 1 in the following. As discussed in Sec. III B,
the uniqueness of the steady state manifests itself in the

nondegeneracy of the zero eigenvalue of
←→L . The rate of the

approach to the steady state is given by the gap � of the rest of
the spectrum from the zero eigenvalue. Hence, it is instructive
to study the scaling of � with N .

By exactly diagonalizing
←→L for finite sizes, we find that

the zero-energy eigenvalue is indeed nondegenerate and the
unique steady state corresponding to it is identical to ρAKLT.

The dimension of
←→L is 32N , which restricts calculations to
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FIG. 4. Scaling of steering rate with system size for the spin-1
chain. (a) The exponential approach of the spin-1 chain to the AKLT
state as obtained from the wave-function Monte Carlo method for
solving the Lindblad dynamics for different system sizes N . As the
method involves evolving pure states, we measure the distance from
the AKLT state via log(1 − 〈ψ (t )|�AKLT〉) where the bar denotes the
average over the wave-function trajectories. The black dashed lines
are fits to the data used to extract �. (b) The rate of the exponential
approach to the steady state (SS) obtained from panel (a) or equiv-
alently the gap in the spectrum of the Lindbladian obtained from
exact diagonalization of L shown as a function of 1/N . The intercept
indicates a finite � in the thermodynamic limit. The data for panel
(a) were averaged over 20 000 trajectories and the error bars were
obtained via standard bootstrap with 500 resamplings. Errors in the
extrapolated value of � introduced via the errors in � for different
N as well as the fitting procedure are also shown but the error bars
are smaller than the point size.

N � 8. In order to extract � for slightly larger sizes, N � 10,
we solve for the dynamics of the Lindblad equation using the
wave-function Monte Carlo method, which involves evolving
pure states with stochastic quantum jumps and then averaging
over the so-obtained trajectories [43,44]. With this method,
we find again that the spin-1 chain approaches the AKLT
ground state exponentially quickly in time and hence the rate
� can be extracted; see Fig. 4(a). The � obtained from the
dynamics for smaller system sizes agrees very well with the

one obtained from diagonalizing
←→L ; see Fig. 4(b). The two

methods together allow us to study the scaling of � with N
and from the scaling shown in Fig. 4(b), we conclude

�(N ) = �∞ + c/N . (42)

Hence, the gap in the the spectrum of
←→L or equivalently the

timescale required to steer the spin-1 chain to the AKLT state
stays finite in the thermodynamic limit.

Combining all the results presented in this section, we
conclude that the map of Eq. (2), with the detectors’ initial
states and the system-detector coupling described by Eqs. (37)
and (38) respectively, constitutes a protocol for steering a
many-body system to a strongly correlated state, in this case a
spin-1 chain to the AKLT ground state. The protocol satisfies
the constraints of having an extensive number of detector
qubits coupled only locally to the system and of having a
steering timescale that does not diverge in the thermodynamic
limit.
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V. DISCUSSION

In this work, we have developed a general protocol that
uses entanglement to induce steering of a quantum system to
a target state. We have shown how our protocol can be applied
both to steer systems with a few degrees of freedom and to
prepare strongly correlated states in many-body systems. The
form of steering that we study here is rooted in but distinct
from steering of the type discussed originally in the context
of the EPR paradox [1,2]. Specifically, our protocol shares
with earlier discussions of quantum steering the fact that it
exploits the entanglement between the system of interest and
another system. Crucially, however, it differs in offering a
general framework to steer a quantum system into a specific
and predesignated state.

A. Experimental realisations

Experimental implementations of the ideas presented in
this work require realizations of qubits which satisfy several
conditions. (i) The relaxation time of the qubit due to un-
desired coupling to external degrees of freedom should be
long. (ii) Likewise, the coherence times should be long. (iii)
It should be possible to design system-detector couplings as
required for versatile steering to arbitrary target states. (iv)
The system should be scalable to multiple qubits and should
allow for multiqubit interactions (for example, a three-qubit
interaction term in the system-detector Hamiltonian involving
one detector qubit and two system qubits).

