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Zusammenfassung

Automatisierte Fahrzeuge bendtigen eine hochgenaue Umfeldwahrnehmung,
um sicher und komfortabel zu fahren. Gleichzeitig miissen die Perzeptionsal-
gorithmen mit der verfiigbaren Rechenleistung die Echtzeitanforderungen der
Anwendung erfiillen. Kamerabilder stellen eine sehr wichtige Informationsquel-
le fiir automatisierte Fahrzeuge dar. Sie beinhalten mehr Details als Daten von
anderen Sensoren wie Lidar oder Radar und sind oft vergleichsweise giinstig.
Damit ist es moglich, ein automatisiertes Fahrzeug mit einem Surround-View
Sensor-Setup auszustatten, ohne die Gesamtkosten zu stark zu erhohen.

In dieser Arbeit pridsentieren wir einen effizienten und genauen Ansatz zur
videobasierten Umfeldwahrnehmung fiir automatisierte Fahrzeuge. Er basiert
auf Deep Learning und 16st die Probleme der Objekterkennung, Objektverfol-
gung und der semantischen Segmentierung von Kamerabildern. Wir schlagen
zunichst eine schnelle CNN-Architektur zur gleichzeitigen Objekterkennung
und semantischen Segmentierung vor. Diese Architektur ist skalierbar, so
dass Genauigkeit leicht gegen Rechenzeit eingetauscht werden kann, indem ein
einziger Skalierungsfaktor gedndert wird. Wir modifizieren diese Architektur
daraufhin, um Embedding-Vektoren fiir jedes erkannte Objekt vorherzusagen.
Diese Embedding-Vektoren werden als Assoziationsmetrik bei der Objektver-
folgung eingesetzt. Sie werden auch fiir einen neuartigen Algorithmus zur
Non-Maximum Suppression eingesetzt, den wir FeatureNMS nennen. Fea-
tureNMS kann in belebten Szenen, in denen die Annahmen des klassischen
NMS-Algorithmus nicht zutreffen, einen hoheren Recall erzielen.

Wir erweitern anschlieend unsere CNN-Architektur fiir Einzelbilder zu einer
Mehrbild-Architektur, welche zwei aufeinanderfolgende Videobilder als Ein-
gabe entgegen nimmt. Die Mehrbild-Architektur schitzt den optischen Fluss
zwischen beiden Videobildern innerhalb des kiinstlichen neuronalen Netzwerks.
Dies ermoglicht es, einen Verschiebungsvektor zwischen den Videobildern fiir
jedes detektierte Objekt zu schitzen. Diese Verschiebungsvektoren werden
ebenfalls als Assoziationsmetrik bei der Objektverfolgung eingesetzt.



Abstract

Zuletzt priasentieren wir einen einfachen Tracking-by-Detection-Ansatz, der
wenig Rechenleistung erfordert. Er bendtigt einen starken Objektdetektor und
stiitzt sich auf die Embedding- und Verschiebungsvektoren, die von unserer
CNN-Architektur geschitzt werden. Der hohe Recall des Objektdetektors fiihrt
zu einer hiufigen Detektion der verfolgten Objekte. Unsere diskriminativen
Assoziationsmetriken, die auf den Embedding- und Verschiebungsvektoren
basieren, ermdglichen eine zuverldssige Zuordnung von neuen Detektionen
zu bestehenden Tracks. Diese beiden Bestandteile erlauben es, ein einfaches
Bewegungsmodell mit Annahme einer konstanten Geschwindigkeit und einem
Kalman-Filter zu verwenden.

Die von uns vorgestellten Methoden zur videobasierten Umfeldwahrnehmung
erreichen gute Resultate auf den herausfordernden Cityscapes- und BDD100K-
Datensitzen. Gleichzeitig sind sie recheneffizient und konnen die Echtzeit-
anforderungen der Anwendung erfiillen. Wir verwenden die vorgeschlagene
Architektur erfolgreich innerhalb des Wahrnehmungs-Moduls eines automati-
sierten Versuchsfahrzeugs. Hier hat sie sich in der Praxis bewéhren konnen.
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Abstract

Self-driving cars require a highly accurate environment perception to drive
safely and comfortably. At the same time, the perception algorithms must
fulfill the real-time requirements of this application with limited computational
resources. Camera images provide a very important source of information for
self-driving cars. They contain more details than the data from other sensors
like lidar or radar. Camera sensors also tend to be cheap in comparison. This
allows to equip a self-driving car with a surround-view sensor setup without
increasing the total cost too much.

In this work, we present an efficient and accurate approach for video-based
environment perception for self-driving cars. Itrelies on deep learning and solves
the problems of object detection, object tracking, and semantic segmentation of
the camera images. We first propose a fast CNN architecture for simultaneous
object detection and semantic segmentation. This architecture is scalable so
that accuracy can easily be traded for computation time by changing a single
scaling factor. We then modify this architecture to predict embedding vectors
for each detected object. These embedding vectors are used as an association
metric when tracking the detected objects. They are also used for a novel Non-
Maximum Suppression algorithm that we named FeatureNMS. FeatureNMS
can achieve higher recall in crowded scenes where the assumptions of classical
NMS fail.

We then extend our single-frame CNN architecture to a multi-frame architecture
that takes two consecutive video frames as input. The multi-frame architecture
predicts the optical flow between both frames inside the artificial neural network.
This allows estimating a displacement vector between both video frames for
each detected object. These displacement vectors are also used as an association
metric when tracking the detected objects.

Finally, we present a simple and computationally cheap tracking-by-detection
approach. It requires a strong object detector and relies on the embedding
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and displacement vectors that are predicted by our CNN architecture. The
high recall of the object detector results in frequent detections of the tracked
objects. Our discriminative association metrics based on the embedding and
displacement vectors allow for a reliable association of new object detections to
existing tracks. These two components allow using a simple constant velocity
motion model with a Kalman filter inside the tracking approach.

Our proposed methods for video-based environment perception show good
results on the challenging Cityscapes and BDD100K datasets. At the same
time, they are computationally efficient and can meet the real-time requirements
of the application. We successfully employ our proposed architecture in the
perception stack of a self-driving research vehicle. Here, it proved itself useful
for real-world applications.
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1 Introduction

Both the research community and the industry show strong interest in self-driving
cars. Self-driving cars promise to deliver a safer and more comfortable driving
experience. By communicating with other vehicles and the infrastructure, they
can drive more anticipatory and help to save fuel. Driverless cars can ensure the
mobility of people who are not able to drive otherwise, like elderly, children, or
disabled persons. They open new business opportunities when used for taxi
services and they reduce the need for parking spots close to popular destinations.

Many people hope that one day self-driving cars will reduce the number of
traffic accidents significantly. For this, they need to surpass the abilities of
human drivers. This includes their sensor ranges, perception and prediction
accuracies, reaction times, and intelligent behavior planning.

These requirements are however difficult to fulfill. This opens a lot of interesting
and exciting research questions and calls for constant improvement.

1.1 Motivation

One of the basic requirements of self-driving cars is a highly accurate environ-
ment perception. If the car does not know about the objects surrounding it, it
cannot take them into account when planning. This would sooner or later lead
to a collision.

Single-shot detections of surrounding objects are however not enough for
self-driving cars. They might be sufficient for static infrastructure elements
like traffic signs and traffic lights, but not for dynamic objects like other traffic
participants. The reason is that the behavior of dynamic objects has to be
predicted. Without a prediction, the planning module has no information about
the future positions of dynamic objects and cannot take them into account. But
the prediction module needs access to the past trajectories and behavior of
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objects to make an informed prediction. Because of this, objects have to be
tracked over time. This means that object detections from each time step are
associated with past observations to form tracks.

In this thesis, we focus on camera images because they contain more details
than the data from lidar or radar sensors. A lot of information is only available
in camera images, like the status of traffic lights or the text on traffic signs.
Cameras also have an advantage when it comes to the sensing range of some
objects. Detecting an occluded pedestrian in the far distance, for example, is
feasible using cameras, but very challenging when using other sensors. Visual
information, on the other hand, is sufficient to handle most traffic scenarios.
Human drivers demonstrate this every day. This makes vision-based sensors
the most important and richest source of information about the environment.
In practice, self-driving cars will fuse the information from multiple sensor
types. There are situations when vision-based environment perception gives
bad accuracy or fails, e. g. when there is fog or not enough light. The fusing of
different information sources reduces the chance of failure since the different
sensor types have different failure cases.

Camera images also contain information that is difficult to describe on an object
level. An alternative is to classify each pixel of the image. We refer to this as
pixel-wise semantic segmentation. It is, for example, suitable to extract the
road surface. With this information, it is possible to verify that the planned
trajectory lies in the drivable area. This information can also be used to extract
the static parts of the scene like buildings and trees. These parts can then, for
example, be matched to a map.

1.2 Contributions

The goal of this thesis is to develop a Convolutional Neural Network (CNN)
architecture that is suitable for video-based environment perception for self-
driving cars. It has to meet the run-time and accuracy requirements of the
application while providing the required information. We target a frame rate
of at least 10 Hz on an Nvidia Quadro RTX 8000 Graphics Processing Unit
(GPU). The presented approach provides pixel-wise semantic segmentation of
the input camera images. It also provides single-frame object detections as well
as tracked objects.



1.3 Outline

We verify the real-world applicability of the proposed approach in the research
vehicle of the Institute of Measurement and Control Systems (MRT) at the
Karlsruhe Institute of Technology (KIT). Here, it contributes to the perception
stack of this self-driving car.

The main contributions of our work are the following:

* We present an efficient and scalable CNN architecture for simultaneous se-
mantic segmentation and object detection based on EfficientDet [TPL20].
We employ a Multi-Task Learning (MTL) approach to efficiently obtain
all predictions at once.

* We propose a new Non-Maximum Suppression (NMS) approach based
on feature learning and integrate it in the CNN architecture.

* We integrate an optical flow estimation module based on PWC-Net
[Sun+18] in this architecture. We use it to estimate a displacement vector
between consecutive frames for each object.

* We present a simple and fast object tracking approach based on the
information provided by the CNN architecture.

1.3 Outline

The remainder of this thesis is structured as follows:

Chapter 2 presents the technical background. It first introduces the basics of
deep learning for image processing. It then presents related work in the areas of
image classification, object detection, pixel-wise semantic segmentation, and
object tracking.

In Chapter 3, we describe and evaluate our approach to simultaneous semantic
segmentation and object detection as well as our new NMS approach. Both
take single camera images as input and give single-shot predictions.

Chapter 4, on the other hand, is concerned with temporal information. We
modify our approach from the previous chapter to work on pairs of camera
images. This allows us to estimate the displacement of objects between frames.
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We then introduce and evaluate a simple yet effective tracking approach based
on the outputs of the neural network.

Chapter 5 finally concludes the thesis and gives an outlook.



2 Technical Background: Image
Processing with CNNs

This chapter contains the technical background of our work. Section 2.1 shortly
presents the history of classical object detectors and neural networks. After that,
the basics of modern deep learning are introduced in Section 2.2. Section 2.3
and Section 2.4 contain related work in the areas of image processing and object
tracking. In Section 2.5, we finally introduce the evaluation metrics for our
approach.

2.1 From Classical Approaches to Artificial
Neural Networks

Nowadays, image classification and object detection algorithms are mostly
based on Artificial Neural Networks (ANNs). But this has not always been
the case: Often, AlexNet [KSH12] is cited as the first hugely successful CNN
architecture that brought the breakthrough of this technique in the year 2012
and made CNN based approaches highly popular.

Before, mainly classical methods were used for image classification, both
in research and industry. These usually consist of a feature extraction and
a classification stage. Object detection can be performed by applying an
image classification algorithm in a sliding window approach: The classifier is
evaluated on an exhaustive set of image crops. For each of these crops, the
classifier decides if the crop is aligned with the outline of an object or not. The
search space can be reduced by techniques like Selective Search [Uij+13] that
use the low-level image structure to create proposals for the crops.

In the same way, image classification approaches were used to create pixel-wise
semantic segmentation masks. A crop is generated for each pixel in the input
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image, with this pixel in the center. Then, the task of the classifier is to classify
the center pixel. The final segmentation mask can be generated by evaluating
the classifier for each pixel of the image. Conditional Random Fields (CRFs)
can be used to smooth the segmentation mask (e. g. [SCZ08]).

The features that are used in these approaches are mainly hand-crafted. Popular
features include Local Binary Patterns (LBP) [OPH94], Haar features [VJO1],
and Histograms of Oriented Gradients (HOG) [DTO0S5]. These features are
then used by classifiers to make the final prediction. Support Vector Machines
(SVMs) [CV95] are one popular classifier. Decision trees are also widely used,
especially in ensembles as random decision forests [Ho95].

Later object detection approaches like the Deformable Part Model (DPM)
[Fel+10] or Regionlets [Wan+13] are based on the idea that deformable objects
can be broken into rigid parts. The human body, for example, is deformable,
but a human head is mostly rigid. The detector localizes the rigid parts of
the object. If the parts are found and they fulfill certain relative positioning
constraints, they provide evidence for the presence of the whole object.

Also ANN have been around for a long time. The perceptron [Ros57] forms
their basis and dates back to 1957. In his original report, Rosenblatt designed
the perceptron as an analog circuit with sensory input. Nowadays, the term is
used for any binary classifier that calculates the following function:

1 ifw-x+b>0

Jw.p(X) = { 2.1)

0 otherwise

Here, x is the vector of input values. The weight vector w and the bias b are
parameters of the classifier. They have to be chosen using a suitable learning
algorithm to solve the task at hand. The perceptron is a very simplified model
of a biological neuron.

In 1969, Minsky and Papert showed that single-layer perceptrons are limited in
what they can learn—it is, for example, impossible to model the XOR function
with them since it is not linearly separable [MP69]. For this, Multi-Layer
Perceptrons (MLPs) are necessary which consist of at least three layers: An
input layer, a hidden layer, and an output layer. All layers except for the input
layer contain neurons and all neurons use the values from the corresponding
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previous layer as input. In a general MLP, each neuron performs the following
calculation:

Jwp(X) = g(w-x+b) 2.2

It is similar to the calculation performed by the perceptron (c. f. equation (2.1))
but the thresholding is replaced by a general nonlinear activation function g(-).

But in 1969, there was no efficient algorithm that could be used to train an MLP.
After realizing this, many researchers lost interest in the field and research
stagnated. This however changed in the year 1986, when the back-propagation
algorithm was proposed [RHW86b; RHW86a]. It allows to efficiently calculate
the gradient of the loss function (training objective) with respect to the weights
(trainable parameters) of an ANN. Gradient descent can then be used to minimize
the loss function and thus to train the neural network. Back-propagation is a
special case of reverse mode automatic differentiation which forms the basis of
modern deep learning frameworks.

Not much later, Cybenko presented the first version of the universal approxima-
tion theorem [Cyb89]. It states that continuous feed-forward neural networks
with at least one hidden layer containing a sufficient number of neurons and
sigmoid activation functions can approximate any arbitrary continuous function
arbitrarily well. Other works (e. g. [Hor91]) show that the same holds true for
many other activation functions.

At the same time, the first successful applications of ANNs were realized by
training with the back-propagation algorithm. In 1989, LeCun et al. presented
an ANN that could recognize handwritten zip codes from raw pixel values
[LeC+89]. Their ANN already contains design patterns that form the basis of
modern CNNs. It uses local filters with weight sharing to process the input
feature maps of each layer and performs gradual downsampling.

Over the years, the available processing power increased and allowed for more
complex ANNSs that achieved higher accuracies. The performance of CNNs
made a huge leap with the emergence of General Purpose Computation on
Graphics Processing Units (GPGPU). This started the era of CNNs, with
AlexNet [KSH12] being one of the first well-known networks. Since then,
CNNss tend to outperform classical computer vision approaches.
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2.2 Basics of Modern Deep Learning

This section covers the basics of modern deep learning. It introduces optimizers
for neural networks in Section 2.2.1. Section 2.2.2 and Section 2.2.3 describe
common building blocks of CNNs. Regularization strategies are introduced in
Section 2.2.4 and approaches for the normalization of neuron activations are
introduced in Section 2.2.5. Section 2.2.6 presents an overview of common loss
functions to train CNNSs. Finally, Section 2.2.7 introduces approaches for MTL.

2.2.1 Optimizers

In Section 2.1, we already introduced the MLP. It consists of multiple neurons
that are arranged in layers. Most modern software frameworks and ANN
architectures continue to use the notion of layers to structure the operations
performed inside a network. The term deep learning emphasizes that these
architectures can contain many layers stacked on top of each other, i. e. they are
“deep”. If a layer contains many neurons and thus produces many output values
it is sometimes said to be “wide”.

Current ANN architectures do not only contain fully-connected layers like
the MLP. Instead, they consist of a variety of different operations which are
combined depending on the task to solve. New layers are proposed as new
problems are tackled, and current frameworks virtually set no limits to the
operations used inside the networks.

Because of this, we can only describe a general ANN as a function ®(-; 6):
y = ®(x;0) (2.3)

It calculates a (possibly multi-dimensional) output y given some (possibly multi-
dimensional) input x. Like the MLP, a general ANN has trainable parameters
6. The output of the model depends both on the values of the parameter vector
6 as well as the computations performed by the model.

Both have to be chosen in a way that the ANN solves the task at hand. In practice,
the model is designed first and then the parameter vector is optimized. The
model design is done based on expert knowledge or using Neural Architecture
Search (NAS). In both cases, it is an iterative process.

8
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When designing, training, and evaluating a model, we need a way to judge its
performance. A loss function £ is used for this. A smaller loss value indicates
that the model performs better. Therefore, the goal is to minimize the expected
loss and thus achieve the best performance. Given a model ®, we want to find
the optimal parameter vector 6* according to:

0" = argminE (£ (®(X; 0), X)) 2.4)
0

Here, the random variable X is the input to the model. In practice, it is not
possible to calculate the expected loss. It is instead approximated based on a
finite set of data points x;. The parameter vector 6* then minimizes the loss on
these data points:

0" = i L(D(x;;0),x; 2.5
arg;an (®(x;:6), %) (2.5)

Deep learning models can contain millions of parameters. Because of that,
gradient-based first-order methods are usually employed to optimize them.
The necessary gradients can be efficiently calculated using back-propagation
[RHW86b; RHW86a] or more generally reverse-mode automatic differentiation.
Here, we refrain from introducing the underlying mechanics of automatic
differentiation. But the interested reader can find a good introduction to the
topic in “Automatic Differentiation in Machine Learning: a Survey” [Bay+17].

Stochastic Gradient Descent

The simplest gradient-based optimization approach is vanilla gradient descent.
In each iteration, the optimizer takes a step in the direction of the negative
gradient:

0 —0-n-VL
3 T
where 6= (6,...,0,) ; (2.6)
0L 0L
V =\,
£ (691’ 69,1)

The parameter 7 is the step size or learning rate. It is a hyperparameter that
has to be tuned for each model. It is usually annealed during training so that
the step size becomes smaller as training progresses. This helps convergence
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as it prevents the optimizer to take too large steps, away from a (local) optimum
close by.

Deep learning models do not only have many parameters—they also need
enough training data points to get good estimates for them. It therefore usually
is not possible to keep all training data points in the main memory of the
computer. Because of this, the training is performed on mini-batches. In
each training step, a new mini-batch is selected from the complete training set.
Instead of calculating the loss £ over all training examples, it is calculated over
all examples in one mini-batch. The method is then referred to as Stochastic
Gradient Decent (SGD).

One problem with SGD is that training can come to a halt if the optimization
crosses a plateau or a small bump (local minimum) of the loss surface. It
can also cause oscillations in valleys of the loss surface or when the gradient
estimates are too noisy because of a small batch size. This problem can be
solved by using an accumulated gradient to update the parameters, instead of
the mini-batch gradient itself:

mee—pu-m-n-VL
pom 2.7)
0—0+m

This method is called SGD with momentum. Here, u is a hyperparameter that
controls how quickly the old gradients are forgotten. A typical value is u = 0.9.
The momentum m is initialized to O before the first iteration.

SGD with momentum is still widely used in research. There exist many other
algorithms that converge more quickly and that are less sensitive to the right
choice of hyperparameters. But ANNs trained with SGD tend to generalize
well. Despite its simplicity, ANNs trained long enough with this algorithm can
achieve better accuracy than when trained with more advanced algorithms.

Adam

Over time, many improvements to SGD have been proposed. Notable algorithms
include AdaGrad [DHS10] and RMSProp [TH12]. AdaGrad divides the learning
rate of each parameter by the Root Mean Square (RMS) of the accumulated
previous gradients. This results in higher learning rates for parameters with
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small gradients and the other way around. The intuition behind it is that this
way, each parameter receives updates of similar magnitude. One problem is
however that the training comes to a halt once the denominator containing the
accumulated gradients becomes too large. RMSProp solves this problem by
replacing the gradient accumulation of AdaGrad with an exponential moving
average.

Nowadays, Adam [KB15] is a popular optimizer for ANNs. It takes ideas from
both AdaGrad and RMSProp. When the right learning rate is used, it can
train many models efficiently and achieve high accuracy. Adam performs the
following calculations:

meepr-m+(1-p61)-VL
ve vt (1=B) (VL)

n’>l— m

e —V,Bl)’ (2.8)
TRy
PP B

-m
Vo+e

The values m and v are exponential moving averages of the gradients and the
squared gradients'. They are initialized to O before the first iteration. This
causes a bias during the first iterations that has to be corrected. The bias
corrected values for iteration ¢ therefore are /71 and ¥, respectively. The update
of the parameter vector 6 is then based on the momentum estimate, but scaled
by the gradient RMS estimate like in AdaGrad and RMSProp. Typical values
of the hyperparameters are 8; = 0.9, 8, = 0.999, and & = 1078, A good initial
learning rate guess for the Adam optimizer is 1073,

Loshchilov and Hutter note that the Adam optimizer should be used with weight
decay instead of £ regularization (c.f. Section 2.2.4). They refer to this
combination as AdamW [LH19].

! (VL)2 is computed element-wise

11



2 Technical Background: Image Processing with CNNs

2.2.2 Common Layers in Convolutional Neural Networks

In the following, we will give a short overview of commonly used layers in
CNNs for image processing. When dealing with images, these layers typically
expect that the data is laid out as 3D tensors: Two dimensions are used for
the spatial extension (along the y- and x-axis of the image), while the third
dimension is used to store multiple values per position. The size of this 3D
tensor is therefore given by the height H, width W, and the number of channels
C. By slicing this 3D tensor along the last dimension, it can be broken into C
individual feature maps of size H X W.