There are several promising candidate platforms for realis-
ing our protocol, which include superconducting qubits, cold
ions, nitrogen-vacancy (NV) centers, macroscopic mechanical
objects with entangled quantum degrees of freedom, and
quantum optics systems. These are platforms that have all
been tested, or will be tested, as far as the steering of a
single qubit is concerned. The extent to which more complex
systems, comprising multiple quantum degrees of freedom,
may be steered relies on the extent to which conditions listed
earlier can be satisfied. In the following, we briefly discuss
some of these platforms.

1. Superconducting qubits

The most prospective experimental avenue for our proposal
is based on superconducting qubits. There are two realiza-
tions of qubits which appear to be the leading candidates
for constructing steering platforms. The first are transmons.
In previous experimental work, weak measurements were
constructed via entangling operations between two supercon-
ducting qubits, and subsequent projective measurement on the
detector qubit [45], which is exactly the measurement struc-
ture we propose in this work. Another approach, implemented
primarily for the steering of a single qubit, relies on dispersive
interaction between the qubit and a coupling to a waveg-
uide cavity. Existing implementations of weak measurement
backaction on such a systems [46–49] have three major dif-
ferences from our steering protocol. First, the sequence of
weak measurements in the experiments amounts to a strong
measurement when integrated over time (i.e., when consider-
ing a sequence of many weak measurements), which projects
the initial state onto a final state with probabilistic outcomes.

Second, the experiments make use of postselected readouts.
Third, the specifics of the experiment rely on knowledge of the
system’s initial state. A further experiment [32,50] focuses on
the study of a three-level system, where the evolution of a two-
level subsystem is conditioned on the system not being in the
third level. This can be represented using modified Lindblad
dynamics leading to non-Hermitian Hamiltonian dynamics.
Alternatively, the dynamics can be described in terms of a
set of null weak measurements with post-selected readout
sequence [51,52]. Either picture differs substantially from our
protocol. However, adjusting these protocols to our paradigm
of steering should be rather straightforward. Generalizations
of these protocols could work for a detector coupled to two or
more qubits [53].

The second possible realization of superconducting qubits
involves the use of state-of-the-art fluxonium qubits. These
offer coherence times comparable to more common transmon
qubits, with increased anharmonicity, reduced cross-talk, and
design flexibility. Such devices could be implemented to
construct both our many-body system as well as the detector
qubits [54–57]. Concretely, two fluxonium qubits could be
coupled with variable strengths. One fluxonium plays the
role of the qubit to be steered, while the other fluxonium,
inductively coupled to a readout resonator [56], plays the
role of detector on which dispersive projective readout can
be performed with high fidelity. The coupling between the
qubits can be implemented using shared capacitors or shared
inductors. With the recent availability of compact inductors
with low nonlinearity, using disordered superconductors, such
as granular aluminum [58] or TiN [59], inductive coupling
appears more appealing, as it minimizes cross-talk between
the qubit to be steered and the readout resonator.

2. Cold ions

Another prospective platform for implementing
measurement-induced steering is based on cold ions trapped
by magnetic field and lasers. Qubits are implemented in
electronic states of each ion and the ions in a common trap
can communicate with each other via intrinsic long-range
interactions and external, laser-induced couplings. Below,
we will describe an example of such a platform consisting
of Sr+ ions, which are essentially hydrogen-like atoms with
one outer electron; the lowest two levels represent the qubit.
Coupling to the ion with light can effect arbitrary unitary
rotations. Qubit operations are well developed in this area, but
steering of a single qubit is only under way, while a challenge
for applications to steering is to develop multiple-qubit
operations.

Generalizing from single-qubit to two-qubit measurements
is highly challenging. The more straightforward protocol
would involve shining light of a wavelength larger than the
distance between ions, so that each ion can absorb and emit
a photon, ensuring coherence between the two ions [60–63].
The detection of an emitted photon in a given direction de-
termines the backaction. To achieve versatility of the system-
detector Hamiltonian, one needs to go one step further and
designate one ion as a detector that measures two other ions
(one on the left and the other on the right of it). Every two
neighboring ions can be made to interact through terms of the
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system-detector Hamiltonian that flip the pair of qubits. If it
is possible to couple and decouple the detector and the left
spin on demand, and separately the detector and the right spin,
then by performing unitary transformations on the right spin
detector and/or the left spin detector a broad class of effective
three-qubit Hamiltonians can be achieved.

It is also worth noting that dynamical maps governing
nonunitary time evolution of quantum systems have also been
experimentally realized using trapped 40Ca+ ions [64].

3. Nitrogen-vacancy (NV) centers

NV centers in diamonds are point defects which realize
electronic spins localized at atomic scales. In these setups,
the detector could be the NV center and the qubits could be
13C nuclei spins. The interaction between them is of a dipole-
dipole type, which may be controlled with high precision [65].
Direct optical measurement can only be preformed on the NV
center. The control is made with microwaves [66]. Another
possibility is to use NV centers to control external spins
[67]. In principle, one could aim at a multispin measurement
or control. The level structure for such systems has been
analyzed extensively [68]. Various aspects of the NV readout
and polarization mechanism [69] as well as control at weak
coupling have been studied (cf. Refs. [70] and [71] for theory
and experiment respectively). We note that the control can be
much improved at low temperatures [72].

4. Macroscopic mechanical objects

Measuring and controlling macroscopic mechanical ob-
jects that exhibit quantum coherence is a challenge realized in
recent years [73]. The next step, accomplished very recently
[74], is to scale this up to two macroscopic mechanical
degrees of freedom. Unfortunately, achieving a high level of
control and measurement may expose the system to undesired
interactions with its environment, a problem that becomes
more pronounced at the macroscopic scale. Using a super-
conducting electromechanical circuit and a pulsed microwave
protocol, a system of two mechanical drumheads has been
steered toward an entangled state, where entanglement of
continuous degrees of freedom satisfies the criteria formulated
[75,76]. The strength of the measurement in these systems
can be tuned from strong to weak, and coherence may be
maintained over long timescales. However, given the immense
experimental difficulties here, the issues of versatility of
system-detector Hamiltonian, and the question of scalability
to systems consisting of multiple degrees of freedom are all
likely to remain a challenge in the near future.

Finally, one could adopt these ideas to the field of quantum
optics [77]. Photon polarization has been used as a qubit, for
example, in the process of storing and then retrieving quantum
information in cold-atom platforms [78]. More directly related
to our ideas are two polarization-based qubits (one serving as
system and the other as detector), allowing for back-action
control [79].

In summary, experimental implementations of our ideas
should be assessed according to the complexity of the re-
quired platform. As far as a single-qubit steering is concerned,
reliable implementations are achievable with all platforms.
Entangling two qubits has already been done with some

platforms, with the promise that other types of manipulations
are, in principle, also possible. Going to the arena of many-
body physics, one needs to engineer scalable multiqubit states
by our steering protocols. This is feasible with platforms
based on superconducting qubits and NV centers, where flexi-
ble (and, in principle, arbitrarily complex) few-qubit-detector
couplings can be engineered, as demonstrated for two-qubit
realizations. Implementation of many-body steering on these
platforms requires experimental efforts toward long coherence
times, circuit connectivity, and quality control of system-
detector coupling and detector reinitiation. Importantly, even
when some specific system-detector couplings are still hard to
design for technological reasons, the shake-and-steer protocol
may resolve this issue. We expect our work to stimulate
experiments based on existing and future platforms in the
direction of steering and manipulating many-body states.

B. Connection to previous work

The use of external degrees of freedom as a designed
environment for manipulating and controlling quantum states
has been discussed previously in other settings [23,29,30,80].
Treatment of the environment as Markovian or the measure-
ments as nonselective leads to a Lindblad equation, similar to
one derived in the present work. Much of the earlier focus has
been either on the formal aspects of such nonunitary dynam-
ics, or on applications involving few-body quantum systems.
Our work constitutes a generalization of such quantum control
and steering to macroscopic many-body systems.