In practice, multiple images are processed simultaneously in a mini-batch for
efficiency reasons. When implementing a neural network, multiple of these 3D
tensors are therefore stacked to obtain a 4D tensor. The first dimension then has
the same size N (or B) as the mini-batch. The layer implementations, however,
perform all computations independently on all examples in the mini-batch (with
very few exceptions). We therefore ignore the batch dimension in the following
paragraphs and only describe the computations that are performed on each
individual sample.

While we are mostly interested in processing images and therefore operate on
3D tensors, the same principles also generalize to other dimensionalities.

Fully Connected and Convolutional Layers

The first MLPs solely consisted of fully connected layers. They are sometimes
also referred to as dense layers. The reason for their name is that each neuron
in the layer is connected to all possible inputs. Fully connected layers are rarely
used for image processing nowadays: They contain many connections with
associated trainable weights and thus require a lot of data to be trained.

Also, the number of input values is fixed for a fully connected layer once it
is trained—adding or removing an input value would mean that weights have
to be added or removed. This can, for example, be a problem when the ANN
has to accept inputs of arbitrary size. Still, some image classification networks
contain one or two fully connected layers close to the output.

12
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The important correlations in a signal are often local. Imagine, for example,
an image of a traffic scene. If the task is to decide if there is a pedestrian in
the bottom left corner, then it makes sense to focus on this part of the image.
It most likely does not help to search for cues in the top right corner of the
image. This observation motivates to remove connections that would otherwise
connect a neuron to an input that is spatially far away. In other words, it makes
sense to connect each neuron only to inputs that are spatially close.

Another observation is that many tasks are translation invariant or translation
equivariant. If the task from above changes to decide if there is a pedestrian
in the bottom right corner, then it makes sense to focus on the corresponding
part of the image. The local cues that indicate the presence of a pedestrian
are however the same. This observation motivates to share weights between
neurons at different locations. Two neurons that share weights would react to
the same input patterns, just at different spatial locations of the signal.

Convolutional layers are based on these ideas of local connectivity and weight
sharing. Their name comes from the relation to performing a convolution of
the input signal with a filter map across spatial dimensions. Multiple neurons
are placed at each discrete spatial location of the desired output feature maps.
The number of neurons per location defines the number of output channels
or output feature maps c. All neurons for one particular feature map share
their weights. The local connectivity to the input feature maps is limited to a
rectangle centered around the position of the neuron. The size of this rectangle
is called the kernel size k.

It is often desired that the spatial resolution of the output feature maps matches
the resolution of the input feature maps. This means, that neurons have to be
placed at each spatial location of the input feature maps. If the kernel size is
now larger than 1, the neurons at the border pixels have connections to spatial
locations that lie outside of the input feature maps. In this case, padding has
to be used to make the input feature maps (virtually) large enough. A popular
choice is padding with zeros.

It is also often desired to only generate an output for every s-th input location.
In this case, the convolution is performed (or the neurons are laid out) with
stride s.
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Figure 2.1: Example of a convolution on an input feature map with one channel. Here, the
convolution has ¢ = 1 output channels, a kernel size of k = 3 x 3, a stride of s =2 and
no padding.

Figure 2.1 visualizes an example of a convolution on an input feature map
with one channel. It produces one output feature map and has a kernel size of
k =3 x 3, astride of s = 2, and uses no padding.

In normal convolutional layers, a neuron is connected to all inputs covered by
the kernel size. That means that it also accesses all feature maps (or channels)
of the input. For each location in the output feature map, kx - ky * Cin * Cout
multiplications and additions are performed. Here, the kernel size is kx X k,,
and there are cj, input feature maps as well as ¢y output feature maps.

Depthwise separable convolutions are an alternative to normal convolutions and
split the computation into two parts: First, separate convolutions are performed
for each input feature map. These have a spatial extent (i.e. k > 1x 1), but only
access one channel each (i. e. c¢i, = 1). This is followed by a convolution across
feature maps without spatial extent (i.e. kK = 1 X 1) to fuse information across
channels. In total, this results in kx - ky - Cin + Cin + Cour multiplications and
additions per location. Even though not every convolution can be transformed
into a depthwise separable convolution, they perform well for most applications
and are more efficient in many cases. It should however be noted that the
speedup by using depthwise separable convolutions is often lower than the
difference in the number of multiplications and additions suggests. The reason
is that depthwise separable convolutions are often memory-bound on GPUs,
and not compute-bound.
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Figure 2.2: Example of a 2 X 2 max-pooling operation with a stride of s = 2.

Sometimes it is beneficial to have convolutions with a larger spatial extent to
capture long-range correlations. This can be achieved by increasing the kernel
size. But a larger kernel size means more computational overhead and more
weights to learn. Dilated (or atrous) convolutions are a good alternative in
this case. Here, the filter mask is dilated and the resulting gaps are filled with
zeros. As a result, the filter mask covers a larger spatial extent but the number
of weights stays the same.

Pooling Layers

Pooling layers aggregate information from multiple spatial locations. They can
be used to make a CNN less sensitive, and therefore more robust, to translations
in the input. This is desirable for e. g. image classification networks. But for
other tasks like object localization or semantic segmentation, exact locations
are important. Pooling layers can be detrimental in these applications.

Common pooling operations are max-pooling and average-pooling. They
replace each input value by the maximum or average value within a surrounding
window. Figure 2.2 visualizes an example of a 2 X 2 max-pooling operation
with a stride of s = 2.

Resizing of Feature Maps

A common task in CNNss for image processing is upsampling and downsampling
of feature maps. This is done to extract and fuse information at different levels
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of detail. An alternative would be to keep all feature maps at a high resolution
and only use dilated convolutions to capture long-range correlations. Doing so
would however not be computationally efficient.

Both upsampling and downsampling can be performed by bilinear interpolation,
possibly followed by a convolutional layer to reduce interpolation artifacts. An
alternative for downsampling is to use either a convolutional layer or a pooling
layer with a stride s > 1.

Upsampling can also be performed using transposed convolutions. They are
also known as deconvolutions. In contrast to normal convolutions, transposed
convolutions slide a filter mask across all locations of the output feature map,
instead of across the input feature map. By using a stride s > 1, the spatial
resolution of the output feature map is increased.

2.2.3 Activation Functions

It is necessary to apply nonlinear activation function between linear layers like
convolutional or fully-connected layers. This is not only a requirement for
the universal approximation theorem [Cyb89; Hor91], but also necessary to
avoid that the linear operations collapse to one. This can be easily seen for
fully-connected layers in the 1D case: They calculate a dot product between
the weight matrix W; and the input vector x; as y; = W; - x;. If the output of
one layer is the input to a second layer, then the calculation simplifies to just
another dot product:

y2=Wz-x;
=W,y
=Wy - (W;-xp)
= (W2 - W) -x 29)
=W, x

with Wy := W, - W,

This collapsing is not possible if a nonlinear activation function is applied
between the linear layers.

A lot of different activation functions have been proposed over the years. The
most common ones in current CNN architectures are however the Rectified
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Linear Unit (ReLU) and other variations based on it, the tanh and sigmoid
functions, and the softmax function. These functions are defined as follows:

relu(x) = max(0, x)

exp(x) — exp(=x)

tanh(x) = exp(x) + exp(—x)
sigmoid(x) = m (2.10)
exp(xy) exp(xy,) !

T\ _
softmax ((x1, oo Xn) ) B (Z?zl exp(x;)” 7 X exp(x;)

The ReLLU activation function is commonly used throughout CNN architectures.
It is very fast to compute since it requires just one comparison with zero. It
achieves good performance for most tasks.

The tanh and sigmoid activation functions are commonly used in places where
bounded values are required. The tanh activation function squashes the input
value to the range from -1 to 1 and the sigmoid function squashes it to the range
from O to 1.

The softmax function finally takes a real-valued input vector and normalizes
it to a probability distribution. That means that all output values will be in
the range from O to 1 and sum up to 1. It is frequently used as a last layer for
classification problems when an estimate of class probabilities is desired.

One well-performing alternative to the ReLU activation function is the swish
function [RZL17]. It was discovered using automatic search and tends to
perform better than ReLU and its many other variations. It is defined as:

swish(x) =X SIngId(x) = #p(—x) (21 1)
Figure 2.3 provides a comparison between the ReLLU and swish activation
functions.
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Figure 2.3: Comparison of the ReLU and the swish activation functions.

2.2.4 Regularization

Complex models containing many parameters are prone to overfitting when
they are trained with too little data. That means that the model performs well
on the training data, but not on unseen data. In other words, it just memorizes
the training examples without generalizing.

Regularization techniques help to avoid overfitting. One popular approach is
to add a penalty term for large weights w; to the loss function. This helps to
prevent that a (convolutional or fully-connected) layer focuses too much on
single cues in the input data. We refer to this regularization approach as £! or
£? regularization, depending on the utilized norm:

-[:gl = Lk +4 Z|Wl|

(2.12)
L= Lag+2 ) [Iwilla
i

Weight decay is another technique that avoids large weights in the network.
Here, the weights are decayed by a constant factor after each weight update
by the optimizer. It is closely related to £ regularization: If SGD is used
for optimization, weight decay and ¢? regularization are the same. This does
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however not hold true in general. For the Adam optimizer, weight decay should
be preferred over £2 regularization [LH19].

There are other regularization methods that aid model generalization. The
dropout method randomly sets a fraction of the outputs of a layer to zero during
training. It has the same effect as randomly removing some neurons from the
neural network. This prevents that a neuron relies too much on a single input
from another neuron.

Another well-known approach is data augmentation. The goal of it is to
artificially increase the amount of training data. In the case of supervised
learning, the training examples are changed in a way that preserves the desired
labels. When working with image data, for example, the input image is often
randomly cropped, blurred, or noise is added.

2.2.5 Normalization Strategies

Normalization layers are a key ingredient to train (very) deep neural networks.
Without normalization, these networks are much more difficult and less effi-
cient to train. The most popular normalization approach for CNNs is Batch
Normalization [IS15]. The goal of Batch Normalization is to normalize each
activation x to have zero mean and unit variance:

x—E(x)

v Var(x) + &

Here, ¢ is a small constant to avoid division by zero. In practice, E(x) and
Var(x) are unknown and change with every training iteration. They are therefore
replaced by (unbiased) estimates. During training, the estimates are calculated
from the samples in the corresponding training batch. Moving averages are
also maintained for these estimates. They are used during inference and makes
the result independent of the other samples in the inference batch.

(2.13)

X=

Ioffe and Szegedy argue that Batch Normalization is effective because it reduces
the internal covariate shift [IS15]. The term internal covariate shift refers to the
change of the distributions of network activations during training. Santurkar
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et al. however claim that the true reason why Batch Normalization is effective
is the significant smoothing of the optimization landscape [San+18b].

One problem with Batch Normalization is the dependence of the loss and the
collected statistics on the mini-batch. This is especially an issue for distributed
training on multiple GPUs or even machines: Either, the mini-batch statistics
have to be synchronized between machines which can cause a high overhead.
Or each machine performs the calculations only based on its own statistics. But
this is more inaccurate because the estimates of the mini-batch statistics are
noisier for smaller batch sizes. Another problem with Batch Normalization is
that it does not always work well for Recurrent Neural Networks (RNNs). This
is because the activations can have significantly different statistics during the
recurring evaluations of the RNN.

Because of this, many alternatives to Batch Normalization have been pro-
posed. These include, for example, Layer Normalization [BKH16], Instance
Normalization [UVL17], and Group Normalization [WH18]. When used inside
CNNs s for image processing, they however often fail to reach the same accuracy
as Batch Normalization. Recently, Online Normalization [Chi+19] has been
proposed as another alternative. It does not rely on mini-batch statistics but
uses exponentially decaying averages of the online samples. Because of this,
it is suitable for small batch sizes and can even be used with a batch size of 1.
The experiments of Chiley et al. show that ANNs with Online Normalization
can achieve the same or even better accuracies as with Batch Normalization.

2.2.6 Loss Functions

As discussed in Section 2.2.1, ANNs are trained by minimizing a loss function.
This section presents some of the most commonly used loss functions for
learning classification tasks, regression tasks, and similarity metrics.

Classification

A classification task assigns a class label to each data point. In practice, ANNs
often do not only output the most likely class, but a probability distribution
over all classes. The most commonly used loss function for classification tasks

20



2.2 Basics of Modern Deep Learning

is the cross-entropy loss. The general multi-class formulation for one training
example is as follows:

Lice(yi,pi) =— Z Yie -1og(pic) (2.14)

Here, p;.. is the predicted probability for class ¢ of training example i. The
ground truth label y; . is 1 if the training example 7 has class ¢, and 0 otherwise.
The individual values p; . and y; . form the elements of the vectors p; and
yi, respectively. The loss for multiple training examples is the sum over the
individual losses.

Lin et al. propose Focal Loss [Lin+17c]. It can be computed as follows:

Li,Focal(Yia pi) == Zyi,c . (] - pi,c)y : log(pi,c) (2]5)
c

It is similar to the cross-entropy loss except for the modulating factor (1 — p i,c)y.
For y = 0, it is identical to the cross-entropy loss. For y > 1, it weights the
easy examples down, so that the loss focuses on the hard examples. This is
useful for highly imbalanced datasets with many easy examples and can make
mining of hard examples superfluous. The authors find that y = 2 works best in
the context of object detection. This task has a high class imbalance between
foreground and background examples.

Both cross-entropy loss and Focal Loss can be used in a weighted version: The
loss per class can be multiplied by a class-specific weighting factor. This is
also done to compensate for a class imbalance or to reduce the number of false
negatives for a certain class.

Regression
Common loss functions for regression tasks are the {2 loss, the ¢! loss, and the

smooth £! loss. The £2 loss of a predicted value ¥; for a true value y; can be
calculated as follows:

L o (i 3i) = (vi = 31)* (2.16)
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The mean loss over all samples is also called Mean Squared Error (MSE). The
£? loss is often easy to optimize. If the error is large, also the gradient is large
which helps a first-order optimizer to converge quickly. But it also means that
this loss function is not robust to outliers since they can dominate the total loss.

The ¢! loss, on the other hand, can be computed as follows:

L 0 (yi, 3i) = lyi = ¥il (2.17)

The mean loss over all samples is also called Mean Absolute Error (MAE). It is
not differentiable where the error is zero but has a constant gradient otherwise.
This makes it more robust to outliers, but optimization is more difficult.

The smooth ¢! loss, or Huber loss, combines both ¢! and £2 losses as follows:

Toi=-90)° for [y; = §i| <0

2.18
§-lyi—5il—3-6% otherwise (2.18)

-Li,Huber(yi, ¥i) = {

For small errors, the loss function behaves like the €2 loss and for larger errors
it behaves like the ¢! loss. This makes the Huber loss robust to outliers, but at
the same time it has the desired properties of the £ loss for normal data points.
The threshold 6 has to be chosen in a way that it separates outliers from normal
data points.

Learning Similarity Metrics

Similarity metrics for images or image patches have a variety of applications.
These include one-shot and few-shot learning [KZS15; Vin+16] as well as
image retrieval, i. e. finding similar images based on a query image [Che+09;
Wan+14; Son+16]. It can also be used to e. g. verify handwritten signatures
[Bro+93] or faces [CHLOS5; SKP15]. There also has been a lot of work on
object re-identification and tracking [Ber+16; He+18; DS18] based on similarity
metrics.

For these tasks, the photometric similarity of image patches is not useful. Two
images of two persons can be very similar on a raw pixel intensity level but still
show different persons. Two images of the same person, on the other hand, can
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have a very different appearance, if the lighting conditions, the background or
the pose differ.

We are therefore interested in a similarity metric at higher levels of abstraction.
It should be invariant to the viewpoint and the pose of the object, as well as
to the illumination. It should also be robust in the presence of distortions like
noise, blur, or dirt on the camera lens.

Since it is not obvious how to compare images at higher abstraction levels, it
makes sense to learn a similarity metric. Most contemporary approaches are
based on the concept of siamese neural networks. The term was coined in an
early work by Bromley et al. [Bro+93]. The idea is the following: The two
images that should be compared are processed by two CNN backbones. These
two backbones share all trainable weights and are therefore identical copies.
This explains the term “siamese neural network”.

Another view is that both images are processed by the same backbone individu-
ally. The output of this backbone is a feature vector representation of the input.
This representation captures the image contents at the relevant semantic level.
The image similarity can then be calculated by the similarity of these feature
vectors. Commonly used measures are the £> distance or the cosine similarity.

The backbone is trained in a way that positive pairs (i. e. pairs belonging to the
same class) have a small distance and negative pairs have a large distance. This
requires a suitable training objective or loss function. One widely employed
loss function is Contrastive Loss [CHLOS5; HCLO6]. It is evaluated on image
pairs using the following formula:

—

. — . . 2
El S > El - b
Ly contrastlve(xl X2, V1 2) YVi,2 dw (xlax2)+

3
=y - (max (0.m = dyy (x1.32)))?

where  d,, (x1,x2) =[lgw (x1) — gw (x2)[l2

[\

(2.19)

Here, x; and x;, form the pair of training images, and y > is the corresponding
label. For positive pairs, y; 2 has to be set to 1 and for negative pairs it has
to be set to 0. The parameter m is the desired margin for negative pairs. The
function d,, (x1, x») gives the distance of the feature vectors calculated by the
siamese network: The backbone outputs the feature vector g, (x) given input x.
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Here, the €2 norm is used to calculate the distance between the feature vectors.
The final loss is then calculated by summing the losses of all training pairs in
the current batch.

Triplet Loss [SKP15; Che+09] does not use pairs of training examples, but
triplets. Each triplet consists of an anchor example x,, a corresponding positive
example x,, and a corresponding negative example x,,. The loss for a triplet can
then be calculated as follows:

LW,triplet(xa’xp’xn) =max (O, da} (xa,xp) - da, (X, Xn) + m) (2.20)

where  dy, (x1,x2) =llgw (x1) = gw(x2)[l2

The goal of this loss function is to ensure that the distance between the anchor
and the negative example is at least by a margin m larger than the distance
between the anchor and the positive example. Schroff, Kalenichenko, and
Philbin also propose to use sampling strategy to select the triplets [SKP15]:
Instead of training on all possible triplets, they select the hardest ones, i.e. the
ones generating the highest loss.

Song et al. argue that a loss for metric learning should be calculated on all
possible pairs of training examples in the current batch [Son+16]. In their work,
they propose a loss function that can be efficiently calculated on all possible
pairs of a training batch.

Manmatha et al. propose Margin based Loss instead [Man+17]. The loss for an
image pair is calculated as follows:

Ly margin (X1, X2, y1,2) =max (0, y12 - (dy (x1,x2) — b) +m)
where  d, (x1,x2) =[lgw(x1) — gw (x2) |2 (2.21)
s. o lgw(x)[ =1 Vx

Here, m again is the desired margin and b is the desired decision boundary. The
label, however, has to be given as y; » = 1 for positive pairs and as y; » = —1
for negative pairs. In their experiments, Margin based Loss outperforms both
Contrastive Loss and Triplet Loss. The authors also show that the sampling
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strategy for negative training pairs is important for good results. They propose to
sample a negative example x, given example x; with the following probability:

Pr(x; = x|x1) o< min (/l, g7 (d, (xl,x))) (2.22)

Here, A clips the distribution and makes sure that all samples have at least a
certain chance to be drawn. The Probability Density Function (PDF) ¢(d)
describes the probability to observe a pairwise distance d between points that
are uniformly distributed on a unit hypersphere. This distribution approaches

the normal distribution N (\/5, ﬁ) for large n, where n is the dimensionality

of the feature space. This sampling approach gives better results than uniform
sampling, hard negative mining and semi-hard negative mining.

2.2.7 Multi-Task Learning and Loss Weighting

The idea of MTL is to learn multiple tasks simultaneously using the same
model. Two reasons make the use of MTL interesting: One is the reduction of
computing time. If parts of an ANN are shared between multiple tasks, then
the shared part has to be evaluated only once instead of multiple times. This
can result in a significant speed-up when most of the network can be shared
between several tasks.

The second reason why MTL can be beneficial is that it can result in improved
accuracy of the model. Especially if the training datasets are small, a neural
network is prone to overfitting. The different training objectives can act as
a regularizer here, improving validation performance. The learned feature
representations in an MTL setting tend to be more general because they have to
carry useful information for multiple tasks. This often makes them more robust
and allows to generalize better to unseen examples.

However, early work on MTL [Car97] already showed that it only works well
when the tasks are related. Caruana provides an exhaustive study (using simple
tasks and ANNs) about how the different tasks interact and affect each other,
when MTL is effective, and much more. This work already recognizes that
a too small network capacity hurts the performance of multi-task problems
more than that of single-task problems. The increase in accuracy by MTL is
therefore not only reached by reducing overfitting. This observation also shows
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that forcing a shared feature representation for different tasks is not necessarily
helpful—it is only the opportunity for sharing that can result in learning better
features.

Recent work [Gon+19] confirms these findings. The authors report that MTL
typically does not improve performance unless the tasks and loss weighting
strategies are carefully selected.

Loss Weighting

The weighting of the different training objectives can be done in different ways.
The naive way is to calculate a weighted sum of the objective functions to get
the final objective function for optimization. The weights have to be tuned
by hand to ensure that all tasks perform well. Usually, the individual terms
are weighted to have approximately the same order of magnitude. This naive
method is still used by many MTL approaches.

This approach has the disadvantage that it requires manual tuning of the
weighting factors. But even worse, the learning of different tasks may proceed
at a different speed. This makes the optimal weighting factors dependent on the
training step.

Kendall, Gal, and Cipolla therefore propose an automated way to determine the
weighting factors [KGC18]. The model outputs corresponding to the different
tasks have different uncertainties. The authors assume that each output of the
model is the desired output with some task-dependent additive Gaussian noise.
They show that under this assumption, the maximisation of the log likelihood
of the MTL model leads to the minimisation of the following loss term:

1
L= Z S Li+logo (2.23)
1 1

Here, £L; are the individual task losses and (J'l.2 the corresponding variances.
The authors now interpret all 0; as trainable variables which are optimized by

the optimizer like all other variables. This way, the weighting factors # are

estimated automatically. The additional penalty term log o prevents the factors
from becoming too small: The factor can only become small if o; becomes
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large, but then the penalty term becomes large. This is important to avoid the
trivial solution of the minimization where all factors become zero (assuming
that all £; are greater than zero).