In the context of open quantum systems, the creation of
nontrivially correlated or topological many-body states has
been proposed using so called drive-and-dissipation schemes
[17–19,22,24–26,81]. In such schemes, the system is driven
or excited using a time-dependent Hamiltonian while a dis-
sipative channel, often a Markovian environment, working
simultaneously relaxes the system. This interplay of drive
and dissipation is then used to engineer nontrivial states.
From a theoretical point of view, the Markovian nature of
the environment naturally lends itself to a treatment via the
Lindblad equation, hence yielding a formal connection to our
measurement protocol in the time-continuum limit alluded to
previously. In fact, the jump operators postulated in Ref. [18]
in the context of the AKLT chain also bear formal similarities
with those derived in our case from the measurement protocol.

Further related work is described in Ref. [20], where aux-
iliary qubits are exploited to drive a Rydberg-atom realization
of Kitaev’s toric code to its ground state. Excited states of the
toric code contain spatially localized excitations on plaquettes
or vertices of the system, which can annihilate in pairs. The
protocol of Ref. [20] takes advantage of this special feature
of the toric code. To cool this system to its ground state,
an implementation of Lindblad jump operators is proposed
that generates stochastic motion of excitations, so that pairs
meet and annihilate. An advantage of our steering protocol
for the AKLT chain is that we directly steer each local degree
of freedom of the system (a bond between two sites in the
AKLT chain) toward the ground state. Moreover, our general
protocol is independent of special features of the steered
system. The local unit which is steered could have a large
excited state manifold; steering would still be possible using
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the shake-and-steer protocol (see Appendix C) with a finite
number of locally coupled detectors.

In contrast to the drive-and-dissipation protocols, our
measurement-based protocol does not require a system
Hamiltonian to induce dynamics in the system. Moreover,
unlike an environment which is to a large extent uncontrolled,
the detectors that play the role of the dissipative channel are
well-controlled simple quantum systems that can be tuned in
time. As on-demand jump operators, they represent a partic-
ularly a useful form of quantum manipulation and control.
Moreover, as outlined above, using the measurement out-
comes for active decision making, or having a measurement
protocol which varies with time and has a memory kernel,
takes us to realms that seemingly cannot be addressed by
drive-and-dissipation techniques.

C. Future directions

There is a wide range of possible future directions and
open questions arising from the work presented here, and
we close by outlining some of these. While the protocol we
have described is arguably the simplest version, it is also
quite robust in the sense that the probability of reaching the
target state is unity irrespective of the initial state of the
system. One can also envisage a wide variety of general-
izations, in which instead of simply decoupling the detector
qubits from the system of interest at the end of each steering
step, a projective measurement is made of the final detector
states. In this broader context, the protocol we have described
corresponds to the special case of blind measurements in
which an unbiased average is made over all such measurement
outcomes. A natural direction is to ask whether making use
of the measurement outcomes can allow optimization of the
protocol. More precisely, the initial state of the detector, the
system-detector coupling, and the duration of the coupling
at each step can be made to depend on the measurement
outcome of the previous step or on an extended history of
the measurement outcomes. Active error correction could be
viewed as an example of a broader class of protocols involving
such decision making. Generalized protocols of this type are
manifestly not Markovian and hence are not describable in
terms of a Lindblad equation with time-independent jump
operators. In the context of quantum control [80], there have
been proposals to utilize the measurement outcomes as a
feedback to the dynamics using the so-called quantum fil-
tering equations [29,31]. Another direction for taking non-
Markovian effects into account is via the quantum collision
models [82]. We reserve the generalization of our protocol to
include such effects for future work.

There are many possible motivations for such generaliza-
tions. One would be to optimize the timescale over which
the system reaches a predefined vicinity of the target state.
Another would be to maximize the purity of the quantum state
of the system throughout the protocol. This would become
particularly important if one extends the objective of the steer-
ing protocol from preparation of a target state to manipulation
of a state using a sequence of weak measurements [83].

Another set of open questions concerns the robustness
of the protocol to deformations of the initial states of the
detector qubits or of the system-detector couplings. These

questions call for a detailed and comprehensive study of the
consequences of errors in steering protocols and possible
ways of correcting them, which we leave for a future work.
Specifically, one could ask under these conditions whether the
system has a steady state, and if so how its distance from the
target state scales with the strength and probability of errors in
the steering protocol. Furthermore, one might look for specific
error correction protocols akin to a stabilizer formalism [84],
but within the setting of a steering protocol.

It is reasonable to anticipate that a finite gap in the spec-
trum of the Linbladian in the thermodynamic limit (as we
find in our study of the AKLT state) will ensure that the
steady state is robust to small random errors in the steering
protocol that are local in space and time. Robustness of
the protocol to time-independent deformations is a separate
issue. A specific instance concerns the interplay of a system
Hamiltonian (which we have so far omitted) with the system-
detector coupling Hamiltonian. This would amount to having
a nonzero V in Eq. (23). It is clear that if the Lindbladian
in the absence of the system Hamiltonian shares an invariant
subspace with the system Hamiltonian, the steering protocol
is robust to the latter. However, if that is not the case, the
apparent tension between the system Hamiltonian and the
system-detector coupling Hamiltonians could lead to a new
steady state which deviates continuously with the strength of
the system Hamiltonian from the original dark state. Alter-
natively, in the many-body case there could be a dynamical
phase transition in the nature of the steady state.

In fact, measurements on an otherwise random unitary
circuit have been shown to induce an entanglement phase
transition in the steady state as a function of the density or
strengths of measurements [85–94]. Most of these works use
local projective measurements or generic positive operator-
valued measurements which manifestly decrease the entangle-
ment. However, our work shows that measurement protocols
can be constructive in the sense that they can be designed
so that steady state is a strongly correlated state. Thus, a
natural question arises as to the extent to which measurement
protocols and their interplay with system Hamiltonians can be
classified in terms of entanglement properties of the resulting
steady states.

An intriguing future direction would be to study measure-
ment protocols for which the emergent Lindbladian has a dark
space spanned by several dark states. An example is provided
by the AKLT state in an open chain, for which this space is
four dimensional. In such a scenario, one can envision a closed
adiabatic trajectory (in the protocol parameter space) that
could be used to induce a unitary transformation in the dark
space. This could be harnessed to induce adiabatic rotations
in a degenerate many-body space and may even give rise to a
many-body non-Abelian geometric phase [95,96]. Similarly,
the presence of multiple stationary states of Lindbladians has
been used theoretically to realize dissipative time crystals
[97–100], and these could in principle also be generated via
a measurement protocol.
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APPENDIX A: STEERING A SINGLE SPIN-1/2 TO AN
ARBITRARY STATE

In the toy example of a single spin-1/2 presented in
Sec. II D, the target state of the system qubit was the same
as the initial state of the detector. In this Appendix, we

demonstrate that this is not a requirement and show that our
protocol can be used to steer the system qubit to an arbitrary
target state. Let us suppose that we always prepare the detector
spin in its |↑d〉 state, but we want to steer the system spin to a
pure state of the form

|�s⊕〉 = cos(θ/2) |↑s〉 + sin(θ/2) |↓s〉 . (A1)

This is easily achieved using a system detector coupling
Hamiltonian of the form

Hs-d = Jσ−
d ⊗ |�s⊕〉 〈�s⊕| (−iσ y

s ) + H.c., (A2)

where −iσ y
s |�s⊕〉 is the state orthogonal to |�s⊕〉 and out of

which we want to steer. In terms of the spin operators, the
Hamiltonian can be written as

Hs-d = J

2
(sin θ σ z

s − cos θ σ x
s − iσ y

s ) ⊗ σ−
d + H.c. (A3)

The resulting dynamics of ρs under the protocol with the
system-detector coupling Hamiltonian as above is shown
in Fig. 5 for θ = π/4. The different lines correspond
to the matrix elements of the time-evolving density ma-
trix of the spin with 〈↑ |ρs(t → ∞)| ↑〉 = cos2(θ/2) and
〈↑ |ρs(t → ∞)| ↓〉 = cos(θ/2) sin(θ/2) at long times show-
ing that in the steady state ρs → |�s⊕〉 〈�s⊕|.