In the experiments of Kendall, Gal, and Cipolla, the MTL models trained with
their approach outperform the single-task models and the ones trained with
hand-tuned weights.

Chen et al. propose another approach called GradNorm to solve the same
problem [Che+18c]. The basic idea of their approach is to normalize the
gradient magnitudes of the different objective functions in (some) shared layers
of the network. To make the problem computationally less demanding, the
authors suggest to perform this normalization only for the last layer that is
shared between all tasks.

GradNorm first estimates the training progress of each task i. It uses the ratio
i‘ ((8 of the current loss and the loss at the first training step for this. This
ratio is normalized across all tasks to get a relative inverse training rate r; ()
for each task. The desired gradient magnitude in the last shared layer of the
network is then defined as the average gradient magnitude times [r;(¢)]®. Here,
a is a hyperparameter and controls how strongly a common training rate for all
tasks should be enforced. The proposed GradNorm algorithm then optimizes
the weighting factors of the individual losses to achieve the desired gradient
magnitudes. In their experiments, the authors report better results for GradNorm
then when using fixed weighting factors or the approach of Kendall, Gal, and
Cipolla.

Inspired by GradNorm, Liu, Johns, and Davison propose Dynamic Weight
Averaging [LJD19]. Like GradNorm, it weights the tasks based on the past
changes of the corresponding losses. But unlike GradNorm, it does not
normalize gradient magnitudes. Instead, it only tries to ensure approximately
the same relative training progress for each task, compared to the corresponding
initial losses.

Sener and Koltun argue that minimizing a weighted linear combination of
per-task losses is only a valid approach if the tasks do not compete with each
other [SK18]. They propose an optimization algorithm that can find a pareto
optimal solution under realistic assumptions. In their experiments, this approach
outperforms the ones by Kendall, Gal, and Cipolla and by Chen et al.
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2 Technical Background: Image Processing with CNNs

A recent publication [Gon+19] presents a comparison of different loss weighting
strategies, including Dynamic Weight Averaging and the one by Kendall, Gal,
and Cipolla. The authors conclude that a slightly modified version of the
approach by Kendall, Gal, and Cipolla tends to work best, but there is no clear
winner across all experiments.

Model Selection

MTL does not only require suitable training objectives and optimization
algorithms, but also suitable models. A common approach across different
domains is a shared backbone with task-specific network heads. Such an
architecture requires that all tasks use the same input data, which is fed to
the backbone. The backbone then extracts feature maps that contain relevant
information for all tasks. These feature maps are fed into the task-specific
network heads. Here, they are transformed to the final task-specific model
output.

It is however not clear how much of the model should be shared between tasks,
nor how much capacity the different model parts should have. This is usually
determined empirically. Especially if the MTL problem contains many tasks, it
can be difficult to find the optimal model.

Liu, Johns, and Davison propose to use an attention mechanism to select the
relevant features for each task from the backbone output [LID19]. Features that
are irrelevant for the current task can be ignored, but still used for a different
task where they are beneficial.

2.3 Common Image Processing Architectures

The previous section introduced the building blocks of CNNs and explained
how the trainable parameters can be optimized. This section presents well-
known architectures for different tasks. First, common backbone architectures
for CNNs are described. Then, several task-specific network architectures
for semantic segmentation, object detection, and optical flow estimation are
introduced.
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These architectures are usually developed based on a mixture of intuition, expert
knowledge, and trial and error. NAS can automate this process to some degree
by e. g. using genetic algorithms, reinforcement learning, or a grid search over
design parameters.

2.3.1 Backbones for Image Classification

Nowadays, CNNs are used in nearly all areas of image processing. These
include object detection and classification, pixel-wise semantic segmentation,
depth and optical flow estimation, generative tasks, and much more. Over
time, it became apparent that many of these tasks have common requirements.
Certain building blocks and common network structures emerged and are now
used in a wide variety of applications.

Most models that take one or more images as input first process them in a
backbone. This backbone transforms the raw pixel values into a rich feature
representation which is then used by task-specific network heads. This section
gives an overview of common backbones that are widely used in today’s CNN
architectures. These backbones are usually developed for the task of image
classification and are then transferred to other tasks.

One of the first CNN backbones that received high attention from researchers
is AlexNet [KSH12], although it was not the first successful CNN architecture.
In 2012, it outperformed the second-best approach in the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) [Rus+15] by more than 10
percentage points. AlexNet seems simple compared to today’s architectures,
but at that time it was deeper than many other architectures. One of the insights
of Krizhevsky, Sutskever, and Hinton was that the depth of this network helped
it to achieve high accuracy. Training this comparably deep CNN was possible
because of the advances made in GPGPU programming at this time. AlexNet
consists of five convolutional and three fully-connected layers. It uses the ReLU
activation function, max-pooling layers, and Local Response Normalization as
feature normalization approach. Local Response Normalization normalizes the
input feature maps in a local neighborhood, which results in a local contrast
enhancement.

Another popular architecture that was published shortly after is VGG-16 [SZ14].
It is conceptionally similar and also consists of a series of convolutional and
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2 Technical Background: Image Processing with CNNs

max-pooling layers. These are followed by three fully-connected layers at the
end of the network. With this network, Simonyan and Zisserman won the first
place of the localization track of the ILSVRC 2014 [Rus+15]. This was possible
by pushing the depth of the CNN to 16-19 layers. But doing so also increased
the number of trainable parameters and the computational demands notably.

Inception Architectures

In the same year, GooglLeNet [Sze+15] won the classification track of the
ILSVRC 2014. One of the main contributions of GoogLeNet is the introduction
of the Inception module. Instead of stacking convolutional and max-pooling
layers, the authors use a network-in-network [LCY13] approach to build
modules. These modules are then stacked to form the complete CNN. Each
module takes input feature maps, processes them with four parallel branches,
and then concatenates their results to form the final output. These branches are

e a1l x 1 convolution,
e a | x 1 convolution followed by a 3 X 3 convolution,
e al x I convolution followed by a 5 X 5 convolution, and

* a3 x 3 max-pooling operation followed by a 1 X 1 convolution.

Here, the 1 X 1 convolutions are used to reduce the number of input feature
maps of the following operations. This also reduces the number of trainable
parameters and the computational demands of the more complex 3 x 3 and
5 X 5 convolutions.

Not long after, Inception-v3 was published [Sze+16]. It introduces the use of
different modules within one network. The authors replace the computationally
expensive 5 x5 and 7x 7 convolutions of earlier architectures with less expensive
ones: They recognized that an n X n convolution can be replaced by an n X 1
convolution followed by a 1 X n convolution while maintaining the size of
the receptive field. An n X n convolution can also be replaced by a series of
3 x 3 convolutions. If this series contains enough 3 X 3 convolutions, then the
same receptive field can be achieved. The authors show that this decreases
the number of trainable parameters and the necessary number of computations
under reasonable assumptions. Another improvement of Inception-v3 is the
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use of Batch Normalization [IS15]. The presented insights guided the designs
of many later architectures.

The Xception architecture takes the idea of saving computation time by replacing
complex convolutions with multiple simpler ones one step further [Chol7].
Chollet interprets an Inception module with a maximum number of branches
(or towers) as a depthwise separable convolution. Therefore, he proposes to
replace the original Inception modules by depthwise separable convolutions.
In his experiments, the Xception architecture outperforms Inception-v3.

ResNet Architectures

Around the same time, the first ResNet architectures [He+16a] were published.
Like Inception architectures, ResNet architectures consist of stacked modules.
Each ResNet module learns a residual function with reference to the input. This
can also be interpreted as each module decreasing the error in the output of the
previous module.

Let x be the input of a ResNet module, /(x) the desired output, and f(x) the
corresponding residual. With this, we can write the mapping as i(x) = x+ f(x).
The ResNet module calculates /(x), but only the function f(x) is learnt. This
is achieved by adding a skip connection from the input to the output of the
module. A visualization can be found in Figure 2.4.

This formulation is only possible if the input and output dimensions of the
module match. Otherwise, a linear projection Wx of the input x is used in the
skip connection to match the dimensions. In this case, the overall calculation
changes to h(x) = Wx + f(x).

He et al. show that their ResNet architecture allows to train very deep CNNs.
In their experiments, they successfully train models with up to 1202 layers.
The design of the ResNet architecture is motivated by the observation that very
deep VGG-style models have degraded accuracy compared to shallower ones.
Empirically, training these models is difficult and the optimizer fails to find
good optima. Theoretically, however, there exists a trivial solution: If some
layers of a deep network compute an identity mapping, then these layers can
be removed without changing the result to obtain a shallower network. This
means that there is a set of weights with which the deeper network achieves the
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Structure of the original ResNet modules [He+16a]. The normal module in Figure 2.4a
is used in smaller networks like ResNet-34. The bottleneck module in Figure 2.4b is used
in larger networks like ResNet-50 and above. In the latter module, the computationally
expensive 3 X 3 convolution is surrounded by two 1 X 1 convolutions. Their task is to
reduce the number of input channels to the 3 X 3 convolution, and afterwards increase
the number of output channels again. This helps to save computation time. For both the
normal and the bottleneck module, it can happen that the number of input feature maps
and desired output feature maps does not match. In this case, a projection is performed
in the skip connection by placing an additional 1 X 1 convolution there.
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same accuracy as the shallower ones. But it is difficult to discover this trivial
solution during optimization. The skip connections of a ResNet module encode
this knowledge explicitly.

After the original ResNet architecture was published, many improvements were
proposed over time. In their follow-up work, He et al. propose to change the
position of the activation functions and Batch Normalization layers inside the
modules [He+16b]. The modified architecture achieves higher accuracy than the
original one. Wu, Shen, and Hengel show that deeper networks are not always
better, but that the right balance of network depth and width is key to good
performance [WSH19]. Here, “width” refers to the number of feature maps per
layer, and “depth” refers to the number of layers. The ResNeXt architecture
[Xie+17] splits the residual branch of the module into multiple parallel branches
while keeping the overall numbers of input and output channels constant. This
is similar to how the Inception architecture is modified for Xception.

Szegedy et al. take inspiration from ResNet and propose Inception-ResNet
architectures with skip connections [Sze+17]. This accelerates the training
process considerably and can lead to better accuracy. The authors also present the
Inception-v4 architecture without skip connections. Both achieve approximately
the same accuracy.

MobileNet and EfficientNet Architectures

MobileNet [How+17] is an architecture that primarily focuses on efficient
neural networks for mobile devices. It consists of stacked layers of depthwise
separable convolutions, each followed by a Batch Normalization layer and a
ReLU activation function. One key contribution of the MobileNet architecture
is that it is scalable: It has a width and a resolution multiplier that can be used
to adjust the number of channels in each layer as well as the input resolution.
These hyperparameters allow tuning the model for either lower computation
time or higher accuracy, depending on the application.

Howard et al. report that the proposed MobileNet variants have slightly lower
accuracy than Inception-v3. They have however an order of magnitude fewer
parameters and multiply-add operations. This makes the architecture suitable
for applications with constrained computational resources.
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MobileNetV2 [San+18a] continues to use depthwise separable convolutions.
But the architecture is inspired by ResNet and consists of modules with
skip connections. The width and resolution multipliers remain as tunable
hyperparameters.

Howard et al. employ NAS to find improved architectures for MobileNetV3
[How+19]. This is based on and inspired by previous work [Yan+18; Tan+19;
RZL17; ZL16; CZH18]. Changes from MobileNetV2 include the use of the
swish activation function (or a computationally less expensive approximation
thereof) and the “squeeze and excitation” technique [HSS18] in the residual
branch.

Tan et al. also use NAS to find the MnasNet architecture [Tan+19]. The search
space for NAS is designed based on the MobileNetV2 architecture.

Tan and Le systematically study the scaling of width, depth, and input res-
olution in CNN architectures [TL19]. They propose a “compound scaling”
hyperparameter as a principled way to scale all three parameters at the same
time. The goal is to achieve the best accuracy given the computational budget.
Their empirical studies show that the ideal depth multiplier d, width multiplier
w and resolution multiplier  can be calculated from the compound scaling
parameter ¢ as follows:

d=a®
w =,8¢
r= y¢ (2.24)

subject to a-B-y* =2
a>1, B=1, y=>1

The optimal values for @, § and y have to be determined using a grid search.

Tan and Le first show the effectiveness of the proposed compound scaling
parameter with ResNet and MobileNet architectures. Then they propose the
scalable EfficientNet architecture. It was discovered by using NAS with similar
settings as for MnasNet. The optimal values for the EfficientNet architecture
are « = 1.2, B = 1.1, and vy = 1.15. The scaling is done relative to the
EfficientNet-BO network that will be described in the following paragraphs.
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Figure 2.5: Accuracy on ImageNet [Rus+15] over FLOPs for different CNN backbones [TL19].
EN-BO to EN-B7 is short for EfficientNet-BO to EfficientNet-B7.

Figure 2.5 shows the accuracy over the number of Floating Point Operations
(FLOPs) of some of the presented backbone architectures on ImageNet [Rus+15].
Being the latest step in the evolution of CNN backbones, the EfficientNet
architecture achieves the highest performance for a given computational budget.
The compound scaling hyperparameter allows generating efficient backbones
for any use-case—be it with strong computational constraints or with high
accuracy demands.

All EfficientNets use the mobile inverted bottleneck modules from MobileNet-
V2 as the main building blocks. But similar to MobileNet-V3, EfficientNets
use the swish activation function and the “squeeze and excitation” optimization
[HSS18] inside their modules. Figure 2.6 shows the structure of the resulting
module. Multiple modules are stacked to create an EfficientNet backbone.
Table 2.1 describes the base EfficientNet-B0 architecture for image classification.

Using a skip connection in the mobile inverted bottleneck module is only
possible if the input and output dimensions match. This is the case if the stride
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Figure 2.6: Structure of a mobile inverted bottleneck module as used in EfficientNets. The parameter
t is the expansion factor from Table 2.1. We denote the number of input and output
feature maps of the module as #cj, and #cqy¢ respectively .
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Operator ‘ hi X w; ‘ c; ‘ n

Conv (3 x 3), BN, and swish |224 x224| 32 |1
MBConv (k =3,1=1) 112x112| 16 |1
MBConv (k =3, =6) 112x112] 24 |2
MBConv (k =5, =6) 56 x56 | 40 |2
MBConv (k =3, =6) 28x28 | 80 |3
MBConv (k =5, t = 6) 14x14 | 112 |3
MBConv (k =5, =6) 14x14 | 192 |4
MBConv (k =3, = 6) 7x7 320 |1
Conv (1 x 1), GAPool, and FC 7Tx7 12801

Table 2.1: The base EfficientNet-BO architecture [TL19] for image classification. Each “MBConv”
block is one instance of the mobile inverted bottleneck module from Figure 2.6. The
parameters h; and w; are the height and width of the layer input, ¢; is the number of
input feature maps, and n indicates how often the block is repeated.

of all convolutions is 1 and the number of input and output channels is equal.
Otherwise, the skip connection is omitted from the module.

The residual branch is divided into four parts: An expansion block, a depthwise
separable convolution, a squeeze and excitation block, and a channel reduction
block with a dropout layer. The expansion block expands the number of input
channels by the expansion factor #. The 1 X 1 convolution inside this block
can be viewed as a projection to a higher-dimensional space. The complete
expansion block is omitted if the desired expansion factor ¢ is not larger than
one.

The following depthwise separable convolution is the only convolution with a
filter size larger than 1 x 1. This convolution can be applied with a stride if
the desired spatial resolution of the module’s output is smaller than that of the
input.

The depthwise separable convolution is followed by the squeeze and excitation
block [HSS18]. This block first calculates a per-channel average activation value
by using a global-average pooling operation. The resulting values are further
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processed by the following convolution layers. The final sigmoid activation
function then squashes the values to the range from 0 to 1. The result is used to
modulate (weight) the input feature maps of this block.

The channel reduction block contains a final convolution. It reduces the number
of channels to the desired number of output channels. It is followed by a
dropout layer. This dropout layer is a regularization method and randomly
drops neurons during training (c.f. Section 2.2.4).

2.3.2 Semantic Segmentation Architectures

The task of pixel-wise semantic segmentation is also a classification task. But
in contrast to image classification, it assigns a class to each pixel of the input
image. In the context of self-driving cars, a pixel could belong e. g. to a car, a
pedestrian, the road surface, a sidewalk, and so on. The output of a pixel-wise
semantic segmentation algorithm is again an image, where each pixel stores the
corresponding class label.

One way to solve this task is to extract a patch for each pixel of the image by
generating a crop with that pixel in the center. Each crop can then be classified
independently to obtain the class of the center pixel. This approach has been
used in early works [Cir+12], but it is very inefficient. Long, Shelhamer, and
Darrell propose to use a Fully Convolutional Network (FCN) instead [LSD15].
They recognize that a fully-connected layer with one spatial output location
can be replaced by a convolutional layer without changing the performed
calculations. This interpretation, however, allows an efficient calculation for
multiple overlapping patches, and therefore also for the complete image.

In the same publication, the authors fuse information from feature maps with
different resolutions. The rationale behind it is to capture both global context
from low-resolution feature maps and fine details from high-resolution feature
maps. To fuse all feature maps, they rescale them to a common resolution
and then sum them up. The upsampling of feature maps is performed with
transposed convolutions.

Noh, Hong, and Han propose a nearly symmetrical encoder-decoder structure
for semantic segmentation [NHH15]. First, features are extracted from the
input image by a VGG-16 encoder. Here, the resolution of the feature maps is
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successively decreased. The task of the decoder is then to upsample the feature
maps back to the original resolution. The proposed decoder is a mirrored
version of the encoder, where max-pooling layers are replaced by unpooling
layers. Each unpooling layer forms a pair with a max-pooling layer. During
downsampling, the max-pooling layer stores the indices of the selected values.
The corresponding unpooling layer then copies its inputs to these locations and
fills all other locations with zeros.

SegNet [BKC17] is also an encoder-decoder architecture that uses a VGG-16
backbone. It is conceptionally similar to the previous approach but fully
convolutional.

UNet [RFB15] is an FCN and builds upon the ideas by Long, Shelhamer, and
Darrell [LSD15]. It is an encoder-decoder architecture that uses max-pooling
layers for downsampling and transposed convolutions for upsampling. It adds
skip connections from the last feature map of each resolution in the encoder to
the first feature map of the same resolution in the decoder.

Also the first version of DeepLab [Che+14] uses a VGG-16 backbone. But in
contrast to the previously presented approaches, this architecture only computes
feature maps of higher resolutions. The authors remove the last max-pooling
layers of the VGG-16 backbone to achieve this. All following convolutions
are then replaced by dilated convolutions to obtain the same receptive field.
With these modifications, the feature maps are downsampled by a factor of 8 in
the backbone. The original image resolution is then restored by using bilinear
upsampling. Finally, the network output is refined using a CRF.

Chen et al. evaluate different architectures for the second version of DeepLab
[Che+18a]. They replace the VGG-16 backbone with a more modern ResNet-
101 backbone. One of the key contributions is the use of Atrous Spatial Pyramid
Pooling (ASPP) modules inside the network. Inside an ASPP module, the input
feature maps are transformed by four parallel branches and then summed up.
Each branch contains a dilated convolution layer with a different dilation rate.
The ASPP module allows capturing details at different scales. It improves the
reported accuracies significantly.

DeepLabv3 [Che+17] still uses a ResNet backbone with an ASPP module at
the end. The authors use dilated convolutions inside the backbone and modify
the ASPP module slightly. It now contains 5 branches: A 1 x 1 convolution,
three 3 x 3 dilated convolutions with different dilation rates and global-average

39



2 Technical Background: Image Processing with CNNs

Conv (1 x 1)

[ DConv 3 X 3, r = 6) ]\

— [DConv Gx3,r=12) @ Conv (1 x 1) ]—»

[ DConv (3 x 3, r = 18)

GAPool

Figure 2.7: ASPP module as proposed by Chen et al. [Che+17].

pooling operation. The outputs of these branches are then concatenated. A
final 1 X 1 convolution reduces the number of feature maps. A visualization of
this module can be found in Figure 2.7.

The pyramid pooling module of PSPNet [Zha+17] follows a similar approach
as ASPP. But instead of using dilated convolutions, it performs the following
steps to capture details at different scales: First, the module performs multiple
downsampling operations on the input feature maps to get feature maps at
different resolutions. These are then independently processed by convolutional
layers. After that, they are upsampled to the original resolution. Finally, all
resulting feature maps are concatenated.

DeepLabv3+ [Che+18b] combines the ASPP module from earlier DeepLab
versions with an encoder-decoder structure that is inspired by UNet and SegNet.
The ASPP module is placed between the encoder and the decoder, where the
feature maps have the lowest resolution. Figure 2.8 depicts the high-level
structure of the architecture.

RefineNet [Lin+17a] is an encoder-decoder architecture with a ResNet back-
bone. It restores the original resolution in the decoder by successively fusing
upsampled feature maps with earlier feature maps of the same resolution. The
high-level structure resembles UNet, but the fusion approach is more advanced.
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Figure 2.8: High-level structure of DeepLabv3+ [Che+18b]. Each red block can contain multiple
ResNet modules and other layers. The width of the block is used to visualize changes
in feature map resolution because of downsampling and upsampling.

Recently, Panoptic Feature Pyramid Networks [Kir+19] were published. Kirillov
etal. add a semantic segmentation head to a Feature Pyramid Network (FPN) and
solve the instance segmentation and semantic segmentation tasks simultaneously.
The FPN fuses feature maps of different resolutions to capture details at different
scales. FPNs are commonly used for object detection architectures and will
be presented in Section 2.3.3. The output feature maps of the FPN are fused
again, and then fed to an object detection and a mask prediction network head.
This idea is similar to our approach that will be presented in Section 3.1. The
authors report a similar accuracy as DeepLabv3+ (79.1 % vs. 79.6 %) on the
Cityscapes validation dataset [Cor+16].

Table 2.2 lists the reported mean Intersection over Union (mloU) on the semantic
segmentation task of the PASCAL VOC 2012 test dataset [Eve+12] for some of
the presented approaches. The key insights of the presented comparison are the
following:
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Approach ‘ mloU

DeepLabv3+ [Che+18b] | 87.8 %
DeepLabv3 [Che+17] 85.7 %
PSPNet [Zha+17] 85.4 %
DeepLabv2 [Che+18a] |79.7 %
DeepLabvl [Che+18a] |66.4 % - 70.3 %
FCN-8s [Che+14] 62.2 %

Table 2.2: Reported semantic segmentation results of different architectures on the PASCAL VOC
2012 test dataset [Eve+12].

* Most semantic segmentation architectures reuse backbones developed
for image classification.

e There are different architectures with significantly different design ideas
that achieve good performance.

* Most architectures are based on an encoder-decoder architecture. The
feature maps are downsampled in the encoder and upsampled in the
decoder. Early downsampling is computationally more efficient.

* The fusion of feature maps at different resolutions is important for good
accuracy. Otherwise, finer details get lost due to the downsampling
operations. There are different fusion approaches that use e.g. skip
connections, ASPP modules, pyramid pooling modules, or an FPN.

2.3.3 Object Detection Architectures

The object detection task can be broken into an object classification and an
object localization task. It can be solved naively with an image classification
network: By using the sliding window approach of classical object detection,
an exhaustive list of potential object bounding boxes can be generated. Each
bounding box in this list can then be classified as containing an object of interest
or not.
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This naive approach is computationally very expensive and is not used in
practice. But it shows the connection between image classification and object
detection, and motivates why the backbones presented in Section 2.3.1 are
also a good choice for this task. Like the semantic segmentation architectures
presented in the previous section, most contemporary object detection networks
are CNNs architectures.

Existing object detection architectures can be divided into single-stage and
two-stage detectors. Single-stage detectors process the input image with a
backbone and then directly output object detections in the network heads.
Two-stage detectors, on the other hand, first generate object proposals. The
second stage then refines these proposals and classifies them as containing
an object of interest or not. Two-stage detectors tend to have slightly higher
accuracy but are also computationally more demanding.

Two-Stage Detectors

The most popular two-stage detectors are part of the R-CNN family. The
original R-CNN architecture was proposed by Girshick et al. [Gir+14]. First,
Selective Search [Uij+13] is used to extract region proposals from the input
image. These region proposals form the candidates for the detected objects, but
not all proposals correspond to objects. A crop of the image is generated for
each region proposal. It is then resized to a fixed size and fed to a CNN. This
CNN, which was trained on a general image classification task, extracts features
of the corresponding image patch. Then, a linear SVM [CV95] classifies each
proposal based on the extracted features. The result is either an object class
or the background class, meaning that the proposal does not contain an object.
Finally, the localization of objects is improved by regressing a bounding box
relative to the region proposal. This is also done based on the CNN features.
Duplicate detections are suppressed by NMS.

The following formulas are used to calculate the regression targets zy, ty, t,,, and
tj, for the bounding box refinement. In the first version of R-CNN, the regression
is relative to the region proposals. The same formulas are used in later versions
of R-CNN and many other object detection architectures. But there, they are
used to regress bounding boxes relative to anchor boxes. The tuple (x, y, w, h)
describes the bounding box of an object by the center coordinates x and y as

43



2 Technical Background: Image Processing with CNNs

well as the width w and the height 4. The tuple (x4, yq, wq, hy) describes the
corresponding anchor bounding box or region proposal in the same way.

X — X4
Iy =
Wa
Y—=DYa
vy =
y ha
(W ) (2.25)
ty, =log|—
Wa
tp =1 h
=10 _—
h g h,

It follows that the bounding box (%, 7, w, 1) of a detected object can be calculated
from the network output (7y, 7y, ,,, 7) and the corresponding anchor location
(Xa» Yas Was» hg) and as follows:

X=1y - wg+x4
y= fy “ha +ya

- 2.2
W =w, - exp(fy) (2.26)
h= hg - exp(fh)

The original R-CNN architecture is very slow because the CNN has to be
evaluated for every region proposal. Girshick reports that inference takes 47 s
per image on a GPU [Girl5]. Fast R-CNN [Girl5] improves on that by running
a CNN only once on the whole image to obtain a feature map. The region
proposals are then used to crop the corresponding part of the feature map, and
not of the input image. A max-pooling operation ensures that the representation
of each crop has a fixed size. The author refers to this as Rol pooling. A
network head then classifies each of the resulting proposal representations
and performs a bounding box regression. Fast R-CNN is based on a VGG-16
backbone. It is pretrained on an image classification task but then fine-tuned
for the object detection task. End-to-end training by back-propagation through
the Rol pooling layer is possible after assigning region proposals to ground
truth objects during training. The assignment is based on the Intersection over
Union (IoU) between the region proposal and the ground truth box.
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Ren et al. propose the Faster R-CNN architecture [Ren+15] which is faster
than Fast R-CNN. It replaces Selective Search with a Region Proposal Network
(RPN). The input image is first processed by a backbone and the RPN to
generate region proposals. In Faster R-CNN, the region proposals are based on
anchor boxes. These anchor boxes are prototype boxes with a certain size and
aspect ratio. The set of all anchor boxes is generated by placing prototype boxes
at all possible discrete locations in a sliding window fashion. The RPN then
predicts an objectness score for each anchor. This objectness score indicates
how likely it is that the anchor contains an object (i. e. that it does not belong to
the background class). The generated region proposals are then processed in
the same way as in the Fast R-CNN architecture.

Mask R-CNN [He+17] adapts Faster R-CNN to the instance segmentation task.
This means that it generates binary instance masks for all object instances.
The overall structure is nearly identical with Faster R-CNN, but an additional
branch is added to the object detection head. This branch consists of a series of
convolutions and predicts a pixel-wise object mask.

Lin et al. integrate an FPN into the Faster R-CNN architecture to fuse information
at different scales [Lin+17b]. The CNN backbone of Faster R-CNN produces
feature maps at different resolutions. Earlier layers produce feature maps
with higher resolutions, while later layers produce feature maps with lower
resolutions due to downsampling. Similar to an image pyramid, these feature
maps form a feature pyramid and capture details at different scales. The FPN is
constructed by gradually upsampling smaller feature maps, and by adding skip
connections between feature maps with the same resolution. This is visualized
in Figure 2.9. The network heads to generate region proposals and to detect
objects are then attached to all pyramid levels.

Single-Stage Detectors

In contrast to two-stage object detectors, single-stage detectors do not rely on
region proposals. Instead, they directly perform object detection on the input
image. This approach tends to be simpler and computationally less expensive.

YOLO [Red+16] is an early work that focuses on real-time object detection.
The authors report that it is 2.5 to 6 times faster than Faster R-CNN, depending
on the network backbone. The YOLO architecture consists of a single CNN
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Figure 2.9: Conceptual structure of the FPN proposed by Lin et al. [Lin+17b]. The width of each
block is used to indicate the feature map resolution. Different blocks have different
resolutions because of downsampling and upsampling operations in the network. The
high-resolution feature maps of earlier layers are fused with upsampled feature maps of
later layers to restore fine details.

backbone, followed by two fully-connected layers. It divides the image into
cells and predicts a fixed number of bounding boxes per cell. Each prediction
contains a regression of the box position relative to the cell center, a regression
of the box size relative to the image size, and a confidence score. A cell is
responsible to detect an object if the center of the object is inside this cell.

YOLOV2 [RF17] is an improved version of YOLO. The authors remove the
fully-connected layers and make the network fully convolutional. The image
is not divided into cells anymore. Instead, the network relies on anchor boxes
similar to Faster R-CNN. YOLOvV3 [RF18] is the third iteration of YOLO. It
adds many smaller improvements to the YOLOV2 architecture and training
process.

The SSD architecture [Liu+16] was published after the first version of YOLO
but before the second. It uses a VGG-16 backbone and is also based on anchor
boxes. The authors recognize that predictions at different scales are important
for high recall. For this, they employ successive downsampling of the backbone
output to obtain feature maps at different resolutions. All resulting feature maps
are then fed to a network head which predicts the object classes as well as the
box regression parameters relative to the corresponding anchor boxes.
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RetinaNet [Lin+17c] is based on a very similar anchor box design. It however
uses a ResNet backbone together with the FPN design by Lin et al. [Lin+17b].
Most previous architectures solved the class imbalance between the foreground
and background class by employing a sampling strategy. RetinaNet uses Focal
Loss (c. f. Section 2.2.6) instead. This loss down-weights easy examples so that
they cannot dominate the loss and suppress more informative examples. Lin
et al. report that RetinaNet outperforms Faster R-CNN based models, YOLOV2,
and SSD on the COCO “test-dev” dataset [Lin+14].

Like Mask R-CNN, PANet [Liu+18] solves the instance segmentation task.
PANet uses a ResNet based backbone followed by a modified FPN structure. This
modified FPN has a second augmentation path which enriches the information
in the low-resolution feature maps. PANet fuses the output of the FPN again
and feeds the result to an object detection and a mask prediction network head.

EfficientDet [TPL20] is based on the EfficientNet backbone. Like the backbone,
EfficientDet can be scaled to meet the performance requirements and computa-
tional constraints of the application. It reuses the depth d and width w scaling
parameters from EfficientNet (c. f. equation (2.24)). It introduces the following
additional formulas for scaling based on the compound scaling factor ¢:

dvifpn =3+ ¢
dhead =3+ | =
head 3J (227)
Whifpn = Whead = 64 - 1.35¢
r=512+128 - ¢

Here, r is the resolution of the input image in both dimensions. The width
parameters Wifpn and Wheaq are the same for the FPN and the detector head.
The depth parameters dpifpn and dpeaq vary however.

The input image is first processed by the EfficientNet backbone. It produces
feature maps of different resolutions due to downsampling. These feature maps
form a pyramid with feature levels P;. Each level P; corresponds to feature
maps with a resolution of 1/2 per dimension of the original input image.

The last feature maps produced by the backbone at feature levels P3 to P7 are
fed to a Bidirectional Feature Pyramid Network (BiFPN). Feature levels Pg
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and P; do not occur in the original EfficientNet backbone but are obtained
for EfficientDet by two additional downsampling layers. Tan, Pang, and Le
introduce the BiFPN structure to efficiently aggregate information from different
feature levels. It contains multiple top-down and bottom-up augmentation paths.
The structure of the BiFPN is visualized in Figure 2.10. Each block inside this
module performs the following operations:

1. Scale all inputs feature maps to the desired output resolution (if neces-
sary). This is done using bilinear interpolation, followed by a depthwise
separable convolution and a Batch Normalization layer.

2. Weight the resized input feature maps f; according to the following

formula:

~ Wi

Here, w; € Ry are trainable parameters and & is a small constant to
avoid division by zero.

3. Calculate the element-wise sum of the weighted feature maps.

4. Perform a depthwise separable convolution on the result.

5. Apply Batch Normalization.

6. Apply the swish activation function.

Step 2 and 3 allow the BiFPN to learn which features contain valuable infor-
mation at a certain resolution. Uninformative features can be down-weighted
before calculating the sum.

Each output feature map of the BiFPN is then passed to an object detection
head. The object detection heads are based on RetinaNet detection heads. They
contain a series of dpeaq depthwise separable convolution layers, each followed
by a Batch Normalization layer and a swish activation function.

Figure 2.11 shows the Average Precision (AP) over the number of FLOPs on the
COCO dataset [Lin+14] for some of the presented object detection architectures.
The EfficientDet architecture is scalable and achieves the highest performance
given a computational constraint.
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Figure 2.10: Conceptual structure and connectivity of the BiFPN proposed by Tan, Pang, and Le
[TPL20]. The width of the blocks indicates the spatial resolution of the corresponding
output feature maps. The displayed module is repeated dpifpn times to form the
complete BiFPN.

Alternative Approaches to Object Detection

Alternative object detection approaches have been published that are not based
on anchor boxes. So far, however, they do not clearly outperform anchor-based
approaches.

Some of these approaches describe objects as pairs of bounding box corners
[LD18; Law+19], by a pair of corners and the center point [Dua+19], or by one
point on each of the four sides of the bounding box [ZZK19]. The task then is
to detect and group these keypoints. Other approaches classify center pixels of
objects and then regress the bounding box size [ZWK19] or the distances to the
four bounding box sides [Tia+19]. Yang et al. describe the outline of an object
by a number of points, given as offsets from the center location [Yan+19]. In a
previous work, we also performed instance segmentation by predicting object
center pixels and pixel-level neighbor relations [SL18].

It is also possible to view the object detection task as a direct set prediction
problem. It can then be solved using e. g. Transformers [Car+20] or RNNs
[SAN16; RT16].
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Figure 2.11: AP over FLOPs on the COCO “test-dev” (“val” for Mask R-CNN) dataset [Lin+14]
for different object detection architectures [TPL20]. ED-DO to ED-D7 is short for
EfficientDet-DO to EfficientDet-D7.

2.3.4 Optical Flow Architectures

According to Horn and Schunck, “optical flow is the distribution of apparent
velocities of movement of brightness patterns in an image” [HS81]. In other
words, the optical flow between two consecutive images of a video stream is a
vector field that, for each pixel, describes the displacement of the surrounding
image patch from one image to the other. Variational methods based on the
work of Horn and Schunck have been popular for a long time to calculate optical
flow. But optical flow can also be estimated using CNNs.

FlowNet [Dos+15b] is one of the first approaches that successfully estimate
optical flow with a CNN. The authors propose two variants, FlowNetS and
FlowNetC. FlowNetS stacks the two input images on top of each other and then
processes them with a CNN backbone. The backbone successively reduces
the resolution of the feature maps. After the backbone, they are successively
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upsampled again in the decoder. Each resulting feature level has a skip
connection from the backbone to the decoder in order to restore finer details.
Optical flow is predicted at each resolution level in the decoder. If an optical
flow estimate is already available from a coarser level, it is upsampled and used
as input for the estimation at the next level. This way, each level can refine the
estimate from the previous level.

The FlowNetS architecture must learn to perform the feature matching inside
the convolutional layers. FlowNetC, on the other hand, uses a correlation layer
to help with this task. In FlowNetC, the first three convolutional layers of
the backbone are duplicated, so that the two input images can be processed
separately. The resulting feature maps of both streams are then correlated by
a correlation layer. The maximum displacement is limited when calculating
the correlation to make the computation more tractable. The output of the
correlation layer is a cost volume, which is then concatenated with the input
feature maps. The resulting tensor is processed by the remaining part of the
network, which is identical to FlowNetS. FlowNetC achieves a lower error than
FlowNetS but is also computationally more expensive.

FlowNet2 [Ilg+17] stacks one FlowNetC and two FlowNetS networks on top
of each other. The input images to the FlowNetS sub-networks are warped
based on the flow estimation of the preceding sub-network. Therefore, the task
of each FlowNetS sub-network is to correct the errors that were made by the
previous stage. FlowNet2 also incorporates a fourth sub-network that is tuned
to predict small displacements. The results of both branches are fused for the
final result.

SPyNet [RB17] is a pure CNN architecture like FlowNetS. Its key contribution
is to employ a spatial pyramid network: The backbone generates a feature
pyramid for each input image separately. Then, optical flow is estimated at
the highest feature level (with the lowest resolution) by a sub-network. The
flow estimation is then upsampled to match the resolution of the next feature
level. When resampling a flow image, also the magnitude has to be scaled by
the same factor. The corresponding feature maps of the second image are now
warped by the flow estimate. If the estimate is perfect, the result will align with
the corresponding feature maps of the first image. In practice, the estimate will
however not be perfect. Another sub-network therefore estimates the residual
flow between the warped feature maps and the corresponding feature maps
of the first image. The refined flow estimate is then obtained by adding the
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Figure 2.12: Structure of the flow estimation sub-network from PWC-Net [Sun+18]. At the highest
level of the feature map pyramid, there is no flow estimate 0;4, and no previous
sub-network features fg, ;.1 with lower resolution. In this case, the upsampling and
warping layers are omitted. Instead, the feature maps f;; ; and fi> ; of both images are
directly fed into the correlation layer. The output of the flow estimation sub-network
consists of the refined flow estimation o; and the sub-network features f, ;. The CNN
block in this figure contains convolution layers with DenseNet [Hua+17] connections.

residual flow estimate to the upsampled flow estimate. This process is repeated
until a flow estimate at the original image resolution is obtained.

PWC-Net [Sun+18] combines the spatial pyramid and warping approach from
SPyNet with the cost volume from FlowNetC. Also the backbone of PWC-Net
generates a feature pyramid for each input image separately. Then, the same
successive refinement steps as in SPyNet are executed: Starting from the
highest feature level with the lowest resolution, a sub-network estimates the
flow at this resolution. The flow is upsampled and then passed to the flow
estimation sub-network at the next level. The input feature maps are warped by
the upsampled flow estimate. The residual flow is calculated and used to refine
the estimate. These steps continue until the flow estimate at the final resolution
is obtained.

The sub-network of PWC-Net for flow estimation is however different from
SPyNet and incorporates a correlation layer. It is visualized in Figure 2.12.
Both the optical flow estimate 0741 and the output feature maps £y ;41 of the
previous sub-network at feature level / + 1 are upsampled to match the resolution
of the current feature level /. Then, the corresponding backbone feature maps of
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the second input image fi> ; are warped by the upsampled flow. These steps are
omitted if there is no higher feature level, i. e. if 074+ and fg, ;41 are not available.
The warped feature maps (or fi; ; if the step was omitted) are then correlated
with the backbone feature maps of the first input image f;; ;. The output of
this is a cost volume. Because of the pyramid structure and the successive
refinement steps, the maximum displacement at each level cannot be large. The
search distance can therefore be limited, which makes the calculation of the
cost volume efficient. Finally, the cost volume, the upsampled optical flow,
and some feature maps (c. f. Figure 2.12) are concatenated and processed by
an CNN. The output of the module is the refined optical flow estimate o; for
feature level /, as well as sub-network feature maps fg, ;.

Sun et al. report that PWC-Net is faster than the previously presented methods
while achieving a lower error.

All presented models were trained in a supervised manner. Ground truth data
can easily be obtained for synthetic datasets like the FlyingChairs dataset,
which was released to train FlowNet [Dos+15a]. Despite the dataset being
synthetic, the trained networks often generalize well. Depending on the
application, the performance can be improved by an additional fine-tuning step
on domain-specific data.

It is also possible to learn optical flow in a self-supervised manner [YHD16].
This is typically done by feeding two consecutive images of a video stream to
the flow estimation network. One input image is then warped by the estimated
optical flow to reconstruct the other. The training objective is then to minimize
the photometric error between the reconstructed and the real image. While this
approach achieves good results, it does not outperform supervised learning.

A similar approach is used by Godard et al. to learn monocular depth estimation
[God+19]. They use the £ I'and SSIM [Wan+04] similarity metrics to calculate
the photometric error and automatically mask unobservable pixels during
training. Their approach achieves state of the art performance on the KITTI
2015 dataset [GLU12].
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2.4 Tracking

The task of object detection is to find objects in a single image. The task of
object tracking, on the other hand, is to estimate the position of an object over
time. For this, tracks have to be maintained and incoming detections have to be
assigned to tracks. In the case of multiple objects, the term Multiple Object
Tracking (MOT) is commonly used.

Tracking approaches usually consist of an association (or re-identification)
method and a motion model. The former is responsible for localizing previously
observed objects in the current video frame. The latter is used to suppress
detection noise, to ensure a physically plausible association, and to predict the
state of existing objects. The prediction is especially important when no new
measurements are available for a tracked object.

Based on the association approach, tracking algorithms can be classified as being
detection-free or detection-based. Detection-free algorithms are initialized with
a set of object locations. The algorithm then tries to find the same objects in all
consecutive frames based on visual features. A well-known method for this is
the correlation filter [Bol+10; Hen+15; Dan+15]. Similarly, optical flow can be
used to track the position of an object for a limited amount of time. It is also
possible to use siamese networks for this task [Ber+16; DS18; He+18; Li+18].

Detection-based methods became popular with the emergence of very accurate
object detectors. Here, an object detector generates a list of detections for each
video frame. These detections are then associated with existing tracks. This
can e. g. be done based on position, bounding box IoU, or visual features. The
advantage of detection-based algorithms is, that they solve the track initialization
and association step simultaneously. Because of that, they tend to be fast and
computationally efficient. Detection-free algorithms, on the other hand, would
still need to run an object detector to initialize tracks. We, therefore, focus on
detection-based methods in this work.

A tracking approach can either be an online or an offline approach. Offline ap-
proaches do not need to meet any real-time requirements. But more importantly,
they have access to the whole video sequence. This makes acausal reasoning
possible. Graph-based methods that optimize the whole sequence at once can
achieve high accuracies, and are very popular [ZLNO8; PRF11; BC13].
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Given the intended application, we are however only interested in online tracking
approaches. They must use little computational resources and only perform
causal computations. They can only access observations up to the present time
and have to gradually extent existing trajectories.

Advanced tracking approaches can also include methods to deal with occlusions.
Some approaches divide the object of interest into parts and only track the
visible parts. It is also possible to store multiple visual appearance models per
track. This allows to maintain one model for the occluded object, and one for
the unoccluded object. An occluded object can then be more easily re-identified
once it is not occluded anymore.

Full occlusions for a long time are challenging for tracking: Simple motion
models like the constant velocity model with a Kalman filter [Kal60] work
well for short prediction horizons. But they fail for long prediction horizons of
multiple seconds. The velocities of the objects can change significantly during
that time. An alternative is to use more sophisticated prediction methods to
handle long occlusions, which lead to long prediction horizons. These prediction
methods might output multiple hypotheses, and can take the interaction of
agents as well as the physical feasibility into account.

In this work, we refrain from implementing these more advanced methods.
They are more closely related to prediction than to perception. We want to
highlight the strength of an accurate object detector, which can also handle
short-time occlusions when used in a tracking-by-detection approach. Our
presented ideas are however orthogonal to these methods, and they can be easily
integrated into our approach if desired.

2.4.1 Tracking-by-Detection Approaches

Bewley et al. show in an early work [Bew+16] that a simple tracking approach
with a strong object detector can achieve state of the art performance. They
use a constant velocity motion model with a Kalman filter [Kal60]. The data
association is done only based on the IoU between the predicted bounding
boxes from the motion model and the current detections.