APPENDIX B: DERIVATION OF STEERING INEQUALITY
WITH MULTIPLE DETECTOR QUBITS

In this Appendix, we present some detail of the derivation
of the steering inequality in the presence of multiple detectors.
Partitioning the composite Hilbert space of the system and
the detectors into ρd ⊗ Hs and (Dd ) ⊗ Hs as in Sec. III A,
the system-detector coupling Hamiltonian of Eq. (7) can be
expressed as

Hs-d =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|�d〉 · · · O(1)
d |�d〉 · · · O(n)

d |�d〉 · · ·
|�d〉 0 0 U †

1 · · · U †
n · · ·

... 0 0 · · · · · · · · · 0

O(1)
d |�d〉 U1

...
. . .

. . .
. . .

...
...

...
...

. . .
. . .

. . .
...

O(n)
d |�d〉 Un

...
. . .

. . .
. . .

...
...

... 0
. . .

. . .
. . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B1)

where the labels {O(n)
d |�d〉} on the rows and columns of the matrix denote the positions of nonzero entries, Un and U †

n . The entry
labeled by n corresponds to the coupling of the system with the nth detector. With this notation, the operator W = exp (−iHs-dδt )
takes the form

W =
∞∑

k=0

(−iδt )2k

(2k)!

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

X k −iδt
2k+1 X k[· · · U †

1 · · · U †
n · · · ]

−iδt
2k+1Y k

⎡
⎢⎢⎢⎢⎢⎢⎣

0
U1
...

Un
...

⎤
⎥⎥⎥⎥⎥⎥⎦ Y k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B2)

033347-15



ROY, CHALKER, GORNYI, AND GEFEN PHYSICAL REVIEW RESEARCH 2, 033347 (2020)

where

X =
∑

i

U †
n Un; Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

...
U1
...

Un
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⊗ [· · · U †
1 · · · U †

n · · · ]. (B3)

Using the form of the operator W from Eq. (B1) in the map described by Eqs. (1) and (2), we obtain the time-evolved density
matrix of the system as

ρs(t + δt ) =
∞∑

k,l=0

(−iδt )2k (iδt )2l

(2k)!(2l )!
X kρs(t )X l +

∞∑
k,l=0

(−iδt )2k+1(iδt )2l+1

(2k + 1)!(2l + 1)!

∑
n

UnX kρs(t )X lU †
n . (B4)

The quantity of interest is 〈�s⊕|ρs(t )|�s⊕〉, which can be obtained from Eq. (B4) under the condition that either U (m)
s U (n)†

s = 0
for n �= m or U (m)

s and U (n)†
s commute, in the form

〈�s⊕|ρs(t + δt )|�s⊕〉 = 〈�s⊕|ρs(t )|�s⊕〉 +
∑

n

〈�s⊕|U (n)
s ρs(t )U (n)†

s |�s⊕〉 sin2(δt ), (B5)

which is the same as equation as Eq. (16) with Q given
by Eq. (17). This concludes our derivation of the steering
inequality for the case of multiple detectors.

APPENDIX C: SHAKE-AND-STEER PROTOCOL

In all the previously discussed cases, the number of system-
detector couplings used locally is equal to the dimension of
the subspace orthogonal to the target state. The shake-and-
steer protocol permits steering with just one system-detector
coupling. An additional Hamiltonian acting on the system
unitarily rotates the state of the system within the orthogonal
subspace. Thus, the weight from the orthogonal subspace
keeps leaking into the target state via one channel correspond-
ing to the system-detector coupling, while the weight from the
rest of the orthogonal subspace is shaken into the dissipative
channel via the system Hamiltonian. Let us illustrate the
protocol using the steering of two spins-1/2 to the singlet
state, similar to the one in Sec. III C.