Based on this, Wojke, Bewley, and Paulus propose an extension that integrates
appearance information into the association step [WBP17]. This reduces the
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number of identity switches by 45 %. Also, instead of using the IoU between
the predicted bounding boxes and detections, they use the Mahalanobis distance
between the predicted filter states and the detections.

Feichtenhofer, Pinz, and Zisserman use a two-stage object detector to predict
object bounding boxes as well as object displacements [FPZ17]. As usual for
two-stage detectors, each frame is processed individually by the RPN, and then
by the detection network in the second stage. The authors then introduce an
additional second stage for displacement estimation. It calculates a correlation
map between the feature maps of the current and the previous frame. During
the Rol pooling step, a crop of the correlation map and the feature maps of both
frames is generated for each proposal. Based on this information, the additional
second stage estimates the displacement of each object between both frames.
Tracks are then generated based on the IoU between the predicted bounding
boxes from the old frame, and the current detections.

Luo, Yang, and Urtasun propose a tracking approach for lidar sensors that
is based on a Bird Eye View (BEV) grid map [LYU18]. First, they perform
ego-motion compensation of the last n BEV frames. This is important to
keep the displacements of objects in the grid map small. Then they stack the
grid maps and process them with a CNN. The CNN then produces a list of
object detections as well as a predicted future trajectory per object. Objects are
associated with existing tracks based on the overlap of the predicted trajectories.

Bergmann, Meinhardt, and Leal-Taixé propose Tracktor [BML19]. It uses the
regression head of Faster R-CNN to regress a new bounding box for each given
detection from the previous frame. If the position of the object has changed
only slightly, the regression head is able to regress to the new position. After
this step, new detections are associated with the existing tracks based on the
bounding box IoU. The authors also propose two extensions to deal with larger
object displacements: The first proposal is to use a motion model, and the
second is to incorporate appearance information into the association step.

2.4.2 Motion Models

A widely used motion model is the Kalman filter [Kal60] with either a constant
velocity or constant acceleration assumption. The performed computations are
simple and fast, which makes it suitable for online approaches. It is an optimal
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filter if the linear model matches the reality, and if the occurring errors are
uncorrelated and Gaussian distributed with zero mean.

It is obvious that a constant velocity or constant acceleration assumption does
not match reality. But in practice, it is a good approximation for short prediction
horizons. Since the maximal acceleration of road users is physically limited,
their velocities cannot change too much between two consecutive frames of a
video (assuming reasonable frame rates).

It is also possible to use neural networks to learn a motion model. Most existing
work is based on RNNs, and more specifically based on Long Short-Term
Memory (LSTM) or Gated Recurrent Unit (GRU) cells [Gho+17; MBR17].
But it is also possible to combine neural networks with a Kalman filter: Coskun
et al. propose to learn the nonlinear transition function of an Extended Kalman
Filter (EKF) as well as the two noise covariance matrices using LSTM cells
[Cos+17].

2.5 Evaluation Metrics

This section presents the evaluation metrics that we use in Chapter 3 and
Chapter 4 to evaluate our approach. These metrics are commonly used in
literature and allow to easily compare our approach to others.

2.5.1 Pixel-wise Semantic Segmentation

The semantic segmentation task is evaluated using the Jaccard Index, which is
commonly referred to as PASCAL VOC IoU [Eve+15]. For each class c, it is
calculated as follows:

ntp,c

ToU, = (2.28)

nTp,c + NEp,c + NEN,c

The mloU is then the mean over the IoUs of all classes. Here, ntp . is the
number of true positive pixels, ngp . is the number of false positive pixels and
ngN,e i the number of false negative pixels. When evaluating the IoU for a
class ¢, and observing a pixel with predicted class ¢ and ground truth class c*,
the following three cases can occur:
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Il
™

°c = ¢*: Pixel counts as true positive.

e ¢ = ¢ # ¢": Pixel counts as false positive.

e ¢ =c* # ¢: Pixel counts as false negative.

2.5.2 Object Detection

For the object detection task, we report the AP at an IoU threshold of 0.5. This
means that a detection only counts as a true positive if the IoU between its
bounding box and a ground truth annotation is at least 0.5. We also report the
Log-Average Miss Rate (LAMR) [Dol+17].

In order to calculate these metrics, first the number of true positives ntp, false
positives npp, and false negatives ngy has to be determined. For this, detection
bounding boxes have to be assigned to ground truth bounding boxes. This
assignment is performed based on the IoU between the bounding boxes. A
detection can be assigned to a ground truth bounding box if the IoU is larger
than the desired threshold. If multiple detections can be assigned based on this
criterion, then only the detection with the highest IoU is assigned. The IoU
between two bounding boxes is calculated as follows:

area(b; N'by)
IoU(by,by) = ——= 2.29
oU (b1, b,) area(b; Uby) ( )

As the name suggests, the IoU is the area of the intersection of both bounding
boxes divided by the area of the union of both bounding boxes.

With this, precision and recall can be calculated as follows:

.. ntp
precision = —————
nrp + ngp
nrp (2.30)
recall = ———
nrp + NgN

The set of bounding box detections changes for different confidence score
thresholds. A high threshold means that only detections with high confidence
scores are generated, while a low threshold results in more detections with
lower confidence scores. Because of this, also precision and recall depend on
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the confidence score threshold. A precision-recall curve can then be created by
plotting the precision over the recall for different thresholds.

The area under this precision-recall curve gives the AP. It is therefore also
referred to as Area Under Curve (AUC). PASCAL VOC uses this metric to
evaluate bounding box detectors [Eve+15]. Please note that some publications
use an interpolated precision-recall curve. This can result in slightly different
AP values. The AP is a single number that allows to easily compare different
precision-recall curves. If there are multiple classes of object, the AP can be
calculated for each class. The Mean Average Precision (mAP) is then the mean
over all classes.

Another possibility to compare detectors is to create a log-log plot of the miss
rate over the number of False Positives Per Image (FPPI). The LAMR metric
is then computed by by averaging miss rates at 9 FPPI values evenly spaced
in log-space between 1072 and 10° [Dol+17]. The IoU threshold used for this
metric is 0.5.

2.5.3 Tracking

We employ the widely used Multiple Object Tracking Accuracy (MOTA) and
Multiple Object Tracking Precision (MOTP) metrics [BS08] to evaluate our
tracking approach. The first step to calculate these metrics is to match the
object hypotheses of the tracker to the ground truth objects. The MOTP
metric is calculated as the average localization error for all correctly matched
object-hypothesis pairs. It indicates how well the tracker can estimate precise
object locations, independent of its ability to associate detections to tracks.

The MOTA metric, on the other hand, indicates how well objects are detected
and associated to tracks, independent of the exact localization performance. It
is calculated as:

MOTA =1 = (ry + rp + 'mme) (2.31)

Here, rpy, is the miss ratio. It is the number of missed objects divided by the
total number of ground truth objects. The term ry, is the false positive ratio. It
is the number of false detections divided by the total number of ground truth
objects. Finally, ryme is the mismatch ratio. It is the number of detections
matched to the wrong track divided by the total number of ground truth objects.
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3 Single-Frame Environment
Perception

The goal of this work is to present a fast, efficient, and precise CNN architecture
for video-based environment perception for self-driving cars. This chapter
presents a CNN architecture that works on single camera frames. In Section 3.1,
we will describe an architecture that can detect objects and perform pixel-wise
semantic segmentation at the same time. This is computationally less expensive
than evaluating two separate neural networks. In Section 3.2, we will present
an extension to this architecture that uses a similarity metric to perform NMS.

Training and evaluation are performed on the Cityscapes dataset [Cor+16] and
the BDD100K dataset [Yu+20]. The Cityscapes dataset contains semantic
segmentation and instance segmentation masks. We use the former directly to
train the segmentation task and convert the latter to bounding box annotations
to train the object detection task. The BDD100K dataset consists of multiple
sub-datasets. We use the segmentation dataset to train the segmentation task,
and the tracking dataset to train the object detection task. We mix both of these
to train our MTL architecture.

Both the Cityscapes dataset and the BDD100K dataset are split into a training,
validation, and testing set. The ground truth annotations for the testing sets are
however not publicly available. We therefore cannot run an evaluation script
on the test sets but have to rely on the official test servers. The metrics that
are reported by the test servers are however fixed and not consistent between
datasets. In order to report consistent metrics across different datasets, we
evaluate our approach on the validation sets. This is valid because we did not
perform any hyperparameter tuning on the official validation sets. Instead, we
used a set of images that we kept out from the training sets for hyperparameter
tuning.
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We use the FlyingChairs dataset, which was released to train FlowNet [Dos+15a],
to train our sub-network for optical flow estimation in Chapter 4.1. We pretrain
our backbone on the WebVision 1.0 dataset [Li+17].

We use TensorFlow [Aba+16] to implement our models. Run-time measure-
ments are carried out on an Nvidia Quadro RTX 8000 GPU in mixed-precision
mode. We choose this GPU because it is expected that Nvidia’s upcoming
DRIVE AGX Orin platform for automotive applications will achieve comparable
performance [Lab19]. This shows that series cars will soon have access to
enough computational resources to run our proposed approach online.

Unless noted otherwise, we use the following hyperparameters to train our
models:

e AdamW optimizer (Adam with decoupled weight decay) [KB15; LH19]
 Batch size of 8
« Initial weight decay of 1077, scaled proportional with learning rate
» Initial learning rate of 1073, two decays by a factor of 10 each
— First learning rate decay after 600 000 steps

— Second learning rate decay after 1 100000 steps

1 800 000 training steps in total
» Frozen Batch Normalization statistics during the last 300 000 steps

» Training on image crops with resolution of 512 x 256

We use Batch Normalization [IS15] as normalization approach throughout our
models. But we found that Online Normalization [Chi+19] can also achieve
good results if the training hardware does not allow for a large enough batch
size.
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3.1 Simultaneous Object Detection and Semantic Segmentation

3.1 Simultaneous Object Detection and
Semantic Segmentation

This section presents a CNN architecture for simultaneous object detection and
semantic segmentation. Our evaluation shows how the tasks influence each
other in the MTL setting.

Our proposed network does not perform instance segmentation. We argue that
a bounding box object representation is good enough for most downstream con-
sumers in the software stack of a self-driving car. But if instance segmentation
masks are desired, it is possible to use the Mask R-CNN instance segmentation
head together with our approach.

It is obvious that self-driving cars must be able to detect objects. The behavior
generation and planning modules must know about the existence and location
of other road users to reason about them. Otherwise, it is not possible to plan
a collision-free path. Also, the detection of traffic signs and traffic lights is
important so that the displayed information can be taken into account in the
planning stages.

But pixel-wise semantic segmentation is important for self-driving cars, too.
It can, for example, be used to extract all pixels belonging to the road surface.
This information can be used to validate that the planned trajectory lies in
the drivable area. It can also happen that a self-driving car does not have
access to up-to-date maps of the current area, e. g. inside a frequently changing
construction site. In these cases, lanes have to be detected online. This task
can be solved using pixel-wise semantic segmentation, too [Mey+18]. Visual
localization relies on storing the positions of landmarks in a map. These
landmarks are points that can be easily detected in camera images. They can be
used for localization when detecting them again during successive drives inside
the mapped area. It makes sense to only store and detect landmarks that are
part of the static environment. Semantic segmentation can be used to extract
the static parts of the scene in the camera image.
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3 Single-Frame Environment Perception

3.1.1 Network Structure

When designing an MTL architecture for simultaneous object detection and
semantic segmentation, it is possible to start with an architecture for semantic
segmentation and modify it to also perform object detection, or the other
way around. As shown in Section 2.3.2 and Section 2.3.3, there is a high
variability in successful semantic segmentation architectures. Object detection
architectures, on the other hand, have converged to a few common design
patterns. Therefore, it makes sense to base the design on an object detection
architecture.

This work focuses on fast approaches that can meet the real-time requirements
of self-driving cars. Because of this, we want to use a single-stage detector. The
semantic segmentation task relies on fusing information from different levels
of detail to achieve good accuracy. Therefore an object detection architecture
with an FPN is an obvious choice as a starting point.

We base our MTL architecture on the EfficientDet [TPL20] architecture. It
is to date the best-performing object detection architecture that fulfills all
requirements. Also, the authors mention that a slightly modified version of
EfficientDet can achieve reasonable semantic segmentation results. This choice
is further supported by a recent publication [Kir+19]. It presents an architecture
for simultaneous instance segmentation and semantic segmentation that also
employs an FPN. The overall structure is similar to the one proposed in this
section.

We use the EfficientDet-D3 backbone in our experiments. The D3 version
represents a good compromise between accuracy and computational demand.
All results reported in the following sections will be based on this version. But
the whole architecture is scalable, and a different compound scaling factor can
be selected based on the requirements.

According to equation (2.27), the image resolution for D3 should be selected
as r = 512 + 128 - 3 = 896 pixels per dimension. This results in a total of
896 = 802 816 pixels in the input image. But typical camera images as used
in a self-driving car do not have an aspect ratio of 1:1. The images of the
Cityscapes dataset, for example, have an aspect ratio of 2:1, while the ones
of the BDD100K dataset have an aspect ratio of 16:9. We therefore use a
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3.1 Simultaneous Object Detection and Semantic Segmentation

resolution of 1280 x 640 pixels during inference. This keeps the total amount
of pixels, and thus also the computation time, roughly the same.

We change the BiFPN to use feature levels P, to P7 (c.f. Section 2.3.3). The
inclusion of P, unfortunately increases the computational demands of the
BiFPN significantly. But our experiments showed that this change is important
to recover fine image details for the pixel-wise semantic segmentation. The
inclusion of P, can also help for object detection in the context of self-driving
cars: Some relevant objects like distant traffic lights are too small in the input
image to be detected on level P3 or higher.

Our proposed semantic segmentation network head is as simple as possible.
It has the same structure as the standard network heads in EfficientDet-D3.
That is, it consists of a series of depthwise separable convolutions, each
followed by a Batch Normalization layer, and a swish activation function.
The general structure of these network heads is visualized in Figure 3.1. In
the case of the network head for semantic segmentation, the last layer is a
transposed convolution. It upsamples the feature maps by a factor of 4 to
match the resolution of the input image. At the same time, it reduces the
number of channels to the number of semantic classes. We attach the semantic
segmentation head only to the P; level of the BiFPN since we are not interested
in predictions with lower resolutions.

We use three different network heads for object detection. Again, each has the
same structure as the standard network heads of EfficientDet-D3. The last layer
of each is a 1 X 1 convolution layer that adjusts the number of channels to the
required number of output channels.

This is different from RetinaNet and the original EfficientDet which use only
two network heads. Both our and their designs have one box regression head
that predicts four parameters per anchor box. These are calculated according to
equation (2.25). The second network head of RetinaNet predicts a score per
object class for each anchor box. In other words, it independently estimates
probabilities Pr(object, class = ¢;) for all classes ¢; and for each anchor box.

We argue that this is not a good choice in the context of self-driving cars. Using
the definition of conditional probability, the equation above can be rewritten as:

Pr(object, class = ¢;) = Pr(object) - Pr(class = c;|object) 3.1
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Figure 3.1: The network head that is attached per task at each feature level. The last layer is
task-specific. It ensures the right resolution and number of channels in the output.
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Let’s assume that we are interested in an object detector for two-wheelers,
and that there are two classes—motorcycles and bicycles. Let there be an
image with a two-wheeler in it, and let’s assume that this two-wheeler is
detectable as such. The existence probability might be Pr(object) = 0.9 in
this example. Now assume that the image quality is not good enough to
decide the exact object class. It might be a mountain bike with thick tires and
frame or an entry-level motorcycle. The estimated class probabilites might be
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3.1 Simultaneous Object Detection and Semantic Segmentation

Pr(class = bicycle|object) = 0.5 and Pr(class = motorcycle|object) = 0.5. For
this example, it follows that:

Pr(object, class = bicycle) = Pr(object) - Pr(class = bicycle|object)

=0.9-0.5=045
Pr(object, class = motorcycle) = Pr(object) - Pr(class = motorcycle|object)
=0.9-0.5=045

The predicted scores are compared against a threshold, and all detections with
lower existence probability are discarded. If we use the common threshold
of 0.5 in this example, then the detector would not detect any object. This,
however, would be fatal.

We therefore propose to predict both factors of equation (3.1) separately.
Accordingly, we add two network heads that predict one factor each. In the
previous example, our detector would detect the object, but it would be unsure
about the classification. A wrong classification is not good since it can e. g.
cause inaccuracies in the behavior prediction of a self-driving car. But it is
definitely better than not detecting the object.

We also extend the set of anchor boxes. The RetinaNet detector uses anchor
boxes of aspect ratios {1:2,1:1,2:1}. We add two more aspect ratios and
use {1:4,1:2,1:1,2:1,4:1}. The reason is that we also want to detect more
asymmetric objects like trams or pedestrians.

We train all classification network heads using Focal Loss [Lin+17c] with
v = 1.5 to account for the class imbalances. We train the bounding box
regression network head using smooth ¢! loss with ¢ = 0.1. We use the
weighting approach proposed by Kendall, Gal, and Cipolla [KGC18] to weight
the different task losses. The overall network structure is visualized in Figure 3.2.

3.1.2 Data Augmentation

In general, CNNs profit from a lot of training data. More training data means
better generalization and higher accuracy. One reason for this is that it reduces
overfitting. Overfitting means that the model just remembers previously seen
examples, but does not generalize.
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Figure 3.2: Overall structure of our proposed network for simultaneous object detection and
semantic segmentation. Each block performs complex operations: The EfficientNet
backbone on the left side consists of MBConv blocks as visualized in Figure 2.6. They
are arranged as depicted in Table 2.1, but scaled by equation (2.24). The BiFPN consists
of multiple repeated blocks according to equation (2.27). Their structure is visualized
in Figure 2.10. The structure of each network head is visualized in Figure 3.1.
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3.1 Simultaneous Object Detection and Semantic Segmentation

Annotating training data is however a cumbersome and expensive process. Even
though larger and larger datasets for automated driving became available during
the last few years, the amount of labeled training data is limited. One alternative
to annotating more data is to augment the annotated training data in a way that
does not invalidate the annotations. This increases the number of available
training examples artificially. The relevant information contained in the images
must not be altered by the augmentation, but the visual appearance of the
image can change. An alternative view is that augmentation adds noise to the
training images, which can have a regularizing effect and improve generalization
performance.

We apply the following distortions to the training images as part of our
augmentation strategy. For this, we represent the pixel intensities of the image
as floating point values between 0 and 1:

1. Random crop of the image. The crop is performed in a way so that the
size of objects (measured in pixels) during training matches the size of
objects during inference. This is ensured even if the resolution and the
Field of View (FoV) of the training images is different from the images
used for inference. Details will be provided at the end of this section.

2. Random horizontal flip of the image. This operation must only be
performed if it does not change the semantics of the image. In some
cases, this does not hold, e. g. when classifying lanes as being a left or a
right turn lane. The flip is performed with a 50 % chance:

IRGB,XY ifd <0.5

IrcB,xy <« { d~U0,1) (3.2)

Ircp-xy otherwise ’

3. Random change of the gamma curve. The exponentiation is performed
element-wise, with the same y value for each pixel of the image:

IrB,xy < Rgp yy» ¥~ U(0.8,1.2) (3.3)

4. Random change of contrast:

IRGB «— C- IRGBa c~U (0.8, ].2) (3.4)
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5. Random change of brightness:

IRGB — IRGB + b, b~U (—0.2, 01) (35)

6. Random change of hue:

Tusv.xy < Iusv.xy + (B, 5,007, h ~U (=10, 10),

s ~U(-0.1,0.1) (36)

For this, the image is first converted from the RGB color space to the
HSV color space, and afterwards converted back.

7. Random change of white balance:

I xy < I xy + (0,a,0)7,  a~U(-5,5),

b~U(-5,9) G7)

For this, the image is first converted from the RGB color space to the
CIELAB color space, and afterwards converted back.

8. Gaussian blur of the image by performing a convolution with the sym-
metric Gaussian function G :

Ik < Irge * G, o ~U(0,1.3) (3.8)

9. Add noise to each pixel in the image:

2
Irge.xy < IrGB xy +nxy, nxy ~N(0,07),

o ~U(0,0.03) ©9)

The parameters and the order of these pre-processing steps were determined
empirically. The goal of this step is to create images with a high variance
that cover all distortions which might be encountered during inference. This
includes, for example, different sensor characteristics and a different white
balance, higher sensor noise, or not perfectly focused optics. On the other hand,
the generated images should still look mostly natural, and the important image
information must not get lost.
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3.1 Simultaneous Object Detection and Semantic Segmentation

The parameters from above result in an augmentation that is already a bit too
strong to achieve the best results on the training dataset. But they improve
results across different datasets with different cameras. This is important for
the application in the research vehicle of MRT at KIT. It uses cameras that are
different from the ones used to record the Cityscapes and BDD100K datasets.
If best results on the training dataset are desired, the variances of the random
distortions can be decreased a bit.

Our model is trained on random crops of the annotated training images (c. f.
point one above). Objects in these crops must approximately have the same
size (in pixels) as in the images used during inference. The reason is that CNN
architectures are translation equivariant or even invariant by design, but not
scale invariant. We perform a number of calculations to extract training crops
that fullfil this requirement. By following these steps, we can train a CNN on
a dataset with a narrow FoV and still achieve reasonable performance during
inference on images with a much wider FoV.

We assume that all images are undistorted to match a spherical camera model
where the poles of the sphere are above and below the car. Such an undistort is
suitable for automated vehicles because it allows for a very wide horizontal FoV.
At the same time, it does not violate the translation equivariance assumption of
the CNN design—a small patch centered around a fixed point on an object does
not change if the object moves in the image. A pinhole undistort would obviously
violate this assumption since objects at the edges of the image are stretched.
For smaller FoV, the assumption however holds approximately. In this case,
a pinhole undistort can also be used. Equation (3.10) and equation (3.11) in
the following procedure can then easily be modified by using trigonometric
functions.

1. We calculate the appropriate horizontal FoV of the training image
FOV yraining as follows:

Wiraining

FOVtraining = FOVinference * (3.10)

Winference

This equation depends on the desired horizontal FoV during inference
FOVinference and horizontal resolution wipgerence, as well as the horizon-
tal resolution during training Wiwgining. The parameters Winference and
FOVinference are given by the desired application. The parameter wsining
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72

has to be chosen in a way that the final crop size is feasible and contains
a large enough part of the image.

The FoVs and image widths in the formula above scale linear with each
other. This becomes obvious when considering that the length s of a
circular arc with radius r and angle 8 is s = 6 - r: The arc length scales
linearly with the angle.

. We now calculate the appropriate width of the crop Weqp following the

same reasoning:

F OVcrop

- 3.11
1:"Ovamnotation ( )

Werop = Wannotation
Here, Wannotation 15 the width of the annotated images from the training
dataset, and FOV yppotaion 18 their FoV. It also holds that FOV ), =
FOV (raining because the crop will be used for training.

. We vary the width of the crop slightly as a data augmentation technique.

We therefore sample the final width between 95 % and 105 % of the
appropriate width that was calculated in the step before:

Werop ~ U (0.95 - Werops 1.05 - Werop) (3.12)

. We calculate the corresponding height of the crop. This will preserve the

aspect ratio in step 6:

htraining

(3.13)

hcrop = Werop
Wiraining

Again, the parameter Aining has to be chosen in a way that the final crop
size is feasible and contains a large enough part of the image.

. We sample the top-left corner of the crop uniformly so that all feasible

locations are covered:

x~U (O, Wannotation — Wcrop) , y~U (O, Rannotation — hcrop) (3.14)

. We perform the crop and resize the result to match the training width and

height of Witraining and htraim'ng~
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These steps are, of course, not only performed on the input images, but also
on the corresponding training annotations. It means that the coordinates of
bounding boxes, polygons describing the outlines of objects, and so on, are
adjusted accordingly.

3.1.3 Target Assignment

Training datasets for object detection usually contain a list of bounding box
annotations per image. In the case of the Cityscapes dataset, we generate this
list from the polygon annotations of the object instances.

The direct output of our neural network, however, is not a list of bounding
boxes but a set of predictions relative to the anchor boxes. Each discrete spatial
location at the feature levels P to P7 has predictions for several anchor boxes
of different sizes and aspect ratios. Each prediction consists of:

* An objectness score. It indicates how likely the anchor box corresponds
to an object in the image.

 Class scores for each possible class of the object.

* Relative regression of box parameters describing the difference between
the anchor box parameters and the real bounding box parameters (c. f.
equation (2.25)).

During training, the prediction targets for these outputs have to be generated
from the list of bounding box annotations. We generate these prediction targets
as follows: First, we enumerate all anchor boxes corresponding to all output
positions of the neural network. Each of these anchor boxes can either be
in an assigned state, a not assigned state, or a don’t care state. The
assigned state indicates that the anchor box has a corresponding ground truth
annotation. The not assigned state indicates that there is no corresponding
ground truth annotation. The don’t care state indicates that we do not
want to enforce a certain output for this anchor box. We will mask all losses
corresponding to these anchor boxes during training.

The assigned and not assigned states directly provide the ground truth for
the objectness prediction target. The losses of all other prediction targets are
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masked unless the corresponding anchor box is in the assigned state. In that
case, the desired prediction targets are provided by the assigned ground truth
bounding boxes.

After enumerating the anchor boxes, the IoUs between all anchor boxes and all
ground truth annotations are calculated. Based on the result, anchor boxes are
then assigned to bounding box annotations:

e If the highest IoU for an anchor box is larger than 0.5, the state of the
anchor box becomes assigned.

e It the highest IoU for an anchor box is between 0.4 and 0.5, its state
becomes don’t care.

e If the highest IoU for an anchor box is below 0.4, its state becomes not
assigned.

The second rule effectively masks all losses for IoU values between 0.4 and
0.5. This is done to make training more stable. Examples right at the decision
threshold can otherwise introduce noise in the training process, and result in
high loss values.

The rules above are simple, but some additional corner cases also have to be
taken into account:

* Only one ground truth bounding box can be assigned to an anchor box.
If multiple ground truth bounding boxes have an IoU larger than 0.5 with
the same anchor box, then the ground truth box with the highest IoU is
assigned.

— If, however, the difference between the IoU values of the two ground
truth annotations with highest IoU values is less than 0.2, we set
the state to not assigned. We do this to avoid an oscillation of
the box regression targets during training: If an anchor box has a
high overlap with two objects, then it is not obvious for which the
regression parameters should be calculated.

e If a ground truth bounding box is not assigned to any anchor box based
on the rules above, it gets assigned to the anchor box with the highest
IoU, as long as it is at least 0.4.
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® road ® sidewalk ® building

® wall fence ® pole
traffic light traffic sign ® vegetation
terrain ® sky @® person
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® bus ® train ® motorcycle

® bicycle

Figure 3.3: Color codes used in Figure 3.4 to Figure 3.9.

3.1.4 Evaluation

Before we can evaluate our proposed approach for simultaneous object detection
and semantic segmentation, we have to establish a baseline. All modifications
that we propose in this thesis will then be compared against this baseline. For
this, we train an object detection and a semantic segmentation model separately.
Each model has the same structure as our MTL model, but only the task-specific
network heads are attached.

A comparison with other state of the art models based on the precision metrics
is definitely valid, but not conclusive. Tan, Pang, and Le already showed that
the EfficientDet architecture achieves outstanding performance for the object
detection task [TPL20]. Our goal, however, is not to achieve the best possible
accuracy at any cost, but to achieve the best accuracy given the computational
constraints. We also want our model to generalize across camera setups. For
best accuracy without these constraints, the compound scaling factor and
therefore also the image resolution can be increased, and the augmentation
parameters can be adjusted. A comparison of our MTL models to our baseline
models is meaningful since we keep the compound scaling factor and the other
hyperparameters fixed. Differences in the performance metrics are therefore
only a result of the architectural changes.

We train and test our baseline models on both the Cityscapes and the BDD100K
datasets. We also test the semantic segmentation model on the Cityscapes
dataset after training it on the BDD 100K dataset. We do this to evaluate how
well the model generalizes across datasets. We also provide qualitative results
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Figure 3.4: Qualitative results of the semantic segmentation task on the Cityscapes validation
dataset. The CNN was trained on the Cityscapes training dataset. The corresponding
color codes can be found in Figure 3.3.
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Figure 3.5: Qualitative results of the object detection task on the Cityscapes validation dataset. The
CNN was trained on the Cityscapes training dataset. The corresponding color codes
can be found in Figure 3.3.
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Figure 3.6: Qualitative results of the semantic segmentation task on the BDD100K validation
dataset. The CNN was trained on the BDD100K training dataset. The corresponding
color codes can be found in Figure 3.3.
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Figure 3.7: Qualitative results of the object detection task on the BDD100K validation dataset. The
CNN was trained on the BDD100K training dataset. The corresponding color codes
can be found in Figure 3.3.
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Figure 3.8: Qualitative results of the semantic segmentation task on the Cityscapes validation
dataset. The CNN was trained on the BDD100K training dataset. This demonstrates the
across-dataset performance. The corresponding color codes can be found in Figure 3.3.
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Figure 3.9: Qualitative results of the semantic segmentation task on images recorded with the
research vehicle of MRT at KIT. The CNN was trained on the Cityscapes training
dataset. The FoV of the camera in the research vehicle is more than twice as large as
the FoV of the Cityscapes images. This demonstrates the performance across different
camera characteristics. The corresponding color codes can be found in Figure 3.3.
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‘ prior ‘ baseline ‘ MTL model

road 0.3293| 0.977 0.973
sidewalk |0.0473| 0.827 0.798
building [0.1917| 0.920 0.902
wall 0.0064 | 0.584 0.478
fence 0.0072| 0.618 0.559
pole 0.0129| 0.639 0.562
traffic light | 0.0017| 0.654 0.636
traffic sign [0.0058| 0.746 0.737
vegetation [0.1515| 0.918 0.909
terrain 0.0073| 0.614 0.615
sky 0.0293| 0.941 0.928
person 0.0114| 0.793 0.785
rider 0.0019| 0.585 0.546
car 0.0570| 0.944 0.939
truck 0.0026| 0.788 0.766
bus 0.0034| 0.862 0.837
train 0.0010| 0.802 0.761
motorcycle | 0.0007 | 0.464 0.435
bicycle 0.0062| 0.735 0.713
mean - 0.759 0.731

Table 3.1: IoU results for the semantic segmentation task on the Cityscapes dataset.
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baseline
prior | baseline | MTL model | evaluated on
Cityscapes

road 0.2160| 0.949 0.907 0.945
sidewalk |0.0205| 0.663 0.615 0.671
building [0.1489| 0.859 0.827 0.881
wall 0.0036| 0.308 0.281 0.263
fence 0.0081| 0.453 0.476 0.343
pole 0.0097| 0.550 0.449 0.510
traffic light | 0.0014|  0.593 0.454 0.465
traffic sign [0.0023| 0.537 0.452 0.548
vegetation |[0.1542| 0.857 0.848 0.892
terrain 0.0091| 0.506 0.423 0.428
sky 0.1791| 0.948 0.927 0.910
person 0.0027| 0.662 0.635 0.680
rider 0.0001| 0.335 0.183 0.358
car 0.0907| 0.903 0.900 0.920
truck 0.0101| 0.510 0.552 0.469
bus 0.0063| 0.791 0.762 0.535
train 0.0001| 0.000 0.000 0.026
motorcycle |0.0002| 0.424 0.441 0.192
bicycle 0.0002| 0.404 0.478 0.508
mean - 0.592 0.558 0.555

Table 3.2: IoU results for the semantic segmentation task (trained) on the BDD100K dataset.
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AP LAMR

baseline | MTL model | baseline | MTL model
person 0.6368 0.6595| 0.7071 0.6855
rider 0.5128 0.5455| 0.5382 0.5201
car 0.7998 0.8111| 0.5337 0.5466
truck 0.2819 0.3359| 0.6955 0.6395
bus 0.5574 0.6580| 0.4307 0.3381
train 0.4069 0.4622| 0.5003 0.5051
motorcycle | 0.3291 0.4478 | 0.6498 0.5448

bicycle 0.4894 0.5211| 0.7307 0.7118
traffic light | 0.5608 0.5893 | 0.6898 0.6648
traffic sign | 0.5964 0.6164| 0.7447 0.7274
mean 0.5171 0.5647| 0.6221 0.5884

Table 3.3: Results for the object detection task on the Cityscapes dataset. The metrics are calculated
based on an IoU threshold of 0.5.

AP LAMR

baseline | MTL model | baseline | MTL model
rider 0.4023 0.3291| 0.5283 0.5760
car 0.8608 0.8589| 0.4544 0.4473
truck 0.4560 0.4838 | 0.5994 0.5845
bus 0.6361 0.6245| 0.3615 0.3734
motorcycle | 0.3250 0.2340| 0.5908 0.6070
bicycle 0.5543 0.4423| 0.3785 0.4570
mean 0.5391 0.4954 | 0.4855 0.5075

Table 3.4: Results for the object detection task on the BDD100K dataset. The metrics are calculated
based on an IoU threshold of 0.5.

84



3.1 Simultaneous Object Detection and Semantic Segmentation

of the semantic segmentation model on images from the research vehicle of
MRT at KIT after training it on the Cityscapes dataset. After establishing the
baselines, we evaluate our MTL model for simultaneous object detection and
semantic segmentation.

Figure 3.4 and Figure 3.6 visualize the qualitative results of our MTL model
for the semantic segmentation task on both datasets. Figure 3.5 and Figure 3.7
visualize the qualitative results for the object detection task.
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Table 3.1 and Table 3.2 contain the results for the semantic segmentation task.
On average, our MTL model performs approximately 3 percentage points worse
than our baseline model on both datasets. One reason for the notable drop in
performance might be that EfficientNet was designed to operate close to the
network capacity limit: The width of each layer in the network is chosen to give
the best accuracy to computation ratio for the image classification task. This
ratio might not be optimal in a multi-task setting where not all computations
can be shared. It might be possible to recover some of the lost accuracy without
increasing the computation time too much by only scaling the network width.
Answering if this is the optimal choice is however only possible by performing
another grid search over the network hyperparameters from equation (2.24).
This is computationally very expensive and not feasible for this thesis.

We observe that the results on the BDD100K dataset are worse than on the
Cityscapes dataset. The reason for this is that the Cityscapes dataset is much
cleaner than the BDD100K dataset. The former contains carefully selected
images that were recorded in the centers of German cities. All recordings were
performed during the day in dry weather conditions so that visibility is very good.
The BDD100OK dataset, on the other hand, contains images from dashcams that
were recorded by many different drivers. The mounting position of the dashcam
varies notably, and the dataset also contains recordings during the night, in rain,
and in snow. This makes our perception tasks much more challenging. The
BDD100K dataset is also much more imbalanced than the Cityscapes dataset.
The worst AP values are achieved for the “train”, “motorcycle”, “bicycle”, and
“rider” classes. These classes are underrepresented in the dataset and have a
very small prior of 0.1 %o to 0.2 %eo.

We also want to show that our data pre-processing and augmentation techniques
from Section 3.1.2 are effective to generalize across datasets. For this, we train
our baseline model for semantic segmentation on the BDD100K dataset and
then evaluate it on the Cityscapes dataset. The results can be found on the right
column of Table 3.2. While they cannot match the results when evaluating on
the same dataset, they come close and are only about 4 percentage points apart.
A visual impression is provided in Figure 3.8. This figure also shows one of the
failure cases of across-dataset training: Cobblestone streets, as present in the
second image, are not common in the BDD100K dataset. The network therefore
fails to make a good prediction. Our data augmentation techniques can help
to compensate for different lighting and camera characteristics to some extent.
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But they cannot change the underlying appearance of objects or infrastructure
elements.

We employ our models on the self-driving research vehicle of MRT at KIT
where they are part of the environment perception stack. Figure 3.9 shows some
example images that were recorded close to MRT. The FoV of the camera in
the research vehicle is more than twice as large as the FoV of the Cityscapes
images which were used to train the corresponding model. This demonstrates
the generalization across different camera characteristics.

The results for the object detection task are given in Table 3.3 and Table 3.4. On
the Cityscapes dataset, our MTL model shows a notable increase in performance
compared to the baseline model, measured both in the AP and LAMR metrics.
But we also observe a decrease in performance of a similar size on the BDD 100K
dataset.

Our baseline models, as well as the MTL model, are comparably small, and
therefore cannot quite achieve the accuracy of the best-performing models so
far. The justification for this is that their small size makes them fast so that
they can fulfill the real-time requirements of our application. We therefore also
performed run-time measurements of our models on an Nvidia Quadro RTX
8000 GPU in mixed-precision mode. All measurements were performed with
a batch size of 1. This is because batching multiple images does not make
sense for a sensor setup with a single camera. Images from multiple time steps
would have to be combined in one batch before passing them to the GPU. The
results for the older images would be of no interest once the batch is processed.
Batching multiple images can however provide a large speedup, and can be
effectively used with a multi-camera setup.

We measured an average run-time per image of 28.1 ms for the semantic
segmentation baseline model, and 35.3 ms for the object detection baseline
model. Running both networks side by side would result in a run-time of
63.4ms. Our MTL model, on the other hand, only requires 38.2 ms on average
to process one image. In other words, adding the semantic segmentation head
to the object detection baseline network adds less than 10 % computational
overhead. This is much faster than executing two individual networks. It also
leaves a lot of room to scale up the network and recover the lost precision in the
semantic segmentation task, if desired.
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3 Single-Frame Environment Perception

3.2 Non-Maxima Suppression with Feature
Vectors

We showed in previous work that the assumptions of classical NMS fail in
crowded scenes [Sal20a]. Such situations can occur in traffic scenes, e. g. when
there are a lot of pedestrians. In our previous work, we proposed FeatureNMS
to solve the problem and demonstrated that it performs better than classical
NMS. It therefore makes sense to use FeatureNMS for our object detector.
FeatureNMS relies on learning a similarity metric between bounding box
detections. This similarity metric is used when the IoU between two detections
does not allow to make a definite statement about whether they belong to the
same object or not. In this thesis, we are also interested in learning a similarity
metric for another reason: We will use it in Chapter 4.2 to re-identify objects
between frames.

The FeatureNMS algorithm is given in Algorithm 1. The overall structure is
similar to classical NMS. The detector first generates a set of proposals for the
given input image. These are then sorted by the confidence scores in descending
order. The following steps are then repeated until this sorted set of proposals is
empty:

The proposal with the highest score is removed from the proposal set and added
to the set of final detections. All remaining detections in the proposal set are
then compared against this proposal and removed if they are duplicates. The
duplicate detection heuristic is based on two metrics. The first one is the loU
between both bounding boxes. If it is smaller than a threshold #jower, then the
second detection is not a duplicate of the first. If it is, on the other hand, larger
than a threshold #ypper, then the second detection is a duplicate. We choose
tower = 0.1 and #ypper = 0.9 for our experiments. If the IoU is between #jower
and fypper, it does not allow for a definite decision. In this case, the learned
similarity metric is used. If it is below a threshold ¢, the second detection is a
duplicate, and otherwise, it is not. The right threshold depends on the training
objective of the similarity metric. We use #; = 1.2.

In order to learn the similarity metric, we add another network head to our
MTL model. It has the same structure as the network heads for object detection.
This head produces an n-dimensional feature vector per anchor box. We choose
n = 32 in our experiments. The similarity of two detections is then given by the
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3.2 Non-Maxima Suppression with Feature Vectors

Algorithm 1 Proposed FeatureNMS algorithm. If the IoU between two
bounding boxes does not allow to make a definite decision, we use the feature
embedding similarity.

P < GETPROPOSALS (Limage)
P «— SorT(P)
D0
while # # 0 do
p < pop(P)
isDuplicate « false
for d € D do
iou «— GetloU(p, d)
if iou > typper then
isDuplicate « true
else if iou > tjower then
embedding Distance < GETSIMILARITY(p, d)
if embeddingDistance < ts then
isDuplicate « true
end if
end if
end for
if —isDuplicate then
pUsH(p, D)
end if
end while

£? distance of the corresponding feature vectors. The last layer of this network
head is an £2 normalization layer. This ensures that all feature vectors have a
length of one, i. e. they lie on a unit hypersphere. This is a common choice for
metric learning, and a requirement for some loss functions like Margin based
loss [Man+17].

3.2.1 Loss Function

The Margin based loss function suggests itself for learning the similarity metric.
According to Manmatha et al. [Man+17], it achieves better results than other
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3 Single-Frame Environment Perception

loss functions for metric learning. But inspired by the idea of Focal Loss, we
propose to replace the sampling step with an appropriate weighting of the loss
function. This allows us to optimize for all possible pairs in each training step.
At the same time, it still ensures that the loss is not dominated by easy negative
examples. The proposed weighting function, that replaces sampling according
to equation (2.22), is the following:

A +exp (—n : (d - \/Z)z)

wwm(d) = (3.15)

Again, n is the dimensionality of the feature space. The parameter A controls
how much the easy negative examples are weighted down. We choose 4 = 0.2
for our experiments.

This weighting function ensures that the weight never gets larger than 1. In
contrast, naive weighting by the inverse of the PDF in equation (2.22) would
result in very large weighting factors for d close to zero. The complete loss
function with this weighting factor is as follows:

max (0, dy, (x1,x2) — b +m) fory;o=1

‘L 9 9 =
wo WM (X152, ¥1.2) {max 0,w - (b—dy(x1,x2) +m)) fory;,=-1

where  dy, (x1,x2) =llgw (x1) = gw (x2)]2
w =wwm(dyw (x1,X2))
(3.16)
The parameters b and m are the same as for the original Margin based loss.
For our experiments, we follow the recommendation of choosing b = 1.2 and
m = 0.2. Figure 3.10 visualizes the weighting effect of the proposed loss
function for n = 32, i. e. for a feature space of R2.

3.2.2 Evaluation

We already showed in previous work [Sal20a] that FeatureNMS can outperform
classical NMS in crowded scenes. Here, we would like to investigate how
well the approach works with our network architecture, and how much it helps
in common driving scenes. For this, we first train our MTL model with the
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(c) Comparison of the original Margin based loss and the proposed weighted
margin based loss (c. f. equation (3.16)). We choose A = 0.2, and follow the
recommendations of b = 1.2 and m = 0.2. Thisresultsind; =b —m = 1.0
and dp = b+ m = 1.4 in the plot. Our weighted margin based loss weights
down the original loss for the frequent but easy negative examples. This way,
they do not dominate the total loss.

Figure 3.10: Visualization of the weighting effect of the proposed loss function for a feature space
of R*2.
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3 Single-Frame Environment Perception

additional network head that predicts the embedding vectors. We then compare
its performance to the performance of the unmodified MTL model. In both
cases, we use the classical NMS algorithm. This experiment shows the impact
of the additional network head and the corresponding training objective on the
network performance. We then evaluate the performance of the modified model
with FeatureNMS.

The Cityscapes and BDD100OK datasets, which we use in this thesis, cannot
highlight the benefits of FeatureNMS. This is because the BDD100K dataset
does not contain many crowded scenes. The Cityscapes dataset has crowded
scenes, but it lacks instance annotations in the crowded areas. These areas are
instead labeled as “crowd” and ignored during evaluation. It is nevertheless
important to investigate how FeatureNMS performs on these datasets.

When training our MTL model with the additional network head that predicts
the embedding vectors, we noticed that performance degraded a lot at first. We
observed that the batch statistics have a high variance, especially in the last
layers of the BiFPN. This means that the running averages of these statistics
differ significantly from the individual batch statistics. It also means that the
normalization performed by the Batch Normalization layers during inference is
very different from the normalization during training.

This is the reason why we freeze the batch statistics after 1 500 000 training
steps and train for another 300 000 steps with fixed statistics. This helps to
recover most of the accuracy of our model. In theory, a better alternative would
be to use a much larger batch size. This would reduce the variance of the batch
statistics. But it would require hardware with enough memory to perform the
training. Online Normalization, as used in our previous work, does not have
this problem: It uses the running averages of the batch statistics also during
training. It however slows down training significantly on our hardware. Another
alternative is to use a normalization technique that does not depend on batch
statistics, like Group Normalization.