Out of the three system-detector couplings used there,
Eq. (29), let us consider only one of them, such that

Hs-d = J (σ−
d ⊗ U3 + H.c.). (C1)

The above coupling steers the state of the system to the
singlet only from the |T0〉 state and leaves the |T±〉 subspace
untouched. However, the state can be shaken out of the |T±〉
subspace onto the |T0〉 via a system-Hamiltonian of the form

Hs = θ1 · σ1 + θ2 · σ2, (C2)

where θ1/2 can be arbitrary vectors [101].
The time-evolution map of the density matrix of the system

can be written explicitly as

ρs

(
t + δt

2

)
= Trd

[
e−iHs-d

δt
2 ρd ⊗ ρs(t )eiHs-d

δt
2
]
, (C3a)

ρs(t + δt ) = e−iHs
δt
2 ρs

(
t + δt

2

)
eiHs

δt
2 , (C3b)

with Hs-d and Hs given by Eqs. (C1) and (C2) respectively.
Simulating the protocol described above again shows steering
to pure singlet state; see Fig. 6(a). The Lindblad equation
describing the dynamics in the time-continuum limit now also
has a unitary part in addition to the dissipative part. The
spectrum of the corresponding Lindbladian has a unique zero
eigenvalue; see Fig. 6(b).

Such protocols can be easily generalized to the case of the
AKLT state. For a pair of spins-1, a single system-detector
coupling steers weight out of one of the Stot = 2 states and a
Hamiltonian rotates the system within the Stot = 2 subspace
in a sufficiently general fashion.

APPENDIX D: MONOTONICITY OF STEERING
TO THE AKLT STATE

The numerical results in Sec. IV B show that the AKLT
ground state is the unique steady state of our measurement
dynamics and steering to it is guaranteed via our protocol.
However, the approach to the steady state is not necessarily
monotonic and can depend on the distance measure used. In
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FIG. 6. Shake-and-steer protocol for steering a pair of spins-1/2
to the singlet state. (a) The dynamics of the diagonal elements of the
density matrix under the protocol described in Eq. (C3) with θ1 =
θ2 = J (1, 1, 1). (b) The spectrum of the corresponding Lindbladian
with a unique zero-eigenvalue corresponding to the singlet state.

033347-16



MEASUREMENT-INDUCED STEERING OF QUANTUM … PHYSICAL REVIEW RESEARCH 2, 033347 (2020)

100 101 102 103

steering events

0.0

0.2

0.4

0.6

0.8

1.0

1.2

E
A

K
LT

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

0.05

T
r[
Êρ
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FIG. 7. Evolution of Tr[Êρs(t )] (red, orange) and EAKLT (blue,
cyan) for an initial state which is the eigenstate corresponding to
the most negative eigenvalue of Ê . Results are shown for a N = 4
spin-1 chain. The dots correspond to data points after steering each
bond whereas the squares correspond to data points after steering
each bond of the system once.

this section, we show explicitly that such a situation arises
using EAKLT [Eq. (19)] as the distance measure. We then
compare the results with those of other distance measures.

Since HAKLT = ∑

 P

(
,
+1)
Stot=2 is a sum of projectors for

each bond, we would like to understand the change in
Tr[P (
′,
′+1)

Stot=2 ρs(t )] when the bond between site 
 and 
 + 1
is steered. In the following, we will use the shorthand P =
P (
,
+1)

Stot=2 , P ′ = P (
′,
′+1)
Stot=2 , and Ui = U (
,
+1)

i .
Using Eq. (B4), it can be shown that

Tr[P ′ρs(t + δt )] =Tr[P ′ρs(t )] + Tr
∑

n

[U †
n P ′Unρ(t )] sin2 δt

− Tr[(PP ′ + P ′P )ρs(t )](1 − cos δt )

+ Tr[PP ′Pρs(t )](1 − cos δt )2.

(D1)

The above equation has three different cases:
(i) 
 = 
′: In this case, Eq. (D1) reduces to

Tr[Pρs(t + δt )] = Tr[Pρs(t )] cos2 δt , (D2)

which shows that the bond (
, 
 + 1) is steered toward the
AKLT state.