The semantic segmentation results of our modified MTL model can be found
in Table 3.5 for the Cityscapes dataset, and in Table 3.6 for the BDD100K
dataset. The accuracy on the Cityscapes dataset decreases by 1.8 percentage
points while the accuracy on the BDD100K dataset increases by 0.6 percentage
points.
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3.2 Non-Maxima Suppression with Feature Vectors

without embedding | with embedding

road 0.973 0.967
sidewalk 0.798 0.790
building 0.902 0.890
wall 0.478 0.455
fence 0.559 0.509
pole 0.562 0.545
traffic light 0.636 0.630
traffic sign 0.737 0.718
vegetation 0.909 0.901
terrain 0.615 0.571
sky 0.928 0.901
person 0.785 0.772
rider 0.546 0.504
car 0.939 0.933
truck 0.766 0.737
bus 0.837 0.837
train 0.761 0.730
motorcycle 0.435 0.449
bicycle 0.713 0.707
mean 0.731 0.713

Table 3.5: IoU results for the semantic segmentation task on the Cityscapes dataset. This table
compares the results of our MTL model with and without the network head that predicts
the embedding vectors.
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without embedding | with embedding

road 0.907 0.941
sidewalk 0.615 0.625
building 0.827 0.837
wall 0.281 0.264
fence 0.476 0.438
pole 0.449 0.431
traffic light 0.454 0.433
traffic sign 0.452 0.409
vegetation 0.848 0.853
terrain 0.423 0.448
sky 0.927 0.946
person 0.635 0.640
rider 0.183 0.241
car 0.900 0.906
truck 0.552 0.548
bus 0.762 0.754
train 0.000 0.000
motorcycle 0.441 0.503
bicycle 0.478 0.496
mean 0.558 0.564

Table 3.6: IoU results for the semantic segmentation task on the BDD100K dataset. This table
compares the results of our MTL model with and without the network head that predicts
the embedding vectors.
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without embedding, | with embedding, | with embedding,

classical NMS classical NMS | FeatureNMS
person 0.6595 0.6430 0.6433
rider 0.5455 0.5283 0.5232
car 0.8111 0.8036 0.8055
truck 0.3359 0.3449 0.3519
bus 0.6580 0.7022 0.6957
train 0.4622 0.4364 0.4396
motorcycle 0.4478 0.4133 0.4220
bicycle 0.5211 0.5041 0.5039
traffic light 0.5893 0.5681 0.5613
traffic sign 0.6164 0.6030 0.5998
mean 0.5647 0.5547 0.5546

Table 3.7: AP results for the object detection task on the Cityscapes dataset based on an IoU
threshold of 0.5. This table compares the results of our MTL model with and without
the network head that predicts the embedding vectors. It also compares the performance
of classical NMS and FeatureNMS for the model that predicts the embedding vectors.

The object detection results on the Cityscapes dataset can be found in Table 3.7
and Table 3.8. The object detection results on the BDD100K dataset can be
found in Table 3.9 and Table 3.10. On both datasets, the mean AP decreases and
the mean LAMR increases a bit with our modified MTL model. We find that
FeatureNMS performs slightly better than classical NMS, but it cannot recover
the drop in accuracy caused by the additional network head. Our previous work
suggests that FeatureNMS achieves notably better results in crowded scenes,
but these cannot be evaluated on both datasets.

We continue with the modified MTL model from here on despite the drop in
accuracy. The reason is that we want to use the same embedding vectors to
track objects in Chapter 4.2. We also do not replace the Batch Normalization
layers in this work to keep all results comparable.

95



3 Single-Frame Environment Perception

without embedding, | with embedding, | with embedding,

classical NMS classical NMS | FeatureNMS
person 0.6855 0.7074 0.7077
rider 0.5201 0.5409 0.5441
car 0.5466 0.5474 0.5486
truck 0.6395 0.6277 0.6184
bus 0.3381 0.2938 0.3007
train 0.5051 0.5012 0.4959
motorcycle 0.5448 0.5831 0.5747
bicycle 0.7118 0.7306 0.7306
traffic light 0.6648 0.6834 0.6838
traffic sign 0.7274 0.7377 0.7376
mean 0.5884 0.5953 0.5942

Table 3.8: LAMR results for the object detection task on the Cityscapes dataset based on an IoU

threshold of 0.5. This table compares the results of our MTL model with and without
the network head that predicts the embedding vectors. It also compares the performance
of classical NMS and FeatureNMS for the model that predicts the embedding vectors.

Adding the network head to predict the embedding vectors increases the run-time
of our model from 38.2 ms to 41.9 ms.
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without embedding, | with embedding, | with embedding,

classical NMS classical NMS | FeatureNMS
rider 0.3291 0.3131 0.3348
car 0.8589 0.8477 0.8435
truck 0.4838 0.4144 0.4147
bus 0.6245 0.5645 0.5522
motorcycle 0.2340 0.2612 0.2760
bicycle 0.4423 0.4325 0.4292
mean 0.4954 0.4722 0.4751

Table 3.9: AP results for the object detection task on the BDD100OK dataset based on an IoU
threshold of 0.5. This table compares the results of our MTL model with and without
the network head that predicts the embedding vectors. It also compares the performance
of classical NMS and FeatureNMS for the model that predicts the embedding vectors.

without embedding, | with embedding, | with embedding,

classical NMS classical NMS | FeatureNMS
rider 0.5760 0.6057 0.5795
car 0.4473 0.5028 0.5035
truck 0.5845 0.6391 0.6403
bus 0.3734 0.4115 0.4237
motorcycle 0.6070 0.5723 0.5473
bicycle 0.4570 0.4774 0.4853
mean 0.5075 0.5348 0.5299

Table 3.10: LAMR results for the object detection task on the BDD100K dataset based on an IoU

threshold of 0.5. This table compares the results of our MTL model with and without
the network head that predicts the embedding vectors. It also compares the performance
of classical NMS and FeatureNMS for the model that predicts the embedding vectors.
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4 Multi-Frame Environment
Perception

This chapter extends the single-frame model from the previous chapter to a
multi-frame model. Section 4.1 presents the necessary modifications of the
network structure. In the resulting network, two consecutive images of the
video stream are used to estimate the displacement vectors of objects between
frames. Section 4.2 presents a tracking approach based on the displacement
estimates and on the similarity metric from FeatureNMS.

4.1 Optical Flow and Displacement Estimation

Chapter 3 introduced a neural network architecture that takes single images as
input. The output is a list of bounding box detections and a semantic segmen-
tation map. The goal of this section is to incorporate temporal information.
Given two consecutive images, we want to estimate a displacement vector for
each bounding box detection, as well as the change in width and height of the
bounding box. Another view is that we estimate the velocities of all bounding
boxes, assuming a fixed frame rate.

4.1.1 Network Structure

The neural network structure has to be modified so that it can take two input
images. The naive approach would be to stack the two input images and use the
result as input for the model. The backbone could learn to match patches of
both images and use this information to estimate the bounding box displacement
vectors. It is however possible that the displacement is large. This can happen,
for example, if the camera rotates, or if a close object moves fast in the image
plane. But if the displacement of an object is too large, its position in the first
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frame might be outside of the receptive field of the convolutional layers at its
position in the second frame. In this case, giving a good displacement estimate
is impossible.

We therefore model a solution to this problem explicitly. The problem of
estimating large displacements also arises when estimating optical flow. Here,
good results can be achieved by using correlation layers which calculate the
correlation between image patches or feature map patches. This approach is
used by PWC-Net, which was presented in Section 2.3.4 and is one of the best
performing CNN architectures for optical flow estimation.

We incorporate the optical flow estimation into our MTL model itself. Both
input images are first processed individually by the backbone and part of the
FPN in order to generate feature maps. The optical flow is estimated based on
these feature maps. Afterwards, the feature maps of the first image are warped
by the flow estimate. This aligns them with the feature maps of the second
image. The flow estimate, the warped feature maps of the first image, and
the feature maps of the second image are then concatenated and processed by
the remaining network. Adding the flow estimate here is crucial: If the flow
estimate is good, then it contains most of the information about the displacement.
The warped feature maps of the first image and the feature maps of the second
image would be nearly identical in this case—the displacement vectors cannot
be recovered from them.

In single-shot inference scenarios, the proposed design doubles the computation
time spent in the backbone. This is because most of the network is executed
twice (once per input image). But in the context of self-driving cars, the network
is evaluated on each frame of a continuous video stream. An image recorded at
time step ¢ is therefore used twice: It is considered as the “current frame” in
time step 7, and as the “previous frame” in time step ¢ + 1. In both time steps,
however, the image would be processed by the same backbone before reaching
the optical flow estimation module. Therefore, these calculations do not have
to be performed twice. Instead, the feature maps, which form the input to the
flow estimation module, can be stored at time step ¢ and reused at time step
t + 1. This way, the backbone is only evaluated once per time step for the newly
recorded image. Any remaining increase in computation time is then solely
caused by the flow estimation module.
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We perform the optical flow estimation with a PWC-Net style sub-network. This
approach is efficient because it calculates the optical flow on a feature pyramid.
Doing so allows to limit the search range on each pyramid level, and therefore
reduces the computation time. But it also means that the flow estimation module
has to be inserted into a part of the network where a feature pyramid is available.
In our design, it is possible to insert it between the backbone and the BiFPN,
after the BiFPN, or inside the BiFPN (between the repeated blocks). If it is
inserted between the backbone and the BiFPN, the flow estimation module only
has access to the backbone feature maps. This means that the feature maps at
the lower pyramid levels have not yet been enriched with context information
by the BiFPN. This, however, would be beneficial to get semantically correct
matches. If the flow estimation module is inserted after the BiFPN, then no
layers are left to perform a multi-scale fusion of the stacked feature maps. But
this is important to guarantee a consistent flow estimation on all feature levels.
We therefore insert the flow estimation module in the middle of the BiFPN.

The resulting architecture is visualized in Figure 4.1. The flow estimation
module is depicted in Figure 4.3 and is similar to the one from PWC-Net (c.f.
Figure 2.12). But we do not use a DenseNet style CNN sub-network or Leaky
ReLLU activation functions. Instead, our CNN block has the same structure as our
network heads: One block consists of three depthwise separable convolutions,
each followed by a Batch Normalization layer and a swish activation function.
In contrast to PWC-Net, we also predict a mask m; in each module. This mask
allows the network to indicate which pixels have valid flow estimates. A pixel
can have an invalid estimate if it is not observable in the other frame. Each
module at feature level / takes the mask output my,; of the module at level [ + 1
as input. It is used to mask the pixels of the warped feature maps with invalid
flow estimates.

The flow estimation module itself is embedded into a warping module. It aligns
the input feature maps with each other according to the flow estimate and then
fuses the information. This is visualized in Figure 4.2.

Our approach fuses the temporal information of two images by concatenating
their warped feature maps. It is also possible to accumulate the information
of many images in a Convolutional Long Short-Term Memory (ConvLSTM)
cell instead. This might result in less noisy velocity estimates and more
reliable detections of temporarily occluded objects. But it would increase the
computational demands and memory requirements during training significantly.
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Figure 4.1: Overall structure of our proposed multi-frame model. The structure of the backbone
and the BiFPN is the same as in Figure 3.2. The BiFPN is however cut in the middle,
and the part before the cut is duplicated. One duplicate calculates feature maps for
the first frame, and the other duplicate calculates feature maps for the second frame.
These feature maps are combined by the flow estimation and warping module, which is
visualized in Figure 4.2. The combined feature maps are then processed by the second
half of the BiFPN and the network heads.

At this point, we therefore waive the evaluation of ConvLLSTM cells for temporal
information fusion.

In order to estimate the additional displacement parameters, we add another
network head at each feature level. It estimates the four values (¢4, tay, taws tan)
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Figure 4.2: Overall structure of the flow estimation and warping module. It is instantiated once
for every level in the feature pyramid. The flow estimation module itself is depicted in
Figure 4.3. f;; ; are the feature maps at level [ extracted by the backbone for the current
image. Analogously, f;> ; are the feature maps at level / extracted by the backbone for
the image from the previous time step. The output feature maps fyscq.; at level [ are
processed by the second half of the BiFPN and the network heads.

per anchor box. The values 74, and 74, are the x and y components of the
displacement vector, measured in pixels. They are calculated as follows:

Tdx = Xc,previous — Xc,current

“4.1

[dy = Yec,previous — Yc,current

Here, (x¢ previouss Ye.previous) is the center coordinate of the bounding box in the
previous frame, and (X current> Ye.current) 18 the center coordinate in the current
frame.
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Figure 4.3:

module (c. f. Figure 2.12). But in contrast to PWC-Net, the CNN block has the standard
structure of our network heads. It consists of three depthwise separable convolutions,
each followed by a Batch Normalization layer and a swish activation function. We also
predict a mask m; at each feature level /. This mask indicate which pixels have valid
flow estimates, and which have invalid flow estimates because they are not observable
in the other frame. Each module at feature level [ takes the mask output my,; of the
module at level [ + 1 as additional input. It is used to mask the pixels of the warped
feature maps with invalid flow estimates.

The target values for the outputs that describe the change in size of the bounding
box are calculated as follows:
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4.1 Optical Flow and Displacement Estimation

During inference, the size of a bounding box in the previous frame can then be
estimated from the network outputs (74, f4,) and the estimate of the current

size (Wcurrcnt» hcurrent) as follows:

"T’previous = Weurrent * exp(fdw)
~ . . (4.3)
hprevious = heurrent - exp(tdh)

4.1.2 Training Process

We train the existing network heads from Chapter 3 as before. The output of
the additional network head is trained using smooth ¢! loss. We use 6 = 10 for
tax and 74y, and 6 = 0.1 for ¢4, and 74p,.

The flow estimation module gives estimates at each level of the feature pyramid
(i.e. from level P, to P7). These include both the upsampled estimates and
the refined flow estimates at each level. We train the outputs of each of these
modules using a supervised flow 10ss Lfow,7,supervised and a self-supervised flow
loss Lifiow, 1 self-supervised- Both contain a regularization term for the flow mask.
In order to calculate the loss, we scale the predictions at each feature pyramid
level to the original image size.

The supervised flow 10sS Laow, supervised can only be used with datasets that have
ground truth optical flow annotations. It is calculated as follows:

-Lﬂow,l,supervised(ogu 61’ ﬁll) = Iill : -EHuber,é:l (Ogt’ 61) + Lmask(ml) (44)

Here, my is the up-scaled mask, oy is the ground truth optical flow, and 0; is the
up-scaled predicted optical flow. L.k is a regularization term for the mask. It
is a weighted cross-entropy loss that forces the mask entries to be close to one:

Linask(My) = 0.2 - Leg(1,my) 4.5)

The self-supervised flow 10ss L fiow,self-supervised can be calculated without optical
flow annotations in the dataset. It is based on the photometric loss function
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that Godard et al. use to learn monocular depth estimation in a self-supervised
manner [God+19]:

Lirow,1,selt-supervised (115 12, warped, 1 07, M;)
=1y - (0.15 - Ly (X1, X warped,r) + 0.85 - Lssiv (I, I warped.))
+0.1 - Lsmoon (I, 07)
+ Linask (1)

(4.6)

Here, I is the first input image and Io warped,; 18 the second input image, warped
by the optical flow prediction o; at feature level /. The term L1 (It, Iz warped,7)
ensures photometric consistency between the first image, and the second image
warped by the flow estimate. It is the ¢! loss on the raw pixel values. The
term Lssiv (11, I, warped,7) ensures structural similarity between the original
and the warped image. It uses the SSIM metric proposed by Wang et al. which
compares the local luminance, contrast, and structure of both images [Wan+04]:

Lssim(x,y) = min (max (l—#ﬂl(xy) 1) ,0)

Quxpty +C1) - 2oyy +C2)
(Wi +13+C) - (oi+05+Ca)

1| 1
/JX:N;XZ'» Ny:N;)’i’

o2 1 i(’” — ) @.7)

SSIM(x,y) =

1 N
ol = —— > (vi - )’

N
1
Oxy = 7 Z(xi — ) (i = p1y)
with C; = 0.0001, C» = 0.0009

Here, N is the number of pixels in each of the two images.

The term Lgmootm (I1,0;) ensures the smoothness of the flow estimate. It
punishes strong deviations between the flow estimates for neighboring pixels in
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homogeneous image areas. This is done by multiplying the normalized spatial
gradients of the flow map with an energy term based on the spatial gradients of
the image:

_ 001 oy, 100 a4
.E I,O = — .e|x1|+ — .e|.V]| 4.8
srnooth( 1 l) |Ol| i1 |Ol| 1 (4.8)
The normalization of the flow gradients by the absolute value of the flow is
important to avoid shrinking of the flow estimates.

In theory, our whole model can be trained end-to-end. Even though we do not
have one dataset that contains all annotations, it is possible to interleave the data
and mix data from different datasets in one batch. For each training example,
the outputs without annotations would be masked in the loss calculation.

We found however that end-to-end training of our model is unstable in practice.
In the beginning, the flow estimates are inaccurate. This means that the
warping of the feature maps is inconsistent. This, in turn, makes it difficult for
the network heads to discover meaningful patterns. The training progress is
dominated by the improvements in flow estimation.

At some point, the flow estimates become more accurate, and the warped feature
maps become more meaningful. The network heads start to learn, but at this
point, they still have high errors in their outputs. This causes large gradients,
and as a consequence the learned convolutional filters in the backbone change
notably. This, in turn, reduces the accuracy of the flow estimation again.

We circumvent this instability by executing the training of the model in three
stages:

1. We train the single-frame model from Chapter 3 on single images. We
then freeze all trainable parameters of the backbone and the first half
of the BiFPN. The idea is that the frozen parts of the model already
learned to extract all relevant features for object detection and pixel-wise
semantic segmentation. If they still contain fine details with accurate
localization information then it should also be possible to estimate
displacements based on these features. This is a reasonable assumption
because localization information is a requirement for high accuracy on
the pixel-wise semantic segmentation task.
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2. We remove the second half of the BiFPN as well as the network heads
and add the flow estimation module. We then train the resulting model on
the FlyingChairs dataset [Dos+15a]. It is important to keep everything
but the flow estimation model frozen. The model would otherwise adapt
to the characteristics of the synthetic images and forget about the original
task. Freezing the backbone can unfortunately also reduce the flow
estimation performance because the synthetic training images are out of
domain.

3. We also freeze the flow estimation module and add the remaining parts
of the final model, i.e. the second half of the BiFPN and the network
heads. These are then trained to perform the final tasks.

In each of the above stages, we train for 1 800 000 steps in total and follow the
training protocol that was presented at the beginning of Chapter 3. On our
GPUs, it takes around 3 months to perform all training stages of the multi-frame
model.

We also tried to unfreeze the whole multi-frame network in the last training
stage, after performing the first 300 000 training iterations to re-initialize the
network heads. We used the self-supervised loss from equation (4.6) to train
the flow estimation module and keep its output from degenerating. We however
found that this gives worse results for the flow estimation than when keeping
the earlier layers frozen throughout the last training stage.

4.1.3 Evaluation

Figure 4.4 contains qualitative results of the optical flow estimation on the
Cityscapes dataset. As a comparison, Figure 4.5 contains qualitative results that
were obtained with the classical optical flow estimation algorithm of Farnebick
[Far03]. The direction of movement in the image plane is encoded in the hue
of the color, while the magnitude is encoded in its brightness (or value). The
moving objects in the displayed scenes are clearly visible, and the estimated
directions and magnitudes are consistent.
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Figure 4.4: Example outputs of the optical flow estimation module at the P, feature level on the
Cityscapes validation dataset. The direction of movement in the image plane is encoded
in the hue of the color, while the magnitude is encoded in its brightness.
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-

Figure 4.5: Classical optical flow estimates computed with the algorithm of Farnebick [Far03].
The input images from the Cityscapes validation dataset were resized to match the size
of the P, feature maps. The direction of movement in the image plane is encoded in
the hue of the color, while the magnitude is encoded in its brightness.
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single-frame | multi-frame

road 0.941 0.937
sidewalk 0.625 0.606
building 0.837 0.832
wall 0.264 0.240
fence 0.438 0.440
pole 0.431 0.421
traffic light 0.433 0.423
traffic sign 0.409 0.406
vegetation 0.853 0.851
terrain 0.448 0.431
sky 0.946 0.944
person 0.640 0.634
rider 0.241 0.238
car 0.906 0.904
truck 0.548 0.543
bus 0.754 0.747
train 0.000 0.000
motorcycle 0.503 0.422
bicycle 0.496 0.452
mean 0.564 0.551

Table 4.1: ToU results for the semantic segmentation task on the BDD100K dataset. This table
compares the results of our single-frame and our multi-frame model.
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AP LAMR

single-frame | multi-frame | single-frame | multi-frame
rider 0.3348 0.3665 0.5795 0.5549
car 0.8435 0.8536 0.5035 0.4771
truck 0.4147 0.4503 0.6403 0.6063
bus 0.5522 0.5998 0.4237 0.3996
motorcycle 0.2760 0.3457 0.5473 0.5335
bicycle 0.4292 0.3275 0.4853 0.5188
mean 0.4751 0.4906 0.5299 0.5150

Table 4.2: Results for the object detection task on the BDD100K dataset. The metrics are calculated
based on an IoU threshold of 0.5. This table compares the results of our single-frame
and our multi-frame model.

MAE for 74, MAE for 74y,

from CNN | constant | from CNN | constant
rider 5.6924 | 15.9447 2.4106| 2.6946
car 5.0279 | 15.3317 2.5472 | 4.1594
truck 5.3155]|10.7355 3.3733| 4.1994
bus 7.2913 | 13.6860 3.9427| 4.5850
motorcycle 4.3395|20.0551 47324 | 4.7228
bicycle 4.8784 | 18.0543 2.3677| 3.9360
mean 5.4242 | 15.6345 3.2290| 4.0495

Table 4.3: MAE between the ground truth displacement (#., Z4y ), and the corresponding estimates
(Tax > Tay). The table compares the estimates from our CNN architecture to estimates
obtained with a constant position assumption.
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MAE for exp(74,,) | MAE for exp(741,)

from CNN ‘ constant | from CNN ‘ constant
rider 0.1699| 0.0977 0.1616| 0.1116
car 0.1616| 0.1115 0.1352| 0.0673
truck 0.1379| 0.0663 0.1426| 0.0583
bus 0.1378 | 0.0620 0.1332| 0.0528
motorcycle 0.2435| 0.1467 0.2199| 0.1277
bicycle 0.1553| 0.1077 0.1248 | 0.0516
mean 0.1677| 0.0987 0.1529| 0.0782

Table 4.4: MAE between the ground truth size ratios (exp(fgyw ), exp(tqn)), and the corresponding
estimates (exp(Zgw ), exp(Zgn)). The table compares the estimates from our CNN
architecture to estimates obtained with a constant size assumption.

In this chapter, we however only provide quantitative results on the BDD100K
dataset. The reason for this is that the Cityscapes dataset only contains single-
frame annotations. This means that the network head for the displacement
estimates cannot be trained with this dataset.

We first compare the semantic segmentation and object detection performance
of our multi-frame architecture to our single-frame architecture. There are
multiple factors that can influence the performance: The multi-frame model
has access to the information from two frames. This could increase accuracy
in some situations, e.g. when an object is not clearly visible in one of the
two frames. On the other hand, the multi-frame model was not trained end-to-
end which can reduce accuracy. Finally, the additional network head for the
displacement estimation can also have an effect on accuracy.

Table 4.1 contains the results of our experiments for the semantic segmentation
task. Table 4.2 contains our results for the object detection task. The accuracy
of our multi-frame model is slightly reduced on the semantic segmentation task
compared to our single-frame model. It however shows slightly better results
on the object detection task, both in the AP and the LAMR metrics. Overall,
the performance of both models is comparable.
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Table 4.3 and Table 4.4 contain the results of the displacement estimation. The
results from our multi-frame model are compared against a baseline with a
constant position / constant size assumption. It can be clearly seen that our multi-
frame model successfully exploits the temporal information: The displacement
estimates of our model are much better than the baseline. Our model reduces the
mean absolute error from 15.6 pixels to 5.4 pixels in x-direction, and from 4.0
to 3.2 pixels in y-direction. When it comes to the bounding box size, however,
the baseline with a constant size assumption performs very well. The results
show that the bounding box sizes do not change much between consecutive
frames on average. Our model performs slightly worse than the baseline and
cannot provide additional information. We therefore propose to only estimate
the change in position for tracking but assume that the bounding box size is
constant.

We measure a run-time of 131.2 ms for our multi-frame model. For this, we
only pass the current frame through the backbone and the first half of the BiFPN
and reuse the extracted feature maps of the previous frame. This run-time is
much higher than the 41.9 ms that we measured for our single-frame model.

It should however be noted that most of the additional computation time is
spent in the correlation cost layers. In comparison to most other layers, the
implementation of the correlation cost layer from Tensorflow Addons is much
less optimized. Also, it only supports 32 bit floating point inputs and outputs.
On the Nvidia Quadro RTX 8000 GPU, computations with this data type
are much slower than with 16 bit floating point or 8 bit integer values. This
suggests that much higher inference speeds can be achieved with an optimized
implementation of the correlation cost layer. This is however not the focus of
this thesis.

4.2 Tracking Approach

Detecting objects and estimating their velocities is not enough for self-driving
cars. The future trajectories and behavior of objects can only be accurately
predicted if their past behavior is known. For this, the objects must have stable
identifiers, i. e. the detections have to be associated over time to create tracks.
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In this section, we present a tracking approach based on our CNN architecture
from the previous sections. It follows our previous work [Sal21]. We propose a
simple tracking-by-detection architecture that consists of a motion model and
an association heuristic. The latter takes position and appearance information
into account.

4.2.1 Motion Model

We use a constant velocity motion model with a Kalman filter, and track objects
in the image domain. Since our target frame rate is 10 fps or higher, the time
between consecutive frames is not more than 100 ms. The constant velocity
assumption seems reasonable for this time span since the maximum acceleration
of objects is limited. For longer prediction horizons, the constant velocity
assumption however is obviously violated. The filter therefore must not trust
the system model too much so that it can also follow accelerated objects.

We do not take the ego-motion into account since it is not available in all
datasets, and since we do not have 3D information about the scene. Doing
so could however improve the predictions of the motion model: Especially
changes in the yaw rate of the ego vehicle can cause violations of the constant
velocity assumption for tracked objects.

The state vector of our Kalman filter is (px, py, Pw, Phs Vs Vys Vivs vh)T. Here,
px and p, are the center coordinates of the object bounding box in the image
domain. The width and height of the bounding box are given by p,, and pj,
respectively. We denote the corresponding velocities as v, vy, vy, and v. The
state transition matrix of the Kalman filter is then given by:

1 000 d 0 0 O
01 00 0 d 0 O
001 0 0 0 4dt O
Fy = 0001 O O0 0 dat 4.9)
000O0O0 T1T O 0 O
0000 O 1 0 O
0000 O O 1 O
0000 0 0 0 1
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Here, dt is the time between two consecutive frames and has to be set to match
the frame rate of the camera. The parameters py, py, pw and pj, are directly
observable. The multi-frame model from the previous section can also directly
observe vy, vy, vy, and v;, with the displacement estimation network head. The
single-frame model from the previous chapter, however, cannot observe any
velocities. In both cases, the observation matrix Hy, is trivial.

Apart from the state transition and observation models, we need to determine
the covariance matrices of the process noise Qy and of the observation noise
Ry. These are often tuned manually so that the filter tracks the target reasonably
well. In this work, we however learn the optimal parameters using gradient
descent by following the work of Abbeel et al. [Abb+05]. To generate training
data, we first run our CNN on a training dataset for the Kalman filter. Then,
we generate the training annotations by manually assigning the detections to
ground truth bounding boxes. Afterwards, we train the Kalman filter with
gradient descent. In each training step, the detections from the CNN are fed to
the Kalman filter as measurements. The prediction error is calculated based on
the corresponding ground truth annotations, and the parameters of the Kalman
filter are updated based on the gradients.

4.2.2 Assignment Problem and Track Management

A precise motion model is important. But it is even more important to solve
the assignment problem accurately. Given a set of existing tracks and a new
measurement, we have to decide if the new measurement corresponds to any
of the existing tracks, and if so to which. We use several features that provide
evidence for this assignment problem:

» The similarity metric that we presented in Section 3.2 for FeatureNMS.
It contains appearance information and can be used to associate objects
based on their visual features. This is very informative especially after
longer occlusions or in cases where the assumptions of the motion model
are violated.

Each track ¢ stores the feature vectors f; ; of the last n corresponding
detections. We chose n = 10 for our experiments. The distance between
the new measurement with feature vector f, and track ¢ is then the
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minimum distance between the track feature vectors and the measurement
feature vector:
dfcature,t,o = miin”ft,i - f0||2 (410)

The displacement vector that is predicted by the model from Section 4.1.
Given a bounding box in the current video frame and its displacement
vector estimate, the bounding box position in the previous frame can be
estimated by summing them up. This directly follows from equation (4.1).
We can then calculate the £2 distance between the last position from the
track Pprevious,7» and the estimated bounding box position in the previous
frame f)previous,o:

ddisplacement,t,o = ”pprevious,t - pprevious,c)”Z (411)

The distance between the new measurement and the state of the Kalman
filter after the prediction step. This indicates how likely it is to observe
the new measurement given the filter state. We use the Mahalanobis
distance for this:

dsteso = | (%o = X078} (%o — x1) (4.12)

Here, x, is the measurement in the current frame. The vector X; is the
state of the Kalman filter after the prediction step to the current frame,
projected into the measurement space. The matrix S; is the corresponding
covariance matrix.

A class distance that punishes the assignment of new detections to tracks
of another class. We chose the distance to be 0 if the class of the new
detection matches the class of the existing track, and 1 otherwise:

0 if Ct =Co
. . 4.13
class,z, 1 otherwise ( :

This is a very crude heuristic. It can be improved by having different class
distances based on how likely it is to confuse the classes. For example,
the distance between the “tram” and the “pedestrian” classes can be
chosen larger than the distance between the “bicycle” and “motorbike”

117



4 Multi-Frame Environment Perception

classes, because it seems less likely to mix up the former. For simplicity,
we however refrain from determining different costs per class pair in our
experiments.

Based on these features, we train a classifier to decide if a measurement belongs
to a given track or not. This is done using a linear SVM [CV95]. This way,
we only have to calculate a weighted sum of the presented distances during
inference, and compare it against a threshold:

dtotal,t,o =wi - dfeature,t,o"'
wp - ddisplacement,t,0+
w3 - dstate,z,n+ (414)
w4 - dc]ass,t,0+
b

Here, w; are weights and b is a bias term which allows to fix the threshold at
zero. We obtain the training data for the SVM from the same dataset that we
already annotated to learn the parameters of the Kalman filter.

If the presented distances would allow for a completely unambiguous association,
and if the SVM classifier was perfect, then the problem would be solved with
this step. In practice, however, it can happen that the SVM classifier predicts
that multiple detections belong to an existing track, or that a detection belongs
to multiple existing tracks. We therefore use the Hungarian algorithm [Kuh55]
to find the minimum cost assignment. We then threshold the costs and obtain
the final pairwise assignments.

After this step, there can be unassigned existing tracks or detections. We deal
with these by applying two track management heuristics. Each unassigned
detection creates a new track. This track is however not yet visible in the
output of the tracking module. The reason for this is that we want to suppress
false positives. We only consider the track to be stable after ngypje consecutive
observations. Once it is stable, it will be visible in the output of the tracking
module. We chose ngapie = 3 for our experiments. This value suppresses most
false positive detections while keeping the detection delay reasonably low at
our target frame rate.
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The second heuristic concerns the deletion of stale tracks. We delete a track if
it did not receive any new observations within a time span of #y,.. We chose
tstale = 0.5 5. This time is long enough to suppress most false negatives from
the detector.

It is however not long enough to handle full occlusions of objects in most
cases. But we argue that also our motion model is not suitable for handling
predictions of typical time horizons of full occlusions. If tracking of fully
occluded objects is a requirement, then we propose to rely on a different
motion model for long-term predictions. This prediction model must take the
behavior of the object into account, and perform ego-motion compensation.
The association after the long-term occlusion can then be made based on this
long-term prediction and the appearance feature vector.

In summary, we execute the following steps for each new video frame:
1. Run the CNN on the input image.

2. Execute the prediction step of the Kalman filter to get state estimates for
the current time step for all existing tracks.

3. Calculate the individual distances and the final distance according to
equation (4.14) for each pair of existing tracks and new detections.

4. Solve the assignment problem using the Hungarian algorithm [Kuh55]
and threshold the maximum costs.

5. Execute the update step of the Kalman filter for each successfully assigned
track to incorporate the new measurement.

6. Create new tracks for unassigned detections. These are however invisible
to the downstream users of the tracker until they have at least ngpje = 3
consecutive observations.

7. Delete tracks without observations during the last fg,e = 0.5 s.

4.2.3 Evaluation

As before, we evaluate our proposed approach on the BDD10OK tracking
dataset. In particular, we want to answer the question if and how much our
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additional assignment metrics improve the object tracking performance. For
this, we establish a baseline that uses the Mahalanobis distance diate,r,o between
the Kalman filter states and the new detections, and the class distance djass,z.o-
These metrics can be calculated for any object detector, and do not rely on
our proposed architectures. We then compare the baseline to several other
combinations of metrics. These combinations include our proposed embedding
distance dfeature,r,0- OF the distance dgisplacement,r,0 based on our displacement
estimates. The results for all experiments can be found in Table 4.5.

Experiment 1 establishes our baseline. It already achieves a low MOTP value,
i.e. a small localization error. There are two reasons for this: The first is that
our object detector has good localization accuracy. The second is that our
tracking approach relies on frequent detections of the tracked object. Both the
localization error of the object detector and the accuracy of the motion model
contribute to the overall localization error. The contribution of the motion
model however becomes larger when its prediction horizon increases. But
long prediction horizons only occur when an object is not detected in several
consecutive frames, or when the new detections cannot be associated.

Even though the MOTP of our baseline is good, it is still the highest amongst
all of our experiments. The baseline also has the highest miss ratio r, of all.
Since we do not use any of our additional metrics, fewer new detections can
be associated with existing tracks. The Kalman filter therefore receives fewer
updates and has to predict longer time horizons. The baseline in experiment
1 achieves a good MOTA metric, also compared to our other experiments.
Despite the comparably high miss ratio 7y, it exhibits a low false positive ratio
r'fp, and a low mismatch ratio 7pme.

Experiments 2, 4, and 6 add the displacement based distance dgisplacement,z,0
to the assignment step of the corresponding experiments 1, 3, and 5. These
experiments therefore require a detection network that can estimate displacement
vectors, like our architecture from Chapter 4.1. The additional metric reduces the
miss ratio r, notably in experiments 2 and 6. This also results in a significantly
improved MOTA metric—experiment 2 achieves the highest MOTA value of
all. The additional information provided by the displacement vector allows to
make more informed assignments of new detections to existing tracks. This
also means that longer tracks can be formed on average. The share of mostly
tracked and partially tracked objects increases and the share of mostly lost
objects decreases. In experiment 6, the information from the displacement
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# | assignment metrics‘MOTP‘MOTA‘rm ‘rfp ‘rmme

1|C, KF 0.207| 0.370|0.459(0.144|0.026
2|C,KF, D 0.206| 0.3910.43910.145|0.025
3|/C,KF,E 0.202| 0.368|0.417(0.160 | 0.054
4|C,KF,D,E 0.202| 0.365|0.419]0.161|0.055
5/CE 0.202| 0.335/0.427]0.161|0.077
6/C,D,E 0.202| 0.354/0.422]0.157|0.068

(@) Object tracking metrics as described in Section 2.5.3. Here, rpy, is the miss ratio, rg, is the false positive ratio,
and 7mme is the mismatch ratio.

# | assignment metrics | mostly tracked | partially tracked | mostly lost

1|C,KF 14.5 % 45.5 % 39.9 %
2|C,KF, D 16.9 % 45.9 % 37.1%
3|C,KF,E 22.2 % 46.2 % 31.5%
4|C,KF,D,E 21.9% 46.3 % 31.8 %
5/CE 21.3 % 46.9 % 31.7 %
6|/C,D,E 21.9% 46.4 % 31.7 %

(b) Ratio of successfully tracked objects, depending on the total object lifespan. We consider an object to be
mostly tracked if it is tracked for at least 80 % of its lifespan, and to be mostly lost if it is tracked for less than
20 % of its lifespan. Otherwise, we consider the object to be partially tracked.

Table 4.5: Tracking results of our approach for all object classes on the BDD100K tracking dataset.
This table compares the results when using different combinations of metrics in the
assignment step. In these tables, we use the following abbreviations for the assignment
metrics: C: Use class distance dclass, 7,0 KF: Use the Mahalanobis distance dsate,r,0
between the Kalman filter state and the new detection. D: Use displacement vector based
distance dgisplacement,r,0- E: Use the embedding vector distance dfeature,r,0-
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vector also introduces a geometric constraint which is completely missing in
experiment 5. This reduces the false positive ratio g, and the mismatch ratio
Fmme. Interestingly, it seems that the information from the displacement vector
is not useful in presence of all other metrics. Experiment 4, which combines all
of our metrics in the assignment step, therefore does not show an improvement
compared to experiment 3. This will shortly be discussed in more detail.

Experiments 3 and 4 add the embedding vector distance dfeaure,r,0 tO the
assignment costs of the corresponding experiments 1 and 2. They therefore
require a detection network that predicts embedding vectors, like the one
proposed in Chapter 3.2. The additional metric results in many more successful
associations of new detections to existing tracks. The embedding vectors
allow to associate objects based on their visual appearance, and therefore
allow associations when the other metrics fail, e. g. after short occlusions.
This reduces the miss ratio ry, significantly and also improves the localization
accuracy as given by the MOTP metric. The share of mostly tracked and
partially tracked objects increases and the share of mostly lost objects decreases.
Trusting more in appearance features and less in geometric constrains however
does not only result in more successful associations, but also in more identity
switches. The mismatch ratio ryne increases notably, and therefore the MOTA
metric drops.

Because of this observation, and because of the drop in accuracy that we
observed in Chapter 3.2 when learning the embedding vectors, we want to
evaluate the discriminativeness of the embedding vectors for the tracking task.
Experiment 5 therefore waives all geometric constraints, and only relies on
the embedding vector distance dfeature,r,0 and the class distance dcjags .0 in
the association step. This means giving up a lot of valuable information, and
as a consequence, this experiment has the highest mismatch ratio ryp,e and
the worst MOTA result. However, the achieved performance is still close
to the other experiments and the achieved mismatch ratio rype is still good.
This shows that the learned embedding vectors are quite discriminative. Even
more discriminative embedding vectors at the cost of higher computation time
might be obtained by choosing a higher dimensionality of the embedding space.
Experiment 6 adds the displacement vector based distance dgisplacement,r,0 tO
experiment 5, and thereby also introduces a geometric constraint. This constraint
however is not posed in the current frame, but only in the previous frame. It
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recovers most of the performance loss from experiment 3 to 5, but still performs
slightly worse.

We already mentioned that experiment 4, which combines all of our metrics in
the association step, does not perform better than experiment 3, which uses all
but the displacement vector based metric. It seems that the displacement vector
based metric does not provide additional information when there is already
geometric information from the Kalman filter and appearance information from
the embedding vector. One possible explanation is that both the embedding
vector and the displacement vector are after all calculated based on the same
visual information. Both might therefore be correlated and have similar failure
cases.

Based on our experiments, the best results are either achieved by combining
dclass,t,m dstate,t,o and ddisplacement,t,o: or dclass,t,o: dstate,t,o and dfeature,t,o- The
first combination should be chosen if a high MOTA value is desired. The second
combination should be chosen if a low miss ratio is desired. Combining all
metrics does not yield further improvements in our experiments. This statement
however does not necessarily generalize to modified of completely different
CNN architectures—the combination of all four metrics in the association step
might still be beneficial for these. It must also be reevaluated when replacing
the Batch Normalization layers in our architecture, which we suggested in
Chapter 3.2 as a possible solution to the drop in accuracy when learning the
embedding vectors.

123






5 Conclusions and Outlook

In this work, we presented an efficient and accurate approach to vision-based
object detection and tracking, as well as pixel-wise semantic segmentation. It
is designed to meet the requirements of self-driving cars and is based on deep
learning.

Our approach is based on existing work that we introduced in Chapter 2. In
particular, we base our work on EfficientNet, EfficientDet, and PWC-Net.
EfficientNet is a computationally very efficient CNN backbone for image
classification. EfficientDet is a single-stage object detector that was designed
around the EfficientNet backbone. PWC-Net finally is a CNN architecture for
optical flow estimation.

Chapter 3.1 introduced our CNN architecture for simultaneous object detection
and semantic segmentation. This MTL model is based on EfficientNet and
EfficientDet which show an outstanding accuracy to computation time ratio
and achieve state of the art results. Our proposed architecture is scalable,
which means that it is easy to trade computation time for accuracy. In our
experiments, we confirmed that our proposed architecture achieves good results
on the challenging Cityscapes and BDD100K datasets. At the same time, it
has a very low inference time and can meet the computational constraints and
real-time requirements of the application. Our data augmentation techniques
result in good generalization across datasets and across camera characteristics.
This allows us to successfully employ our approach inside the software stack of
the self-driving research vehicle of MRT at KIT.

In Chapter 3.2, we proposed to predict embedding vectors for each bounding
box detection. This requires only one additional network head in our CNN
architecture. We presented a modified version of Margin loss that does not
depend on sampling but instead weights down the easy negative examples.
The embedding vectors are discriminative and allow to associate bounding
box detections. We use them for FeatureNMS as well as for object tracking.
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5 Conclusions and Outlook

FeatureNMS is a novel NMS approach that we initially proposed in an earlier
work. There, we show that it can improve recall in crowded scenes where the
assumptions of classical NMS do not hold.

In Chapter 4.1, we proposed a CNN architecture that takes two consecutive
frames as input. Feature maps are extracted for each frame individually and
then fed into an optical flow estimation network. The feature maps are aligned
based on the flow estimate and then forwarded to the network heads. This
allows us to estimate displacement vectors between both frames for all detected
objects. We use this information for object tracking.

Chapter 4.2 finally introduced our tracking approach. It is computationally
very cheap and based on simple techniques. We use a constant velocity
motion model with a Kalman filter, the Hungarian algorithm to solve the
assignment problem, and an SVM classifier to learn the optimal weighting
of assignment costs. We showed that the evaluation metrics of our tracking
approach improve significantly when adding costs based on the embedding
vectors or the displacement vectors to the assignment costs. The tracking
approach relies on a strong object detector that can extract these additional
features. It was designed to be used together with the CNN architectures from
the previous chapters. The combination of both achieves good object tracking
results and has proven useful for real-world usage inside the research vehicle of
MRT at KIT.

In Chapter 3.2, we noticed that the combination of our model architecture,
a small batch size, Batch Normalization, and our proposed loss for feature
embedding learning leads to degraded accuracy. This should be investigated
in future work. Our architecture can be retrained with a larger batch size on
hardware that has enough memory for this. Alternatively, Batch Normalization
can be exchanged for another normalization approach that does not rely on
batch statistics.

Future work should also answer the question if the compound scaling parameters
of EfficientNet and EfficientDet are also optimal for our MTL model. This
requires a grid search which is very computationally expensive. Also, the
run-time of the multi-frame model should be measured again with a more
efficient implementation of the correlation layer.

Finally, this work focused on perception in the image domain and did not
consider the estimation of 3D world coordinates. These are however important
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for many tasks in a self-driving car and are also necessary for many sensor
fusion approaches. There are many possibilities to obtain 3D world coordinates
for the object detections from our approach. Rough estimates can be easily
obtained with a fixed object size assumption per class and with a ground plane
assumption. Another alternative is to associate the 2D detections with 3D
detections from another sensor or to add depth information from disparity
estimates or projected lidar points to the 2D detections.

Instead of performing post-processing steps like these, it is also possible to
directly regress 3D world coordinates inside our CNN architecture. This is
even possible without any modification of the architecture itself. In this case,
the network learns to estimate the depth of objects from a single image. It is
also possible to add depth estimates as an additional layer to the input images
so that the network can reuse this information. These depth estimates can e. g.
come from a stereo matching approach or a lidar sensor. An alternative is to
perform stereo matching inside a modified version of our model itself. This is
conceptually similar to our proposed module for optical flow estimation. It is
then necessary to provide input images from a stereo camera pair.
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