(ii) 
 and 
′ are such that the two bonds do not share
a common site. In this case, Tr[P ′ρs(t + δt )] = Tr[P ′ρs(t )]
since the steering has no effect on the reduced density matrix
of the bond (
′, 
′ + 1).

(iii) 
 and 
′ are adjacent such that the two bonds in
question share a common site. In this case,

Tr[P ′(ρs(t + δt ) − ρs(t ))] = − 2 sin2(δt/2)Tr[Aρs(t )]

+ 4 sin4(δt/2)Tr[Bρs(t )],
(D3)
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FIG. 8. Evolution of the global and local measures of distance
from the AKLT ground state for the initial state used in Fig. 7
(the eigenstate corresponding to the most negative eigenvalue of Ê).
The Frobenius distance from the target state has a monotonic decay,
whereas the trace distance at early times does not change, although
it does eventually decay to zero. The reduced density matrix of a
particular bond also gets steered to that of the AKLT ground state
but in a nonmonotonic fashion. Results are shown for a N = 4 spin-1
chain. Similar to Fig. 7, the dots correspond to data points after
steering each bond, whereas the squares correspond to data points
after steering each bond of the system once.

where

A = PP ′ + P ′P − 2
∑

n

U †
n P ′Un, (D4a)

B = PP ′P −
∑

n

U †
n P ′Un . (D4b)

The change in energy of the system measured with respect
to HAKLT can be obtained by summing Eq. (D3) over 
′, which
gives

�EAKLT(t ) = −2 sin2(δt/2)Tr[(2P + A− + A+)ρs(t )]

+ 4 sin4(δt/2)Tr[(P + B− + B+)ρs(t )] ,

(D5)

where the operators A± and B± are defined in Eq. (D4)
with 
′ = 
 ± 1. To leading order in δt , a sufficient condi-
tion for the steering to be monotonic would be that four-
site operator Ê
 = P + (A+ + A−)/2 has only non-negative
eigenvalues. However, it turns out that the spectrum of Ê
has both positive and negative eigenvalues. Denoting the
eigenvalues and eigenvectors of Ê as w and |w〉, the condition
on ρs(t ) for EAKLT(t ) to decay (grow) is given by Tr[Êρs(t )] =∑

w w 〈w|ρs(t )|w〉 ≷ 0.
This observation allows us to specifically construct density

matrices which show nonmonotonic steering as measured
by EAKLT. For example, consider the initial density matrix
as ρs(t = 0) = |w−〉 〈w−|, where w− is the most negative
eigenvalue of Ê . For such a state, Tr[Êρs(t )] is trivially
negative. Numerical results for such a situation are shown in
Fig. 7, where EAKLT(t ) initially grows while Tr[Êρs(t )] < 0
and starts decaying only when Tr[Êρs(t )] > 0.
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For such an initial state, it is also interesting compare
the behavior of other distance measures, both spatially lo-
cal such as Tr[P (
,
+1)

Stot=2 ρs(t )] and global such as D1(t ) and
DF (t ). The results are shown in Fig. 8. The distance of a
local reduced density matrix measured via Tr[P (
,
+1)

Stot=2 ρs(t )]
shows a nonmonotonic behavior. This is a manifestation of
the phenomenon that when the bond adjacent to the one being
monitored is steered, the former is steered away from the
target as such the total energy grows.

Turning to global measures of distance, the trace distance,
D1(t ), at early times is flat and it decays to zero only at late

times. This is analogous to the situation described in the main
text where the overlap of the state with the AKLT ground
state stays zero but the state keeps evolving. The Frobenius
distance, DF (t ), on the other hand, decays monotonically to
zero.

The above results show that for many-body systems, mono-
tonicity of steering and the exact condition for convergence to
the target state can depend on the distance measure employed.
Crucially, however, these results along with the numerical
results in Sec. IV B show that the system is guaranteed to be
steered to the AKLT ground state.
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